Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
blobf7e74a0a775911abab23dab3b0a512fb0524d0a4
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 Module: rt2x00lib
25 Abstract: rt2x00 queue specific routines.
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
33 #include "rt2x00.h"
34 #include "rt2x00lib.h"
36 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
38 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
39 struct sk_buff *skb;
40 struct skb_frame_desc *skbdesc;
41 unsigned int frame_size;
42 unsigned int head_size = 0;
43 unsigned int tail_size = 0;
46 * The frame size includes descriptor size, because the
47 * hardware directly receive the frame into the skbuffer.
49 frame_size = entry->queue->data_size + entry->queue->desc_size;
52 * The payload should be aligned to a 4-byte boundary,
53 * this means we need at least 3 bytes for moving the frame
54 * into the correct offset.
56 head_size = 4;
59 * For IV/EIV/ICV assembly we must make sure there is
60 * at least 8 bytes bytes available in headroom for IV/EIV
61 * and 8 bytes for ICV data as tailroon.
63 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) {
64 head_size += 8;
65 tail_size += 8;
69 * Allocate skbuffer.
71 skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
72 if (!skb)
73 return NULL;
76 * Make sure we not have a frame with the requested bytes
77 * available in the head and tail.
79 skb_reserve(skb, head_size);
80 skb_put(skb, frame_size);
83 * Populate skbdesc.
85 skbdesc = get_skb_frame_desc(skb);
86 memset(skbdesc, 0, sizeof(*skbdesc));
87 skbdesc->entry = entry;
89 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
90 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
91 skb->data,
92 skb->len,
93 DMA_FROM_DEVICE);
94 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
97 return skb;
100 void rt2x00queue_map_txskb(struct queue_entry *entry)
102 struct device *dev = entry->queue->rt2x00dev->dev;
103 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
105 skbdesc->skb_dma =
106 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
107 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
111 void rt2x00queue_unmap_skb(struct queue_entry *entry)
113 struct device *dev = entry->queue->rt2x00dev->dev;
114 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
116 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
117 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
118 DMA_FROM_DEVICE);
119 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
120 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
121 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
122 DMA_TO_DEVICE);
123 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
128 void rt2x00queue_free_skb(struct queue_entry *entry)
130 if (!entry->skb)
131 return;
133 rt2x00queue_unmap_skb(entry);
134 dev_kfree_skb_any(entry->skb);
135 entry->skb = NULL;
138 void rt2x00queue_align_frame(struct sk_buff *skb)
140 unsigned int frame_length = skb->len;
141 unsigned int align = ALIGN_SIZE(skb, 0);
143 if (!align)
144 return;
146 skb_push(skb, align);
147 memmove(skb->data, skb->data + align, frame_length);
148 skb_trim(skb, frame_length);
151 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
153 unsigned int payload_length = skb->len - header_length;
154 unsigned int header_align = ALIGN_SIZE(skb, 0);
155 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
156 unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
159 * Adjust the header alignment if the payload needs to be moved more
160 * than the header.
162 if (payload_align > header_align)
163 header_align += 4;
165 /* There is nothing to do if no alignment is needed */
166 if (!header_align)
167 return;
169 /* Reserve the amount of space needed in front of the frame */
170 skb_push(skb, header_align);
173 * Move the header.
175 memmove(skb->data, skb->data + header_align, header_length);
177 /* Move the payload, if present and if required */
178 if (payload_length && payload_align)
179 memmove(skb->data + header_length + l2pad,
180 skb->data + header_length + l2pad + payload_align,
181 payload_length);
183 /* Trim the skb to the correct size */
184 skb_trim(skb, header_length + l2pad + payload_length);
187 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
190 * L2 padding is only present if the skb contains more than just the
191 * IEEE 802.11 header.
193 unsigned int l2pad = (skb->len > header_length) ?
194 L2PAD_SIZE(header_length) : 0;
196 if (!l2pad)
197 return;
199 memmove(skb->data + l2pad, skb->data, header_length);
200 skb_pull(skb, l2pad);
203 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
204 struct sk_buff *skb,
205 struct txentry_desc *txdesc)
207 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
208 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
209 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
210 u16 seqno;
212 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
213 return;
215 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
217 if (!test_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags)) {
219 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
220 * seqno on retransmited data (non-QOS) frames. To workaround
221 * the problem let's generate seqno in software if QOS is
222 * disabled.
224 if (test_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags))
225 __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
226 else
227 /* H/W will generate sequence number */
228 return;
232 * The hardware is not able to insert a sequence number. Assign a
233 * software generated one here.
235 * This is wrong because beacons are not getting sequence
236 * numbers assigned properly.
238 * A secondary problem exists for drivers that cannot toggle
239 * sequence counting per-frame, since those will override the
240 * sequence counter given by mac80211.
242 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
243 seqno = atomic_add_return(0x10, &intf->seqno);
244 else
245 seqno = atomic_read(&intf->seqno);
247 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
248 hdr->seq_ctrl |= cpu_to_le16(seqno);
251 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
252 struct sk_buff *skb,
253 struct txentry_desc *txdesc,
254 const struct rt2x00_rate *hwrate)
256 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
257 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
258 unsigned int data_length;
259 unsigned int duration;
260 unsigned int residual;
263 * Determine with what IFS priority this frame should be send.
264 * Set ifs to IFS_SIFS when the this is not the first fragment,
265 * or this fragment came after RTS/CTS.
267 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
268 txdesc->u.plcp.ifs = IFS_BACKOFF;
269 else
270 txdesc->u.plcp.ifs = IFS_SIFS;
272 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
273 data_length = skb->len + 4;
274 data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
277 * PLCP setup
278 * Length calculation depends on OFDM/CCK rate.
280 txdesc->u.plcp.signal = hwrate->plcp;
281 txdesc->u.plcp.service = 0x04;
283 if (hwrate->flags & DEV_RATE_OFDM) {
284 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
285 txdesc->u.plcp.length_low = data_length & 0x3f;
286 } else {
288 * Convert length to microseconds.
290 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
291 duration = GET_DURATION(data_length, hwrate->bitrate);
293 if (residual != 0) {
294 duration++;
297 * Check if we need to set the Length Extension
299 if (hwrate->bitrate == 110 && residual <= 30)
300 txdesc->u.plcp.service |= 0x80;
303 txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
304 txdesc->u.plcp.length_low = duration & 0xff;
307 * When preamble is enabled we should set the
308 * preamble bit for the signal.
310 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
311 txdesc->u.plcp.signal |= 0x08;
315 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
316 struct sk_buff *skb,
317 struct txentry_desc *txdesc,
318 const struct rt2x00_rate *hwrate)
320 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
321 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
322 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
323 struct rt2x00_sta *sta_priv = NULL;
325 if (tx_info->control.sta) {
326 txdesc->u.ht.mpdu_density =
327 tx_info->control.sta->ht_cap.ampdu_density;
329 sta_priv = sta_to_rt2x00_sta(tx_info->control.sta);
330 txdesc->u.ht.wcid = sta_priv->wcid;
334 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
335 * mcs rate to be used
337 if (txrate->flags & IEEE80211_TX_RC_MCS) {
338 txdesc->u.ht.mcs = txrate->idx;
341 * MIMO PS should be set to 1 for STA's using dynamic SM PS
342 * when using more then one tx stream (>MCS7).
344 if (tx_info->control.sta && txdesc->u.ht.mcs > 7 &&
345 ((tx_info->control.sta->ht_cap.cap &
346 IEEE80211_HT_CAP_SM_PS) >>
347 IEEE80211_HT_CAP_SM_PS_SHIFT) ==
348 WLAN_HT_CAP_SM_PS_DYNAMIC)
349 __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
350 } else {
351 txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
352 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
353 txdesc->u.ht.mcs |= 0x08;
356 if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
357 if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
358 txdesc->u.ht.txop = TXOP_SIFS;
359 else
360 txdesc->u.ht.txop = TXOP_BACKOFF;
362 /* Left zero on all other settings. */
363 return;
366 txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
369 * Only one STBC stream is supported for now.
371 if (tx_info->flags & IEEE80211_TX_CTL_STBC)
372 txdesc->u.ht.stbc = 1;
375 * This frame is eligible for an AMPDU, however, don't aggregate
376 * frames that are intended to probe a specific tx rate.
378 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
379 !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
380 __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
383 * Set 40Mhz mode if necessary (for legacy rates this will
384 * duplicate the frame to both channels).
386 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
387 txrate->flags & IEEE80211_TX_RC_DUP_DATA)
388 __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
389 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
390 __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
393 * Determine IFS values
394 * - Use TXOP_BACKOFF for management frames except beacons
395 * - Use TXOP_SIFS for fragment bursts
396 * - Use TXOP_HTTXOP for everything else
398 * Note: rt2800 devices won't use CTS protection (if used)
399 * for frames not transmitted with TXOP_HTTXOP
401 if (ieee80211_is_mgmt(hdr->frame_control) &&
402 !ieee80211_is_beacon(hdr->frame_control))
403 txdesc->u.ht.txop = TXOP_BACKOFF;
404 else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
405 txdesc->u.ht.txop = TXOP_SIFS;
406 else
407 txdesc->u.ht.txop = TXOP_HTTXOP;
410 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
411 struct sk_buff *skb,
412 struct txentry_desc *txdesc)
414 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
415 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
416 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
417 struct ieee80211_rate *rate;
418 const struct rt2x00_rate *hwrate = NULL;
420 memset(txdesc, 0, sizeof(*txdesc));
423 * Header and frame information.
425 txdesc->length = skb->len;
426 txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
429 * Check whether this frame is to be acked.
431 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
432 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
435 * Check if this is a RTS/CTS frame
437 if (ieee80211_is_rts(hdr->frame_control) ||
438 ieee80211_is_cts(hdr->frame_control)) {
439 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
440 if (ieee80211_is_rts(hdr->frame_control))
441 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
442 else
443 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
444 if (tx_info->control.rts_cts_rate_idx >= 0)
445 rate =
446 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
450 * Determine retry information.
452 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
453 if (txdesc->retry_limit >= rt2x00dev->long_retry)
454 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
457 * Check if more fragments are pending
459 if (ieee80211_has_morefrags(hdr->frame_control)) {
460 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
461 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
465 * Check if more frames (!= fragments) are pending
467 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
468 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
471 * Beacons and probe responses require the tsf timestamp
472 * to be inserted into the frame.
474 if (ieee80211_is_beacon(hdr->frame_control) ||
475 ieee80211_is_probe_resp(hdr->frame_control))
476 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
478 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
479 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
480 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
483 * Determine rate modulation.
485 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
486 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
487 else if (txrate->flags & IEEE80211_TX_RC_MCS)
488 txdesc->rate_mode = RATE_MODE_HT_MIX;
489 else {
490 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
491 hwrate = rt2x00_get_rate(rate->hw_value);
492 if (hwrate->flags & DEV_RATE_OFDM)
493 txdesc->rate_mode = RATE_MODE_OFDM;
494 else
495 txdesc->rate_mode = RATE_MODE_CCK;
499 * Apply TX descriptor handling by components
501 rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
502 rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
504 if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
505 rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
506 hwrate);
507 else
508 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
509 hwrate);
512 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
513 struct txentry_desc *txdesc)
515 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
518 * This should not happen, we already checked the entry
519 * was ours. When the hardware disagrees there has been
520 * a queue corruption!
522 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
523 rt2x00dev->ops->lib->get_entry_state(entry))) {
524 ERROR(rt2x00dev,
525 "Corrupt queue %d, accessing entry which is not ours.\n"
526 "Please file bug report to %s.\n",
527 entry->queue->qid, DRV_PROJECT);
528 return -EINVAL;
532 * Add the requested extra tx headroom in front of the skb.
534 skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
535 memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
538 * Call the driver's write_tx_data function, if it exists.
540 if (rt2x00dev->ops->lib->write_tx_data)
541 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
544 * Map the skb to DMA.
546 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
547 rt2x00queue_map_txskb(entry);
549 return 0;
552 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
553 struct txentry_desc *txdesc)
555 struct data_queue *queue = entry->queue;
557 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
560 * All processing on the frame has been completed, this means
561 * it is now ready to be dumped to userspace through debugfs.
563 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
566 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
567 struct txentry_desc *txdesc)
570 * Check if we need to kick the queue, there are however a few rules
571 * 1) Don't kick unless this is the last in frame in a burst.
572 * When the burst flag is set, this frame is always followed
573 * by another frame which in some way are related to eachother.
574 * This is true for fragments, RTS or CTS-to-self frames.
575 * 2) Rule 1 can be broken when the available entries
576 * in the queue are less then a certain threshold.
578 if (rt2x00queue_threshold(queue) ||
579 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
580 queue->rt2x00dev->ops->lib->kick_queue(queue);
583 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
584 bool local)
586 struct ieee80211_tx_info *tx_info;
587 struct queue_entry *entry;
588 struct txentry_desc txdesc;
589 struct skb_frame_desc *skbdesc;
590 u8 rate_idx, rate_flags;
591 int ret = 0;
594 * Copy all TX descriptor information into txdesc,
595 * after that we are free to use the skb->cb array
596 * for our information.
598 rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc);
601 * All information is retrieved from the skb->cb array,
602 * now we should claim ownership of the driver part of that
603 * array, preserving the bitrate index and flags.
605 tx_info = IEEE80211_SKB_CB(skb);
606 rate_idx = tx_info->control.rates[0].idx;
607 rate_flags = tx_info->control.rates[0].flags;
608 skbdesc = get_skb_frame_desc(skb);
609 memset(skbdesc, 0, sizeof(*skbdesc));
610 skbdesc->tx_rate_idx = rate_idx;
611 skbdesc->tx_rate_flags = rate_flags;
613 if (local)
614 skbdesc->flags |= SKBDESC_NOT_MAC80211;
617 * When hardware encryption is supported, and this frame
618 * is to be encrypted, we should strip the IV/EIV data from
619 * the frame so we can provide it to the driver separately.
621 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
622 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
623 if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
624 rt2x00crypto_tx_copy_iv(skb, &txdesc);
625 else
626 rt2x00crypto_tx_remove_iv(skb, &txdesc);
630 * When DMA allocation is required we should guarantee to the
631 * driver that the DMA is aligned to a 4-byte boundary.
632 * However some drivers require L2 padding to pad the payload
633 * rather then the header. This could be a requirement for
634 * PCI and USB devices, while header alignment only is valid
635 * for PCI devices.
637 if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
638 rt2x00queue_insert_l2pad(skb, txdesc.header_length);
639 else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
640 rt2x00queue_align_frame(skb);
643 * That function must be called with bh disabled.
645 spin_lock(&queue->tx_lock);
647 if (unlikely(rt2x00queue_full(queue))) {
648 ERROR(queue->rt2x00dev,
649 "Dropping frame due to full tx queue %d.\n", queue->qid);
650 ret = -ENOBUFS;
651 goto out;
654 entry = rt2x00queue_get_entry(queue, Q_INDEX);
656 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
657 &entry->flags))) {
658 ERROR(queue->rt2x00dev,
659 "Arrived at non-free entry in the non-full queue %d.\n"
660 "Please file bug report to %s.\n",
661 queue->qid, DRV_PROJECT);
662 ret = -EINVAL;
663 goto out;
666 skbdesc->entry = entry;
667 entry->skb = skb;
670 * It could be possible that the queue was corrupted and this
671 * call failed. Since we always return NETDEV_TX_OK to mac80211,
672 * this frame will simply be dropped.
674 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
675 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
676 entry->skb = NULL;
677 ret = -EIO;
678 goto out;
681 set_bit(ENTRY_DATA_PENDING, &entry->flags);
683 rt2x00queue_index_inc(entry, Q_INDEX);
684 rt2x00queue_write_tx_descriptor(entry, &txdesc);
685 rt2x00queue_kick_tx_queue(queue, &txdesc);
687 out:
688 spin_unlock(&queue->tx_lock);
689 return ret;
692 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
693 struct ieee80211_vif *vif)
695 struct rt2x00_intf *intf = vif_to_intf(vif);
697 if (unlikely(!intf->beacon))
698 return -ENOBUFS;
700 mutex_lock(&intf->beacon_skb_mutex);
703 * Clean up the beacon skb.
705 rt2x00queue_free_skb(intf->beacon);
708 * Clear beacon (single bssid devices don't need to clear the beacon
709 * since the beacon queue will get stopped anyway).
711 if (rt2x00dev->ops->lib->clear_beacon)
712 rt2x00dev->ops->lib->clear_beacon(intf->beacon);
714 mutex_unlock(&intf->beacon_skb_mutex);
716 return 0;
719 int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
720 struct ieee80211_vif *vif)
722 struct rt2x00_intf *intf = vif_to_intf(vif);
723 struct skb_frame_desc *skbdesc;
724 struct txentry_desc txdesc;
726 if (unlikely(!intf->beacon))
727 return -ENOBUFS;
730 * Clean up the beacon skb.
732 rt2x00queue_free_skb(intf->beacon);
734 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
735 if (!intf->beacon->skb)
736 return -ENOMEM;
739 * Copy all TX descriptor information into txdesc,
740 * after that we are free to use the skb->cb array
741 * for our information.
743 rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc);
746 * Fill in skb descriptor
748 skbdesc = get_skb_frame_desc(intf->beacon->skb);
749 memset(skbdesc, 0, sizeof(*skbdesc));
750 skbdesc->entry = intf->beacon;
753 * Send beacon to hardware.
755 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
757 return 0;
761 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
762 struct ieee80211_vif *vif)
764 struct rt2x00_intf *intf = vif_to_intf(vif);
765 int ret;
767 mutex_lock(&intf->beacon_skb_mutex);
768 ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
769 mutex_unlock(&intf->beacon_skb_mutex);
771 return ret;
774 bool rt2x00queue_for_each_entry(struct data_queue *queue,
775 enum queue_index start,
776 enum queue_index end,
777 bool (*fn)(struct queue_entry *entry))
779 unsigned long irqflags;
780 unsigned int index_start;
781 unsigned int index_end;
782 unsigned int i;
784 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
785 ERROR(queue->rt2x00dev,
786 "Entry requested from invalid index range (%d - %d)\n",
787 start, end);
788 return true;
792 * Only protect the range we are going to loop over,
793 * if during our loop a extra entry is set to pending
794 * it should not be kicked during this run, since it
795 * is part of another TX operation.
797 spin_lock_irqsave(&queue->index_lock, irqflags);
798 index_start = queue->index[start];
799 index_end = queue->index[end];
800 spin_unlock_irqrestore(&queue->index_lock, irqflags);
803 * Start from the TX done pointer, this guarantees that we will
804 * send out all frames in the correct order.
806 if (index_start < index_end) {
807 for (i = index_start; i < index_end; i++) {
808 if (fn(&queue->entries[i]))
809 return true;
811 } else {
812 for (i = index_start; i < queue->limit; i++) {
813 if (fn(&queue->entries[i]))
814 return true;
817 for (i = 0; i < index_end; i++) {
818 if (fn(&queue->entries[i]))
819 return true;
823 return false;
825 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
827 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
828 enum queue_index index)
830 struct queue_entry *entry;
831 unsigned long irqflags;
833 if (unlikely(index >= Q_INDEX_MAX)) {
834 ERROR(queue->rt2x00dev,
835 "Entry requested from invalid index type (%d)\n", index);
836 return NULL;
839 spin_lock_irqsave(&queue->index_lock, irqflags);
841 entry = &queue->entries[queue->index[index]];
843 spin_unlock_irqrestore(&queue->index_lock, irqflags);
845 return entry;
847 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
849 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
851 struct data_queue *queue = entry->queue;
852 unsigned long irqflags;
854 if (unlikely(index >= Q_INDEX_MAX)) {
855 ERROR(queue->rt2x00dev,
856 "Index change on invalid index type (%d)\n", index);
857 return;
860 spin_lock_irqsave(&queue->index_lock, irqflags);
862 queue->index[index]++;
863 if (queue->index[index] >= queue->limit)
864 queue->index[index] = 0;
866 entry->last_action = jiffies;
868 if (index == Q_INDEX) {
869 queue->length++;
870 } else if (index == Q_INDEX_DONE) {
871 queue->length--;
872 queue->count++;
875 spin_unlock_irqrestore(&queue->index_lock, irqflags);
878 void rt2x00queue_pause_queue(struct data_queue *queue)
880 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
881 !test_bit(QUEUE_STARTED, &queue->flags) ||
882 test_and_set_bit(QUEUE_PAUSED, &queue->flags))
883 return;
885 switch (queue->qid) {
886 case QID_AC_VO:
887 case QID_AC_VI:
888 case QID_AC_BE:
889 case QID_AC_BK:
891 * For TX queues, we have to disable the queue
892 * inside mac80211.
894 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
895 break;
896 default:
897 break;
900 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
902 void rt2x00queue_unpause_queue(struct data_queue *queue)
904 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
905 !test_bit(QUEUE_STARTED, &queue->flags) ||
906 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
907 return;
909 switch (queue->qid) {
910 case QID_AC_VO:
911 case QID_AC_VI:
912 case QID_AC_BE:
913 case QID_AC_BK:
915 * For TX queues, we have to enable the queue
916 * inside mac80211.
918 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
919 break;
920 case QID_RX:
922 * For RX we need to kick the queue now in order to
923 * receive frames.
925 queue->rt2x00dev->ops->lib->kick_queue(queue);
926 default:
927 break;
930 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
932 void rt2x00queue_start_queue(struct data_queue *queue)
934 mutex_lock(&queue->status_lock);
936 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
937 test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
938 mutex_unlock(&queue->status_lock);
939 return;
942 set_bit(QUEUE_PAUSED, &queue->flags);
944 queue->rt2x00dev->ops->lib->start_queue(queue);
946 rt2x00queue_unpause_queue(queue);
948 mutex_unlock(&queue->status_lock);
950 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
952 void rt2x00queue_stop_queue(struct data_queue *queue)
954 mutex_lock(&queue->status_lock);
956 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
957 mutex_unlock(&queue->status_lock);
958 return;
961 rt2x00queue_pause_queue(queue);
963 queue->rt2x00dev->ops->lib->stop_queue(queue);
965 mutex_unlock(&queue->status_lock);
967 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
969 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
971 bool started;
972 bool tx_queue =
973 (queue->qid == QID_AC_VO) ||
974 (queue->qid == QID_AC_VI) ||
975 (queue->qid == QID_AC_BE) ||
976 (queue->qid == QID_AC_BK);
978 mutex_lock(&queue->status_lock);
981 * If the queue has been started, we must stop it temporarily
982 * to prevent any new frames to be queued on the device. If
983 * we are not dropping the pending frames, the queue must
984 * only be stopped in the software and not the hardware,
985 * otherwise the queue will never become empty on its own.
987 started = test_bit(QUEUE_STARTED, &queue->flags);
988 if (started) {
990 * Pause the queue
992 rt2x00queue_pause_queue(queue);
995 * If we are not supposed to drop any pending
996 * frames, this means we must force a start (=kick)
997 * to the queue to make sure the hardware will
998 * start transmitting.
1000 if (!drop && tx_queue)
1001 queue->rt2x00dev->ops->lib->kick_queue(queue);
1005 * Check if driver supports flushing, if that is the case we can
1006 * defer the flushing to the driver. Otherwise we must use the
1007 * alternative which just waits for the queue to become empty.
1009 if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1010 queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1013 * The queue flush has failed...
1015 if (unlikely(!rt2x00queue_empty(queue)))
1016 WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
1019 * Restore the queue to the previous status
1021 if (started)
1022 rt2x00queue_unpause_queue(queue);
1024 mutex_unlock(&queue->status_lock);
1026 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1028 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1030 struct data_queue *queue;
1033 * rt2x00queue_start_queue will call ieee80211_wake_queue
1034 * for each queue after is has been properly initialized.
1036 tx_queue_for_each(rt2x00dev, queue)
1037 rt2x00queue_start_queue(queue);
1039 rt2x00queue_start_queue(rt2x00dev->rx);
1041 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1043 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1045 struct data_queue *queue;
1048 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1049 * as well, but we are completely shutting doing everything
1050 * now, so it is much safer to stop all TX queues at once,
1051 * and use rt2x00queue_stop_queue for cleaning up.
1053 ieee80211_stop_queues(rt2x00dev->hw);
1055 tx_queue_for_each(rt2x00dev, queue)
1056 rt2x00queue_stop_queue(queue);
1058 rt2x00queue_stop_queue(rt2x00dev->rx);
1060 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1062 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1064 struct data_queue *queue;
1066 tx_queue_for_each(rt2x00dev, queue)
1067 rt2x00queue_flush_queue(queue, drop);
1069 rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1071 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1073 static void rt2x00queue_reset(struct data_queue *queue)
1075 unsigned long irqflags;
1076 unsigned int i;
1078 spin_lock_irqsave(&queue->index_lock, irqflags);
1080 queue->count = 0;
1081 queue->length = 0;
1083 for (i = 0; i < Q_INDEX_MAX; i++)
1084 queue->index[i] = 0;
1086 spin_unlock_irqrestore(&queue->index_lock, irqflags);
1089 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1091 struct data_queue *queue;
1092 unsigned int i;
1094 queue_for_each(rt2x00dev, queue) {
1095 rt2x00queue_reset(queue);
1097 for (i = 0; i < queue->limit; i++)
1098 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1102 static int rt2x00queue_alloc_entries(struct data_queue *queue,
1103 const struct data_queue_desc *qdesc)
1105 struct queue_entry *entries;
1106 unsigned int entry_size;
1107 unsigned int i;
1109 rt2x00queue_reset(queue);
1111 queue->limit = qdesc->entry_num;
1112 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
1113 queue->data_size = qdesc->data_size;
1114 queue->desc_size = qdesc->desc_size;
1117 * Allocate all queue entries.
1119 entry_size = sizeof(*entries) + qdesc->priv_size;
1120 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1121 if (!entries)
1122 return -ENOMEM;
1124 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1125 (((char *)(__base)) + ((__limit) * (__esize)) + \
1126 ((__index) * (__psize)))
1128 for (i = 0; i < queue->limit; i++) {
1129 entries[i].flags = 0;
1130 entries[i].queue = queue;
1131 entries[i].skb = NULL;
1132 entries[i].entry_idx = i;
1133 entries[i].priv_data =
1134 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1135 sizeof(*entries), qdesc->priv_size);
1138 #undef QUEUE_ENTRY_PRIV_OFFSET
1140 queue->entries = entries;
1142 return 0;
1145 static void rt2x00queue_free_skbs(struct data_queue *queue)
1147 unsigned int i;
1149 if (!queue->entries)
1150 return;
1152 for (i = 0; i < queue->limit; i++) {
1153 rt2x00queue_free_skb(&queue->entries[i]);
1157 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1159 unsigned int i;
1160 struct sk_buff *skb;
1162 for (i = 0; i < queue->limit; i++) {
1163 skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1164 if (!skb)
1165 return -ENOMEM;
1166 queue->entries[i].skb = skb;
1169 return 0;
1172 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1174 struct data_queue *queue;
1175 int status;
1177 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
1178 if (status)
1179 goto exit;
1181 tx_queue_for_each(rt2x00dev, queue) {
1182 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
1183 if (status)
1184 goto exit;
1187 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
1188 if (status)
1189 goto exit;
1191 if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) {
1192 status = rt2x00queue_alloc_entries(rt2x00dev->atim,
1193 rt2x00dev->ops->atim);
1194 if (status)
1195 goto exit;
1198 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1199 if (status)
1200 goto exit;
1202 return 0;
1204 exit:
1205 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
1207 rt2x00queue_uninitialize(rt2x00dev);
1209 return status;
1212 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1214 struct data_queue *queue;
1216 rt2x00queue_free_skbs(rt2x00dev->rx);
1218 queue_for_each(rt2x00dev, queue) {
1219 kfree(queue->entries);
1220 queue->entries = NULL;
1224 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1225 struct data_queue *queue, enum data_queue_qid qid)
1227 mutex_init(&queue->status_lock);
1228 spin_lock_init(&queue->tx_lock);
1229 spin_lock_init(&queue->index_lock);
1231 queue->rt2x00dev = rt2x00dev;
1232 queue->qid = qid;
1233 queue->txop = 0;
1234 queue->aifs = 2;
1235 queue->cw_min = 5;
1236 queue->cw_max = 10;
1239 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1241 struct data_queue *queue;
1242 enum data_queue_qid qid;
1243 unsigned int req_atim =
1244 !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1247 * We need the following queues:
1248 * RX: 1
1249 * TX: ops->tx_queues
1250 * Beacon: 1
1251 * Atim: 1 (if required)
1253 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1255 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1256 if (!queue) {
1257 ERROR(rt2x00dev, "Queue allocation failed.\n");
1258 return -ENOMEM;
1262 * Initialize pointers
1264 rt2x00dev->rx = queue;
1265 rt2x00dev->tx = &queue[1];
1266 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1267 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1270 * Initialize queue parameters.
1271 * RX: qid = QID_RX
1272 * TX: qid = QID_AC_VO + index
1273 * TX: cw_min: 2^5 = 32.
1274 * TX: cw_max: 2^10 = 1024.
1275 * BCN: qid = QID_BEACON
1276 * ATIM: qid = QID_ATIM
1278 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1280 qid = QID_AC_VO;
1281 tx_queue_for_each(rt2x00dev, queue)
1282 rt2x00queue_init(rt2x00dev, queue, qid++);
1284 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1285 if (req_atim)
1286 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1288 return 0;
1291 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1293 kfree(rt2x00dev->rx);
1294 rt2x00dev->rx = NULL;
1295 rt2x00dev->tx = NULL;
1296 rt2x00dev->bcn = NULL;