2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 Abstract: rt2x00 queue specific routines.
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
34 #include "rt2x00lib.h"
36 struct sk_buff
*rt2x00queue_alloc_rxskb(struct queue_entry
*entry
, gfp_t gfp
)
38 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
40 struct skb_frame_desc
*skbdesc
;
41 unsigned int frame_size
;
42 unsigned int head_size
= 0;
43 unsigned int tail_size
= 0;
46 * The frame size includes descriptor size, because the
47 * hardware directly receive the frame into the skbuffer.
49 frame_size
= entry
->queue
->data_size
+ entry
->queue
->desc_size
;
52 * The payload should be aligned to a 4-byte boundary,
53 * this means we need at least 3 bytes for moving the frame
54 * into the correct offset.
59 * For IV/EIV/ICV assembly we must make sure there is
60 * at least 8 bytes bytes available in headroom for IV/EIV
61 * and 8 bytes for ICV data as tailroon.
63 if (test_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
)) {
71 skb
= __dev_alloc_skb(frame_size
+ head_size
+ tail_size
, gfp
);
76 * Make sure we not have a frame with the requested bytes
77 * available in the head and tail.
79 skb_reserve(skb
, head_size
);
80 skb_put(skb
, frame_size
);
85 skbdesc
= get_skb_frame_desc(skb
);
86 memset(skbdesc
, 0, sizeof(*skbdesc
));
87 skbdesc
->entry
= entry
;
89 if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
)) {
90 skbdesc
->skb_dma
= dma_map_single(rt2x00dev
->dev
,
94 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_RX
;
100 void rt2x00queue_map_txskb(struct queue_entry
*entry
)
102 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
103 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
106 dma_map_single(dev
, entry
->skb
->data
, entry
->skb
->len
, DMA_TO_DEVICE
);
107 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_TX
;
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb
);
111 void rt2x00queue_unmap_skb(struct queue_entry
*entry
)
113 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
114 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
116 if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_RX
) {
117 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
119 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_RX
;
120 } else if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_TX
) {
121 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
123 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_TX
;
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb
);
128 void rt2x00queue_free_skb(struct queue_entry
*entry
)
133 rt2x00queue_unmap_skb(entry
);
134 dev_kfree_skb_any(entry
->skb
);
138 void rt2x00queue_align_frame(struct sk_buff
*skb
)
140 unsigned int frame_length
= skb
->len
;
141 unsigned int align
= ALIGN_SIZE(skb
, 0);
146 skb_push(skb
, align
);
147 memmove(skb
->data
, skb
->data
+ align
, frame_length
);
148 skb_trim(skb
, frame_length
);
151 void rt2x00queue_insert_l2pad(struct sk_buff
*skb
, unsigned int header_length
)
153 unsigned int payload_length
= skb
->len
- header_length
;
154 unsigned int header_align
= ALIGN_SIZE(skb
, 0);
155 unsigned int payload_align
= ALIGN_SIZE(skb
, header_length
);
156 unsigned int l2pad
= payload_length
? L2PAD_SIZE(header_length
) : 0;
159 * Adjust the header alignment if the payload needs to be moved more
162 if (payload_align
> header_align
)
165 /* There is nothing to do if no alignment is needed */
169 /* Reserve the amount of space needed in front of the frame */
170 skb_push(skb
, header_align
);
175 memmove(skb
->data
, skb
->data
+ header_align
, header_length
);
177 /* Move the payload, if present and if required */
178 if (payload_length
&& payload_align
)
179 memmove(skb
->data
+ header_length
+ l2pad
,
180 skb
->data
+ header_length
+ l2pad
+ payload_align
,
183 /* Trim the skb to the correct size */
184 skb_trim(skb
, header_length
+ l2pad
+ payload_length
);
187 void rt2x00queue_remove_l2pad(struct sk_buff
*skb
, unsigned int header_length
)
190 * L2 padding is only present if the skb contains more than just the
191 * IEEE 802.11 header.
193 unsigned int l2pad
= (skb
->len
> header_length
) ?
194 L2PAD_SIZE(header_length
) : 0;
199 memmove(skb
->data
+ l2pad
, skb
->data
, header_length
);
200 skb_pull(skb
, l2pad
);
203 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev
*rt2x00dev
,
205 struct txentry_desc
*txdesc
)
207 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
208 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
209 struct rt2x00_intf
*intf
= vif_to_intf(tx_info
->control
.vif
);
212 if (!(tx_info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
))
215 __set_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
217 if (!test_bit(REQUIRE_SW_SEQNO
, &rt2x00dev
->cap_flags
)) {
219 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
220 * seqno on retransmited data (non-QOS) frames. To workaround
221 * the problem let's generate seqno in software if QOS is
224 if (test_bit(CONFIG_QOS_DISABLED
, &rt2x00dev
->flags
))
225 __clear_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
227 /* H/W will generate sequence number */
232 * The hardware is not able to insert a sequence number. Assign a
233 * software generated one here.
235 * This is wrong because beacons are not getting sequence
236 * numbers assigned properly.
238 * A secondary problem exists for drivers that cannot toggle
239 * sequence counting per-frame, since those will override the
240 * sequence counter given by mac80211.
242 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
243 seqno
= atomic_add_return(0x10, &intf
->seqno
);
245 seqno
= atomic_read(&intf
->seqno
);
247 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
248 hdr
->seq_ctrl
|= cpu_to_le16(seqno
);
251 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev
*rt2x00dev
,
253 struct txentry_desc
*txdesc
,
254 const struct rt2x00_rate
*hwrate
)
256 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
257 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
258 unsigned int data_length
;
259 unsigned int duration
;
260 unsigned int residual
;
263 * Determine with what IFS priority this frame should be send.
264 * Set ifs to IFS_SIFS when the this is not the first fragment,
265 * or this fragment came after RTS/CTS.
267 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
268 txdesc
->u
.plcp
.ifs
= IFS_BACKOFF
;
270 txdesc
->u
.plcp
.ifs
= IFS_SIFS
;
272 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
273 data_length
= skb
->len
+ 4;
274 data_length
+= rt2x00crypto_tx_overhead(rt2x00dev
, skb
);
278 * Length calculation depends on OFDM/CCK rate.
280 txdesc
->u
.plcp
.signal
= hwrate
->plcp
;
281 txdesc
->u
.plcp
.service
= 0x04;
283 if (hwrate
->flags
& DEV_RATE_OFDM
) {
284 txdesc
->u
.plcp
.length_high
= (data_length
>> 6) & 0x3f;
285 txdesc
->u
.plcp
.length_low
= data_length
& 0x3f;
288 * Convert length to microseconds.
290 residual
= GET_DURATION_RES(data_length
, hwrate
->bitrate
);
291 duration
= GET_DURATION(data_length
, hwrate
->bitrate
);
297 * Check if we need to set the Length Extension
299 if (hwrate
->bitrate
== 110 && residual
<= 30)
300 txdesc
->u
.plcp
.service
|= 0x80;
303 txdesc
->u
.plcp
.length_high
= (duration
>> 8) & 0xff;
304 txdesc
->u
.plcp
.length_low
= duration
& 0xff;
307 * When preamble is enabled we should set the
308 * preamble bit for the signal.
310 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
311 txdesc
->u
.plcp
.signal
|= 0x08;
315 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev
*rt2x00dev
,
317 struct txentry_desc
*txdesc
,
318 const struct rt2x00_rate
*hwrate
)
320 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
321 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
322 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
323 struct rt2x00_sta
*sta_priv
= NULL
;
325 if (tx_info
->control
.sta
) {
326 txdesc
->u
.ht
.mpdu_density
=
327 tx_info
->control
.sta
->ht_cap
.ampdu_density
;
329 sta_priv
= sta_to_rt2x00_sta(tx_info
->control
.sta
);
330 txdesc
->u
.ht
.wcid
= sta_priv
->wcid
;
334 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
335 * mcs rate to be used
337 if (txrate
->flags
& IEEE80211_TX_RC_MCS
) {
338 txdesc
->u
.ht
.mcs
= txrate
->idx
;
341 * MIMO PS should be set to 1 for STA's using dynamic SM PS
342 * when using more then one tx stream (>MCS7).
344 if (tx_info
->control
.sta
&& txdesc
->u
.ht
.mcs
> 7 &&
345 ((tx_info
->control
.sta
->ht_cap
.cap
&
346 IEEE80211_HT_CAP_SM_PS
) >>
347 IEEE80211_HT_CAP_SM_PS_SHIFT
) ==
348 WLAN_HT_CAP_SM_PS_DYNAMIC
)
349 __set_bit(ENTRY_TXD_HT_MIMO_PS
, &txdesc
->flags
);
351 txdesc
->u
.ht
.mcs
= rt2x00_get_rate_mcs(hwrate
->mcs
);
352 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
353 txdesc
->u
.ht
.mcs
|= 0x08;
356 if (test_bit(CONFIG_HT_DISABLED
, &rt2x00dev
->flags
)) {
357 if (!(tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
))
358 txdesc
->u
.ht
.txop
= TXOP_SIFS
;
360 txdesc
->u
.ht
.txop
= TXOP_BACKOFF
;
362 /* Left zero on all other settings. */
366 txdesc
->u
.ht
.ba_size
= 7; /* FIXME: What value is needed? */
369 * Only one STBC stream is supported for now.
371 if (tx_info
->flags
& IEEE80211_TX_CTL_STBC
)
372 txdesc
->u
.ht
.stbc
= 1;
375 * This frame is eligible for an AMPDU, however, don't aggregate
376 * frames that are intended to probe a specific tx rate.
378 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
&&
379 !(tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
))
380 __set_bit(ENTRY_TXD_HT_AMPDU
, &txdesc
->flags
);
383 * Set 40Mhz mode if necessary (for legacy rates this will
384 * duplicate the frame to both channels).
386 if (txrate
->flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
||
387 txrate
->flags
& IEEE80211_TX_RC_DUP_DATA
)
388 __set_bit(ENTRY_TXD_HT_BW_40
, &txdesc
->flags
);
389 if (txrate
->flags
& IEEE80211_TX_RC_SHORT_GI
)
390 __set_bit(ENTRY_TXD_HT_SHORT_GI
, &txdesc
->flags
);
393 * Determine IFS values
394 * - Use TXOP_BACKOFF for management frames except beacons
395 * - Use TXOP_SIFS for fragment bursts
396 * - Use TXOP_HTTXOP for everything else
398 * Note: rt2800 devices won't use CTS protection (if used)
399 * for frames not transmitted with TXOP_HTTXOP
401 if (ieee80211_is_mgmt(hdr
->frame_control
) &&
402 !ieee80211_is_beacon(hdr
->frame_control
))
403 txdesc
->u
.ht
.txop
= TXOP_BACKOFF
;
404 else if (!(tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
))
405 txdesc
->u
.ht
.txop
= TXOP_SIFS
;
407 txdesc
->u
.ht
.txop
= TXOP_HTTXOP
;
410 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev
*rt2x00dev
,
412 struct txentry_desc
*txdesc
)
414 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
415 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
416 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
417 struct ieee80211_rate
*rate
;
418 const struct rt2x00_rate
*hwrate
= NULL
;
420 memset(txdesc
, 0, sizeof(*txdesc
));
423 * Header and frame information.
425 txdesc
->length
= skb
->len
;
426 txdesc
->header_length
= ieee80211_get_hdrlen_from_skb(skb
);
429 * Check whether this frame is to be acked.
431 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
))
432 __set_bit(ENTRY_TXD_ACK
, &txdesc
->flags
);
435 * Check if this is a RTS/CTS frame
437 if (ieee80211_is_rts(hdr
->frame_control
) ||
438 ieee80211_is_cts(hdr
->frame_control
)) {
439 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
440 if (ieee80211_is_rts(hdr
->frame_control
))
441 __set_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
);
443 __set_bit(ENTRY_TXD_CTS_FRAME
, &txdesc
->flags
);
444 if (tx_info
->control
.rts_cts_rate_idx
>= 0)
446 ieee80211_get_rts_cts_rate(rt2x00dev
->hw
, tx_info
);
450 * Determine retry information.
452 txdesc
->retry_limit
= tx_info
->control
.rates
[0].count
- 1;
453 if (txdesc
->retry_limit
>= rt2x00dev
->long_retry
)
454 __set_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
);
457 * Check if more fragments are pending
459 if (ieee80211_has_morefrags(hdr
->frame_control
)) {
460 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
461 __set_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
);
465 * Check if more frames (!= fragments) are pending
467 if (tx_info
->flags
& IEEE80211_TX_CTL_MORE_FRAMES
)
468 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
471 * Beacons and probe responses require the tsf timestamp
472 * to be inserted into the frame.
474 if (ieee80211_is_beacon(hdr
->frame_control
) ||
475 ieee80211_is_probe_resp(hdr
->frame_control
))
476 __set_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
);
478 if ((tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
) &&
479 !test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
))
480 __set_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
);
483 * Determine rate modulation.
485 if (txrate
->flags
& IEEE80211_TX_RC_GREEN_FIELD
)
486 txdesc
->rate_mode
= RATE_MODE_HT_GREENFIELD
;
487 else if (txrate
->flags
& IEEE80211_TX_RC_MCS
)
488 txdesc
->rate_mode
= RATE_MODE_HT_MIX
;
490 rate
= ieee80211_get_tx_rate(rt2x00dev
->hw
, tx_info
);
491 hwrate
= rt2x00_get_rate(rate
->hw_value
);
492 if (hwrate
->flags
& DEV_RATE_OFDM
)
493 txdesc
->rate_mode
= RATE_MODE_OFDM
;
495 txdesc
->rate_mode
= RATE_MODE_CCK
;
499 * Apply TX descriptor handling by components
501 rt2x00crypto_create_tx_descriptor(rt2x00dev
, skb
, txdesc
);
502 rt2x00queue_create_tx_descriptor_seq(rt2x00dev
, skb
, txdesc
);
504 if (test_bit(REQUIRE_HT_TX_DESC
, &rt2x00dev
->cap_flags
))
505 rt2x00queue_create_tx_descriptor_ht(rt2x00dev
, skb
, txdesc
,
508 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev
, skb
, txdesc
,
512 static int rt2x00queue_write_tx_data(struct queue_entry
*entry
,
513 struct txentry_desc
*txdesc
)
515 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
518 * This should not happen, we already checked the entry
519 * was ours. When the hardware disagrees there has been
520 * a queue corruption!
522 if (unlikely(rt2x00dev
->ops
->lib
->get_entry_state
&&
523 rt2x00dev
->ops
->lib
->get_entry_state(entry
))) {
525 "Corrupt queue %d, accessing entry which is not ours.\n"
526 "Please file bug report to %s.\n",
527 entry
->queue
->qid
, DRV_PROJECT
);
532 * Add the requested extra tx headroom in front of the skb.
534 skb_push(entry
->skb
, rt2x00dev
->ops
->extra_tx_headroom
);
535 memset(entry
->skb
->data
, 0, rt2x00dev
->ops
->extra_tx_headroom
);
538 * Call the driver's write_tx_data function, if it exists.
540 if (rt2x00dev
->ops
->lib
->write_tx_data
)
541 rt2x00dev
->ops
->lib
->write_tx_data(entry
, txdesc
);
544 * Map the skb to DMA.
546 if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
))
547 rt2x00queue_map_txskb(entry
);
552 static void rt2x00queue_write_tx_descriptor(struct queue_entry
*entry
,
553 struct txentry_desc
*txdesc
)
555 struct data_queue
*queue
= entry
->queue
;
557 queue
->rt2x00dev
->ops
->lib
->write_tx_desc(entry
, txdesc
);
560 * All processing on the frame has been completed, this means
561 * it is now ready to be dumped to userspace through debugfs.
563 rt2x00debug_dump_frame(queue
->rt2x00dev
, DUMP_FRAME_TX
, entry
->skb
);
566 static void rt2x00queue_kick_tx_queue(struct data_queue
*queue
,
567 struct txentry_desc
*txdesc
)
570 * Check if we need to kick the queue, there are however a few rules
571 * 1) Don't kick unless this is the last in frame in a burst.
572 * When the burst flag is set, this frame is always followed
573 * by another frame which in some way are related to eachother.
574 * This is true for fragments, RTS or CTS-to-self frames.
575 * 2) Rule 1 can be broken when the available entries
576 * in the queue are less then a certain threshold.
578 if (rt2x00queue_threshold(queue
) ||
579 !test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
))
580 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
583 int rt2x00queue_write_tx_frame(struct data_queue
*queue
, struct sk_buff
*skb
,
586 struct ieee80211_tx_info
*tx_info
;
587 struct queue_entry
*entry
;
588 struct txentry_desc txdesc
;
589 struct skb_frame_desc
*skbdesc
;
590 u8 rate_idx
, rate_flags
;
594 * Copy all TX descriptor information into txdesc,
595 * after that we are free to use the skb->cb array
596 * for our information.
598 rt2x00queue_create_tx_descriptor(queue
->rt2x00dev
, skb
, &txdesc
);
601 * All information is retrieved from the skb->cb array,
602 * now we should claim ownership of the driver part of that
603 * array, preserving the bitrate index and flags.
605 tx_info
= IEEE80211_SKB_CB(skb
);
606 rate_idx
= tx_info
->control
.rates
[0].idx
;
607 rate_flags
= tx_info
->control
.rates
[0].flags
;
608 skbdesc
= get_skb_frame_desc(skb
);
609 memset(skbdesc
, 0, sizeof(*skbdesc
));
610 skbdesc
->tx_rate_idx
= rate_idx
;
611 skbdesc
->tx_rate_flags
= rate_flags
;
614 skbdesc
->flags
|= SKBDESC_NOT_MAC80211
;
617 * When hardware encryption is supported, and this frame
618 * is to be encrypted, we should strip the IV/EIV data from
619 * the frame so we can provide it to the driver separately.
621 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
.flags
) &&
622 !test_bit(ENTRY_TXD_ENCRYPT_IV
, &txdesc
.flags
)) {
623 if (test_bit(REQUIRE_COPY_IV
, &queue
->rt2x00dev
->cap_flags
))
624 rt2x00crypto_tx_copy_iv(skb
, &txdesc
);
626 rt2x00crypto_tx_remove_iv(skb
, &txdesc
);
630 * When DMA allocation is required we should guarantee to the
631 * driver that the DMA is aligned to a 4-byte boundary.
632 * However some drivers require L2 padding to pad the payload
633 * rather then the header. This could be a requirement for
634 * PCI and USB devices, while header alignment only is valid
637 if (test_bit(REQUIRE_L2PAD
, &queue
->rt2x00dev
->cap_flags
))
638 rt2x00queue_insert_l2pad(skb
, txdesc
.header_length
);
639 else if (test_bit(REQUIRE_DMA
, &queue
->rt2x00dev
->cap_flags
))
640 rt2x00queue_align_frame(skb
);
643 * That function must be called with bh disabled.
645 spin_lock(&queue
->tx_lock
);
647 if (unlikely(rt2x00queue_full(queue
))) {
648 ERROR(queue
->rt2x00dev
,
649 "Dropping frame due to full tx queue %d.\n", queue
->qid
);
654 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
656 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA
,
658 ERROR(queue
->rt2x00dev
,
659 "Arrived at non-free entry in the non-full queue %d.\n"
660 "Please file bug report to %s.\n",
661 queue
->qid
, DRV_PROJECT
);
666 skbdesc
->entry
= entry
;
670 * It could be possible that the queue was corrupted and this
671 * call failed. Since we always return NETDEV_TX_OK to mac80211,
672 * this frame will simply be dropped.
674 if (unlikely(rt2x00queue_write_tx_data(entry
, &txdesc
))) {
675 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
681 set_bit(ENTRY_DATA_PENDING
, &entry
->flags
);
683 rt2x00queue_index_inc(entry
, Q_INDEX
);
684 rt2x00queue_write_tx_descriptor(entry
, &txdesc
);
685 rt2x00queue_kick_tx_queue(queue
, &txdesc
);
688 spin_unlock(&queue
->tx_lock
);
692 int rt2x00queue_clear_beacon(struct rt2x00_dev
*rt2x00dev
,
693 struct ieee80211_vif
*vif
)
695 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
697 if (unlikely(!intf
->beacon
))
700 mutex_lock(&intf
->beacon_skb_mutex
);
703 * Clean up the beacon skb.
705 rt2x00queue_free_skb(intf
->beacon
);
708 * Clear beacon (single bssid devices don't need to clear the beacon
709 * since the beacon queue will get stopped anyway).
711 if (rt2x00dev
->ops
->lib
->clear_beacon
)
712 rt2x00dev
->ops
->lib
->clear_beacon(intf
->beacon
);
714 mutex_unlock(&intf
->beacon_skb_mutex
);
719 int rt2x00queue_update_beacon_locked(struct rt2x00_dev
*rt2x00dev
,
720 struct ieee80211_vif
*vif
)
722 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
723 struct skb_frame_desc
*skbdesc
;
724 struct txentry_desc txdesc
;
726 if (unlikely(!intf
->beacon
))
730 * Clean up the beacon skb.
732 rt2x00queue_free_skb(intf
->beacon
);
734 intf
->beacon
->skb
= ieee80211_beacon_get(rt2x00dev
->hw
, vif
);
735 if (!intf
->beacon
->skb
)
739 * Copy all TX descriptor information into txdesc,
740 * after that we are free to use the skb->cb array
741 * for our information.
743 rt2x00queue_create_tx_descriptor(rt2x00dev
, intf
->beacon
->skb
, &txdesc
);
746 * Fill in skb descriptor
748 skbdesc
= get_skb_frame_desc(intf
->beacon
->skb
);
749 memset(skbdesc
, 0, sizeof(*skbdesc
));
750 skbdesc
->entry
= intf
->beacon
;
753 * Send beacon to hardware.
755 rt2x00dev
->ops
->lib
->write_beacon(intf
->beacon
, &txdesc
);
761 int rt2x00queue_update_beacon(struct rt2x00_dev
*rt2x00dev
,
762 struct ieee80211_vif
*vif
)
764 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
767 mutex_lock(&intf
->beacon_skb_mutex
);
768 ret
= rt2x00queue_update_beacon_locked(rt2x00dev
, vif
);
769 mutex_unlock(&intf
->beacon_skb_mutex
);
774 bool rt2x00queue_for_each_entry(struct data_queue
*queue
,
775 enum queue_index start
,
776 enum queue_index end
,
777 bool (*fn
)(struct queue_entry
*entry
))
779 unsigned long irqflags
;
780 unsigned int index_start
;
781 unsigned int index_end
;
784 if (unlikely(start
>= Q_INDEX_MAX
|| end
>= Q_INDEX_MAX
)) {
785 ERROR(queue
->rt2x00dev
,
786 "Entry requested from invalid index range (%d - %d)\n",
792 * Only protect the range we are going to loop over,
793 * if during our loop a extra entry is set to pending
794 * it should not be kicked during this run, since it
795 * is part of another TX operation.
797 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
798 index_start
= queue
->index
[start
];
799 index_end
= queue
->index
[end
];
800 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
803 * Start from the TX done pointer, this guarantees that we will
804 * send out all frames in the correct order.
806 if (index_start
< index_end
) {
807 for (i
= index_start
; i
< index_end
; i
++) {
808 if (fn(&queue
->entries
[i
]))
812 for (i
= index_start
; i
< queue
->limit
; i
++) {
813 if (fn(&queue
->entries
[i
]))
817 for (i
= 0; i
< index_end
; i
++) {
818 if (fn(&queue
->entries
[i
]))
825 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry
);
827 struct queue_entry
*rt2x00queue_get_entry(struct data_queue
*queue
,
828 enum queue_index index
)
830 struct queue_entry
*entry
;
831 unsigned long irqflags
;
833 if (unlikely(index
>= Q_INDEX_MAX
)) {
834 ERROR(queue
->rt2x00dev
,
835 "Entry requested from invalid index type (%d)\n", index
);
839 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
841 entry
= &queue
->entries
[queue
->index
[index
]];
843 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
847 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry
);
849 void rt2x00queue_index_inc(struct queue_entry
*entry
, enum queue_index index
)
851 struct data_queue
*queue
= entry
->queue
;
852 unsigned long irqflags
;
854 if (unlikely(index
>= Q_INDEX_MAX
)) {
855 ERROR(queue
->rt2x00dev
,
856 "Index change on invalid index type (%d)\n", index
);
860 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
862 queue
->index
[index
]++;
863 if (queue
->index
[index
] >= queue
->limit
)
864 queue
->index
[index
] = 0;
866 entry
->last_action
= jiffies
;
868 if (index
== Q_INDEX
) {
870 } else if (index
== Q_INDEX_DONE
) {
875 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
878 void rt2x00queue_pause_queue(struct data_queue
*queue
)
880 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
881 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
882 test_and_set_bit(QUEUE_PAUSED
, &queue
->flags
))
885 switch (queue
->qid
) {
891 * For TX queues, we have to disable the queue
894 ieee80211_stop_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
900 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue
);
902 void rt2x00queue_unpause_queue(struct data_queue
*queue
)
904 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
905 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
906 !test_and_clear_bit(QUEUE_PAUSED
, &queue
->flags
))
909 switch (queue
->qid
) {
915 * For TX queues, we have to enable the queue
918 ieee80211_wake_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
922 * For RX we need to kick the queue now in order to
925 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
930 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue
);
932 void rt2x00queue_start_queue(struct data_queue
*queue
)
934 mutex_lock(&queue
->status_lock
);
936 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
937 test_and_set_bit(QUEUE_STARTED
, &queue
->flags
)) {
938 mutex_unlock(&queue
->status_lock
);
942 set_bit(QUEUE_PAUSED
, &queue
->flags
);
944 queue
->rt2x00dev
->ops
->lib
->start_queue(queue
);
946 rt2x00queue_unpause_queue(queue
);
948 mutex_unlock(&queue
->status_lock
);
950 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue
);
952 void rt2x00queue_stop_queue(struct data_queue
*queue
)
954 mutex_lock(&queue
->status_lock
);
956 if (!test_and_clear_bit(QUEUE_STARTED
, &queue
->flags
)) {
957 mutex_unlock(&queue
->status_lock
);
961 rt2x00queue_pause_queue(queue
);
963 queue
->rt2x00dev
->ops
->lib
->stop_queue(queue
);
965 mutex_unlock(&queue
->status_lock
);
967 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue
);
969 void rt2x00queue_flush_queue(struct data_queue
*queue
, bool drop
)
973 (queue
->qid
== QID_AC_VO
) ||
974 (queue
->qid
== QID_AC_VI
) ||
975 (queue
->qid
== QID_AC_BE
) ||
976 (queue
->qid
== QID_AC_BK
);
978 mutex_lock(&queue
->status_lock
);
981 * If the queue has been started, we must stop it temporarily
982 * to prevent any new frames to be queued on the device. If
983 * we are not dropping the pending frames, the queue must
984 * only be stopped in the software and not the hardware,
985 * otherwise the queue will never become empty on its own.
987 started
= test_bit(QUEUE_STARTED
, &queue
->flags
);
992 rt2x00queue_pause_queue(queue
);
995 * If we are not supposed to drop any pending
996 * frames, this means we must force a start (=kick)
997 * to the queue to make sure the hardware will
998 * start transmitting.
1000 if (!drop
&& tx_queue
)
1001 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
1005 * Check if driver supports flushing, if that is the case we can
1006 * defer the flushing to the driver. Otherwise we must use the
1007 * alternative which just waits for the queue to become empty.
1009 if (likely(queue
->rt2x00dev
->ops
->lib
->flush_queue
))
1010 queue
->rt2x00dev
->ops
->lib
->flush_queue(queue
, drop
);
1013 * The queue flush has failed...
1015 if (unlikely(!rt2x00queue_empty(queue
)))
1016 WARNING(queue
->rt2x00dev
, "Queue %d failed to flush\n", queue
->qid
);
1019 * Restore the queue to the previous status
1022 rt2x00queue_unpause_queue(queue
);
1024 mutex_unlock(&queue
->status_lock
);
1026 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue
);
1028 void rt2x00queue_start_queues(struct rt2x00_dev
*rt2x00dev
)
1030 struct data_queue
*queue
;
1033 * rt2x00queue_start_queue will call ieee80211_wake_queue
1034 * for each queue after is has been properly initialized.
1036 tx_queue_for_each(rt2x00dev
, queue
)
1037 rt2x00queue_start_queue(queue
);
1039 rt2x00queue_start_queue(rt2x00dev
->rx
);
1041 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues
);
1043 void rt2x00queue_stop_queues(struct rt2x00_dev
*rt2x00dev
)
1045 struct data_queue
*queue
;
1048 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1049 * as well, but we are completely shutting doing everything
1050 * now, so it is much safer to stop all TX queues at once,
1051 * and use rt2x00queue_stop_queue for cleaning up.
1053 ieee80211_stop_queues(rt2x00dev
->hw
);
1055 tx_queue_for_each(rt2x00dev
, queue
)
1056 rt2x00queue_stop_queue(queue
);
1058 rt2x00queue_stop_queue(rt2x00dev
->rx
);
1060 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues
);
1062 void rt2x00queue_flush_queues(struct rt2x00_dev
*rt2x00dev
, bool drop
)
1064 struct data_queue
*queue
;
1066 tx_queue_for_each(rt2x00dev
, queue
)
1067 rt2x00queue_flush_queue(queue
, drop
);
1069 rt2x00queue_flush_queue(rt2x00dev
->rx
, drop
);
1071 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues
);
1073 static void rt2x00queue_reset(struct data_queue
*queue
)
1075 unsigned long irqflags
;
1078 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
1083 for (i
= 0; i
< Q_INDEX_MAX
; i
++)
1084 queue
->index
[i
] = 0;
1086 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
1089 void rt2x00queue_init_queues(struct rt2x00_dev
*rt2x00dev
)
1091 struct data_queue
*queue
;
1094 queue_for_each(rt2x00dev
, queue
) {
1095 rt2x00queue_reset(queue
);
1097 for (i
= 0; i
< queue
->limit
; i
++)
1098 rt2x00dev
->ops
->lib
->clear_entry(&queue
->entries
[i
]);
1102 static int rt2x00queue_alloc_entries(struct data_queue
*queue
,
1103 const struct data_queue_desc
*qdesc
)
1105 struct queue_entry
*entries
;
1106 unsigned int entry_size
;
1109 rt2x00queue_reset(queue
);
1111 queue
->limit
= qdesc
->entry_num
;
1112 queue
->threshold
= DIV_ROUND_UP(qdesc
->entry_num
, 10);
1113 queue
->data_size
= qdesc
->data_size
;
1114 queue
->desc_size
= qdesc
->desc_size
;
1117 * Allocate all queue entries.
1119 entry_size
= sizeof(*entries
) + qdesc
->priv_size
;
1120 entries
= kcalloc(queue
->limit
, entry_size
, GFP_KERNEL
);
1124 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1125 (((char *)(__base)) + ((__limit) * (__esize)) + \
1126 ((__index) * (__psize)))
1128 for (i
= 0; i
< queue
->limit
; i
++) {
1129 entries
[i
].flags
= 0;
1130 entries
[i
].queue
= queue
;
1131 entries
[i
].skb
= NULL
;
1132 entries
[i
].entry_idx
= i
;
1133 entries
[i
].priv_data
=
1134 QUEUE_ENTRY_PRIV_OFFSET(entries
, i
, queue
->limit
,
1135 sizeof(*entries
), qdesc
->priv_size
);
1138 #undef QUEUE_ENTRY_PRIV_OFFSET
1140 queue
->entries
= entries
;
1145 static void rt2x00queue_free_skbs(struct data_queue
*queue
)
1149 if (!queue
->entries
)
1152 for (i
= 0; i
< queue
->limit
; i
++) {
1153 rt2x00queue_free_skb(&queue
->entries
[i
]);
1157 static int rt2x00queue_alloc_rxskbs(struct data_queue
*queue
)
1160 struct sk_buff
*skb
;
1162 for (i
= 0; i
< queue
->limit
; i
++) {
1163 skb
= rt2x00queue_alloc_rxskb(&queue
->entries
[i
], GFP_KERNEL
);
1166 queue
->entries
[i
].skb
= skb
;
1172 int rt2x00queue_initialize(struct rt2x00_dev
*rt2x00dev
)
1174 struct data_queue
*queue
;
1177 status
= rt2x00queue_alloc_entries(rt2x00dev
->rx
, rt2x00dev
->ops
->rx
);
1181 tx_queue_for_each(rt2x00dev
, queue
) {
1182 status
= rt2x00queue_alloc_entries(queue
, rt2x00dev
->ops
->tx
);
1187 status
= rt2x00queue_alloc_entries(rt2x00dev
->bcn
, rt2x00dev
->ops
->bcn
);
1191 if (test_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
)) {
1192 status
= rt2x00queue_alloc_entries(rt2x00dev
->atim
,
1193 rt2x00dev
->ops
->atim
);
1198 status
= rt2x00queue_alloc_rxskbs(rt2x00dev
->rx
);
1205 ERROR(rt2x00dev
, "Queue entries allocation failed.\n");
1207 rt2x00queue_uninitialize(rt2x00dev
);
1212 void rt2x00queue_uninitialize(struct rt2x00_dev
*rt2x00dev
)
1214 struct data_queue
*queue
;
1216 rt2x00queue_free_skbs(rt2x00dev
->rx
);
1218 queue_for_each(rt2x00dev
, queue
) {
1219 kfree(queue
->entries
);
1220 queue
->entries
= NULL
;
1224 static void rt2x00queue_init(struct rt2x00_dev
*rt2x00dev
,
1225 struct data_queue
*queue
, enum data_queue_qid qid
)
1227 mutex_init(&queue
->status_lock
);
1228 spin_lock_init(&queue
->tx_lock
);
1229 spin_lock_init(&queue
->index_lock
);
1231 queue
->rt2x00dev
= rt2x00dev
;
1239 int rt2x00queue_allocate(struct rt2x00_dev
*rt2x00dev
)
1241 struct data_queue
*queue
;
1242 enum data_queue_qid qid
;
1243 unsigned int req_atim
=
1244 !!test_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
);
1247 * We need the following queues:
1249 * TX: ops->tx_queues
1251 * Atim: 1 (if required)
1253 rt2x00dev
->data_queues
= 2 + rt2x00dev
->ops
->tx_queues
+ req_atim
;
1255 queue
= kcalloc(rt2x00dev
->data_queues
, sizeof(*queue
), GFP_KERNEL
);
1257 ERROR(rt2x00dev
, "Queue allocation failed.\n");
1262 * Initialize pointers
1264 rt2x00dev
->rx
= queue
;
1265 rt2x00dev
->tx
= &queue
[1];
1266 rt2x00dev
->bcn
= &queue
[1 + rt2x00dev
->ops
->tx_queues
];
1267 rt2x00dev
->atim
= req_atim
? &queue
[2 + rt2x00dev
->ops
->tx_queues
] : NULL
;
1270 * Initialize queue parameters.
1272 * TX: qid = QID_AC_VO + index
1273 * TX: cw_min: 2^5 = 32.
1274 * TX: cw_max: 2^10 = 1024.
1275 * BCN: qid = QID_BEACON
1276 * ATIM: qid = QID_ATIM
1278 rt2x00queue_init(rt2x00dev
, rt2x00dev
->rx
, QID_RX
);
1281 tx_queue_for_each(rt2x00dev
, queue
)
1282 rt2x00queue_init(rt2x00dev
, queue
, qid
++);
1284 rt2x00queue_init(rt2x00dev
, rt2x00dev
->bcn
, QID_BEACON
);
1286 rt2x00queue_init(rt2x00dev
, rt2x00dev
->atim
, QID_ATIM
);
1291 void rt2x00queue_free(struct rt2x00_dev
*rt2x00dev
)
1293 kfree(rt2x00dev
->rx
);
1294 rt2x00dev
->rx
= NULL
;
1295 rt2x00dev
->tx
= NULL
;
1296 rt2x00dev
->bcn
= NULL
;