Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / net / wireless / brcm80211 / brcmsmac / dma.c
blob5e53305bd9a9bc57901c1a0597b00de32208a57b
1 /*
2 * Copyright (c) 2010 Broadcom Corporation
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/pci.h>
23 #include <brcmu_utils.h>
24 #include <aiutils.h>
25 #include "types.h"
26 #include "dma.h"
27 #include "soc.h"
30 * dma register field offset calculation
32 #define DMA64REGOFFS(field) offsetof(struct dma64regs, field)
33 #define DMA64TXREGOFFS(di, field) (di->d64txregbase + DMA64REGOFFS(field))
34 #define DMA64RXREGOFFS(di, field) (di->d64rxregbase + DMA64REGOFFS(field))
37 * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
38 * a contiguous 8kB physical address.
40 #define D64RINGALIGN_BITS 13
41 #define D64MAXRINGSZ (1 << D64RINGALIGN_BITS)
42 #define D64RINGALIGN (1 << D64RINGALIGN_BITS)
44 #define D64MAXDD (D64MAXRINGSZ / sizeof(struct dma64desc))
46 /* transmit channel control */
47 #define D64_XC_XE 0x00000001 /* transmit enable */
48 #define D64_XC_SE 0x00000002 /* transmit suspend request */
49 #define D64_XC_LE 0x00000004 /* loopback enable */
50 #define D64_XC_FL 0x00000010 /* flush request */
51 #define D64_XC_PD 0x00000800 /* parity check disable */
52 #define D64_XC_AE 0x00030000 /* address extension bits */
53 #define D64_XC_AE_SHIFT 16
55 /* transmit descriptor table pointer */
56 #define D64_XP_LD_MASK 0x00000fff /* last valid descriptor */
58 /* transmit channel status */
59 #define D64_XS0_CD_MASK 0x00001fff /* current descriptor pointer */
60 #define D64_XS0_XS_MASK 0xf0000000 /* transmit state */
61 #define D64_XS0_XS_SHIFT 28
62 #define D64_XS0_XS_DISABLED 0x00000000 /* disabled */
63 #define D64_XS0_XS_ACTIVE 0x10000000 /* active */
64 #define D64_XS0_XS_IDLE 0x20000000 /* idle wait */
65 #define D64_XS0_XS_STOPPED 0x30000000 /* stopped */
66 #define D64_XS0_XS_SUSP 0x40000000 /* suspend pending */
68 #define D64_XS1_AD_MASK 0x00001fff /* active descriptor */
69 #define D64_XS1_XE_MASK 0xf0000000 /* transmit errors */
70 #define D64_XS1_XE_SHIFT 28
71 #define D64_XS1_XE_NOERR 0x00000000 /* no error */
72 #define D64_XS1_XE_DPE 0x10000000 /* descriptor protocol error */
73 #define D64_XS1_XE_DFU 0x20000000 /* data fifo underrun */
74 #define D64_XS1_XE_DTE 0x30000000 /* data transfer error */
75 #define D64_XS1_XE_DESRE 0x40000000 /* descriptor read error */
76 #define D64_XS1_XE_COREE 0x50000000 /* core error */
78 /* receive channel control */
79 /* receive enable */
80 #define D64_RC_RE 0x00000001
81 /* receive frame offset */
82 #define D64_RC_RO_MASK 0x000000fe
83 #define D64_RC_RO_SHIFT 1
84 /* direct fifo receive (pio) mode */
85 #define D64_RC_FM 0x00000100
86 /* separate rx header descriptor enable */
87 #define D64_RC_SH 0x00000200
88 /* overflow continue */
89 #define D64_RC_OC 0x00000400
90 /* parity check disable */
91 #define D64_RC_PD 0x00000800
92 /* address extension bits */
93 #define D64_RC_AE 0x00030000
94 #define D64_RC_AE_SHIFT 16
96 /* flags for dma controller */
97 /* partity enable */
98 #define DMA_CTRL_PEN (1 << 0)
99 /* rx overflow continue */
100 #define DMA_CTRL_ROC (1 << 1)
101 /* allow rx scatter to multiple descriptors */
102 #define DMA_CTRL_RXMULTI (1 << 2)
103 /* Unframed Rx/Tx data */
104 #define DMA_CTRL_UNFRAMED (1 << 3)
106 /* receive descriptor table pointer */
107 #define D64_RP_LD_MASK 0x00000fff /* last valid descriptor */
109 /* receive channel status */
110 #define D64_RS0_CD_MASK 0x00001fff /* current descriptor pointer */
111 #define D64_RS0_RS_MASK 0xf0000000 /* receive state */
112 #define D64_RS0_RS_SHIFT 28
113 #define D64_RS0_RS_DISABLED 0x00000000 /* disabled */
114 #define D64_RS0_RS_ACTIVE 0x10000000 /* active */
115 #define D64_RS0_RS_IDLE 0x20000000 /* idle wait */
116 #define D64_RS0_RS_STOPPED 0x30000000 /* stopped */
117 #define D64_RS0_RS_SUSP 0x40000000 /* suspend pending */
119 #define D64_RS1_AD_MASK 0x0001ffff /* active descriptor */
120 #define D64_RS1_RE_MASK 0xf0000000 /* receive errors */
121 #define D64_RS1_RE_SHIFT 28
122 #define D64_RS1_RE_NOERR 0x00000000 /* no error */
123 #define D64_RS1_RE_DPO 0x10000000 /* descriptor protocol error */
124 #define D64_RS1_RE_DFU 0x20000000 /* data fifo overflow */
125 #define D64_RS1_RE_DTE 0x30000000 /* data transfer error */
126 #define D64_RS1_RE_DESRE 0x40000000 /* descriptor read error */
127 #define D64_RS1_RE_COREE 0x50000000 /* core error */
129 /* fifoaddr */
130 #define D64_FA_OFF_MASK 0xffff /* offset */
131 #define D64_FA_SEL_MASK 0xf0000 /* select */
132 #define D64_FA_SEL_SHIFT 16
133 #define D64_FA_SEL_XDD 0x00000 /* transmit dma data */
134 #define D64_FA_SEL_XDP 0x10000 /* transmit dma pointers */
135 #define D64_FA_SEL_RDD 0x40000 /* receive dma data */
136 #define D64_FA_SEL_RDP 0x50000 /* receive dma pointers */
137 #define D64_FA_SEL_XFD 0x80000 /* transmit fifo data */
138 #define D64_FA_SEL_XFP 0x90000 /* transmit fifo pointers */
139 #define D64_FA_SEL_RFD 0xc0000 /* receive fifo data */
140 #define D64_FA_SEL_RFP 0xd0000 /* receive fifo pointers */
141 #define D64_FA_SEL_RSD 0xe0000 /* receive frame status data */
142 #define D64_FA_SEL_RSP 0xf0000 /* receive frame status pointers */
144 /* descriptor control flags 1 */
145 #define D64_CTRL_COREFLAGS 0x0ff00000 /* core specific flags */
146 #define D64_CTRL1_EOT ((u32)1 << 28) /* end of descriptor table */
147 #define D64_CTRL1_IOC ((u32)1 << 29) /* interrupt on completion */
148 #define D64_CTRL1_EOF ((u32)1 << 30) /* end of frame */
149 #define D64_CTRL1_SOF ((u32)1 << 31) /* start of frame */
151 /* descriptor control flags 2 */
152 /* buffer byte count. real data len must <= 16KB */
153 #define D64_CTRL2_BC_MASK 0x00007fff
154 /* address extension bits */
155 #define D64_CTRL2_AE 0x00030000
156 #define D64_CTRL2_AE_SHIFT 16
157 /* parity bit */
158 #define D64_CTRL2_PARITY 0x00040000
160 /* control flags in the range [27:20] are core-specific and not defined here */
161 #define D64_CTRL_CORE_MASK 0x0ff00000
163 #define D64_RX_FRM_STS_LEN 0x0000ffff /* frame length mask */
164 #define D64_RX_FRM_STS_OVFL 0x00800000 /* RxOverFlow */
165 #define D64_RX_FRM_STS_DSCRCNT 0x0f000000 /* no. of descriptors used - 1 */
166 #define D64_RX_FRM_STS_DATATYPE 0xf0000000 /* core-dependent data type */
169 * packet headroom necessary to accommodate the largest header
170 * in the system, (i.e TXOFF). By doing, we avoid the need to
171 * allocate an extra buffer for the header when bridging to WL.
172 * There is a compile time check in wlc.c which ensure that this
173 * value is at least as big as TXOFF. This value is used in
174 * dma_rxfill().
177 #define BCMEXTRAHDROOM 172
179 /* debug/trace */
180 #ifdef DEBUG
181 #define DMA_ERROR(fmt, ...) \
182 do { \
183 if (*di->msg_level & 1) \
184 pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \
185 } while (0)
186 #define DMA_TRACE(fmt, ...) \
187 do { \
188 if (*di->msg_level & 2) \
189 pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \
190 } while (0)
191 #else
192 #define DMA_ERROR(fmt, ...) \
193 no_printk(fmt, ##__VA_ARGS__)
194 #define DMA_TRACE(fmt, ...) \
195 no_printk(fmt, ##__VA_ARGS__)
196 #endif /* DEBUG */
198 #define DMA_NONE(fmt, ...) \
199 no_printk(fmt, ##__VA_ARGS__)
201 #define MAXNAMEL 8 /* 8 char names */
203 /* macros to convert between byte offsets and indexes */
204 #define B2I(bytes, type) ((bytes) / sizeof(type))
205 #define I2B(index, type) ((index) * sizeof(type))
207 #define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */
208 #define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */
210 #define PCI64ADDR_HIGH 0x80000000 /* address[63] */
211 #define PCI64ADDR_HIGH_SHIFT 31 /* address[63] */
214 * DMA Descriptor
215 * Descriptors are only read by the hardware, never written back.
217 struct dma64desc {
218 __le32 ctrl1; /* misc control bits & bufcount */
219 __le32 ctrl2; /* buffer count and address extension */
220 __le32 addrlow; /* memory address of the date buffer, bits 31:0 */
221 __le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
224 /* dma engine software state */
225 struct dma_info {
226 struct dma_pub dma; /* exported structure */
227 uint *msg_level; /* message level pointer */
228 char name[MAXNAMEL]; /* callers name for diag msgs */
230 struct bcma_device *core;
231 struct device *dmadev;
233 bool dma64; /* this dma engine is operating in 64-bit mode */
234 bool addrext; /* this dma engine supports DmaExtendedAddrChanges */
236 /* 64-bit dma tx engine registers */
237 uint d64txregbase;
238 /* 64-bit dma rx engine registers */
239 uint d64rxregbase;
240 /* pointer to dma64 tx descriptor ring */
241 struct dma64desc *txd64;
242 /* pointer to dma64 rx descriptor ring */
243 struct dma64desc *rxd64;
245 u16 dmadesc_align; /* alignment requirement for dma descriptors */
247 u16 ntxd; /* # tx descriptors tunable */
248 u16 txin; /* index of next descriptor to reclaim */
249 u16 txout; /* index of next descriptor to post */
250 /* pointer to parallel array of pointers to packets */
251 struct sk_buff **txp;
252 /* Aligned physical address of descriptor ring */
253 dma_addr_t txdpa;
254 /* Original physical address of descriptor ring */
255 dma_addr_t txdpaorig;
256 u16 txdalign; /* #bytes added to alloc'd mem to align txd */
257 u32 txdalloc; /* #bytes allocated for the ring */
258 u32 xmtptrbase; /* When using unaligned descriptors, the ptr register
259 * is not just an index, it needs all 13 bits to be
260 * an offset from the addr register.
263 u16 nrxd; /* # rx descriptors tunable */
264 u16 rxin; /* index of next descriptor to reclaim */
265 u16 rxout; /* index of next descriptor to post */
266 /* pointer to parallel array of pointers to packets */
267 struct sk_buff **rxp;
268 /* Aligned physical address of descriptor ring */
269 dma_addr_t rxdpa;
270 /* Original physical address of descriptor ring */
271 dma_addr_t rxdpaorig;
272 u16 rxdalign; /* #bytes added to alloc'd mem to align rxd */
273 u32 rxdalloc; /* #bytes allocated for the ring */
274 u32 rcvptrbase; /* Base for ptr reg when using unaligned descriptors */
276 /* tunables */
277 unsigned int rxbufsize; /* rx buffer size in bytes, not including
278 * the extra headroom
280 uint rxextrahdrroom; /* extra rx headroom, reverseved to assist upper
281 * stack, e.g. some rx pkt buffers will be
282 * bridged to tx side without byte copying.
283 * The extra headroom needs to be large enough
284 * to fit txheader needs. Some dongle driver may
285 * not need it.
287 uint nrxpost; /* # rx buffers to keep posted */
288 unsigned int rxoffset; /* rxcontrol offset */
289 /* add to get dma address of descriptor ring, low 32 bits */
290 uint ddoffsetlow;
291 /* high 32 bits */
292 uint ddoffsethigh;
293 /* add to get dma address of data buffer, low 32 bits */
294 uint dataoffsetlow;
295 /* high 32 bits */
296 uint dataoffsethigh;
297 /* descriptor base need to be aligned or not */
298 bool aligndesc_4k;
302 * default dma message level (if input msg_level
303 * pointer is null in dma_attach())
305 static uint dma_msg_level;
307 /* Check for odd number of 1's */
308 static u32 parity32(__le32 data)
310 /* no swap needed for counting 1's */
311 u32 par_data = *(u32 *)&data;
313 par_data ^= par_data >> 16;
314 par_data ^= par_data >> 8;
315 par_data ^= par_data >> 4;
316 par_data ^= par_data >> 2;
317 par_data ^= par_data >> 1;
319 return par_data & 1;
322 static bool dma64_dd_parity(struct dma64desc *dd)
324 return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
327 /* descriptor bumping functions */
329 static uint xxd(uint x, uint n)
331 return x & (n - 1); /* faster than %, but n must be power of 2 */
334 static uint txd(struct dma_info *di, uint x)
336 return xxd(x, di->ntxd);
339 static uint rxd(struct dma_info *di, uint x)
341 return xxd(x, di->nrxd);
344 static uint nexttxd(struct dma_info *di, uint i)
346 return txd(di, i + 1);
349 static uint prevtxd(struct dma_info *di, uint i)
351 return txd(di, i - 1);
354 static uint nextrxd(struct dma_info *di, uint i)
356 return txd(di, i + 1);
359 static uint ntxdactive(struct dma_info *di, uint h, uint t)
361 return txd(di, t-h);
364 static uint nrxdactive(struct dma_info *di, uint h, uint t)
366 return rxd(di, t-h);
369 static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
371 uint dmactrlflags;
373 if (di == NULL) {
374 DMA_ERROR("NULL dma handle\n");
375 return 0;
378 dmactrlflags = di->dma.dmactrlflags;
379 dmactrlflags &= ~mask;
380 dmactrlflags |= flags;
382 /* If trying to enable parity, check if parity is actually supported */
383 if (dmactrlflags & DMA_CTRL_PEN) {
384 u32 control;
386 control = bcma_read32(di->core, DMA64TXREGOFFS(di, control));
387 bcma_write32(di->core, DMA64TXREGOFFS(di, control),
388 control | D64_XC_PD);
389 if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) &
390 D64_XC_PD)
391 /* We *can* disable it so it is supported,
392 * restore control register
394 bcma_write32(di->core, DMA64TXREGOFFS(di, control),
395 control);
396 else
397 /* Not supported, don't allow it to be enabled */
398 dmactrlflags &= ~DMA_CTRL_PEN;
401 di->dma.dmactrlflags = dmactrlflags;
403 return dmactrlflags;
406 static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset)
408 u32 w;
409 bcma_set32(di->core, ctrl_offset, D64_XC_AE);
410 w = bcma_read32(di->core, ctrl_offset);
411 bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE);
412 return (w & D64_XC_AE) == D64_XC_AE;
416 * return true if this dma engine supports DmaExtendedAddrChanges,
417 * otherwise false
419 static bool _dma_isaddrext(struct dma_info *di)
421 /* DMA64 supports full 32- or 64-bit operation. AE is always valid */
423 /* not all tx or rx channel are available */
424 if (di->d64txregbase != 0) {
425 if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control)))
426 DMA_ERROR("%s: DMA64 tx doesn't have AE set\n",
427 di->name);
428 return true;
429 } else if (di->d64rxregbase != 0) {
430 if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control)))
431 DMA_ERROR("%s: DMA64 rx doesn't have AE set\n",
432 di->name);
433 return true;
436 return false;
439 static bool _dma_descriptor_align(struct dma_info *di)
441 u32 addrl;
443 /* Check to see if the descriptors need to be aligned on 4K/8K or not */
444 if (di->d64txregbase != 0) {
445 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0);
446 addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow));
447 if (addrl != 0)
448 return false;
449 } else if (di->d64rxregbase != 0) {
450 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0);
451 addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow));
452 if (addrl != 0)
453 return false;
455 return true;
459 * Descriptor table must start at the DMA hardware dictated alignment, so
460 * allocated memory must be large enough to support this requirement.
462 static void *dma_alloc_consistent(struct dma_info *di, uint size,
463 u16 align_bits, uint *alloced,
464 dma_addr_t *pap)
466 if (align_bits) {
467 u16 align = (1 << align_bits);
468 if (!IS_ALIGNED(PAGE_SIZE, align))
469 size += align;
470 *alloced = size;
472 return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC);
475 static
476 u8 dma_align_sizetobits(uint size)
478 u8 bitpos = 0;
479 while (size >>= 1)
480 bitpos++;
481 return bitpos;
484 /* This function ensures that the DMA descriptor ring will not get allocated
485 * across Page boundary. If the allocation is done across the page boundary
486 * at the first time, then it is freed and the allocation is done at
487 * descriptor ring size aligned location. This will ensure that the ring will
488 * not cross page boundary
490 static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
491 u16 *alignbits, uint *alloced,
492 dma_addr_t *descpa)
494 void *va;
495 u32 desc_strtaddr;
496 u32 alignbytes = 1 << *alignbits;
498 va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa);
500 if (NULL == va)
501 return NULL;
503 desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
504 if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
505 & boundary)) {
506 *alignbits = dma_align_sizetobits(size);
507 dma_free_coherent(di->dmadev, size, va, *descpa);
508 va = dma_alloc_consistent(di, size, *alignbits,
509 alloced, descpa);
511 return va;
514 static bool dma64_alloc(struct dma_info *di, uint direction)
516 u16 size;
517 uint ddlen;
518 void *va;
519 uint alloced = 0;
520 u16 align;
521 u16 align_bits;
523 ddlen = sizeof(struct dma64desc);
525 size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
526 align_bits = di->dmadesc_align;
527 align = (1 << align_bits);
529 if (direction == DMA_TX) {
530 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
531 &alloced, &di->txdpaorig);
532 if (va == NULL) {
533 DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
534 di->name);
535 return false;
537 align = (1 << align_bits);
538 di->txd64 = (struct dma64desc *)
539 roundup((unsigned long)va, align);
540 di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
541 di->txdpa = di->txdpaorig + di->txdalign;
542 di->txdalloc = alloced;
543 } else {
544 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
545 &alloced, &di->rxdpaorig);
546 if (va == NULL) {
547 DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
548 di->name);
549 return false;
551 align = (1 << align_bits);
552 di->rxd64 = (struct dma64desc *)
553 roundup((unsigned long)va, align);
554 di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
555 di->rxdpa = di->rxdpaorig + di->rxdalign;
556 di->rxdalloc = alloced;
559 return true;
562 static bool _dma_alloc(struct dma_info *di, uint direction)
564 return dma64_alloc(di, direction);
567 struct dma_pub *dma_attach(char *name, struct si_pub *sih,
568 struct bcma_device *core,
569 uint txregbase, uint rxregbase, uint ntxd, uint nrxd,
570 uint rxbufsize, int rxextheadroom,
571 uint nrxpost, uint rxoffset, uint *msg_level)
573 struct dma_info *di;
574 u8 rev = core->id.rev;
575 uint size;
576 struct si_info *sii = container_of(sih, struct si_info, pub);
578 /* allocate private info structure */
579 di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
580 if (di == NULL)
581 return NULL;
583 di->msg_level = msg_level ? msg_level : &dma_msg_level;
586 di->dma64 =
587 ((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64);
589 /* init dma reg info */
590 di->core = core;
591 di->d64txregbase = txregbase;
592 di->d64rxregbase = rxregbase;
595 * Default flags (which can be changed by the driver calling
596 * dma_ctrlflags before enable): For backwards compatibility
597 * both Rx Overflow Continue and Parity are DISABLED.
599 _dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
601 DMA_TRACE("%s: %s flags 0x%x ntxd %d nrxd %d "
602 "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
603 "txregbase %u rxregbase %u\n", name, "DMA64",
604 di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
605 rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase);
607 /* make a private copy of our callers name */
608 strncpy(di->name, name, MAXNAMEL);
609 di->name[MAXNAMEL - 1] = '\0';
611 di->dmadev = core->dma_dev;
613 /* save tunables */
614 di->ntxd = (u16) ntxd;
615 di->nrxd = (u16) nrxd;
617 /* the actual dma size doesn't include the extra headroom */
618 di->rxextrahdrroom =
619 (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
620 if (rxbufsize > BCMEXTRAHDROOM)
621 di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
622 else
623 di->rxbufsize = (u16) rxbufsize;
625 di->nrxpost = (u16) nrxpost;
626 di->rxoffset = (u8) rxoffset;
629 * figure out the DMA physical address offset for dd and data
630 * PCI/PCIE: they map silicon backplace address to zero
631 * based memory, need offset
632 * Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
633 * swapped region for data buffer, not descriptor
635 di->ddoffsetlow = 0;
636 di->dataoffsetlow = 0;
637 /* for pci bus, add offset */
638 if (sii->icbus->hosttype == BCMA_HOSTTYPE_PCI) {
639 /* add offset for pcie with DMA64 bus */
640 di->ddoffsetlow = 0;
641 di->ddoffsethigh = SI_PCIE_DMA_H32;
643 di->dataoffsetlow = di->ddoffsetlow;
644 di->dataoffsethigh = di->ddoffsethigh;
646 /* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
647 if ((core->id.id == BCMA_CORE_SDIO_DEV)
648 && ((rev > 0) && (rev <= 2)))
649 di->addrext = false;
650 else if ((core->id.id == BCMA_CORE_I2S) &&
651 ((rev == 0) || (rev == 1)))
652 di->addrext = false;
653 else
654 di->addrext = _dma_isaddrext(di);
656 /* does the descriptor need to be aligned and if yes, on 4K/8K or not */
657 di->aligndesc_4k = _dma_descriptor_align(di);
658 if (di->aligndesc_4k) {
659 di->dmadesc_align = D64RINGALIGN_BITS;
660 if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
661 /* for smaller dd table, HW relax alignment reqmnt */
662 di->dmadesc_align = D64RINGALIGN_BITS - 1;
663 } else {
664 di->dmadesc_align = 4; /* 16 byte alignment */
667 DMA_NONE("DMA descriptor align_needed %d, align %d\n",
668 di->aligndesc_4k, di->dmadesc_align);
670 /* allocate tx packet pointer vector */
671 if (ntxd) {
672 size = ntxd * sizeof(void *);
673 di->txp = kzalloc(size, GFP_ATOMIC);
674 if (di->txp == NULL)
675 goto fail;
678 /* allocate rx packet pointer vector */
679 if (nrxd) {
680 size = nrxd * sizeof(void *);
681 di->rxp = kzalloc(size, GFP_ATOMIC);
682 if (di->rxp == NULL)
683 goto fail;
687 * allocate transmit descriptor ring, only need ntxd descriptors
688 * but it must be aligned
690 if (ntxd) {
691 if (!_dma_alloc(di, DMA_TX))
692 goto fail;
696 * allocate receive descriptor ring, only need nrxd descriptors
697 * but it must be aligned
699 if (nrxd) {
700 if (!_dma_alloc(di, DMA_RX))
701 goto fail;
704 if ((di->ddoffsetlow != 0) && !di->addrext) {
705 if (di->txdpa > SI_PCI_DMA_SZ) {
706 DMA_ERROR("%s: txdpa 0x%x: addrext not supported\n",
707 di->name, (u32)di->txdpa);
708 goto fail;
710 if (di->rxdpa > SI_PCI_DMA_SZ) {
711 DMA_ERROR("%s: rxdpa 0x%x: addrext not supported\n",
712 di->name, (u32)di->rxdpa);
713 goto fail;
717 DMA_TRACE("ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
718 di->ddoffsetlow, di->ddoffsethigh,
719 di->dataoffsetlow, di->dataoffsethigh,
720 di->addrext);
722 return (struct dma_pub *) di;
724 fail:
725 dma_detach((struct dma_pub *)di);
726 return NULL;
729 static inline void
730 dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
731 dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
733 u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
735 /* PCI bus with big(>1G) physical address, use address extension */
736 if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
737 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
738 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
739 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
740 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
741 } else {
742 /* address extension for 32-bit PCI */
743 u32 ae;
745 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
746 pa &= ~PCI32ADDR_HIGH;
748 ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
749 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
750 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
751 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
752 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
754 if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
755 if (dma64_dd_parity(&ddring[outidx]))
756 ddring[outidx].ctrl2 =
757 cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
761 /* !! may be called with core in reset */
762 void dma_detach(struct dma_pub *pub)
764 struct dma_info *di = (struct dma_info *)pub;
766 DMA_TRACE("%s:\n", di->name);
768 /* free dma descriptor rings */
769 if (di->txd64)
770 dma_free_coherent(di->dmadev, di->txdalloc,
771 ((s8 *)di->txd64 - di->txdalign),
772 (di->txdpaorig));
773 if (di->rxd64)
774 dma_free_coherent(di->dmadev, di->rxdalloc,
775 ((s8 *)di->rxd64 - di->rxdalign),
776 (di->rxdpaorig));
778 /* free packet pointer vectors */
779 kfree(di->txp);
780 kfree(di->rxp);
782 /* free our private info structure */
783 kfree(di);
787 /* initialize descriptor table base address */
788 static void
789 _dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
791 if (!di->aligndesc_4k) {
792 if (direction == DMA_TX)
793 di->xmtptrbase = pa;
794 else
795 di->rcvptrbase = pa;
798 if ((di->ddoffsetlow == 0)
799 || !(pa & PCI32ADDR_HIGH)) {
800 if (direction == DMA_TX) {
801 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
802 pa + di->ddoffsetlow);
803 bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
804 di->ddoffsethigh);
805 } else {
806 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
807 pa + di->ddoffsetlow);
808 bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
809 di->ddoffsethigh);
811 } else {
812 /* DMA64 32bits address extension */
813 u32 ae;
815 /* shift the high bit(s) from pa to ae */
816 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
817 pa &= ~PCI32ADDR_HIGH;
819 if (direction == DMA_TX) {
820 bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
821 pa + di->ddoffsetlow);
822 bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
823 di->ddoffsethigh);
824 bcma_maskset32(di->core, DMA64TXREGOFFS(di, control),
825 D64_XC_AE, (ae << D64_XC_AE_SHIFT));
826 } else {
827 bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
828 pa + di->ddoffsetlow);
829 bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
830 di->ddoffsethigh);
831 bcma_maskset32(di->core, DMA64RXREGOFFS(di, control),
832 D64_RC_AE, (ae << D64_RC_AE_SHIFT));
837 static void _dma_rxenable(struct dma_info *di)
839 uint dmactrlflags = di->dma.dmactrlflags;
840 u32 control;
842 DMA_TRACE("%s:\n", di->name);
844 control = D64_RC_RE | (bcma_read32(di->core,
845 DMA64RXREGOFFS(di, control)) &
846 D64_RC_AE);
848 if ((dmactrlflags & DMA_CTRL_PEN) == 0)
849 control |= D64_RC_PD;
851 if (dmactrlflags & DMA_CTRL_ROC)
852 control |= D64_RC_OC;
854 bcma_write32(di->core, DMA64RXREGOFFS(di, control),
855 ((di->rxoffset << D64_RC_RO_SHIFT) | control));
858 void dma_rxinit(struct dma_pub *pub)
860 struct dma_info *di = (struct dma_info *)pub;
862 DMA_TRACE("%s:\n", di->name);
864 if (di->nrxd == 0)
865 return;
867 di->rxin = di->rxout = 0;
869 /* clear rx descriptor ring */
870 memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
872 /* DMA engine with out alignment requirement requires table to be inited
873 * before enabling the engine
875 if (!di->aligndesc_4k)
876 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
878 _dma_rxenable(di);
880 if (di->aligndesc_4k)
881 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
884 static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
886 uint i, curr;
887 struct sk_buff *rxp;
888 dma_addr_t pa;
890 i = di->rxin;
892 /* return if no packets posted */
893 if (i == di->rxout)
894 return NULL;
896 curr =
897 B2I(((bcma_read32(di->core,
898 DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) -
899 di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
901 /* ignore curr if forceall */
902 if (!forceall && (i == curr))
903 return NULL;
905 /* get the packet pointer that corresponds to the rx descriptor */
906 rxp = di->rxp[i];
907 di->rxp[i] = NULL;
909 pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
911 /* clear this packet from the descriptor ring */
912 dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE);
914 di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
915 di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
917 di->rxin = nextrxd(di, i);
919 return rxp;
922 static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
924 if (di->nrxd == 0)
925 return NULL;
927 return dma64_getnextrxp(di, forceall);
931 * !! rx entry routine
932 * returns the number packages in the next frame, or 0 if there are no more
933 * if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
934 * supported with pkts chain
935 * otherwise, it's treated as giant pkt and will be tossed.
936 * The DMA scattering starts with normal DMA header, followed by first
937 * buffer data. After it reaches the max size of buffer, the data continues
938 * in next DMA descriptor buffer WITHOUT DMA header
940 int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
942 struct dma_info *di = (struct dma_info *)pub;
943 struct sk_buff_head dma_frames;
944 struct sk_buff *p, *next;
945 uint len;
946 uint pkt_len;
947 int resid = 0;
948 int pktcnt = 1;
950 skb_queue_head_init(&dma_frames);
951 next_frame:
952 p = _dma_getnextrxp(di, false);
953 if (p == NULL)
954 return 0;
956 len = le16_to_cpu(*(__le16 *) (p->data));
957 DMA_TRACE("%s: dma_rx len %d\n", di->name, len);
958 dma_spin_for_len(len, p);
960 /* set actual length */
961 pkt_len = min((di->rxoffset + len), di->rxbufsize);
962 __skb_trim(p, pkt_len);
963 skb_queue_tail(&dma_frames, p);
964 resid = len - (di->rxbufsize - di->rxoffset);
966 /* check for single or multi-buffer rx */
967 if (resid > 0) {
968 while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
969 pkt_len = min_t(uint, resid, di->rxbufsize);
970 __skb_trim(p, pkt_len);
971 skb_queue_tail(&dma_frames, p);
972 resid -= di->rxbufsize;
973 pktcnt++;
976 #ifdef DEBUG
977 if (resid > 0) {
978 uint cur;
979 cur =
980 B2I(((bcma_read32(di->core,
981 DMA64RXREGOFFS(di, status0)) &
982 D64_RS0_CD_MASK) - di->rcvptrbase) &
983 D64_RS0_CD_MASK, struct dma64desc);
984 DMA_ERROR("rxin %d rxout %d, hw_curr %d\n",
985 di->rxin, di->rxout, cur);
987 #endif /* DEBUG */
989 if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
990 DMA_ERROR("%s: bad frame length (%d)\n",
991 di->name, len);
992 skb_queue_walk_safe(&dma_frames, p, next) {
993 skb_unlink(p, &dma_frames);
994 brcmu_pkt_buf_free_skb(p);
996 di->dma.rxgiants++;
997 pktcnt = 1;
998 goto next_frame;
1002 skb_queue_splice_tail(&dma_frames, skb_list);
1003 return pktcnt;
1006 static bool dma64_rxidle(struct dma_info *di)
1008 DMA_TRACE("%s:\n", di->name);
1010 if (di->nrxd == 0)
1011 return true;
1013 return ((bcma_read32(di->core,
1014 DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) ==
1015 (bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) &
1016 D64_RS0_CD_MASK));
1020 * post receive buffers
1021 * return false is refill failed completely and ring is empty this will stall
1022 * the rx dma and user might want to call rxfill again asap. This unlikely
1023 * happens on memory-rich NIC, but often on memory-constrained dongle
1025 bool dma_rxfill(struct dma_pub *pub)
1027 struct dma_info *di = (struct dma_info *)pub;
1028 struct sk_buff *p;
1029 u16 rxin, rxout;
1030 u32 flags = 0;
1031 uint n;
1032 uint i;
1033 dma_addr_t pa;
1034 uint extra_offset = 0;
1035 bool ring_empty;
1037 ring_empty = false;
1040 * Determine how many receive buffers we're lacking
1041 * from the full complement, allocate, initialize,
1042 * and post them, then update the chip rx lastdscr.
1045 rxin = di->rxin;
1046 rxout = di->rxout;
1048 n = di->nrxpost - nrxdactive(di, rxin, rxout);
1050 DMA_TRACE("%s: post %d\n", di->name, n);
1052 if (di->rxbufsize > BCMEXTRAHDROOM)
1053 extra_offset = di->rxextrahdrroom;
1055 for (i = 0; i < n; i++) {
1057 * the di->rxbufsize doesn't include the extra headroom,
1058 * we need to add it to the size to be allocated
1060 p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
1062 if (p == NULL) {
1063 DMA_ERROR("%s: out of rxbufs\n", di->name);
1064 if (i == 0 && dma64_rxidle(di)) {
1065 DMA_ERROR("%s: ring is empty !\n", di->name);
1066 ring_empty = true;
1068 di->dma.rxnobuf++;
1069 break;
1071 /* reserve an extra headroom, if applicable */
1072 if (extra_offset)
1073 skb_pull(p, extra_offset);
1075 /* Do a cached write instead of uncached write since DMA_MAP
1076 * will flush the cache.
1078 *(u32 *) (p->data) = 0;
1080 pa = dma_map_single(di->dmadev, p->data, di->rxbufsize,
1081 DMA_FROM_DEVICE);
1083 /* save the free packet pointer */
1084 di->rxp[rxout] = p;
1086 /* reset flags for each descriptor */
1087 flags = 0;
1088 if (rxout == (di->nrxd - 1))
1089 flags = D64_CTRL1_EOT;
1091 dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
1092 di->rxbufsize);
1093 rxout = nextrxd(di, rxout);
1096 di->rxout = rxout;
1098 /* update the chip lastdscr pointer */
1099 bcma_write32(di->core, DMA64RXREGOFFS(di, ptr),
1100 di->rcvptrbase + I2B(rxout, struct dma64desc));
1102 return ring_empty;
1105 void dma_rxreclaim(struct dma_pub *pub)
1107 struct dma_info *di = (struct dma_info *)pub;
1108 struct sk_buff *p;
1110 DMA_TRACE("%s:\n", di->name);
1112 while ((p = _dma_getnextrxp(di, true)))
1113 brcmu_pkt_buf_free_skb(p);
1116 void dma_counterreset(struct dma_pub *pub)
1118 /* reset all software counters */
1119 pub->rxgiants = 0;
1120 pub->rxnobuf = 0;
1121 pub->txnobuf = 0;
1124 /* get the address of the var in order to change later */
1125 unsigned long dma_getvar(struct dma_pub *pub, const char *name)
1127 struct dma_info *di = (struct dma_info *)pub;
1129 if (!strcmp(name, "&txavail"))
1130 return (unsigned long)&(di->dma.txavail);
1131 return 0;
1134 /* 64-bit DMA functions */
1136 void dma_txinit(struct dma_pub *pub)
1138 struct dma_info *di = (struct dma_info *)pub;
1139 u32 control = D64_XC_XE;
1141 DMA_TRACE("%s:\n", di->name);
1143 if (di->ntxd == 0)
1144 return;
1146 di->txin = di->txout = 0;
1147 di->dma.txavail = di->ntxd - 1;
1149 /* clear tx descriptor ring */
1150 memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
1152 /* DMA engine with out alignment requirement requires table to be inited
1153 * before enabling the engine
1155 if (!di->aligndesc_4k)
1156 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1158 if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
1159 control |= D64_XC_PD;
1160 bcma_set32(di->core, DMA64TXREGOFFS(di, control), control);
1162 /* DMA engine with alignment requirement requires table to be inited
1163 * before enabling the engine
1165 if (di->aligndesc_4k)
1166 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1169 void dma_txsuspend(struct dma_pub *pub)
1171 struct dma_info *di = (struct dma_info *)pub;
1173 DMA_TRACE("%s:\n", di->name);
1175 if (di->ntxd == 0)
1176 return;
1178 bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1181 void dma_txresume(struct dma_pub *pub)
1183 struct dma_info *di = (struct dma_info *)pub;
1185 DMA_TRACE("%s:\n", di->name);
1187 if (di->ntxd == 0)
1188 return;
1190 bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE);
1193 bool dma_txsuspended(struct dma_pub *pub)
1195 struct dma_info *di = (struct dma_info *)pub;
1197 return (di->ntxd == 0) ||
1198 ((bcma_read32(di->core,
1199 DMA64TXREGOFFS(di, control)) & D64_XC_SE) ==
1200 D64_XC_SE);
1203 void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
1205 struct dma_info *di = (struct dma_info *)pub;
1206 struct sk_buff *p;
1208 DMA_TRACE("%s: %s\n",
1209 di->name,
1210 range == DMA_RANGE_ALL ? "all" :
1211 range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1212 "transferred");
1214 if (di->txin == di->txout)
1215 return;
1217 while ((p = dma_getnexttxp(pub, range))) {
1218 /* For unframed data, we don't have any packets to free */
1219 if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
1220 brcmu_pkt_buf_free_skb(p);
1224 bool dma_txreset(struct dma_pub *pub)
1226 struct dma_info *di = (struct dma_info *)pub;
1227 u32 status;
1229 if (di->ntxd == 0)
1230 return true;
1232 /* suspend tx DMA first */
1233 bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
1234 SPINWAIT(((status =
1235 (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1236 D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) &&
1237 (status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED),
1238 10000);
1240 bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0);
1241 SPINWAIT(((status =
1242 (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
1243 D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000);
1245 /* wait for the last transaction to complete */
1246 udelay(300);
1248 return status == D64_XS0_XS_DISABLED;
1251 bool dma_rxreset(struct dma_pub *pub)
1253 struct dma_info *di = (struct dma_info *)pub;
1254 u32 status;
1256 if (di->nrxd == 0)
1257 return true;
1259 bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0);
1260 SPINWAIT(((status =
1261 (bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) &
1262 D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000);
1264 return status == D64_RS0_RS_DISABLED;
1268 * !! tx entry routine
1269 * WARNING: call must check the return value for error.
1270 * the error(toss frames) could be fatal and cause many subsequent hard
1271 * to debug problems
1273 int dma_txfast(struct dma_pub *pub, struct sk_buff *p, bool commit)
1275 struct dma_info *di = (struct dma_info *)pub;
1276 unsigned char *data;
1277 uint len;
1278 u16 txout;
1279 u32 flags = 0;
1280 dma_addr_t pa;
1282 DMA_TRACE("%s:\n", di->name);
1284 txout = di->txout;
1287 * obtain and initialize transmit descriptor entry.
1289 data = p->data;
1290 len = p->len;
1292 /* no use to transmit a zero length packet */
1293 if (len == 0)
1294 return 0;
1296 /* return nonzero if out of tx descriptors */
1297 if (nexttxd(di, txout) == di->txin)
1298 goto outoftxd;
1300 /* get physical address of buffer start */
1301 pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE);
1303 /* With a DMA segment list, Descriptor table is filled
1304 * using the segment list instead of looping over
1305 * buffers in multi-chain DMA. Therefore, EOF for SGLIST
1306 * is when end of segment list is reached.
1308 flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
1309 if (txout == (di->ntxd - 1))
1310 flags |= D64_CTRL1_EOT;
1312 dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
1314 txout = nexttxd(di, txout);
1316 /* save the packet */
1317 di->txp[prevtxd(di, txout)] = p;
1319 /* bump the tx descriptor index */
1320 di->txout = txout;
1322 /* kick the chip */
1323 if (commit)
1324 bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
1325 di->xmtptrbase + I2B(txout, struct dma64desc));
1327 /* tx flow control */
1328 di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
1330 return 0;
1332 outoftxd:
1333 DMA_ERROR("%s: out of txds !!!\n", di->name);
1334 brcmu_pkt_buf_free_skb(p);
1335 di->dma.txavail = 0;
1336 di->dma.txnobuf++;
1337 return -1;
1341 * Reclaim next completed txd (txds if using chained buffers) in the range
1342 * specified and return associated packet.
1343 * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
1344 * transmitted as noted by the hardware "CurrDescr" pointer.
1345 * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
1346 * transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
1347 * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
1348 * return associated packet regardless of the value of hardware pointers.
1350 struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
1352 struct dma_info *di = (struct dma_info *)pub;
1353 u16 start, end, i;
1354 u16 active_desc;
1355 struct sk_buff *txp;
1357 DMA_TRACE("%s: %s\n",
1358 di->name,
1359 range == DMA_RANGE_ALL ? "all" :
1360 range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1361 "transferred");
1363 if (di->ntxd == 0)
1364 return NULL;
1366 txp = NULL;
1368 start = di->txin;
1369 if (range == DMA_RANGE_ALL)
1370 end = di->txout;
1371 else {
1372 end = (u16) (B2I(((bcma_read32(di->core,
1373 DMA64TXREGOFFS(di, status0)) &
1374 D64_XS0_CD_MASK) - di->xmtptrbase) &
1375 D64_XS0_CD_MASK, struct dma64desc));
1377 if (range == DMA_RANGE_TRANSFERED) {
1378 active_desc =
1379 (u16)(bcma_read32(di->core,
1380 DMA64TXREGOFFS(di, status1)) &
1381 D64_XS1_AD_MASK);
1382 active_desc =
1383 (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
1384 active_desc = B2I(active_desc, struct dma64desc);
1385 if (end != active_desc)
1386 end = prevtxd(di, active_desc);
1390 if ((start == 0) && (end > di->txout))
1391 goto bogus;
1393 for (i = start; i != end && !txp; i = nexttxd(di, i)) {
1394 dma_addr_t pa;
1395 uint size;
1397 pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
1399 size =
1400 (le32_to_cpu(di->txd64[i].ctrl2) &
1401 D64_CTRL2_BC_MASK);
1403 di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
1404 di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
1406 txp = di->txp[i];
1407 di->txp[i] = NULL;
1409 dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE);
1412 di->txin = i;
1414 /* tx flow control */
1415 di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
1417 return txp;
1419 bogus:
1420 DMA_NONE("bogus curr: start %d end %d txout %d\n",
1421 start, end, di->txout);
1422 return NULL;
1426 * Mac80211 initiated actions sometimes require packets in the DMA queue to be
1427 * modified. The modified portion of the packet is not under control of the DMA
1428 * engine. This function calls a caller-supplied function for each packet in
1429 * the caller specified dma chain.
1431 void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
1432 (void *pkt, void *arg_a), void *arg_a)
1434 struct dma_info *di = (struct dma_info *) dmah;
1435 uint i = di->txin;
1436 uint end = di->txout;
1437 struct sk_buff *skb;
1438 struct ieee80211_tx_info *tx_info;
1440 while (i != end) {
1441 skb = di->txp[i];
1442 if (skb != NULL) {
1443 tx_info = (struct ieee80211_tx_info *)skb->cb;
1444 (callback_fnc)(tx_info, arg_a);
1446 i = nexttxd(di, i);