2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 Abstract: rt2x00 generic device routines.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
33 #include "rt2x00lib.h"
38 u32
rt2x00lib_get_bssidx(struct rt2x00_dev
*rt2x00dev
,
39 struct ieee80211_vif
*vif
)
42 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 * contains the bss number, see BSS_ID_MASK comments for details.
45 if (rt2x00dev
->intf_sta_count
)
47 return vif
->addr
[5] & (rt2x00dev
->ops
->max_ap_intf
- 1);
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx
);
52 * Radio control handlers.
54 int rt2x00lib_enable_radio(struct rt2x00_dev
*rt2x00dev
)
59 * Don't enable the radio twice.
60 * And check if the hardware button has been disabled.
62 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
66 * Initialize all data queues.
68 rt2x00queue_init_queues(rt2x00dev
);
74 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_ON
);
78 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_IRQ_ON
);
80 rt2x00leds_led_radio(rt2x00dev
, true);
81 rt2x00led_led_activity(rt2x00dev
, true);
83 set_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
);
88 rt2x00queue_start_queues(rt2x00dev
);
89 rt2x00link_start_tuner(rt2x00dev
);
90 rt2x00link_start_agc(rt2x00dev
);
91 if (test_bit(CAPABILITY_VCO_RECALIBRATION
, &rt2x00dev
->cap_flags
))
92 rt2x00link_start_vcocal(rt2x00dev
);
95 * Start watchdog monitoring.
97 rt2x00link_start_watchdog(rt2x00dev
);
102 void rt2x00lib_disable_radio(struct rt2x00_dev
*rt2x00dev
)
104 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
108 * Stop watchdog monitoring.
110 rt2x00link_stop_watchdog(rt2x00dev
);
115 rt2x00link_stop_agc(rt2x00dev
);
116 if (test_bit(CAPABILITY_VCO_RECALIBRATION
, &rt2x00dev
->cap_flags
))
117 rt2x00link_stop_vcocal(rt2x00dev
);
118 rt2x00link_stop_tuner(rt2x00dev
);
119 rt2x00queue_stop_queues(rt2x00dev
);
120 rt2x00queue_flush_queues(rt2x00dev
, true);
125 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_OFF
);
126 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_IRQ_OFF
);
127 rt2x00led_led_activity(rt2x00dev
, false);
128 rt2x00leds_led_radio(rt2x00dev
, false);
131 static void rt2x00lib_intf_scheduled_iter(void *data
, u8
*mac
,
132 struct ieee80211_vif
*vif
)
134 struct rt2x00_dev
*rt2x00dev
= data
;
135 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
138 * It is possible the radio was disabled while the work had been
139 * scheduled. If that happens we should return here immediately,
140 * note that in the spinlock protected area above the delayed_flags
141 * have been cleared correctly.
143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
146 if (test_and_clear_bit(DELAYED_UPDATE_BEACON
, &intf
->delayed_flags
))
147 rt2x00queue_update_beacon(rt2x00dev
, vif
);
150 static void rt2x00lib_intf_scheduled(struct work_struct
*work
)
152 struct rt2x00_dev
*rt2x00dev
=
153 container_of(work
, struct rt2x00_dev
, intf_work
);
156 * Iterate over each interface and perform the
157 * requested configurations.
159 ieee80211_iterate_active_interfaces(rt2x00dev
->hw
,
160 rt2x00lib_intf_scheduled_iter
,
164 static void rt2x00lib_autowakeup(struct work_struct
*work
)
166 struct rt2x00_dev
*rt2x00dev
=
167 container_of(work
, struct rt2x00_dev
, autowakeup_work
.work
);
169 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
172 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
173 ERROR(rt2x00dev
, "Device failed to wakeup.\n");
174 clear_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
);
178 * Interrupt context handlers.
180 static void rt2x00lib_bc_buffer_iter(void *data
, u8
*mac
,
181 struct ieee80211_vif
*vif
)
183 struct rt2x00_dev
*rt2x00dev
= data
;
187 * Only AP mode interfaces do broad- and multicast buffering
189 if (vif
->type
!= NL80211_IFTYPE_AP
)
193 * Send out buffered broad- and multicast frames
195 skb
= ieee80211_get_buffered_bc(rt2x00dev
->hw
, vif
);
197 rt2x00mac_tx(rt2x00dev
->hw
, skb
);
198 skb
= ieee80211_get_buffered_bc(rt2x00dev
->hw
, vif
);
202 static void rt2x00lib_beaconupdate_iter(void *data
, u8
*mac
,
203 struct ieee80211_vif
*vif
)
205 struct rt2x00_dev
*rt2x00dev
= data
;
207 if (vif
->type
!= NL80211_IFTYPE_AP
&&
208 vif
->type
!= NL80211_IFTYPE_ADHOC
&&
209 vif
->type
!= NL80211_IFTYPE_MESH_POINT
&&
210 vif
->type
!= NL80211_IFTYPE_WDS
)
214 * Update the beacon without locking. This is safe on PCI devices
215 * as they only update the beacon periodically here. This should
216 * never be called for USB devices.
218 WARN_ON(rt2x00_is_usb(rt2x00dev
));
219 rt2x00queue_update_beacon_locked(rt2x00dev
, vif
);
222 void rt2x00lib_beacondone(struct rt2x00_dev
*rt2x00dev
)
224 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
227 /* send buffered bc/mc frames out for every bssid */
228 ieee80211_iterate_active_interfaces_atomic(rt2x00dev
->hw
,
229 rt2x00lib_bc_buffer_iter
,
232 * Devices with pre tbtt interrupt don't need to update the beacon
233 * here as they will fetch the next beacon directly prior to
236 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT
, &rt2x00dev
->cap_flags
))
239 /* fetch next beacon */
240 ieee80211_iterate_active_interfaces_atomic(rt2x00dev
->hw
,
241 rt2x00lib_beaconupdate_iter
,
244 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone
);
246 void rt2x00lib_pretbtt(struct rt2x00_dev
*rt2x00dev
)
248 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
251 /* fetch next beacon */
252 ieee80211_iterate_active_interfaces_atomic(rt2x00dev
->hw
,
253 rt2x00lib_beaconupdate_iter
,
256 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt
);
258 void rt2x00lib_dmastart(struct queue_entry
*entry
)
260 set_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
261 rt2x00queue_index_inc(entry
, Q_INDEX
);
263 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart
);
265 void rt2x00lib_dmadone(struct queue_entry
*entry
)
267 set_bit(ENTRY_DATA_STATUS_PENDING
, &entry
->flags
);
268 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
269 rt2x00queue_index_inc(entry
, Q_INDEX_DMA_DONE
);
271 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone
);
273 void rt2x00lib_txdone(struct queue_entry
*entry
,
274 struct txdone_entry_desc
*txdesc
)
276 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
277 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(entry
->skb
);
278 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
279 unsigned int header_length
, i
;
280 u8 rate_idx
, rate_flags
, retry_rates
;
281 u8 skbdesc_flags
= skbdesc
->flags
;
287 rt2x00queue_unmap_skb(entry
);
290 * Remove the extra tx headroom from the skb.
292 skb_pull(entry
->skb
, rt2x00dev
->ops
->extra_tx_headroom
);
295 * Signal that the TX descriptor is no longer in the skb.
297 skbdesc
->flags
&= ~SKBDESC_DESC_IN_SKB
;
300 * Determine the length of 802.11 header.
302 header_length
= ieee80211_get_hdrlen_from_skb(entry
->skb
);
305 * Remove L2 padding which was added during
307 if (test_bit(REQUIRE_L2PAD
, &rt2x00dev
->cap_flags
))
308 rt2x00queue_remove_l2pad(entry
->skb
, header_length
);
311 * If the IV/EIV data was stripped from the frame before it was
312 * passed to the hardware, we should now reinsert it again because
313 * mac80211 will expect the same data to be present it the
314 * frame as it was passed to us.
316 if (test_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
))
317 rt2x00crypto_tx_insert_iv(entry
->skb
, header_length
);
320 * Send frame to debugfs immediately, after this call is completed
321 * we are going to overwrite the skb->cb array.
323 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_TXDONE
, entry
->skb
);
326 * Determine if the frame has been successfully transmitted.
329 test_bit(TXDONE_SUCCESS
, &txdesc
->flags
) ||
330 test_bit(TXDONE_UNKNOWN
, &txdesc
->flags
);
333 * Update TX statistics.
335 rt2x00dev
->link
.qual
.tx_success
+= success
;
336 rt2x00dev
->link
.qual
.tx_failed
+= !success
;
338 rate_idx
= skbdesc
->tx_rate_idx
;
339 rate_flags
= skbdesc
->tx_rate_flags
;
340 retry_rates
= test_bit(TXDONE_FALLBACK
, &txdesc
->flags
) ?
341 (txdesc
->retry
+ 1) : 1;
344 * Initialize TX status
346 memset(&tx_info
->status
, 0, sizeof(tx_info
->status
));
347 tx_info
->status
.ack_signal
= 0;
350 * Frame was send with retries, hardware tried
351 * different rates to send out the frame, at each
352 * retry it lowered the rate 1 step except when the
353 * lowest rate was used.
355 for (i
= 0; i
< retry_rates
&& i
< IEEE80211_TX_MAX_RATES
; i
++) {
356 tx_info
->status
.rates
[i
].idx
= rate_idx
- i
;
357 tx_info
->status
.rates
[i
].flags
= rate_flags
;
359 if (rate_idx
- i
== 0) {
361 * The lowest rate (index 0) was used until the
362 * number of max retries was reached.
364 tx_info
->status
.rates
[i
].count
= retry_rates
- i
;
368 tx_info
->status
.rates
[i
].count
= 1;
370 if (i
< (IEEE80211_TX_MAX_RATES
- 1))
371 tx_info
->status
.rates
[i
].idx
= -1; /* terminate */
373 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
)) {
375 tx_info
->flags
|= IEEE80211_TX_STAT_ACK
;
377 rt2x00dev
->low_level_stats
.dot11ACKFailureCount
++;
381 * Every single frame has it's own tx status, hence report
382 * every frame as ampdu of size 1.
384 * TODO: if we can find out how many frames were aggregated
385 * by the hw we could provide the real ampdu_len to mac80211
386 * which would allow the rc algorithm to better decide on
387 * which rates are suitable.
389 if (test_bit(TXDONE_AMPDU
, &txdesc
->flags
) ||
390 tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
) {
391 tx_info
->flags
|= IEEE80211_TX_STAT_AMPDU
;
392 tx_info
->status
.ampdu_len
= 1;
393 tx_info
->status
.ampdu_ack_len
= success
? 1 : 0;
395 * TODO: Need to tear down BA session here
400 if (rate_flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
402 rt2x00dev
->low_level_stats
.dot11RTSSuccessCount
++;
404 rt2x00dev
->low_level_stats
.dot11RTSFailureCount
++;
408 * Only send the status report to mac80211 when it's a frame
409 * that originated in mac80211. If this was a extra frame coming
410 * through a mac80211 library call (RTS/CTS) then we should not
411 * send the status report back.
413 if (!(skbdesc_flags
& SKBDESC_NOT_MAC80211
)) {
414 if (test_bit(REQUIRE_TASKLET_CONTEXT
, &rt2x00dev
->cap_flags
))
415 ieee80211_tx_status(rt2x00dev
->hw
, entry
->skb
);
417 ieee80211_tx_status_ni(rt2x00dev
->hw
, entry
->skb
);
419 dev_kfree_skb_any(entry
->skb
);
422 * Make this entry available for reuse.
427 rt2x00dev
->ops
->lib
->clear_entry(entry
);
429 rt2x00queue_index_inc(entry
, Q_INDEX_DONE
);
432 * If the data queue was below the threshold before the txdone
433 * handler we must make sure the packet queue in the mac80211 stack
434 * is reenabled when the txdone handler has finished. This has to be
435 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
436 * before it was stopped.
438 spin_lock_bh(&entry
->queue
->tx_lock
);
439 if (!rt2x00queue_threshold(entry
->queue
))
440 rt2x00queue_unpause_queue(entry
->queue
);
441 spin_unlock_bh(&entry
->queue
->tx_lock
);
443 EXPORT_SYMBOL_GPL(rt2x00lib_txdone
);
445 void rt2x00lib_txdone_noinfo(struct queue_entry
*entry
, u32 status
)
447 struct txdone_entry_desc txdesc
;
450 __set_bit(status
, &txdesc
.flags
);
453 rt2x00lib_txdone(entry
, &txdesc
);
455 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo
);
457 static u8
*rt2x00lib_find_ie(u8
*data
, unsigned int len
, u8 ie
)
459 struct ieee80211_mgmt
*mgmt
= (void *)data
;
462 pos
= (u8
*)mgmt
->u
.beacon
.variable
;
465 if (pos
+ 2 + pos
[1] > end
)
477 static void rt2x00lib_sleep(struct work_struct
*work
)
479 struct rt2x00_dev
*rt2x00dev
=
480 container_of(work
, struct rt2x00_dev
, sleep_work
);
482 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
486 * Check again is powersaving is enabled, to prevent races from delayed
489 if (!test_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
))
490 rt2x00lib_config(rt2x00dev
, &rt2x00dev
->hw
->conf
,
491 IEEE80211_CONF_CHANGE_PS
);
494 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev
*rt2x00dev
,
496 struct rxdone_entry_desc
*rxdesc
)
498 struct ieee80211_hdr
*hdr
= (void *) skb
->data
;
499 struct ieee80211_tim_ie
*tim_ie
;
504 /* If this is not a beacon, or if mac80211 has no powersaving
505 * configured, or if the device is already in powersaving mode
506 * we can exit now. */
507 if (likely(!ieee80211_is_beacon(hdr
->frame_control
) ||
508 !(rt2x00dev
->hw
->conf
.flags
& IEEE80211_CONF_PS
)))
511 /* min. beacon length + FCS_LEN */
512 if (skb
->len
<= 40 + FCS_LEN
)
515 /* and only beacons from the associated BSSID, please */
516 if (!(rxdesc
->dev_flags
& RXDONE_MY_BSS
) ||
520 rt2x00dev
->last_beacon
= jiffies
;
522 tim
= rt2x00lib_find_ie(skb
->data
, skb
->len
- FCS_LEN
, WLAN_EID_TIM
);
526 if (tim
[1] < sizeof(*tim_ie
))
530 tim_ie
= (struct ieee80211_tim_ie
*) &tim
[2];
532 /* Check whenever the PHY can be turned off again. */
534 /* 1. What about buffered unicast traffic for our AID? */
535 cam
= ieee80211_check_tim(tim_ie
, tim_len
, rt2x00dev
->aid
);
537 /* 2. Maybe the AP wants to send multicast/broadcast data? */
538 cam
|= (tim_ie
->bitmap_ctrl
& 0x01);
540 if (!cam
&& !test_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
))
541 queue_work(rt2x00dev
->workqueue
, &rt2x00dev
->sleep_work
);
544 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev
*rt2x00dev
,
545 struct rxdone_entry_desc
*rxdesc
)
547 struct ieee80211_supported_band
*sband
;
548 const struct rt2x00_rate
*rate
;
550 int signal
= rxdesc
->signal
;
551 int type
= (rxdesc
->dev_flags
& RXDONE_SIGNAL_MASK
);
553 switch (rxdesc
->rate_mode
) {
557 * For non-HT rates the MCS value needs to contain the
558 * actually used rate modulation (CCK or OFDM).
560 if (rxdesc
->dev_flags
& RXDONE_SIGNAL_MCS
)
561 signal
= RATE_MCS(rxdesc
->rate_mode
, signal
);
563 sband
= &rt2x00dev
->bands
[rt2x00dev
->curr_band
];
564 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
565 rate
= rt2x00_get_rate(sband
->bitrates
[i
].hw_value
);
566 if (((type
== RXDONE_SIGNAL_PLCP
) &&
567 (rate
->plcp
== signal
)) ||
568 ((type
== RXDONE_SIGNAL_BITRATE
) &&
569 (rate
->bitrate
== signal
)) ||
570 ((type
== RXDONE_SIGNAL_MCS
) &&
571 (rate
->mcs
== signal
))) {
576 case RATE_MODE_HT_MIX
:
577 case RATE_MODE_HT_GREENFIELD
:
578 if (signal
>= 0 && signal
<= 76)
585 WARNING(rt2x00dev
, "Frame received with unrecognized signal, "
586 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
587 rxdesc
->rate_mode
, signal
, type
);
591 void rt2x00lib_rxdone(struct queue_entry
*entry
, gfp_t gfp
)
593 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
594 struct rxdone_entry_desc rxdesc
;
596 struct ieee80211_rx_status
*rx_status
;
597 unsigned int header_length
;
600 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
) ||
601 !test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
604 if (test_bit(ENTRY_DATA_IO_FAILED
, &entry
->flags
))
608 * Allocate a new sk_buffer. If no new buffer available, drop the
609 * received frame and reuse the existing buffer.
611 skb
= rt2x00queue_alloc_rxskb(entry
, gfp
);
618 rt2x00queue_unmap_skb(entry
);
621 * Extract the RXD details.
623 memset(&rxdesc
, 0, sizeof(rxdesc
));
624 rt2x00dev
->ops
->lib
->fill_rxdone(entry
, &rxdesc
);
627 * Check for valid size in case we get corrupted descriptor from
630 if (unlikely(rxdesc
.size
== 0 ||
631 rxdesc
.size
> entry
->queue
->data_size
)) {
632 ERROR(rt2x00dev
, "Wrong frame size %d max %d.\n",
633 rxdesc
.size
, entry
->queue
->data_size
);
634 dev_kfree_skb(entry
->skb
);
639 * The data behind the ieee80211 header must be
640 * aligned on a 4 byte boundary.
642 header_length
= ieee80211_get_hdrlen_from_skb(entry
->skb
);
645 * Hardware might have stripped the IV/EIV/ICV data,
646 * in that case it is possible that the data was
647 * provided separately (through hardware descriptor)
648 * in which case we should reinsert the data into the frame.
650 if ((rxdesc
.dev_flags
& RXDONE_CRYPTO_IV
) &&
651 (rxdesc
.flags
& RX_FLAG_IV_STRIPPED
))
652 rt2x00crypto_rx_insert_iv(entry
->skb
, header_length
,
654 else if (header_length
&&
655 (rxdesc
.size
> header_length
) &&
656 (rxdesc
.dev_flags
& RXDONE_L2PAD
))
657 rt2x00queue_remove_l2pad(entry
->skb
, header_length
);
659 /* Trim buffer to correct size */
660 skb_trim(entry
->skb
, rxdesc
.size
);
663 * Translate the signal to the correct bitrate index.
665 rate_idx
= rt2x00lib_rxdone_read_signal(rt2x00dev
, &rxdesc
);
666 if (rxdesc
.rate_mode
== RATE_MODE_HT_MIX
||
667 rxdesc
.rate_mode
== RATE_MODE_HT_GREENFIELD
)
668 rxdesc
.flags
|= RX_FLAG_HT
;
671 * Check if this is a beacon, and more frames have been
672 * buffered while we were in powersaving mode.
674 rt2x00lib_rxdone_check_ps(rt2x00dev
, entry
->skb
, &rxdesc
);
677 * Update extra components
679 rt2x00link_update_stats(rt2x00dev
, entry
->skb
, &rxdesc
);
680 rt2x00debug_update_crypto(rt2x00dev
, &rxdesc
);
681 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_RXDONE
, entry
->skb
);
684 * Initialize RX status information, and send frame
687 rx_status
= IEEE80211_SKB_RXCB(entry
->skb
);
688 rx_status
->mactime
= rxdesc
.timestamp
;
689 rx_status
->band
= rt2x00dev
->curr_band
;
690 rx_status
->freq
= rt2x00dev
->curr_freq
;
691 rx_status
->rate_idx
= rate_idx
;
692 rx_status
->signal
= rxdesc
.rssi
;
693 rx_status
->flag
= rxdesc
.flags
;
694 rx_status
->antenna
= rt2x00dev
->link
.ant
.active
.rx
;
696 ieee80211_rx_ni(rt2x00dev
->hw
, entry
->skb
);
700 * Replace the skb with the freshly allocated one.
706 rt2x00queue_index_inc(entry
, Q_INDEX_DONE
);
707 if (test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
) &&
708 test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
709 rt2x00dev
->ops
->lib
->clear_entry(entry
);
711 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone
);
714 * Driver initialization handlers.
716 const struct rt2x00_rate rt2x00_supported_rates
[12] = {
718 .flags
= DEV_RATE_CCK
,
722 .mcs
= RATE_MCS(RATE_MODE_CCK
, 0),
725 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
729 .mcs
= RATE_MCS(RATE_MODE_CCK
, 1),
732 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
736 .mcs
= RATE_MCS(RATE_MODE_CCK
, 2),
739 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
743 .mcs
= RATE_MCS(RATE_MODE_CCK
, 3),
746 .flags
= DEV_RATE_OFDM
,
750 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 0),
753 .flags
= DEV_RATE_OFDM
,
757 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 1),
760 .flags
= DEV_RATE_OFDM
,
764 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 2),
767 .flags
= DEV_RATE_OFDM
,
771 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 3),
774 .flags
= DEV_RATE_OFDM
,
778 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 4),
781 .flags
= DEV_RATE_OFDM
,
785 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 5),
788 .flags
= DEV_RATE_OFDM
,
792 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 6),
795 .flags
= DEV_RATE_OFDM
,
799 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 7),
803 static void rt2x00lib_channel(struct ieee80211_channel
*entry
,
804 const int channel
, const int tx_power
,
807 /* XXX: this assumption about the band is wrong for 802.11j */
808 entry
->band
= channel
<= 14 ? IEEE80211_BAND_2GHZ
: IEEE80211_BAND_5GHZ
;
809 entry
->center_freq
= ieee80211_channel_to_frequency(channel
,
811 entry
->hw_value
= value
;
812 entry
->max_power
= tx_power
;
813 entry
->max_antenna_gain
= 0xff;
816 static void rt2x00lib_rate(struct ieee80211_rate
*entry
,
817 const u16 index
, const struct rt2x00_rate
*rate
)
820 entry
->bitrate
= rate
->bitrate
;
821 entry
->hw_value
= index
;
822 entry
->hw_value_short
= index
;
824 if (rate
->flags
& DEV_RATE_SHORT_PREAMBLE
)
825 entry
->flags
|= IEEE80211_RATE_SHORT_PREAMBLE
;
828 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev
*rt2x00dev
,
829 struct hw_mode_spec
*spec
)
831 struct ieee80211_hw
*hw
= rt2x00dev
->hw
;
832 struct ieee80211_channel
*channels
;
833 struct ieee80211_rate
*rates
;
834 unsigned int num_rates
;
838 if (spec
->supported_rates
& SUPPORT_RATE_CCK
)
840 if (spec
->supported_rates
& SUPPORT_RATE_OFDM
)
843 channels
= kcalloc(spec
->num_channels
, sizeof(*channels
), GFP_KERNEL
);
847 rates
= kcalloc(num_rates
, sizeof(*rates
), GFP_KERNEL
);
849 goto exit_free_channels
;
852 * Initialize Rate list.
854 for (i
= 0; i
< num_rates
; i
++)
855 rt2x00lib_rate(&rates
[i
], i
, rt2x00_get_rate(i
));
858 * Initialize Channel list.
860 for (i
= 0; i
< spec
->num_channels
; i
++) {
861 rt2x00lib_channel(&channels
[i
],
862 spec
->channels
[i
].channel
,
863 spec
->channels_info
[i
].max_power
, i
);
867 * Intitialize 802.11b, 802.11g
871 if (spec
->supported_bands
& SUPPORT_BAND_2GHZ
) {
872 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].n_channels
= 14;
873 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].n_bitrates
= num_rates
;
874 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].channels
= channels
;
875 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].bitrates
= rates
;
876 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] =
877 &rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
];
878 memcpy(&rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].ht_cap
,
879 &spec
->ht
, sizeof(spec
->ht
));
883 * Intitialize 802.11a
885 * Channels: OFDM, UNII, HiperLAN2.
887 if (spec
->supported_bands
& SUPPORT_BAND_5GHZ
) {
888 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].n_channels
=
889 spec
->num_channels
- 14;
890 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].n_bitrates
=
892 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].channels
= &channels
[14];
893 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].bitrates
= &rates
[4];
894 hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] =
895 &rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
];
896 memcpy(&rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].ht_cap
,
897 &spec
->ht
, sizeof(spec
->ht
));
904 ERROR(rt2x00dev
, "Allocation ieee80211 modes failed.\n");
908 static void rt2x00lib_remove_hw(struct rt2x00_dev
*rt2x00dev
)
910 if (test_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
))
911 ieee80211_unregister_hw(rt2x00dev
->hw
);
913 if (likely(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
])) {
914 kfree(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
]->channels
);
915 kfree(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
]->bitrates
);
916 rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = NULL
;
917 rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] = NULL
;
920 kfree(rt2x00dev
->spec
.channels_info
);
923 static int rt2x00lib_probe_hw(struct rt2x00_dev
*rt2x00dev
)
925 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
928 if (test_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
))
932 * Initialize HW modes.
934 status
= rt2x00lib_probe_hw_modes(rt2x00dev
, spec
);
939 * Initialize HW fields.
941 rt2x00dev
->hw
->queues
= rt2x00dev
->ops
->tx_queues
;
944 * Initialize extra TX headroom required.
946 rt2x00dev
->hw
->extra_tx_headroom
=
947 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM
,
948 rt2x00dev
->ops
->extra_tx_headroom
);
951 * Take TX headroom required for alignment into account.
953 if (test_bit(REQUIRE_L2PAD
, &rt2x00dev
->cap_flags
))
954 rt2x00dev
->hw
->extra_tx_headroom
+= RT2X00_L2PAD_SIZE
;
955 else if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
))
956 rt2x00dev
->hw
->extra_tx_headroom
+= RT2X00_ALIGN_SIZE
;
959 * Tell mac80211 about the size of our private STA structure.
961 rt2x00dev
->hw
->sta_data_size
= sizeof(struct rt2x00_sta
);
964 * Allocate tx status FIFO for driver use.
966 if (test_bit(REQUIRE_TXSTATUS_FIFO
, &rt2x00dev
->cap_flags
)) {
968 * Allocate the txstatus fifo. In the worst case the tx
969 * status fifo has to hold the tx status of all entries
970 * in all tx queues. Hence, calculate the kfifo size as
971 * tx_queues * entry_num and round up to the nearest
975 roundup_pow_of_two(rt2x00dev
->ops
->tx_queues
*
976 rt2x00dev
->ops
->tx
->entry_num
*
979 status
= kfifo_alloc(&rt2x00dev
->txstatus_fifo
, kfifo_size
,
986 * Initialize tasklets if used by the driver. Tasklets are
987 * disabled until the interrupts are turned on. The driver
988 * has to handle that.
990 #define RT2X00_TASKLET_INIT(taskletname) \
991 if (rt2x00dev->ops->lib->taskletname) { \
992 tasklet_init(&rt2x00dev->taskletname, \
993 rt2x00dev->ops->lib->taskletname, \
994 (unsigned long)rt2x00dev); \
997 RT2X00_TASKLET_INIT(txstatus_tasklet
);
998 RT2X00_TASKLET_INIT(pretbtt_tasklet
);
999 RT2X00_TASKLET_INIT(tbtt_tasklet
);
1000 RT2X00_TASKLET_INIT(rxdone_tasklet
);
1001 RT2X00_TASKLET_INIT(autowake_tasklet
);
1003 #undef RT2X00_TASKLET_INIT
1008 status
= ieee80211_register_hw(rt2x00dev
->hw
);
1012 set_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
);
1018 * Initialization/uninitialization handlers.
1020 static void rt2x00lib_uninitialize(struct rt2x00_dev
*rt2x00dev
)
1022 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
))
1026 * Unregister extra components.
1028 rt2x00rfkill_unregister(rt2x00dev
);
1031 * Allow the HW to uninitialize.
1033 rt2x00dev
->ops
->lib
->uninitialize(rt2x00dev
);
1036 * Free allocated queue entries.
1038 rt2x00queue_uninitialize(rt2x00dev
);
1041 static int rt2x00lib_initialize(struct rt2x00_dev
*rt2x00dev
)
1045 if (test_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
))
1049 * Allocate all queue entries.
1051 status
= rt2x00queue_initialize(rt2x00dev
);
1056 * Initialize the device.
1058 status
= rt2x00dev
->ops
->lib
->initialize(rt2x00dev
);
1060 rt2x00queue_uninitialize(rt2x00dev
);
1064 set_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
);
1069 int rt2x00lib_start(struct rt2x00_dev
*rt2x00dev
)
1073 if (test_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
))
1077 * If this is the first interface which is added,
1078 * we should load the firmware now.
1080 retval
= rt2x00lib_load_firmware(rt2x00dev
);
1085 * Initialize the device.
1087 retval
= rt2x00lib_initialize(rt2x00dev
);
1091 rt2x00dev
->intf_ap_count
= 0;
1092 rt2x00dev
->intf_sta_count
= 0;
1093 rt2x00dev
->intf_associated
= 0;
1095 /* Enable the radio */
1096 retval
= rt2x00lib_enable_radio(rt2x00dev
);
1100 set_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
);
1105 void rt2x00lib_stop(struct rt2x00_dev
*rt2x00dev
)
1107 if (!test_and_clear_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
))
1111 * Perhaps we can add something smarter here,
1112 * but for now just disabling the radio should do.
1114 rt2x00lib_disable_radio(rt2x00dev
);
1116 rt2x00dev
->intf_ap_count
= 0;
1117 rt2x00dev
->intf_sta_count
= 0;
1118 rt2x00dev
->intf_associated
= 0;
1122 * driver allocation handlers.
1124 int rt2x00lib_probe_dev(struct rt2x00_dev
*rt2x00dev
)
1126 int retval
= -ENOMEM
;
1129 * Allocate the driver data memory, if necessary.
1131 if (rt2x00dev
->ops
->drv_data_size
> 0) {
1132 rt2x00dev
->drv_data
= kzalloc(rt2x00dev
->ops
->drv_data_size
,
1134 if (!rt2x00dev
->drv_data
) {
1140 spin_lock_init(&rt2x00dev
->irqmask_lock
);
1141 mutex_init(&rt2x00dev
->csr_mutex
);
1143 set_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1146 * Make room for rt2x00_intf inside the per-interface
1147 * structure ieee80211_vif.
1149 rt2x00dev
->hw
->vif_data_size
= sizeof(struct rt2x00_intf
);
1152 * Determine which operating modes are supported, all modes
1153 * which require beaconing, depend on the availability of
1156 rt2x00dev
->hw
->wiphy
->interface_modes
= BIT(NL80211_IFTYPE_STATION
);
1157 if (rt2x00dev
->ops
->bcn
->entry_num
> 0)
1158 rt2x00dev
->hw
->wiphy
->interface_modes
|=
1159 BIT(NL80211_IFTYPE_ADHOC
) |
1160 BIT(NL80211_IFTYPE_AP
) |
1161 BIT(NL80211_IFTYPE_MESH_POINT
) |
1162 BIT(NL80211_IFTYPE_WDS
);
1164 rt2x00dev
->hw
->wiphy
->flags
|= WIPHY_FLAG_IBSS_RSN
;
1169 rt2x00dev
->workqueue
=
1170 alloc_ordered_workqueue(wiphy_name(rt2x00dev
->hw
->wiphy
), 0);
1171 if (!rt2x00dev
->workqueue
) {
1176 INIT_WORK(&rt2x00dev
->intf_work
, rt2x00lib_intf_scheduled
);
1177 INIT_DELAYED_WORK(&rt2x00dev
->autowakeup_work
, rt2x00lib_autowakeup
);
1178 INIT_WORK(&rt2x00dev
->sleep_work
, rt2x00lib_sleep
);
1181 * Let the driver probe the device to detect the capabilities.
1183 retval
= rt2x00dev
->ops
->lib
->probe_hw(rt2x00dev
);
1185 ERROR(rt2x00dev
, "Failed to allocate device.\n");
1190 * Allocate queue array.
1192 retval
= rt2x00queue_allocate(rt2x00dev
);
1197 * Initialize ieee80211 structure.
1199 retval
= rt2x00lib_probe_hw(rt2x00dev
);
1201 ERROR(rt2x00dev
, "Failed to initialize hw.\n");
1206 * Register extra components.
1208 rt2x00link_register(rt2x00dev
);
1209 rt2x00leds_register(rt2x00dev
);
1210 rt2x00debug_register(rt2x00dev
);
1211 rt2x00rfkill_register(rt2x00dev
);
1216 rt2x00lib_remove_dev(rt2x00dev
);
1220 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev
);
1222 void rt2x00lib_remove_dev(struct rt2x00_dev
*rt2x00dev
)
1224 clear_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1229 rt2x00lib_disable_radio(rt2x00dev
);
1234 cancel_work_sync(&rt2x00dev
->intf_work
);
1235 cancel_delayed_work_sync(&rt2x00dev
->autowakeup_work
);
1236 cancel_work_sync(&rt2x00dev
->sleep_work
);
1237 if (rt2x00_is_usb(rt2x00dev
)) {
1238 hrtimer_cancel(&rt2x00dev
->txstatus_timer
);
1239 cancel_work_sync(&rt2x00dev
->rxdone_work
);
1240 cancel_work_sync(&rt2x00dev
->txdone_work
);
1242 if (rt2x00dev
->workqueue
)
1243 destroy_workqueue(rt2x00dev
->workqueue
);
1246 * Free the tx status fifo.
1248 kfifo_free(&rt2x00dev
->txstatus_fifo
);
1251 * Kill the tx status tasklet.
1253 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
1254 tasklet_kill(&rt2x00dev
->pretbtt_tasklet
);
1255 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1256 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
1257 tasklet_kill(&rt2x00dev
->autowake_tasklet
);
1260 * Uninitialize device.
1262 rt2x00lib_uninitialize(rt2x00dev
);
1265 * Free extra components
1267 rt2x00debug_deregister(rt2x00dev
);
1268 rt2x00leds_unregister(rt2x00dev
);
1271 * Free ieee80211_hw memory.
1273 rt2x00lib_remove_hw(rt2x00dev
);
1276 * Free firmware image.
1278 rt2x00lib_free_firmware(rt2x00dev
);
1281 * Free queue structures.
1283 rt2x00queue_free(rt2x00dev
);
1286 * Free the driver data.
1288 if (rt2x00dev
->drv_data
)
1289 kfree(rt2x00dev
->drv_data
);
1291 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev
);
1294 * Device state handlers
1297 int rt2x00lib_suspend(struct rt2x00_dev
*rt2x00dev
, pm_message_t state
)
1299 NOTICE(rt2x00dev
, "Going to sleep.\n");
1302 * Prevent mac80211 from accessing driver while suspended.
1304 if (!test_and_clear_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
1308 * Cleanup as much as possible.
1310 rt2x00lib_uninitialize(rt2x00dev
);
1313 * Suspend/disable extra components.
1315 rt2x00leds_suspend(rt2x00dev
);
1316 rt2x00debug_deregister(rt2x00dev
);
1319 * Set device mode to sleep for power management,
1320 * on some hardware this call seems to consistently fail.
1321 * From the specifications it is hard to tell why it fails,
1322 * and if this is a "bad thing".
1323 * Overall it is safe to just ignore the failure and
1324 * continue suspending. The only downside is that the
1325 * device will not be in optimal power save mode, but with
1326 * the radio and the other components already disabled the
1327 * device is as good as disabled.
1329 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_SLEEP
))
1330 WARNING(rt2x00dev
, "Device failed to enter sleep state, "
1331 "continue suspending.\n");
1335 EXPORT_SYMBOL_GPL(rt2x00lib_suspend
);
1337 int rt2x00lib_resume(struct rt2x00_dev
*rt2x00dev
)
1339 NOTICE(rt2x00dev
, "Waking up.\n");
1342 * Restore/enable extra components.
1344 rt2x00debug_register(rt2x00dev
);
1345 rt2x00leds_resume(rt2x00dev
);
1348 * We are ready again to receive requests from mac80211.
1350 set_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1354 EXPORT_SYMBOL_GPL(rt2x00lib_resume
);
1355 #endif /* CONFIG_PM */
1358 * rt2x00lib module information.
1360 MODULE_AUTHOR(DRV_PROJECT
);
1361 MODULE_VERSION(DRV_VERSION
);
1362 MODULE_DESCRIPTION("rt2x00 library");
1363 MODULE_LICENSE("GPL");