Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / net / wireless / brcm80211 / brcmsmac / ampdu.c
blobbe5bcfb9153bfacca71e4cd226fa2c0224612334
1 /*
2 * Copyright (c) 2010 Broadcom Corporation
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 #include <net/mac80211.h>
18 #include "rate.h"
19 #include "scb.h"
20 #include "phy/phy_hal.h"
21 #include "antsel.h"
22 #include "main.h"
23 #include "ampdu.h"
25 /* max number of mpdus in an ampdu */
26 #define AMPDU_MAX_MPDU 32
27 /* max number of mpdus in an ampdu to a legacy */
28 #define AMPDU_NUM_MPDU_LEGACY 16
29 /* max Tx ba window size (in pdu) */
30 #define AMPDU_TX_BA_MAX_WSIZE 64
31 /* default Tx ba window size (in pdu) */
32 #define AMPDU_TX_BA_DEF_WSIZE 64
33 /* default Rx ba window size (in pdu) */
34 #define AMPDU_RX_BA_DEF_WSIZE 64
35 /* max Rx ba window size (in pdu) */
36 #define AMPDU_RX_BA_MAX_WSIZE 64
37 /* max dur of tx ampdu (in msec) */
38 #define AMPDU_MAX_DUR 5
39 /* default tx retry limit */
40 #define AMPDU_DEF_RETRY_LIMIT 5
41 /* default tx retry limit at reg rate */
42 #define AMPDU_DEF_RR_RETRY_LIMIT 2
43 /* default weight of ampdu in txfifo */
44 #define AMPDU_DEF_TXPKT_WEIGHT 2
45 /* default ffpld reserved bytes */
46 #define AMPDU_DEF_FFPLD_RSVD 2048
47 /* # of inis to be freed on detach */
48 #define AMPDU_INI_FREE 10
49 /* max # of mpdus released at a time */
50 #define AMPDU_SCB_MAX_RELEASE 20
52 #define NUM_FFPLD_FIFO 4 /* number of fifo concerned by pre-loading */
53 #define FFPLD_TX_MAX_UNFL 200 /* default value of the average number of ampdu
54 * without underflows
56 #define FFPLD_MPDU_SIZE 1800 /* estimate of maximum mpdu size */
57 #define FFPLD_MAX_MCS 23 /* we don't deal with mcs 32 */
58 #define FFPLD_PLD_INCR 1000 /* increments in bytes */
59 #define FFPLD_MAX_AMPDU_CNT 5000 /* maximum number of ampdu we
60 * accumulate between resets.
63 #define AMPDU_DELIMITER_LEN 4
65 /* max allowed number of mpdus in an ampdu (2 streams) */
66 #define AMPDU_NUM_MPDU 16
68 #define TX_SEQ_TO_INDEX(seq) ((seq) % AMPDU_TX_BA_MAX_WSIZE)
70 /* max possible overhead per mpdu in the ampdu; 3 is for roundup if needed */
71 #define AMPDU_MAX_MPDU_OVERHEAD (FCS_LEN + DOT11_ICV_AES_LEN +\
72 AMPDU_DELIMITER_LEN + 3\
73 + DOT11_A4_HDR_LEN + DOT11_QOS_LEN + DOT11_IV_MAX_LEN)
75 /* modulo add/sub, bound = 2^k */
76 #define MODADD_POW2(x, y, bound) (((x) + (y)) & ((bound) - 1))
77 #define MODSUB_POW2(x, y, bound) (((x) - (y)) & ((bound) - 1))
79 /* structure to hold tx fifo information and pre-loading state
80 * counters specific to tx underflows of ampdus
81 * some counters might be redundant with the ones in wlc or ampdu structures.
82 * This allows to maintain a specific state independently of
83 * how often and/or when the wlc counters are updated.
85 * ampdu_pld_size: number of bytes to be pre-loaded
86 * mcs2ampdu_table: per-mcs max # of mpdus in an ampdu
87 * prev_txfunfl: num of underflows last read from the HW macstats counter
88 * accum_txfunfl: num of underflows since we modified pld params
89 * accum_txampdu: num of tx ampdu since we modified pld params
90 * prev_txampdu: previous reading of tx ampdu
91 * dmaxferrate: estimated dma avg xfer rate in kbits/sec
93 struct brcms_fifo_info {
94 u16 ampdu_pld_size;
95 u8 mcs2ampdu_table[FFPLD_MAX_MCS + 1];
96 u16 prev_txfunfl;
97 u32 accum_txfunfl;
98 u32 accum_txampdu;
99 u32 prev_txampdu;
100 u32 dmaxferrate;
103 /* AMPDU module specific state
105 * wlc: pointer to main wlc structure
106 * scb_handle: scb cubby handle to retrieve data from scb
107 * ini_enable: per-tid initiator enable/disable of ampdu
108 * ba_tx_wsize: Tx ba window size (in pdu)
109 * ba_rx_wsize: Rx ba window size (in pdu)
110 * retry_limit: mpdu transmit retry limit
111 * rr_retry_limit: mpdu transmit retry limit at regular rate
112 * retry_limit_tid: per-tid mpdu transmit retry limit
113 * rr_retry_limit_tid: per-tid mpdu transmit retry limit at regular rate
114 * mpdu_density: min mpdu spacing (0-7) ==> 2^(x-1)/8 usec
115 * max_pdu: max pdus allowed in ampdu
116 * dur: max duration of an ampdu (in msec)
117 * txpkt_weight: weight of ampdu in txfifo; reduces rate lag
118 * rx_factor: maximum rx ampdu factor (0-3) ==> 2^(13+x) bytes
119 * ffpld_rsvd: number of bytes to reserve for preload
120 * max_txlen: max size of ampdu per mcs, bw and sgi
121 * mfbr: enable multiple fallback rate
122 * tx_max_funl: underflows should be kept such that
123 * (tx_max_funfl*underflows) < tx frames
124 * fifo_tb: table of fifo infos
126 struct ampdu_info {
127 struct brcms_c_info *wlc;
128 int scb_handle;
129 u8 ini_enable[AMPDU_MAX_SCB_TID];
130 u8 ba_tx_wsize;
131 u8 ba_rx_wsize;
132 u8 retry_limit;
133 u8 rr_retry_limit;
134 u8 retry_limit_tid[AMPDU_MAX_SCB_TID];
135 u8 rr_retry_limit_tid[AMPDU_MAX_SCB_TID];
136 u8 mpdu_density;
137 s8 max_pdu;
138 u8 dur;
139 u8 txpkt_weight;
140 u8 rx_factor;
141 u32 ffpld_rsvd;
142 u32 max_txlen[MCS_TABLE_SIZE][2][2];
143 bool mfbr;
144 u32 tx_max_funl;
145 struct brcms_fifo_info fifo_tb[NUM_FFPLD_FIFO];
148 /* used for flushing ampdu packets */
149 struct cb_del_ampdu_pars {
150 struct ieee80211_sta *sta;
151 u16 tid;
154 static void brcms_c_scb_ampdu_update_max_txlen(struct ampdu_info *ampdu, u8 dur)
156 u32 rate, mcs;
158 for (mcs = 0; mcs < MCS_TABLE_SIZE; mcs++) {
159 /* rate is in Kbps; dur is in msec ==> len = (rate * dur) / 8 */
160 /* 20MHz, No SGI */
161 rate = mcs_2_rate(mcs, false, false);
162 ampdu->max_txlen[mcs][0][0] = (rate * dur) >> 3;
163 /* 40 MHz, No SGI */
164 rate = mcs_2_rate(mcs, true, false);
165 ampdu->max_txlen[mcs][1][0] = (rate * dur) >> 3;
166 /* 20MHz, SGI */
167 rate = mcs_2_rate(mcs, false, true);
168 ampdu->max_txlen[mcs][0][1] = (rate * dur) >> 3;
169 /* 40 MHz, SGI */
170 rate = mcs_2_rate(mcs, true, true);
171 ampdu->max_txlen[mcs][1][1] = (rate * dur) >> 3;
175 static bool brcms_c_ampdu_cap(struct ampdu_info *ampdu)
177 if (BRCMS_PHY_11N_CAP(ampdu->wlc->band))
178 return true;
179 else
180 return false;
183 static int brcms_c_ampdu_set(struct ampdu_info *ampdu, bool on)
185 struct brcms_c_info *wlc = ampdu->wlc;
187 wlc->pub->_ampdu = false;
189 if (on) {
190 if (!(wlc->pub->_n_enab & SUPPORT_11N)) {
191 wiphy_err(ampdu->wlc->wiphy, "wl%d: driver not "
192 "nmode enabled\n", wlc->pub->unit);
193 return -ENOTSUPP;
195 if (!brcms_c_ampdu_cap(ampdu)) {
196 wiphy_err(ampdu->wlc->wiphy, "wl%d: device not "
197 "ampdu capable\n", wlc->pub->unit);
198 return -ENOTSUPP;
200 wlc->pub->_ampdu = on;
203 return 0;
206 static void brcms_c_ffpld_init(struct ampdu_info *ampdu)
208 int i, j;
209 struct brcms_fifo_info *fifo;
211 for (j = 0; j < NUM_FFPLD_FIFO; j++) {
212 fifo = (ampdu->fifo_tb + j);
213 fifo->ampdu_pld_size = 0;
214 for (i = 0; i <= FFPLD_MAX_MCS; i++)
215 fifo->mcs2ampdu_table[i] = 255;
216 fifo->dmaxferrate = 0;
217 fifo->accum_txampdu = 0;
218 fifo->prev_txfunfl = 0;
219 fifo->accum_txfunfl = 0;
224 struct ampdu_info *brcms_c_ampdu_attach(struct brcms_c_info *wlc)
226 struct ampdu_info *ampdu;
227 int i;
229 ampdu = kzalloc(sizeof(struct ampdu_info), GFP_ATOMIC);
230 if (!ampdu)
231 return NULL;
233 ampdu->wlc = wlc;
235 for (i = 0; i < AMPDU_MAX_SCB_TID; i++)
236 ampdu->ini_enable[i] = true;
237 /* Disable ampdu for VO by default */
238 ampdu->ini_enable[PRIO_8021D_VO] = false;
239 ampdu->ini_enable[PRIO_8021D_NC] = false;
241 /* Disable ampdu for BK by default since not enough fifo space */
242 ampdu->ini_enable[PRIO_8021D_NONE] = false;
243 ampdu->ini_enable[PRIO_8021D_BK] = false;
245 ampdu->ba_tx_wsize = AMPDU_TX_BA_DEF_WSIZE;
246 ampdu->ba_rx_wsize = AMPDU_RX_BA_DEF_WSIZE;
247 ampdu->mpdu_density = AMPDU_DEF_MPDU_DENSITY;
248 ampdu->max_pdu = AUTO;
249 ampdu->dur = AMPDU_MAX_DUR;
250 ampdu->txpkt_weight = AMPDU_DEF_TXPKT_WEIGHT;
252 ampdu->ffpld_rsvd = AMPDU_DEF_FFPLD_RSVD;
254 * bump max ampdu rcv size to 64k for all 11n
255 * devices except 4321A0 and 4321A1
257 if (BRCMS_ISNPHY(wlc->band) && NREV_LT(wlc->band->phyrev, 2))
258 ampdu->rx_factor = IEEE80211_HT_MAX_AMPDU_32K;
259 else
260 ampdu->rx_factor = IEEE80211_HT_MAX_AMPDU_64K;
261 ampdu->retry_limit = AMPDU_DEF_RETRY_LIMIT;
262 ampdu->rr_retry_limit = AMPDU_DEF_RR_RETRY_LIMIT;
264 for (i = 0; i < AMPDU_MAX_SCB_TID; i++) {
265 ampdu->retry_limit_tid[i] = ampdu->retry_limit;
266 ampdu->rr_retry_limit_tid[i] = ampdu->rr_retry_limit;
269 brcms_c_scb_ampdu_update_max_txlen(ampdu, ampdu->dur);
270 ampdu->mfbr = false;
271 /* try to set ampdu to the default value */
272 brcms_c_ampdu_set(ampdu, wlc->pub->_ampdu);
274 ampdu->tx_max_funl = FFPLD_TX_MAX_UNFL;
275 brcms_c_ffpld_init(ampdu);
277 return ampdu;
280 void brcms_c_ampdu_detach(struct ampdu_info *ampdu)
282 kfree(ampdu);
285 static void brcms_c_scb_ampdu_update_config(struct ampdu_info *ampdu,
286 struct scb *scb)
288 struct scb_ampdu *scb_ampdu = &scb->scb_ampdu;
289 int i;
291 scb_ampdu->max_pdu = AMPDU_NUM_MPDU;
293 /* go back to legacy size if some preloading is occurring */
294 for (i = 0; i < NUM_FFPLD_FIFO; i++) {
295 if (ampdu->fifo_tb[i].ampdu_pld_size > FFPLD_PLD_INCR)
296 scb_ampdu->max_pdu = AMPDU_NUM_MPDU_LEGACY;
299 /* apply user override */
300 if (ampdu->max_pdu != AUTO)
301 scb_ampdu->max_pdu = (u8) ampdu->max_pdu;
303 scb_ampdu->release = min_t(u8, scb_ampdu->max_pdu,
304 AMPDU_SCB_MAX_RELEASE);
306 if (scb_ampdu->max_rx_ampdu_bytes)
307 scb_ampdu->release = min_t(u8, scb_ampdu->release,
308 scb_ampdu->max_rx_ampdu_bytes / 1600);
310 scb_ampdu->release = min(scb_ampdu->release,
311 ampdu->fifo_tb[TX_AC_BE_FIFO].
312 mcs2ampdu_table[FFPLD_MAX_MCS]);
315 static void brcms_c_scb_ampdu_update_config_all(struct ampdu_info *ampdu)
317 brcms_c_scb_ampdu_update_config(ampdu, &ampdu->wlc->pri_scb);
320 static void brcms_c_ffpld_calc_mcs2ampdu_table(struct ampdu_info *ampdu, int f)
322 int i;
323 u32 phy_rate, dma_rate, tmp;
324 u8 max_mpdu;
325 struct brcms_fifo_info *fifo = (ampdu->fifo_tb + f);
327 /* recompute the dma rate */
328 /* note : we divide/multiply by 100 to avoid integer overflows */
329 max_mpdu = min_t(u8, fifo->mcs2ampdu_table[FFPLD_MAX_MCS],
330 AMPDU_NUM_MPDU_LEGACY);
331 phy_rate = mcs_2_rate(FFPLD_MAX_MCS, true, false);
332 dma_rate =
333 (((phy_rate / 100) *
334 (max_mpdu * FFPLD_MPDU_SIZE - fifo->ampdu_pld_size))
335 / (max_mpdu * FFPLD_MPDU_SIZE)) * 100;
336 fifo->dmaxferrate = dma_rate;
338 /* fill up the mcs2ampdu table; do not recalc the last mcs */
339 dma_rate = dma_rate >> 7;
340 for (i = 0; i < FFPLD_MAX_MCS; i++) {
341 /* shifting to keep it within integer range */
342 phy_rate = mcs_2_rate(i, true, false) >> 7;
343 if (phy_rate > dma_rate) {
344 tmp = ((fifo->ampdu_pld_size * phy_rate) /
345 ((phy_rate - dma_rate) * FFPLD_MPDU_SIZE)) + 1;
346 tmp = min_t(u32, tmp, 255);
347 fifo->mcs2ampdu_table[i] = (u8) tmp;
352 /* evaluate the dma transfer rate using the tx underflows as feedback.
353 * If necessary, increase tx fifo preloading. If not enough,
354 * decrease maximum ampdu size for each mcs till underflows stop
355 * Return 1 if pre-loading not active, -1 if not an underflow event,
356 * 0 if pre-loading module took care of the event.
358 static int brcms_c_ffpld_check_txfunfl(struct brcms_c_info *wlc, int fid)
360 struct ampdu_info *ampdu = wlc->ampdu;
361 u32 phy_rate = mcs_2_rate(FFPLD_MAX_MCS, true, false);
362 u32 txunfl_ratio;
363 u8 max_mpdu;
364 u32 current_ampdu_cnt = 0;
365 u16 max_pld_size;
366 u32 new_txunfl;
367 struct brcms_fifo_info *fifo = (ampdu->fifo_tb + fid);
368 uint xmtfifo_sz;
369 u16 cur_txunfl;
371 /* return if we got here for a different reason than underflows */
372 cur_txunfl = brcms_b_read_shm(wlc->hw,
373 M_UCODE_MACSTAT +
374 offsetof(struct macstat, txfunfl[fid]));
375 new_txunfl = (u16) (cur_txunfl - fifo->prev_txfunfl);
376 if (new_txunfl == 0) {
377 BCMMSG(wlc->wiphy, "TX status FRAG set but no tx underflows\n");
378 return -1;
380 fifo->prev_txfunfl = cur_txunfl;
382 if (!ampdu->tx_max_funl)
383 return 1;
385 /* check if fifo is big enough */
386 if (brcms_b_xmtfifo_sz_get(wlc->hw, fid, &xmtfifo_sz))
387 return -1;
389 if ((TXFIFO_SIZE_UNIT * (u32) xmtfifo_sz) <= ampdu->ffpld_rsvd)
390 return 1;
392 max_pld_size = TXFIFO_SIZE_UNIT * xmtfifo_sz - ampdu->ffpld_rsvd;
393 fifo->accum_txfunfl += new_txunfl;
395 /* we need to wait for at least 10 underflows */
396 if (fifo->accum_txfunfl < 10)
397 return 0;
399 BCMMSG(wlc->wiphy, "ampdu_count %d tx_underflows %d\n",
400 current_ampdu_cnt, fifo->accum_txfunfl);
403 compute the current ratio of tx unfl per ampdu.
404 When the current ampdu count becomes too
405 big while the ratio remains small, we reset
406 the current count in order to not
407 introduce too big of a latency in detecting a
408 large amount of tx underflows later.
411 txunfl_ratio = current_ampdu_cnt / fifo->accum_txfunfl;
413 if (txunfl_ratio > ampdu->tx_max_funl) {
414 if (current_ampdu_cnt >= FFPLD_MAX_AMPDU_CNT)
415 fifo->accum_txfunfl = 0;
417 return 0;
419 max_mpdu = min_t(u8, fifo->mcs2ampdu_table[FFPLD_MAX_MCS],
420 AMPDU_NUM_MPDU_LEGACY);
422 /* In case max value max_pdu is already lower than
423 the fifo depth, there is nothing more we can do.
426 if (fifo->ampdu_pld_size >= max_mpdu * FFPLD_MPDU_SIZE) {
427 fifo->accum_txfunfl = 0;
428 return 0;
431 if (fifo->ampdu_pld_size < max_pld_size) {
433 /* increment by TX_FIFO_PLD_INC bytes */
434 fifo->ampdu_pld_size += FFPLD_PLD_INCR;
435 if (fifo->ampdu_pld_size > max_pld_size)
436 fifo->ampdu_pld_size = max_pld_size;
438 /* update scb release size */
439 brcms_c_scb_ampdu_update_config_all(ampdu);
442 * compute a new dma xfer rate for max_mpdu @ max mcs.
443 * This is the minimum dma rate that can achieve no
444 * underflow condition for the current mpdu size.
446 * note : we divide/multiply by 100 to avoid integer overflows
448 fifo->dmaxferrate =
449 (((phy_rate / 100) *
450 (max_mpdu * FFPLD_MPDU_SIZE - fifo->ampdu_pld_size))
451 / (max_mpdu * FFPLD_MPDU_SIZE)) * 100;
453 BCMMSG(wlc->wiphy, "DMA estimated transfer rate %d; "
454 "pre-load size %d\n",
455 fifo->dmaxferrate, fifo->ampdu_pld_size);
456 } else {
458 /* decrease ampdu size */
459 if (fifo->mcs2ampdu_table[FFPLD_MAX_MCS] > 1) {
460 if (fifo->mcs2ampdu_table[FFPLD_MAX_MCS] == 255)
461 fifo->mcs2ampdu_table[FFPLD_MAX_MCS] =
462 AMPDU_NUM_MPDU_LEGACY - 1;
463 else
464 fifo->mcs2ampdu_table[FFPLD_MAX_MCS] -= 1;
466 /* recompute the table */
467 brcms_c_ffpld_calc_mcs2ampdu_table(ampdu, fid);
469 /* update scb release size */
470 brcms_c_scb_ampdu_update_config_all(ampdu);
473 fifo->accum_txfunfl = 0;
474 return 0;
477 void
478 brcms_c_ampdu_tx_operational(struct brcms_c_info *wlc, u8 tid,
479 u8 ba_wsize, /* negotiated ba window size (in pdu) */
480 uint max_rx_ampdu_bytes) /* from ht_cap in beacon */
482 struct scb_ampdu *scb_ampdu;
483 struct scb_ampdu_tid_ini *ini;
484 struct ampdu_info *ampdu = wlc->ampdu;
485 struct scb *scb = &wlc->pri_scb;
486 scb_ampdu = &scb->scb_ampdu;
488 if (!ampdu->ini_enable[tid]) {
489 wiphy_err(ampdu->wlc->wiphy, "%s: Rejecting tid %d\n",
490 __func__, tid);
491 return;
494 ini = &scb_ampdu->ini[tid];
495 ini->tid = tid;
496 ini->scb = scb_ampdu->scb;
497 ini->ba_wsize = ba_wsize;
498 scb_ampdu->max_rx_ampdu_bytes = max_rx_ampdu_bytes;
502 brcms_c_sendampdu(struct ampdu_info *ampdu, struct brcms_txq_info *qi,
503 struct sk_buff **pdu, int prec)
505 struct brcms_c_info *wlc;
506 struct sk_buff *p, *pkt[AMPDU_MAX_MPDU];
507 u8 tid, ndelim;
508 int err = 0;
509 u8 preamble_type = BRCMS_GF_PREAMBLE;
510 u8 fbr_preamble_type = BRCMS_GF_PREAMBLE;
511 u8 rts_preamble_type = BRCMS_LONG_PREAMBLE;
512 u8 rts_fbr_preamble_type = BRCMS_LONG_PREAMBLE;
514 bool rr = true, fbr = false;
515 uint i, count = 0, fifo, seg_cnt = 0;
516 u16 plen, len, seq = 0, mcl, mch, index, frameid, dma_len = 0;
517 u32 ampdu_len, max_ampdu_bytes = 0;
518 struct d11txh *txh = NULL;
519 u8 *plcp;
520 struct ieee80211_hdr *h;
521 struct scb *scb;
522 struct scb_ampdu *scb_ampdu;
523 struct scb_ampdu_tid_ini *ini;
524 u8 mcs = 0;
525 bool use_rts = false, use_cts = false;
526 u32 rspec = 0, rspec_fallback = 0;
527 u32 rts_rspec = 0, rts_rspec_fallback = 0;
528 u16 mimo_ctlchbw = PHY_TXC1_BW_20MHZ;
529 struct ieee80211_rts *rts;
530 u8 rr_retry_limit;
531 struct brcms_fifo_info *f;
532 bool fbr_iscck;
533 struct ieee80211_tx_info *tx_info;
534 u16 qlen;
535 struct wiphy *wiphy;
537 wlc = ampdu->wlc;
538 wiphy = wlc->wiphy;
539 p = *pdu;
541 tid = (u8) (p->priority);
543 f = ampdu->fifo_tb + prio2fifo[tid];
545 scb = &wlc->pri_scb;
546 scb_ampdu = &scb->scb_ampdu;
547 ini = &scb_ampdu->ini[tid];
549 /* Let pressure continue to build ... */
550 qlen = pktq_plen(&qi->q, prec);
551 if (ini->tx_in_transit > 0 &&
552 qlen < min(scb_ampdu->max_pdu, ini->ba_wsize))
553 /* Collect multiple MPDU's to be sent in the next AMPDU */
554 return -EBUSY;
556 /* at this point we intend to transmit an AMPDU */
557 rr_retry_limit = ampdu->rr_retry_limit_tid[tid];
558 ampdu_len = 0;
559 dma_len = 0;
560 while (p) {
561 struct ieee80211_tx_rate *txrate;
563 tx_info = IEEE80211_SKB_CB(p);
564 txrate = tx_info->status.rates;
566 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
567 err = brcms_c_prep_pdu(wlc, p, &fifo);
568 } else {
569 wiphy_err(wiphy, "%s: AMPDU flag is off!\n", __func__);
570 *pdu = NULL;
571 err = 0;
572 break;
575 if (err) {
576 if (err == -EBUSY) {
577 wiphy_err(wiphy, "wl%d: sendampdu: "
578 "prep_xdu retry; seq 0x%x\n",
579 wlc->pub->unit, seq);
580 *pdu = p;
581 break;
584 /* error in the packet; reject it */
585 wiphy_err(wiphy, "wl%d: sendampdu: prep_xdu "
586 "rejected; seq 0x%x\n", wlc->pub->unit, seq);
587 *pdu = NULL;
588 break;
591 /* pkt is good to be aggregated */
592 txh = (struct d11txh *) p->data;
593 plcp = (u8 *) (txh + 1);
594 h = (struct ieee80211_hdr *)(plcp + D11_PHY_HDR_LEN);
595 seq = le16_to_cpu(h->seq_ctrl) >> SEQNUM_SHIFT;
596 index = TX_SEQ_TO_INDEX(seq);
598 /* check mcl fields and test whether it can be agg'd */
599 mcl = le16_to_cpu(txh->MacTxControlLow);
600 mcl &= ~TXC_AMPDU_MASK;
601 fbr_iscck = !(le16_to_cpu(txh->XtraFrameTypes) & 0x3);
602 txh->PreloadSize = 0; /* always default to 0 */
604 /* Handle retry limits */
605 if (txrate[0].count <= rr_retry_limit) {
606 txrate[0].count++;
607 rr = true;
608 fbr = false;
609 } else {
610 fbr = true;
611 rr = false;
612 txrate[1].count++;
615 /* extract the length info */
616 len = fbr_iscck ? BRCMS_GET_CCK_PLCP_LEN(txh->FragPLCPFallback)
617 : BRCMS_GET_MIMO_PLCP_LEN(txh->FragPLCPFallback);
619 /* retrieve null delimiter count */
620 ndelim = txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM];
621 seg_cnt += 1;
623 BCMMSG(wlc->wiphy, "wl%d: mpdu %d plcp_len %d\n",
624 wlc->pub->unit, count, len);
627 * aggregateable mpdu. For ucode/hw agg,
628 * test whether need to break or change the epoch
630 if (count == 0) {
631 mcl |= (TXC_AMPDU_FIRST << TXC_AMPDU_SHIFT);
632 /* refill the bits since might be a retx mpdu */
633 mcl |= TXC_STARTMSDU;
634 rts = (struct ieee80211_rts *)&txh->rts_frame;
636 if (ieee80211_is_rts(rts->frame_control)) {
637 mcl |= TXC_SENDRTS;
638 use_rts = true;
640 if (ieee80211_is_cts(rts->frame_control)) {
641 mcl |= TXC_SENDCTS;
642 use_cts = true;
644 } else {
645 mcl |= (TXC_AMPDU_MIDDLE << TXC_AMPDU_SHIFT);
646 mcl &= ~(TXC_STARTMSDU | TXC_SENDRTS | TXC_SENDCTS);
649 len = roundup(len, 4);
650 ampdu_len += (len + (ndelim + 1) * AMPDU_DELIMITER_LEN);
652 dma_len += (u16) p->len;
654 BCMMSG(wlc->wiphy, "wl%d: ampdu_len %d"
655 " seg_cnt %d null delim %d\n",
656 wlc->pub->unit, ampdu_len, seg_cnt, ndelim);
658 txh->MacTxControlLow = cpu_to_le16(mcl);
660 /* this packet is added */
661 pkt[count++] = p;
663 /* patch the first MPDU */
664 if (count == 1) {
665 u8 plcp0, plcp3, is40, sgi;
667 if (rr) {
668 plcp0 = plcp[0];
669 plcp3 = plcp[3];
670 } else {
671 plcp0 = txh->FragPLCPFallback[0];
672 plcp3 = txh->FragPLCPFallback[3];
675 is40 = (plcp0 & MIMO_PLCP_40MHZ) ? 1 : 0;
676 sgi = plcp3_issgi(plcp3) ? 1 : 0;
677 mcs = plcp0 & ~MIMO_PLCP_40MHZ;
678 max_ampdu_bytes =
679 min(scb_ampdu->max_rx_ampdu_bytes,
680 ampdu->max_txlen[mcs][is40][sgi]);
682 if (is40)
683 mimo_ctlchbw =
684 CHSPEC_SB_UPPER(wlc_phy_chanspec_get(
685 wlc->band->pi))
686 ? PHY_TXC1_BW_20MHZ_UP : PHY_TXC1_BW_20MHZ;
688 /* rebuild the rspec and rspec_fallback */
689 rspec = RSPEC_MIMORATE;
690 rspec |= plcp[0] & ~MIMO_PLCP_40MHZ;
691 if (plcp[0] & MIMO_PLCP_40MHZ)
692 rspec |= (PHY_TXC1_BW_40MHZ << RSPEC_BW_SHIFT);
694 if (fbr_iscck) /* CCK */
695 rspec_fallback = cck_rspec(cck_phy2mac_rate
696 (txh->FragPLCPFallback[0]));
697 else { /* MIMO */
698 rspec_fallback = RSPEC_MIMORATE;
699 rspec_fallback |=
700 txh->FragPLCPFallback[0] & ~MIMO_PLCP_40MHZ;
701 if (txh->FragPLCPFallback[0] & MIMO_PLCP_40MHZ)
702 rspec_fallback |=
703 (PHY_TXC1_BW_40MHZ <<
704 RSPEC_BW_SHIFT);
707 if (use_rts || use_cts) {
708 rts_rspec =
709 brcms_c_rspec_to_rts_rspec(wlc,
710 rspec, false, mimo_ctlchbw);
711 rts_rspec_fallback =
712 brcms_c_rspec_to_rts_rspec(wlc,
713 rspec_fallback, false, mimo_ctlchbw);
717 /* if (first mpdu for host agg) */
718 /* test whether to add more */
719 if ((mcs_2_rate(mcs, true, false) >= f->dmaxferrate) &&
720 (count == f->mcs2ampdu_table[mcs])) {
721 BCMMSG(wlc->wiphy, "wl%d: PR 37644: stopping"
722 " ampdu at %d for mcs %d\n",
723 wlc->pub->unit, count, mcs);
724 break;
727 if (count == scb_ampdu->max_pdu)
728 break;
731 * check to see if the next pkt is
732 * a candidate for aggregation
734 p = pktq_ppeek(&qi->q, prec);
735 if (p) {
736 tx_info = IEEE80211_SKB_CB(p);
737 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
738 ((u8) (p->priority) == tid)) {
739 plen = p->len + AMPDU_MAX_MPDU_OVERHEAD;
740 plen = max(scb_ampdu->min_len, plen);
742 if ((plen + ampdu_len) > max_ampdu_bytes) {
743 p = NULL;
744 continue;
748 * check if there are enough
749 * descriptors available
751 if (*wlc->core->txavail[fifo] <= seg_cnt + 1) {
752 wiphy_err(wiphy, "%s: No fifo space "
753 "!!\n", __func__);
754 p = NULL;
755 continue;
757 /* next packet fit for aggregation so dequeue */
758 p = brcmu_pktq_pdeq(&qi->q, prec);
759 } else {
760 p = NULL;
763 } /* end while(p) */
765 ini->tx_in_transit += count;
767 if (count) {
768 /* patch up the last txh */
769 txh = (struct d11txh *) pkt[count - 1]->data;
770 mcl = le16_to_cpu(txh->MacTxControlLow);
771 mcl &= ~TXC_AMPDU_MASK;
772 mcl |= (TXC_AMPDU_LAST << TXC_AMPDU_SHIFT);
773 txh->MacTxControlLow = cpu_to_le16(mcl);
775 /* remove the null delimiter after last mpdu */
776 ndelim = txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM];
777 txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM] = 0;
778 ampdu_len -= ndelim * AMPDU_DELIMITER_LEN;
780 /* remove the pad len from last mpdu */
781 fbr_iscck = ((le16_to_cpu(txh->XtraFrameTypes) & 0x3) == 0);
782 len = fbr_iscck ? BRCMS_GET_CCK_PLCP_LEN(txh->FragPLCPFallback)
783 : BRCMS_GET_MIMO_PLCP_LEN(txh->FragPLCPFallback);
784 ampdu_len -= roundup(len, 4) - len;
786 /* patch up the first txh & plcp */
787 txh = (struct d11txh *) pkt[0]->data;
788 plcp = (u8 *) (txh + 1);
790 BRCMS_SET_MIMO_PLCP_LEN(plcp, ampdu_len);
791 /* mark plcp to indicate ampdu */
792 BRCMS_SET_MIMO_PLCP_AMPDU(plcp);
794 /* reset the mixed mode header durations */
795 if (txh->MModeLen) {
796 u16 mmodelen =
797 brcms_c_calc_lsig_len(wlc, rspec, ampdu_len);
798 txh->MModeLen = cpu_to_le16(mmodelen);
799 preamble_type = BRCMS_MM_PREAMBLE;
801 if (txh->MModeFbrLen) {
802 u16 mmfbrlen =
803 brcms_c_calc_lsig_len(wlc, rspec_fallback,
804 ampdu_len);
805 txh->MModeFbrLen = cpu_to_le16(mmfbrlen);
806 fbr_preamble_type = BRCMS_MM_PREAMBLE;
809 /* set the preload length */
810 if (mcs_2_rate(mcs, true, false) >= f->dmaxferrate) {
811 dma_len = min(dma_len, f->ampdu_pld_size);
812 txh->PreloadSize = cpu_to_le16(dma_len);
813 } else
814 txh->PreloadSize = 0;
816 mch = le16_to_cpu(txh->MacTxControlHigh);
818 /* update RTS dur fields */
819 if (use_rts || use_cts) {
820 u16 durid;
821 rts = (struct ieee80211_rts *)&txh->rts_frame;
822 if ((mch & TXC_PREAMBLE_RTS_MAIN_SHORT) ==
823 TXC_PREAMBLE_RTS_MAIN_SHORT)
824 rts_preamble_type = BRCMS_SHORT_PREAMBLE;
826 if ((mch & TXC_PREAMBLE_RTS_FB_SHORT) ==
827 TXC_PREAMBLE_RTS_FB_SHORT)
828 rts_fbr_preamble_type = BRCMS_SHORT_PREAMBLE;
830 durid =
831 brcms_c_compute_rtscts_dur(wlc, use_cts, rts_rspec,
832 rspec, rts_preamble_type,
833 preamble_type, ampdu_len,
834 true);
835 rts->duration = cpu_to_le16(durid);
836 durid = brcms_c_compute_rtscts_dur(wlc, use_cts,
837 rts_rspec_fallback,
838 rspec_fallback,
839 rts_fbr_preamble_type,
840 fbr_preamble_type,
841 ampdu_len, true);
842 txh->RTSDurFallback = cpu_to_le16(durid);
843 /* set TxFesTimeNormal */
844 txh->TxFesTimeNormal = rts->duration;
845 /* set fallback rate version of TxFesTimeNormal */
846 txh->TxFesTimeFallback = txh->RTSDurFallback;
849 /* set flag and plcp for fallback rate */
850 if (fbr) {
851 mch |= TXC_AMPDU_FBR;
852 txh->MacTxControlHigh = cpu_to_le16(mch);
853 BRCMS_SET_MIMO_PLCP_AMPDU(plcp);
854 BRCMS_SET_MIMO_PLCP_AMPDU(txh->FragPLCPFallback);
857 BCMMSG(wlc->wiphy, "wl%d: count %d ampdu_len %d\n",
858 wlc->pub->unit, count, ampdu_len);
860 /* inform rate_sel if it this is a rate probe pkt */
861 frameid = le16_to_cpu(txh->TxFrameID);
862 if (frameid & TXFID_RATE_PROBE_MASK)
863 wiphy_err(wiphy, "%s: XXX what to do with "
864 "TXFID_RATE_PROBE_MASK!?\n", __func__);
866 for (i = 0; i < count; i++)
867 brcms_c_txfifo(wlc, fifo, pkt[i], i == (count - 1),
868 ampdu->txpkt_weight);
871 /* endif (count) */
872 return err;
875 static void
876 brcms_c_ampdu_rate_status(struct brcms_c_info *wlc,
877 struct ieee80211_tx_info *tx_info,
878 struct tx_status *txs, u8 mcs)
880 struct ieee80211_tx_rate *txrate = tx_info->status.rates;
881 int i;
883 /* clear the rest of the rates */
884 for (i = 2; i < IEEE80211_TX_MAX_RATES; i++) {
885 txrate[i].idx = -1;
886 txrate[i].count = 0;
890 static void
891 brcms_c_ampdu_dotxstatus_complete(struct ampdu_info *ampdu, struct scb *scb,
892 struct sk_buff *p, struct tx_status *txs,
893 u32 s1, u32 s2)
895 struct scb_ampdu *scb_ampdu;
896 struct brcms_c_info *wlc = ampdu->wlc;
897 struct scb_ampdu_tid_ini *ini;
898 u8 bitmap[8], queue, tid;
899 struct d11txh *txh;
900 u8 *plcp;
901 struct ieee80211_hdr *h;
902 u16 seq, start_seq = 0, bindex, index, mcl;
903 u8 mcs = 0;
904 bool ba_recd = false, ack_recd = false;
905 u8 suc_mpdu = 0, tot_mpdu = 0;
906 uint supr_status;
907 bool update_rate = true, retry = true, tx_error = false;
908 u16 mimoantsel = 0;
909 u8 antselid = 0;
910 u8 retry_limit, rr_retry_limit;
911 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(p);
912 struct wiphy *wiphy = wlc->wiphy;
914 #ifdef DEBUG
915 u8 hole[AMPDU_MAX_MPDU];
916 memset(hole, 0, sizeof(hole));
917 #endif
919 scb_ampdu = &scb->scb_ampdu;
920 tid = (u8) (p->priority);
922 ini = &scb_ampdu->ini[tid];
923 retry_limit = ampdu->retry_limit_tid[tid];
924 rr_retry_limit = ampdu->rr_retry_limit_tid[tid];
925 memset(bitmap, 0, sizeof(bitmap));
926 queue = txs->frameid & TXFID_QUEUE_MASK;
927 supr_status = txs->status & TX_STATUS_SUPR_MASK;
929 if (txs->status & TX_STATUS_ACK_RCV) {
930 if (TX_STATUS_SUPR_UF == supr_status)
931 update_rate = false;
933 WARN_ON(!(txs->status & TX_STATUS_INTERMEDIATE));
934 start_seq = txs->sequence >> SEQNUM_SHIFT;
935 bitmap[0] = (txs->status & TX_STATUS_BA_BMAP03_MASK) >>
936 TX_STATUS_BA_BMAP03_SHIFT;
938 WARN_ON(s1 & TX_STATUS_INTERMEDIATE);
939 WARN_ON(!(s1 & TX_STATUS_AMPDU));
941 bitmap[0] |=
942 (s1 & TX_STATUS_BA_BMAP47_MASK) <<
943 TX_STATUS_BA_BMAP47_SHIFT;
944 bitmap[1] = (s1 >> 8) & 0xff;
945 bitmap[2] = (s1 >> 16) & 0xff;
946 bitmap[3] = (s1 >> 24) & 0xff;
948 bitmap[4] = s2 & 0xff;
949 bitmap[5] = (s2 >> 8) & 0xff;
950 bitmap[6] = (s2 >> 16) & 0xff;
951 bitmap[7] = (s2 >> 24) & 0xff;
953 ba_recd = true;
954 } else {
955 if (supr_status) {
956 update_rate = false;
957 if (supr_status == TX_STATUS_SUPR_BADCH) {
958 wiphy_err(wiphy,
959 "%s: Pkt tx suppressed, illegal channel possibly %d\n",
960 __func__, CHSPEC_CHANNEL(
961 wlc->default_bss->chanspec));
962 } else {
963 if (supr_status != TX_STATUS_SUPR_FRAG)
964 wiphy_err(wiphy, "%s: supr_status 0x%x\n",
965 __func__, supr_status);
967 /* no need to retry for badch; will fail again */
968 if (supr_status == TX_STATUS_SUPR_BADCH ||
969 supr_status == TX_STATUS_SUPR_EXPTIME) {
970 retry = false;
971 } else if (supr_status == TX_STATUS_SUPR_EXPTIME) {
972 /* TX underflow:
973 * try tuning pre-loading or ampdu size
975 } else if (supr_status == TX_STATUS_SUPR_FRAG) {
977 * if there were underflows, but pre-loading
978 * is not active, notify rate adaptation.
980 if (brcms_c_ffpld_check_txfunfl(wlc,
981 prio2fifo[tid]) > 0)
982 tx_error = true;
984 } else if (txs->phyerr) {
985 update_rate = false;
986 wiphy_err(wiphy, "%s: ampdu tx phy error (0x%x)\n",
987 __func__, txs->phyerr);
989 if (brcm_msg_level & LOG_ERROR_VAL) {
990 brcmu_prpkt("txpkt (AMPDU)", p);
991 brcms_c_print_txdesc((struct d11txh *) p->data);
993 brcms_c_print_txstatus(txs);
997 /* loop through all pkts and retry if not acked */
998 while (p) {
999 tx_info = IEEE80211_SKB_CB(p);
1000 txh = (struct d11txh *) p->data;
1001 mcl = le16_to_cpu(txh->MacTxControlLow);
1002 plcp = (u8 *) (txh + 1);
1003 h = (struct ieee80211_hdr *)(plcp + D11_PHY_HDR_LEN);
1004 seq = le16_to_cpu(h->seq_ctrl) >> SEQNUM_SHIFT;
1006 if (tot_mpdu == 0) {
1007 mcs = plcp[0] & MIMO_PLCP_MCS_MASK;
1008 mimoantsel = le16_to_cpu(txh->ABI_MimoAntSel);
1011 index = TX_SEQ_TO_INDEX(seq);
1012 ack_recd = false;
1013 if (ba_recd) {
1014 bindex = MODSUB_POW2(seq, start_seq, SEQNUM_MAX);
1015 BCMMSG(wiphy,
1016 "tid %d seq %d, start_seq %d, bindex %d set %d, index %d\n",
1017 tid, seq, start_seq, bindex,
1018 isset(bitmap, bindex), index);
1019 /* if acked then clear bit and free packet */
1020 if ((bindex < AMPDU_TX_BA_MAX_WSIZE)
1021 && isset(bitmap, bindex)) {
1022 ini->tx_in_transit--;
1023 ini->txretry[index] = 0;
1026 * ampdu_ack_len:
1027 * number of acked aggregated frames
1029 /* ampdu_len: number of aggregated frames */
1030 brcms_c_ampdu_rate_status(wlc, tx_info, txs,
1031 mcs);
1032 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1033 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
1034 tx_info->status.ampdu_ack_len =
1035 tx_info->status.ampdu_len = 1;
1037 skb_pull(p, D11_PHY_HDR_LEN);
1038 skb_pull(p, D11_TXH_LEN);
1040 ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw,
1042 ack_recd = true;
1043 suc_mpdu++;
1046 /* either retransmit or send bar if ack not recd */
1047 if (!ack_recd) {
1048 if (retry && (ini->txretry[index] < (int)retry_limit)) {
1049 ini->txretry[index]++;
1050 ini->tx_in_transit--;
1052 * Use high prededence for retransmit to
1053 * give some punch
1055 brcms_c_txq_enq(wlc, scb, p,
1056 BRCMS_PRIO_TO_HI_PREC(tid));
1057 } else {
1058 /* Retry timeout */
1059 ini->tx_in_transit--;
1060 ieee80211_tx_info_clear_status(tx_info);
1061 tx_info->status.ampdu_ack_len = 0;
1062 tx_info->status.ampdu_len = 1;
1063 tx_info->flags |=
1064 IEEE80211_TX_STAT_AMPDU_NO_BACK;
1065 skb_pull(p, D11_PHY_HDR_LEN);
1066 skb_pull(p, D11_TXH_LEN);
1067 BCMMSG(wiphy,
1068 "BA Timeout, seq %d, in_transit %d\n",
1069 seq, ini->tx_in_transit);
1070 ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw,
1074 tot_mpdu++;
1076 /* break out if last packet of ampdu */
1077 if (((mcl & TXC_AMPDU_MASK) >> TXC_AMPDU_SHIFT) ==
1078 TXC_AMPDU_LAST)
1079 break;
1081 p = dma_getnexttxp(wlc->hw->di[queue], DMA_RANGE_TRANSMITTED);
1083 brcms_c_send_q(wlc);
1085 /* update rate state */
1086 antselid = brcms_c_antsel_antsel2id(wlc->asi, mimoantsel);
1088 brcms_c_txfifo_complete(wlc, queue, ampdu->txpkt_weight);
1091 void
1092 brcms_c_ampdu_dotxstatus(struct ampdu_info *ampdu, struct scb *scb,
1093 struct sk_buff *p, struct tx_status *txs)
1095 struct scb_ampdu *scb_ampdu;
1096 struct brcms_c_info *wlc = ampdu->wlc;
1097 struct scb_ampdu_tid_ini *ini;
1098 u32 s1 = 0, s2 = 0;
1099 struct ieee80211_tx_info *tx_info;
1101 tx_info = IEEE80211_SKB_CB(p);
1103 /* BMAC_NOTE: For the split driver, second level txstatus comes later
1104 * So if the ACK was received then wait for the second level else just
1105 * call the first one
1107 if (txs->status & TX_STATUS_ACK_RCV) {
1108 u8 status_delay = 0;
1110 /* wait till the next 8 bytes of txstatus is available */
1111 s1 = bcma_read32(wlc->hw->d11core, D11REGOFFS(frmtxstatus));
1112 while ((s1 & TXS_V) == 0) {
1113 udelay(1);
1114 status_delay++;
1115 if (status_delay > 10)
1116 return; /* error condition */
1117 s1 = bcma_read32(wlc->hw->d11core,
1118 D11REGOFFS(frmtxstatus));
1121 s2 = bcma_read32(wlc->hw->d11core, D11REGOFFS(frmtxstatus2));
1124 if (scb) {
1125 scb_ampdu = &scb->scb_ampdu;
1126 ini = &scb_ampdu->ini[p->priority];
1127 brcms_c_ampdu_dotxstatus_complete(ampdu, scb, p, txs, s1, s2);
1128 } else {
1129 /* loop through all pkts and free */
1130 u8 queue = txs->frameid & TXFID_QUEUE_MASK;
1131 struct d11txh *txh;
1132 u16 mcl;
1133 while (p) {
1134 tx_info = IEEE80211_SKB_CB(p);
1135 txh = (struct d11txh *) p->data;
1136 mcl = le16_to_cpu(txh->MacTxControlLow);
1137 brcmu_pkt_buf_free_skb(p);
1138 /* break out if last packet of ampdu */
1139 if (((mcl & TXC_AMPDU_MASK) >> TXC_AMPDU_SHIFT) ==
1140 TXC_AMPDU_LAST)
1141 break;
1142 p = dma_getnexttxp(wlc->hw->di[queue],
1143 DMA_RANGE_TRANSMITTED);
1145 brcms_c_txfifo_complete(wlc, queue, ampdu->txpkt_weight);
1149 void brcms_c_ampdu_macaddr_upd(struct brcms_c_info *wlc)
1151 char template[T_RAM_ACCESS_SZ * 2];
1153 /* driver needs to write the ta in the template; ta is at offset 16 */
1154 memset(template, 0, sizeof(template));
1155 memcpy(template, wlc->pub->cur_etheraddr, ETH_ALEN);
1156 brcms_b_write_template_ram(wlc->hw, (T_BA_TPL_BASE + 16),
1157 (T_RAM_ACCESS_SZ * 2),
1158 template);
1161 bool brcms_c_aggregatable(struct brcms_c_info *wlc, u8 tid)
1163 return wlc->ampdu->ini_enable[tid];
1166 void brcms_c_ampdu_shm_upd(struct ampdu_info *ampdu)
1168 struct brcms_c_info *wlc = ampdu->wlc;
1171 * Extend ucode internal watchdog timer to
1172 * match larger received frames
1174 if ((ampdu->rx_factor & IEEE80211_HT_AMPDU_PARM_FACTOR) ==
1175 IEEE80211_HT_MAX_AMPDU_64K) {
1176 brcms_b_write_shm(wlc->hw, M_MIMO_MAXSYM, MIMO_MAXSYM_MAX);
1177 brcms_b_write_shm(wlc->hw, M_WATCHDOG_8TU, WATCHDOG_8TU_MAX);
1178 } else {
1179 brcms_b_write_shm(wlc->hw, M_MIMO_MAXSYM, MIMO_MAXSYM_DEF);
1180 brcms_b_write_shm(wlc->hw, M_WATCHDOG_8TU, WATCHDOG_8TU_DEF);
1185 * callback function that helps flushing ampdu packets from a priority queue
1187 static bool cb_del_ampdu_pkt(struct sk_buff *mpdu, void *arg_a)
1189 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(mpdu);
1190 struct cb_del_ampdu_pars *ampdu_pars =
1191 (struct cb_del_ampdu_pars *)arg_a;
1192 bool rc;
1194 rc = tx_info->flags & IEEE80211_TX_CTL_AMPDU ? true : false;
1195 rc = rc && (tx_info->rate_driver_data[0] == NULL || ampdu_pars->sta == NULL ||
1196 tx_info->rate_driver_data[0] == ampdu_pars->sta);
1197 rc = rc && ((u8)(mpdu->priority) == ampdu_pars->tid);
1198 return rc;
1202 * callback function that helps invalidating ampdu packets in a DMA queue
1204 static void dma_cb_fn_ampdu(void *txi, void *arg_a)
1206 struct ieee80211_sta *sta = arg_a;
1207 struct ieee80211_tx_info *tx_info = (struct ieee80211_tx_info *)txi;
1209 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
1210 (tx_info->rate_driver_data[0] == sta || sta == NULL))
1211 tx_info->rate_driver_data[0] = NULL;
1215 * When a remote party is no longer available for ampdu communication, any
1216 * pending tx ampdu packets in the driver have to be flushed.
1218 void brcms_c_ampdu_flush(struct brcms_c_info *wlc,
1219 struct ieee80211_sta *sta, u16 tid)
1221 struct brcms_txq_info *qi = wlc->pkt_queue;
1222 struct pktq *pq = &qi->q;
1223 int prec;
1224 struct cb_del_ampdu_pars ampdu_pars;
1226 ampdu_pars.sta = sta;
1227 ampdu_pars.tid = tid;
1228 for (prec = 0; prec < pq->num_prec; prec++)
1229 brcmu_pktq_pflush(pq, prec, true, cb_del_ampdu_pkt,
1230 (void *)&ampdu_pars);
1231 brcms_c_inval_dma_pkts(wlc->hw, sta, dma_cb_fn_ampdu);