Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / net / wireless / brcm80211 / brcmsmac / channel.c
blob64a48f06d68bfa124c1687bc1fa81a799fb5be82
1 /*
2 * Copyright (c) 2010 Broadcom Corporation
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/types.h>
18 #include <net/cfg80211.h>
19 #include <net/mac80211.h>
20 #include <net/regulatory.h>
22 #include <defs.h>
23 #include "pub.h"
24 #include "phy/phy_hal.h"
25 #include "main.h"
26 #include "stf.h"
27 #include "channel.h"
28 #include "mac80211_if.h"
30 /* QDB() macro takes a dB value and converts to a quarter dB value */
31 #define QDB(n) ((n) * BRCMS_TXPWR_DB_FACTOR)
33 #define LOCALE_MIMO_IDX_bn 0
34 #define LOCALE_MIMO_IDX_11n 0
36 /* max of BAND_5G_PWR_LVLS and 14 for 2.4 GHz */
37 #define BRCMS_MAXPWR_MIMO_TBL_SIZE 14
39 /* maxpwr mapping to 5GHz band channels:
40 * maxpwr[0] - channels [34-48]
41 * maxpwr[1] - channels [52-60]
42 * maxpwr[2] - channels [62-64]
43 * maxpwr[3] - channels [100-140]
44 * maxpwr[4] - channels [149-165]
46 #define BAND_5G_PWR_LVLS 5 /* 5 power levels for 5G */
48 #define LC(id) LOCALE_MIMO_IDX_ ## id
50 #define LOCALES(mimo2, mimo5) \
51 {LC(mimo2), LC(mimo5)}
53 /* macro to get 5 GHz channel group index for tx power */
54 #define CHANNEL_POWER_IDX_5G(c) (((c) < 52) ? 0 : \
55 (((c) < 62) ? 1 : \
56 (((c) < 100) ? 2 : \
57 (((c) < 149) ? 3 : 4))))
59 #define BRCM_2GHZ_2412_2462 REG_RULE(2412-10, 2462+10, 40, 0, 19, 0)
60 #define BRCM_2GHZ_2467_2472 REG_RULE(2467-10, 2472+10, 20, 0, 19, \
61 NL80211_RRF_PASSIVE_SCAN | \
62 NL80211_RRF_NO_IBSS)
64 #define BRCM_5GHZ_5180_5240 REG_RULE(5180-10, 5240+10, 40, 0, 21, \
65 NL80211_RRF_PASSIVE_SCAN | \
66 NL80211_RRF_NO_IBSS)
67 #define BRCM_5GHZ_5260_5320 REG_RULE(5260-10, 5320+10, 40, 0, 21, \
68 NL80211_RRF_PASSIVE_SCAN | \
69 NL80211_RRF_DFS | \
70 NL80211_RRF_NO_IBSS)
71 #define BRCM_5GHZ_5500_5700 REG_RULE(5500-10, 5700+10, 40, 0, 21, \
72 NL80211_RRF_PASSIVE_SCAN | \
73 NL80211_RRF_DFS | \
74 NL80211_RRF_NO_IBSS)
75 #define BRCM_5GHZ_5745_5825 REG_RULE(5745-10, 5825+10, 40, 0, 21, \
76 NL80211_RRF_PASSIVE_SCAN | \
77 NL80211_RRF_NO_IBSS)
79 static const struct ieee80211_regdomain brcms_regdom_x2 = {
80 .n_reg_rules = 6,
81 .alpha2 = "X2",
82 .reg_rules = {
83 BRCM_2GHZ_2412_2462,
84 BRCM_2GHZ_2467_2472,
85 BRCM_5GHZ_5180_5240,
86 BRCM_5GHZ_5260_5320,
87 BRCM_5GHZ_5500_5700,
88 BRCM_5GHZ_5745_5825,
92 /* locale per-channel tx power limits for MIMO frames
93 * maxpwr arrays are index by channel for 2.4 GHz limits, and
94 * by sub-band for 5 GHz limits using CHANNEL_POWER_IDX_5G(channel)
96 struct locale_mimo_info {
97 /* tx 20 MHz power limits, qdBm units */
98 s8 maxpwr20[BRCMS_MAXPWR_MIMO_TBL_SIZE];
99 /* tx 40 MHz power limits, qdBm units */
100 s8 maxpwr40[BRCMS_MAXPWR_MIMO_TBL_SIZE];
103 /* Country names and abbreviations with locale defined from ISO 3166 */
104 struct country_info {
105 const u8 locale_mimo_2G; /* 2.4G mimo info */
106 const u8 locale_mimo_5G; /* 5G mimo info */
109 struct brcms_regd {
110 struct country_info country;
111 const struct ieee80211_regdomain *regdomain;
114 struct brcms_cm_info {
115 struct brcms_pub *pub;
116 struct brcms_c_info *wlc;
117 const struct brcms_regd *world_regd;
121 * MIMO Locale Definitions - 2.4 GHz
123 static const struct locale_mimo_info locale_bn = {
124 {QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
125 QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
126 QDB(13), QDB(13), QDB(13)},
127 {0, 0, QDB(13), QDB(13), QDB(13),
128 QDB(13), QDB(13), QDB(13), QDB(13), QDB(13),
129 QDB(13), 0, 0},
132 static const struct locale_mimo_info *g_mimo_2g_table[] = {
133 &locale_bn
137 * MIMO Locale Definitions - 5 GHz
139 static const struct locale_mimo_info locale_11n = {
140 { /* 12.5 dBm */ 50, 50, 50, QDB(15), QDB(15)},
141 {QDB(14), QDB(15), QDB(15), QDB(15), QDB(15)},
144 static const struct locale_mimo_info *g_mimo_5g_table[] = {
145 &locale_11n
148 static const struct brcms_regd cntry_locales[] = {
149 /* Worldwide RoW 2, must always be at index 0 */
151 .country = LOCALES(bn, 11n),
152 .regdomain = &brcms_regdom_x2,
156 static const struct locale_mimo_info *brcms_c_get_mimo_2g(u8 locale_idx)
158 if (locale_idx >= ARRAY_SIZE(g_mimo_2g_table))
159 return NULL;
161 return g_mimo_2g_table[locale_idx];
164 static const struct locale_mimo_info *brcms_c_get_mimo_5g(u8 locale_idx)
166 if (locale_idx >= ARRAY_SIZE(g_mimo_5g_table))
167 return NULL;
169 return g_mimo_5g_table[locale_idx];
173 * Indicates whether the country provided is valid to pass
174 * to cfg80211 or not.
176 * returns true if valid; false if not.
178 static bool brcms_c_country_valid(const char *ccode)
181 * only allow ascii alpha uppercase for the first 2
182 * chars.
184 if (!((0x80 & ccode[0]) == 0 && ccode[0] >= 0x41 && ccode[0] <= 0x5A &&
185 (0x80 & ccode[1]) == 0 && ccode[1] >= 0x41 && ccode[1] <= 0x5A &&
186 ccode[2] == '\0'))
187 return false;
190 * do not match ISO 3166-1 user assigned country codes
191 * that may be in the driver table
193 if (!strcmp("AA", ccode) || /* AA */
194 !strcmp("ZZ", ccode) || /* ZZ */
195 ccode[0] == 'X' || /* XA - XZ */
196 (ccode[0] == 'Q' && /* QM - QZ */
197 (ccode[1] >= 'M' && ccode[1] <= 'Z')))
198 return false;
200 if (!strcmp("NA", ccode))
201 return false;
203 return true;
206 static const struct brcms_regd *brcms_world_regd(const char *regdom, int len)
208 const struct brcms_regd *regd = NULL;
209 int i;
211 for (i = 0; i < ARRAY_SIZE(cntry_locales); i++) {
212 if (!strncmp(regdom, cntry_locales[i].regdomain->alpha2, len)) {
213 regd = &cntry_locales[i];
214 break;
218 return regd;
221 static const struct brcms_regd *brcms_default_world_regd(void)
223 return &cntry_locales[0];
226 /* JP, J1 - J10 are Japan ccodes */
227 static bool brcms_c_japan_ccode(const char *ccode)
229 return (ccode[0] == 'J' &&
230 (ccode[1] == 'P' || (ccode[1] >= '1' && ccode[1] <= '9')));
233 static void
234 brcms_c_channel_min_txpower_limits_with_local_constraint(
235 struct brcms_cm_info *wlc_cm, struct txpwr_limits *txpwr,
236 u8 local_constraint_qdbm)
238 int j;
240 /* CCK Rates */
241 for (j = 0; j < WL_TX_POWER_CCK_NUM; j++)
242 txpwr->cck[j] = min(txpwr->cck[j], local_constraint_qdbm);
244 /* 20 MHz Legacy OFDM SISO */
245 for (j = 0; j < WL_TX_POWER_OFDM_NUM; j++)
246 txpwr->ofdm[j] = min(txpwr->ofdm[j], local_constraint_qdbm);
248 /* 20 MHz Legacy OFDM CDD */
249 for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
250 txpwr->ofdm_cdd[j] =
251 min(txpwr->ofdm_cdd[j], local_constraint_qdbm);
253 /* 40 MHz Legacy OFDM SISO */
254 for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
255 txpwr->ofdm_40_siso[j] =
256 min(txpwr->ofdm_40_siso[j], local_constraint_qdbm);
258 /* 40 MHz Legacy OFDM CDD */
259 for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++)
260 txpwr->ofdm_40_cdd[j] =
261 min(txpwr->ofdm_40_cdd[j], local_constraint_qdbm);
263 /* 20MHz MCS 0-7 SISO */
264 for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
265 txpwr->mcs_20_siso[j] =
266 min(txpwr->mcs_20_siso[j], local_constraint_qdbm);
268 /* 20MHz MCS 0-7 CDD */
269 for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
270 txpwr->mcs_20_cdd[j] =
271 min(txpwr->mcs_20_cdd[j], local_constraint_qdbm);
273 /* 20MHz MCS 0-7 STBC */
274 for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
275 txpwr->mcs_20_stbc[j] =
276 min(txpwr->mcs_20_stbc[j], local_constraint_qdbm);
278 /* 20MHz MCS 8-15 MIMO */
279 for (j = 0; j < BRCMS_NUM_RATES_MCS_2_STREAM; j++)
280 txpwr->mcs_20_mimo[j] =
281 min(txpwr->mcs_20_mimo[j], local_constraint_qdbm);
283 /* 40MHz MCS 0-7 SISO */
284 for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
285 txpwr->mcs_40_siso[j] =
286 min(txpwr->mcs_40_siso[j], local_constraint_qdbm);
288 /* 40MHz MCS 0-7 CDD */
289 for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
290 txpwr->mcs_40_cdd[j] =
291 min(txpwr->mcs_40_cdd[j], local_constraint_qdbm);
293 /* 40MHz MCS 0-7 STBC */
294 for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++)
295 txpwr->mcs_40_stbc[j] =
296 min(txpwr->mcs_40_stbc[j], local_constraint_qdbm);
298 /* 40MHz MCS 8-15 MIMO */
299 for (j = 0; j < BRCMS_NUM_RATES_MCS_2_STREAM; j++)
300 txpwr->mcs_40_mimo[j] =
301 min(txpwr->mcs_40_mimo[j], local_constraint_qdbm);
303 /* 40MHz MCS 32 */
304 txpwr->mcs32 = min(txpwr->mcs32, local_constraint_qdbm);
309 * set the driver's current country and regulatory information
310 * using a country code as the source. Look up built in country
311 * information found with the country code.
313 static void
314 brcms_c_set_country(struct brcms_cm_info *wlc_cm,
315 const struct brcms_regd *regd)
317 struct brcms_c_info *wlc = wlc_cm->wlc;
319 if ((wlc->pub->_n_enab & SUPPORT_11N) !=
320 wlc->protection->nmode_user)
321 brcms_c_set_nmode(wlc);
323 brcms_c_stf_ss_update(wlc, wlc->bandstate[BAND_2G_INDEX]);
324 brcms_c_stf_ss_update(wlc, wlc->bandstate[BAND_5G_INDEX]);
326 brcms_c_set_gmode(wlc, wlc->protection->gmode_user, false);
328 return;
331 struct brcms_cm_info *brcms_c_channel_mgr_attach(struct brcms_c_info *wlc)
333 struct brcms_cm_info *wlc_cm;
334 struct brcms_pub *pub = wlc->pub;
335 struct ssb_sprom *sprom = &wlc->hw->d11core->bus->sprom;
336 const char *ccode = sprom->alpha2;
337 int ccode_len = sizeof(sprom->alpha2);
339 BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
341 wlc_cm = kzalloc(sizeof(struct brcms_cm_info), GFP_ATOMIC);
342 if (wlc_cm == NULL)
343 return NULL;
344 wlc_cm->pub = pub;
345 wlc_cm->wlc = wlc;
346 wlc->cmi = wlc_cm;
348 /* store the country code for passing up as a regulatory hint */
349 wlc_cm->world_regd = brcms_world_regd(ccode, ccode_len);
350 if (brcms_c_country_valid(ccode))
351 strncpy(wlc->pub->srom_ccode, ccode, ccode_len);
354 * If no custom world domain is found in the SROM, use the
355 * default "X2" domain.
357 if (!wlc_cm->world_regd) {
358 wlc_cm->world_regd = brcms_default_world_regd();
359 ccode = wlc_cm->world_regd->regdomain->alpha2;
360 ccode_len = BRCM_CNTRY_BUF_SZ - 1;
363 /* save default country for exiting 11d regulatory mode */
364 strncpy(wlc->country_default, ccode, ccode_len);
366 /* initialize autocountry_default to driver default */
367 strncpy(wlc->autocountry_default, ccode, ccode_len);
369 brcms_c_set_country(wlc_cm, wlc_cm->world_regd);
371 return wlc_cm;
374 void brcms_c_channel_mgr_detach(struct brcms_cm_info *wlc_cm)
376 kfree(wlc_cm);
379 void
380 brcms_c_channel_set_chanspec(struct brcms_cm_info *wlc_cm, u16 chanspec,
381 u8 local_constraint_qdbm)
383 struct brcms_c_info *wlc = wlc_cm->wlc;
384 struct ieee80211_channel *ch = wlc->pub->ieee_hw->conf.channel;
385 struct txpwr_limits txpwr;
387 brcms_c_channel_reg_limits(wlc_cm, chanspec, &txpwr);
389 brcms_c_channel_min_txpower_limits_with_local_constraint(
390 wlc_cm, &txpwr, local_constraint_qdbm
393 /* set or restore gmode as required by regulatory */
394 if (ch->flags & IEEE80211_CHAN_NO_OFDM)
395 brcms_c_set_gmode(wlc, GMODE_LEGACY_B, false);
396 else
397 brcms_c_set_gmode(wlc, wlc->protection->gmode_user, false);
399 brcms_b_set_chanspec(wlc->hw, chanspec,
400 !!(ch->flags & IEEE80211_CHAN_PASSIVE_SCAN),
401 &txpwr);
404 void
405 brcms_c_channel_reg_limits(struct brcms_cm_info *wlc_cm, u16 chanspec,
406 struct txpwr_limits *txpwr)
408 struct brcms_c_info *wlc = wlc_cm->wlc;
409 struct ieee80211_channel *ch = wlc->pub->ieee_hw->conf.channel;
410 uint i;
411 uint chan;
412 int maxpwr;
413 int delta;
414 const struct country_info *country;
415 struct brcms_band *band;
416 int conducted_max = BRCMS_TXPWR_MAX;
417 const struct locale_mimo_info *li_mimo;
418 int maxpwr20, maxpwr40;
419 int maxpwr_idx;
420 uint j;
422 memset(txpwr, 0, sizeof(struct txpwr_limits));
424 if (WARN_ON(!ch))
425 return;
427 country = &wlc_cm->world_regd->country;
429 chan = CHSPEC_CHANNEL(chanspec);
430 band = wlc->bandstate[chspec_bandunit(chanspec)];
431 li_mimo = (band->bandtype == BRCM_BAND_5G) ?
432 brcms_c_get_mimo_5g(country->locale_mimo_5G) :
433 brcms_c_get_mimo_2g(country->locale_mimo_2G);
435 delta = band->antgain;
437 if (band->bandtype == BRCM_BAND_2G)
438 conducted_max = QDB(22);
440 maxpwr = QDB(ch->max_power) - delta;
441 maxpwr = max(maxpwr, 0);
442 maxpwr = min(maxpwr, conducted_max);
444 /* CCK txpwr limits for 2.4G band */
445 if (band->bandtype == BRCM_BAND_2G) {
446 for (i = 0; i < BRCMS_NUM_RATES_CCK; i++)
447 txpwr->cck[i] = (u8) maxpwr;
450 for (i = 0; i < BRCMS_NUM_RATES_OFDM; i++) {
451 txpwr->ofdm[i] = (u8) maxpwr;
454 * OFDM 40 MHz SISO has the same power as the corresponding
455 * MCS0-7 rate unless overriden by the locale specific code.
456 * We set this value to 0 as a flag (presumably 0 dBm isn't
457 * a possibility) and then copy the MCS0-7 value to the 40 MHz
458 * value if it wasn't explicitly set.
460 txpwr->ofdm_40_siso[i] = 0;
462 txpwr->ofdm_cdd[i] = (u8) maxpwr;
464 txpwr->ofdm_40_cdd[i] = 0;
467 delta = 0;
468 if (band->antgain > QDB(6))
469 delta = band->antgain - QDB(6); /* Excess over 6 dB */
471 if (band->bandtype == BRCM_BAND_2G)
472 maxpwr_idx = (chan - 1);
473 else
474 maxpwr_idx = CHANNEL_POWER_IDX_5G(chan);
476 maxpwr20 = li_mimo->maxpwr20[maxpwr_idx];
477 maxpwr40 = li_mimo->maxpwr40[maxpwr_idx];
479 maxpwr20 = maxpwr20 - delta;
480 maxpwr20 = max(maxpwr20, 0);
481 maxpwr40 = maxpwr40 - delta;
482 maxpwr40 = max(maxpwr40, 0);
484 /* Fill in the MCS 0-7 (SISO) rates */
485 for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
488 * 20 MHz has the same power as the corresponding OFDM rate
489 * unless overriden by the locale specific code.
491 txpwr->mcs_20_siso[i] = txpwr->ofdm[i];
492 txpwr->mcs_40_siso[i] = 0;
495 /* Fill in the MCS 0-7 CDD rates */
496 for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
497 txpwr->mcs_20_cdd[i] = (u8) maxpwr20;
498 txpwr->mcs_40_cdd[i] = (u8) maxpwr40;
502 * These locales have SISO expressed in the
503 * table and override CDD later
505 if (li_mimo == &locale_bn) {
506 if (li_mimo == &locale_bn) {
507 maxpwr20 = QDB(16);
508 maxpwr40 = 0;
510 if (chan >= 3 && chan <= 11)
511 maxpwr40 = QDB(16);
514 for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
515 txpwr->mcs_20_siso[i] = (u8) maxpwr20;
516 txpwr->mcs_40_siso[i] = (u8) maxpwr40;
520 /* Fill in the MCS 0-7 STBC rates */
521 for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
522 txpwr->mcs_20_stbc[i] = 0;
523 txpwr->mcs_40_stbc[i] = 0;
526 /* Fill in the MCS 8-15 SDM rates */
527 for (i = 0; i < BRCMS_NUM_RATES_MCS_2_STREAM; i++) {
528 txpwr->mcs_20_mimo[i] = (u8) maxpwr20;
529 txpwr->mcs_40_mimo[i] = (u8) maxpwr40;
532 /* Fill in MCS32 */
533 txpwr->mcs32 = (u8) maxpwr40;
535 for (i = 0, j = 0; i < BRCMS_NUM_RATES_OFDM; i++, j++) {
536 if (txpwr->ofdm_40_cdd[i] == 0)
537 txpwr->ofdm_40_cdd[i] = txpwr->mcs_40_cdd[j];
538 if (i == 0) {
539 i = i + 1;
540 if (txpwr->ofdm_40_cdd[i] == 0)
541 txpwr->ofdm_40_cdd[i] = txpwr->mcs_40_cdd[j];
546 * Copy the 40 MHZ MCS 0-7 CDD value to the 40 MHZ MCS 0-7 SISO
547 * value if it wasn't provided explicitly.
549 for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
550 if (txpwr->mcs_40_siso[i] == 0)
551 txpwr->mcs_40_siso[i] = txpwr->mcs_40_cdd[i];
554 for (i = 0, j = 0; i < BRCMS_NUM_RATES_OFDM; i++, j++) {
555 if (txpwr->ofdm_40_siso[i] == 0)
556 txpwr->ofdm_40_siso[i] = txpwr->mcs_40_siso[j];
557 if (i == 0) {
558 i = i + 1;
559 if (txpwr->ofdm_40_siso[i] == 0)
560 txpwr->ofdm_40_siso[i] = txpwr->mcs_40_siso[j];
565 * Copy the 20 and 40 MHz MCS0-7 CDD values to the corresponding
566 * STBC values if they weren't provided explicitly.
568 for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) {
569 if (txpwr->mcs_20_stbc[i] == 0)
570 txpwr->mcs_20_stbc[i] = txpwr->mcs_20_cdd[i];
572 if (txpwr->mcs_40_stbc[i] == 0)
573 txpwr->mcs_40_stbc[i] = txpwr->mcs_40_cdd[i];
576 return;
580 * Verify the chanspec is using a legal set of parameters, i.e. that the
581 * chanspec specified a band, bw, ctl_sb and channel and that the
582 * combination could be legal given any set of circumstances.
583 * RETURNS: true is the chanspec is malformed, false if it looks good.
585 static bool brcms_c_chspec_malformed(u16 chanspec)
587 /* must be 2G or 5G band */
588 if (!CHSPEC_IS5G(chanspec) && !CHSPEC_IS2G(chanspec))
589 return true;
590 /* must be 20 or 40 bandwidth */
591 if (!CHSPEC_IS40(chanspec) && !CHSPEC_IS20(chanspec))
592 return true;
594 /* 20MHZ b/w must have no ctl sb, 40 must have a ctl sb */
595 if (CHSPEC_IS20(chanspec)) {
596 if (!CHSPEC_SB_NONE(chanspec))
597 return true;
598 } else if (!CHSPEC_SB_UPPER(chanspec) && !CHSPEC_SB_LOWER(chanspec)) {
599 return true;
602 return false;
606 * Validate the chanspec for this locale, for 40MHZ we need to also
607 * check that the sidebands are valid 20MZH channels in this locale
608 * and they are also a legal HT combination
610 static bool
611 brcms_c_valid_chanspec_ext(struct brcms_cm_info *wlc_cm, u16 chspec)
613 struct brcms_c_info *wlc = wlc_cm->wlc;
614 u8 channel = CHSPEC_CHANNEL(chspec);
616 /* check the chanspec */
617 if (brcms_c_chspec_malformed(chspec)) {
618 wiphy_err(wlc->wiphy, "wl%d: malformed chanspec 0x%x\n",
619 wlc->pub->unit, chspec);
620 return false;
623 if (CHANNEL_BANDUNIT(wlc_cm->wlc, channel) !=
624 chspec_bandunit(chspec))
625 return false;
627 return true;
630 bool brcms_c_valid_chanspec_db(struct brcms_cm_info *wlc_cm, u16 chspec)
632 return brcms_c_valid_chanspec_ext(wlc_cm, chspec);
635 static bool brcms_is_radar_freq(u16 center_freq)
637 return center_freq >= 5260 && center_freq <= 5700;
640 static void brcms_reg_apply_radar_flags(struct wiphy *wiphy)
642 struct ieee80211_supported_band *sband;
643 struct ieee80211_channel *ch;
644 int i;
646 sband = wiphy->bands[IEEE80211_BAND_5GHZ];
647 if (!sband)
648 return;
650 for (i = 0; i < sband->n_channels; i++) {
651 ch = &sband->channels[i];
653 if (!brcms_is_radar_freq(ch->center_freq))
654 continue;
657 * All channels in this range should be passive and have
658 * DFS enabled.
660 if (!(ch->flags & IEEE80211_CHAN_DISABLED))
661 ch->flags |= IEEE80211_CHAN_RADAR |
662 IEEE80211_CHAN_NO_IBSS |
663 IEEE80211_CHAN_PASSIVE_SCAN;
667 static void
668 brcms_reg_apply_beaconing_flags(struct wiphy *wiphy,
669 enum nl80211_reg_initiator initiator)
671 struct ieee80211_supported_band *sband;
672 struct ieee80211_channel *ch;
673 const struct ieee80211_reg_rule *rule;
674 int band, i, ret;
676 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
677 sband = wiphy->bands[band];
678 if (!sband)
679 continue;
681 for (i = 0; i < sband->n_channels; i++) {
682 ch = &sband->channels[i];
684 if (ch->flags &
685 (IEEE80211_CHAN_DISABLED | IEEE80211_CHAN_RADAR))
686 continue;
688 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
689 ret = freq_reg_info(wiphy, ch->center_freq,
690 0, &rule);
691 if (ret)
692 continue;
694 if (!(rule->flags & NL80211_RRF_NO_IBSS))
695 ch->flags &= ~IEEE80211_CHAN_NO_IBSS;
696 if (!(rule->flags & NL80211_RRF_PASSIVE_SCAN))
697 ch->flags &=
698 ~IEEE80211_CHAN_PASSIVE_SCAN;
699 } else if (ch->beacon_found) {
700 ch->flags &= ~(IEEE80211_CHAN_NO_IBSS |
701 IEEE80211_CHAN_PASSIVE_SCAN);
707 static int brcms_reg_notifier(struct wiphy *wiphy,
708 struct regulatory_request *request)
710 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
711 struct brcms_info *wl = hw->priv;
712 struct brcms_c_info *wlc = wl->wlc;
713 struct ieee80211_supported_band *sband;
714 struct ieee80211_channel *ch;
715 int band, i;
716 bool ch_found = false;
718 brcms_reg_apply_radar_flags(wiphy);
720 if (request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
721 brcms_reg_apply_beaconing_flags(wiphy, request->initiator);
723 /* Disable radio if all channels disallowed by regulatory */
724 for (band = 0; !ch_found && band < IEEE80211_NUM_BANDS; band++) {
725 sband = wiphy->bands[band];
726 if (!sband)
727 continue;
729 for (i = 0; !ch_found && i < sband->n_channels; i++) {
730 ch = &sband->channels[i];
732 if (!(ch->flags & IEEE80211_CHAN_DISABLED))
733 ch_found = true;
737 if (ch_found) {
738 mboolclr(wlc->pub->radio_disabled, WL_RADIO_COUNTRY_DISABLE);
739 } else {
740 mboolset(wlc->pub->radio_disabled, WL_RADIO_COUNTRY_DISABLE);
741 wiphy_err(wlc->wiphy, "wl%d: %s: no valid channel for \"%s\"\n",
742 wlc->pub->unit, __func__, request->alpha2);
745 if (wlc->pub->_nbands > 1 || wlc->band->bandtype == BRCM_BAND_2G)
746 wlc_phy_chanspec_ch14_widefilter_set(wlc->band->pi,
747 brcms_c_japan_ccode(request->alpha2));
749 return 0;
752 void brcms_c_regd_init(struct brcms_c_info *wlc)
754 struct wiphy *wiphy = wlc->wiphy;
755 const struct brcms_regd *regd = wlc->cmi->world_regd;
756 struct ieee80211_supported_band *sband;
757 struct ieee80211_channel *ch;
758 struct brcms_chanvec sup_chan;
759 struct brcms_band *band;
760 int band_idx, i;
762 /* Disable any channels not supported by the phy */
763 for (band_idx = 0; band_idx < wlc->pub->_nbands; band_idx++) {
764 band = wlc->bandstate[band_idx];
766 wlc_phy_chanspec_band_validch(band->pi, band->bandtype,
767 &sup_chan);
769 if (band_idx == BAND_2G_INDEX)
770 sband = wiphy->bands[IEEE80211_BAND_2GHZ];
771 else
772 sband = wiphy->bands[IEEE80211_BAND_5GHZ];
774 for (i = 0; i < sband->n_channels; i++) {
775 ch = &sband->channels[i];
776 if (!isset(sup_chan.vec, ch->hw_value))
777 ch->flags |= IEEE80211_CHAN_DISABLED;
781 wlc->wiphy->reg_notifier = brcms_reg_notifier;
782 wlc->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY |
783 WIPHY_FLAG_STRICT_REGULATORY;
784 wiphy_apply_custom_regulatory(wlc->wiphy, regd->regdomain);
785 brcms_reg_apply_beaconing_flags(wiphy, NL80211_REGDOM_SET_BY_DRIVER);