Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / net / wireless / ath / ath9k / eeprom.c
blob0512397a293c9a50a41cb61389f6aeb1c6da2d7a
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
19 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
21 REG_WRITE(ah, reg, val);
23 if (ah->config.analog_shiftreg)
24 udelay(100);
27 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28 u32 shift, u32 val)
30 u32 regVal;
32 regVal = REG_READ(ah, reg) & ~mask;
33 regVal |= (val << shift) & mask;
35 REG_WRITE(ah, reg, regVal);
37 if (ah->config.analog_shiftreg)
38 udelay(100);
41 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
42 int16_t targetLeft, int16_t targetRight)
44 int16_t rv;
46 if (srcRight == srcLeft) {
47 rv = targetLeft;
48 } else {
49 rv = (int16_t) (((target - srcLeft) * targetRight +
50 (srcRight - target) * targetLeft) /
51 (srcRight - srcLeft));
53 return rv;
56 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
57 u16 *indexL, u16 *indexR)
59 u16 i;
61 if (target <= pList[0]) {
62 *indexL = *indexR = 0;
63 return true;
65 if (target >= pList[listSize - 1]) {
66 *indexL = *indexR = (u16) (listSize - 1);
67 return true;
70 for (i = 0; i < listSize - 1; i++) {
71 if (pList[i] == target) {
72 *indexL = *indexR = i;
73 return true;
75 if (target < pList[i + 1]) {
76 *indexL = i;
77 *indexR = (u16) (i + 1);
78 return false;
81 return false;
84 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
85 int eep_start_loc, int size)
87 int i = 0, j, addr;
88 u32 addrdata[8];
89 u32 data[8];
91 for (addr = 0; addr < size; addr++) {
92 addrdata[i] = AR5416_EEPROM_OFFSET +
93 ((addr + eep_start_loc) << AR5416_EEPROM_S);
94 i++;
95 if (i == 8) {
96 REG_READ_MULTI(ah, addrdata, data, i);
98 for (j = 0; j < i; j++) {
99 *eep_data = data[j];
100 eep_data++;
102 i = 0;
106 if (i != 0) {
107 REG_READ_MULTI(ah, addrdata, data, i);
109 for (j = 0; j < i; j++) {
110 *eep_data = data[j];
111 eep_data++;
116 bool ath9k_hw_nvram_read(struct ath_common *common, u32 off, u16 *data)
118 return common->bus_ops->eeprom_read(common, off, data);
121 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
122 u8 *pVpdList, u16 numIntercepts,
123 u8 *pRetVpdList)
125 u16 i, k;
126 u8 currPwr = pwrMin;
127 u16 idxL = 0, idxR = 0;
129 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
130 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
131 numIntercepts, &(idxL),
132 &(idxR));
133 if (idxR < 1)
134 idxR = 1;
135 if (idxL == numIntercepts - 1)
136 idxL = (u16) (numIntercepts - 2);
137 if (pPwrList[idxL] == pPwrList[idxR])
138 k = pVpdList[idxL];
139 else
140 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
141 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
142 (pPwrList[idxR] - pPwrList[idxL]));
143 pRetVpdList[i] = (u8) k;
144 currPwr += 2;
148 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
149 struct ath9k_channel *chan,
150 struct cal_target_power_leg *powInfo,
151 u16 numChannels,
152 struct cal_target_power_leg *pNewPower,
153 u16 numRates, bool isExtTarget)
155 struct chan_centers centers;
156 u16 clo, chi;
157 int i;
158 int matchIndex = -1, lowIndex = -1;
159 u16 freq;
161 ath9k_hw_get_channel_centers(ah, chan, &centers);
162 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
164 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
165 IS_CHAN_2GHZ(chan))) {
166 matchIndex = 0;
167 } else {
168 for (i = 0; (i < numChannels) &&
169 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
170 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
171 IS_CHAN_2GHZ(chan))) {
172 matchIndex = i;
173 break;
174 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
175 IS_CHAN_2GHZ(chan)) && i > 0 &&
176 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
177 IS_CHAN_2GHZ(chan))) {
178 lowIndex = i - 1;
179 break;
182 if ((matchIndex == -1) && (lowIndex == -1))
183 matchIndex = i - 1;
186 if (matchIndex != -1) {
187 *pNewPower = powInfo[matchIndex];
188 } else {
189 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
190 IS_CHAN_2GHZ(chan));
191 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
192 IS_CHAN_2GHZ(chan));
194 for (i = 0; i < numRates; i++) {
195 pNewPower->tPow2x[i] =
196 (u8)ath9k_hw_interpolate(freq, clo, chi,
197 powInfo[lowIndex].tPow2x[i],
198 powInfo[lowIndex + 1].tPow2x[i]);
203 void ath9k_hw_get_target_powers(struct ath_hw *ah,
204 struct ath9k_channel *chan,
205 struct cal_target_power_ht *powInfo,
206 u16 numChannels,
207 struct cal_target_power_ht *pNewPower,
208 u16 numRates, bool isHt40Target)
210 struct chan_centers centers;
211 u16 clo, chi;
212 int i;
213 int matchIndex = -1, lowIndex = -1;
214 u16 freq;
216 ath9k_hw_get_channel_centers(ah, chan, &centers);
217 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
219 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
220 matchIndex = 0;
221 } else {
222 for (i = 0; (i < numChannels) &&
223 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
224 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
225 IS_CHAN_2GHZ(chan))) {
226 matchIndex = i;
227 break;
228 } else
229 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
230 IS_CHAN_2GHZ(chan)) && i > 0 &&
231 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
232 IS_CHAN_2GHZ(chan))) {
233 lowIndex = i - 1;
234 break;
237 if ((matchIndex == -1) && (lowIndex == -1))
238 matchIndex = i - 1;
241 if (matchIndex != -1) {
242 *pNewPower = powInfo[matchIndex];
243 } else {
244 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
245 IS_CHAN_2GHZ(chan));
246 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
247 IS_CHAN_2GHZ(chan));
249 for (i = 0; i < numRates; i++) {
250 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
251 clo, chi,
252 powInfo[lowIndex].tPow2x[i],
253 powInfo[lowIndex + 1].tPow2x[i]);
258 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
259 bool is2GHz, int num_band_edges)
261 u16 twiceMaxEdgePower = MAX_RATE_POWER;
262 int i;
264 for (i = 0; (i < num_band_edges) &&
265 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
266 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
267 twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
268 break;
269 } else if ((i > 0) &&
270 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
271 is2GHz))) {
272 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
273 is2GHz) < freq &&
274 CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
275 twiceMaxEdgePower =
276 CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
278 break;
282 return twiceMaxEdgePower;
285 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
286 u8 antenna_reduction)
288 u16 reduction = antenna_reduction;
291 * Reduce scaled Power by number of chains active
292 * to get the per chain tx power level.
294 switch (ar5416_get_ntxchains(ah->txchainmask)) {
295 case 1:
296 break;
297 case 2:
298 reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
299 break;
300 case 3:
301 reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
302 break;
305 if (power_limit > reduction)
306 power_limit -= reduction;
307 else
308 power_limit = 0;
310 return power_limit;
313 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
315 struct ath_common *common = ath9k_hw_common(ah);
316 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
318 switch (ar5416_get_ntxchains(ah->txchainmask)) {
319 case 1:
320 break;
321 case 2:
322 regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
323 break;
324 case 3:
325 regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
326 break;
327 default:
328 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
329 break;
333 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
334 struct ath9k_channel *chan,
335 void *pRawDataSet,
336 u8 *bChans, u16 availPiers,
337 u16 tPdGainOverlap,
338 u16 *pPdGainBoundaries, u8 *pPDADCValues,
339 u16 numXpdGains)
341 int i, j, k;
342 int16_t ss;
343 u16 idxL = 0, idxR = 0, numPiers;
344 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
345 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
346 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
347 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
348 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
349 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
351 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
352 u8 minPwrT4[AR5416_NUM_PD_GAINS];
353 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
354 int16_t vpdStep;
355 int16_t tmpVal;
356 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
357 bool match;
358 int16_t minDelta = 0;
359 struct chan_centers centers;
360 int pdgain_boundary_default;
361 struct cal_data_per_freq *data_def = pRawDataSet;
362 struct cal_data_per_freq_4k *data_4k = pRawDataSet;
363 struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
364 bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
365 int intercepts;
367 if (AR_SREV_9287(ah))
368 intercepts = AR9287_PD_GAIN_ICEPTS;
369 else
370 intercepts = AR5416_PD_GAIN_ICEPTS;
372 memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
373 ath9k_hw_get_channel_centers(ah, chan, &centers);
375 for (numPiers = 0; numPiers < availPiers; numPiers++) {
376 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
377 break;
380 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
381 IS_CHAN_2GHZ(chan)),
382 bChans, numPiers, &idxL, &idxR);
384 if (match) {
385 if (AR_SREV_9287(ah)) {
386 /* FIXME: array overrun? */
387 for (i = 0; i < numXpdGains; i++) {
388 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
389 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
390 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
391 data_9287[idxL].pwrPdg[i],
392 data_9287[idxL].vpdPdg[i],
393 intercepts,
394 vpdTableI[i]);
396 } else if (eeprom_4k) {
397 for (i = 0; i < numXpdGains; i++) {
398 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
399 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
400 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
401 data_4k[idxL].pwrPdg[i],
402 data_4k[idxL].vpdPdg[i],
403 intercepts,
404 vpdTableI[i]);
406 } else {
407 for (i = 0; i < numXpdGains; i++) {
408 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
409 maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
410 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
411 data_def[idxL].pwrPdg[i],
412 data_def[idxL].vpdPdg[i],
413 intercepts,
414 vpdTableI[i]);
417 } else {
418 for (i = 0; i < numXpdGains; i++) {
419 if (AR_SREV_9287(ah)) {
420 pVpdL = data_9287[idxL].vpdPdg[i];
421 pPwrL = data_9287[idxL].pwrPdg[i];
422 pVpdR = data_9287[idxR].vpdPdg[i];
423 pPwrR = data_9287[idxR].pwrPdg[i];
424 } else if (eeprom_4k) {
425 pVpdL = data_4k[idxL].vpdPdg[i];
426 pPwrL = data_4k[idxL].pwrPdg[i];
427 pVpdR = data_4k[idxR].vpdPdg[i];
428 pPwrR = data_4k[idxR].pwrPdg[i];
429 } else {
430 pVpdL = data_def[idxL].vpdPdg[i];
431 pPwrL = data_def[idxL].pwrPdg[i];
432 pVpdR = data_def[idxR].vpdPdg[i];
433 pPwrR = data_def[idxR].pwrPdg[i];
436 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
438 maxPwrT4[i] =
439 min(pPwrL[intercepts - 1],
440 pPwrR[intercepts - 1]);
443 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
444 pPwrL, pVpdL,
445 intercepts,
446 vpdTableL[i]);
447 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
448 pPwrR, pVpdR,
449 intercepts,
450 vpdTableR[i]);
452 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
453 vpdTableI[i][j] =
454 (u8)(ath9k_hw_interpolate((u16)
455 FREQ2FBIN(centers.
456 synth_center,
457 IS_CHAN_2GHZ
458 (chan)),
459 bChans[idxL], bChans[idxR],
460 vpdTableL[i][j], vpdTableR[i][j]));
465 k = 0;
467 for (i = 0; i < numXpdGains; i++) {
468 if (i == (numXpdGains - 1))
469 pPdGainBoundaries[i] =
470 (u16)(maxPwrT4[i] / 2);
471 else
472 pPdGainBoundaries[i] =
473 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
475 pPdGainBoundaries[i] =
476 min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
478 minDelta = 0;
480 if (i == 0) {
481 if (AR_SREV_9280_20_OR_LATER(ah))
482 ss = (int16_t)(0 - (minPwrT4[i] / 2));
483 else
484 ss = 0;
485 } else {
486 ss = (int16_t)((pPdGainBoundaries[i - 1] -
487 (minPwrT4[i] / 2)) -
488 tPdGainOverlap + 1 + minDelta);
490 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
491 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
493 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
494 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
495 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
496 ss++;
499 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
500 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
501 (minPwrT4[i] / 2));
502 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
503 tgtIndex : sizeCurrVpdTable;
505 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
506 pPDADCValues[k++] = vpdTableI[i][ss++];
509 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
510 vpdTableI[i][sizeCurrVpdTable - 2]);
511 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
513 if (tgtIndex >= maxIndex) {
514 while ((ss <= tgtIndex) &&
515 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
516 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
517 (ss - maxIndex + 1) * vpdStep));
518 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
519 255 : tmpVal);
520 ss++;
525 if (eeprom_4k)
526 pdgain_boundary_default = 58;
527 else
528 pdgain_boundary_default = pPdGainBoundaries[i - 1];
530 while (i < AR5416_PD_GAINS_IN_MASK) {
531 pPdGainBoundaries[i] = pdgain_boundary_default;
532 i++;
535 while (k < AR5416_NUM_PDADC_VALUES) {
536 pPDADCValues[k] = pPDADCValues[k - 1];
537 k++;
541 int ath9k_hw_eeprom_init(struct ath_hw *ah)
543 int status;
545 if (AR_SREV_9300_20_OR_LATER(ah))
546 ah->eep_ops = &eep_ar9300_ops;
547 else if (AR_SREV_9287(ah)) {
548 ah->eep_ops = &eep_ar9287_ops;
549 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
550 ah->eep_ops = &eep_4k_ops;
551 } else {
552 ah->eep_ops = &eep_def_ops;
555 if (!ah->eep_ops->fill_eeprom(ah))
556 return -EIO;
558 status = ah->eep_ops->check_eeprom(ah);
560 return status;