Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / regulator / core.c
blob48385318175a83fe17208e099caa46c07a01d2f2
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
38 #include "dummy.h"
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
57 static struct dentry *debugfs_root;
60 * struct regulator_map
62 * Used to provide symbolic supply names to devices.
64 struct regulator_map {
65 struct list_head list;
66 const char *dev_name; /* The dev_name() for the consumer */
67 const char *supply;
68 struct regulator_dev *regulator;
72 * struct regulator
74 * One for each consumer device.
76 struct regulator {
77 struct device *dev;
78 struct list_head list;
79 unsigned int always_on:1;
80 int uA_load;
81 int min_uV;
82 int max_uV;
83 char *supply_name;
84 struct device_attribute dev_attr;
85 struct regulator_dev *rdev;
86 struct dentry *debugfs;
89 static int _regulator_is_enabled(struct regulator_dev *rdev);
90 static int _regulator_disable(struct regulator_dev *rdev);
91 static int _regulator_get_voltage(struct regulator_dev *rdev);
92 static int _regulator_get_current_limit(struct regulator_dev *rdev);
93 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94 static void _notifier_call_chain(struct regulator_dev *rdev,
95 unsigned long event, void *data);
96 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97 int min_uV, int max_uV);
98 static struct regulator *create_regulator(struct regulator_dev *rdev,
99 struct device *dev,
100 const char *supply_name);
102 static const char *rdev_get_name(struct regulator_dev *rdev)
104 if (rdev->constraints && rdev->constraints->name)
105 return rdev->constraints->name;
106 else if (rdev->desc->name)
107 return rdev->desc->name;
108 else
109 return "";
113 * of_get_regulator - get a regulator device node based on supply name
114 * @dev: Device pointer for the consumer (of regulator) device
115 * @supply: regulator supply name
117 * Extract the regulator device node corresponding to the supply name.
118 * retruns the device node corresponding to the regulator if found, else
119 * returns NULL.
121 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123 struct device_node *regnode = NULL;
124 char prop_name[32]; /* 32 is max size of property name */
126 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128 snprintf(prop_name, 32, "%s-supply", supply);
129 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131 if (!regnode) {
132 dev_dbg(dev, "Looking up %s property in node %s failed",
133 prop_name, dev->of_node->full_name);
134 return NULL;
136 return regnode;
139 static int _regulator_can_change_status(struct regulator_dev *rdev)
141 if (!rdev->constraints)
142 return 0;
144 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
145 return 1;
146 else
147 return 0;
150 /* Platform voltage constraint check */
151 static int regulator_check_voltage(struct regulator_dev *rdev,
152 int *min_uV, int *max_uV)
154 BUG_ON(*min_uV > *max_uV);
156 if (!rdev->constraints) {
157 rdev_err(rdev, "no constraints\n");
158 return -ENODEV;
160 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
161 rdev_err(rdev, "operation not allowed\n");
162 return -EPERM;
165 if (*max_uV > rdev->constraints->max_uV)
166 *max_uV = rdev->constraints->max_uV;
167 if (*min_uV < rdev->constraints->min_uV)
168 *min_uV = rdev->constraints->min_uV;
170 if (*min_uV > *max_uV) {
171 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
172 *min_uV, *max_uV);
173 return -EINVAL;
176 return 0;
179 /* Make sure we select a voltage that suits the needs of all
180 * regulator consumers
182 static int regulator_check_consumers(struct regulator_dev *rdev,
183 int *min_uV, int *max_uV)
185 struct regulator *regulator;
187 list_for_each_entry(regulator, &rdev->consumer_list, list) {
189 * Assume consumers that didn't say anything are OK
190 * with anything in the constraint range.
192 if (!regulator->min_uV && !regulator->max_uV)
193 continue;
195 if (*max_uV > regulator->max_uV)
196 *max_uV = regulator->max_uV;
197 if (*min_uV < regulator->min_uV)
198 *min_uV = regulator->min_uV;
201 if (*min_uV > *max_uV)
202 return -EINVAL;
204 return 0;
207 /* current constraint check */
208 static int regulator_check_current_limit(struct regulator_dev *rdev,
209 int *min_uA, int *max_uA)
211 BUG_ON(*min_uA > *max_uA);
213 if (!rdev->constraints) {
214 rdev_err(rdev, "no constraints\n");
215 return -ENODEV;
217 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
218 rdev_err(rdev, "operation not allowed\n");
219 return -EPERM;
222 if (*max_uA > rdev->constraints->max_uA)
223 *max_uA = rdev->constraints->max_uA;
224 if (*min_uA < rdev->constraints->min_uA)
225 *min_uA = rdev->constraints->min_uA;
227 if (*min_uA > *max_uA) {
228 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
229 *min_uA, *max_uA);
230 return -EINVAL;
233 return 0;
236 /* operating mode constraint check */
237 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
239 switch (*mode) {
240 case REGULATOR_MODE_FAST:
241 case REGULATOR_MODE_NORMAL:
242 case REGULATOR_MODE_IDLE:
243 case REGULATOR_MODE_STANDBY:
244 break;
245 default:
246 rdev_err(rdev, "invalid mode %x specified\n", *mode);
247 return -EINVAL;
250 if (!rdev->constraints) {
251 rdev_err(rdev, "no constraints\n");
252 return -ENODEV;
254 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
255 rdev_err(rdev, "operation not allowed\n");
256 return -EPERM;
259 /* The modes are bitmasks, the most power hungry modes having
260 * the lowest values. If the requested mode isn't supported
261 * try higher modes. */
262 while (*mode) {
263 if (rdev->constraints->valid_modes_mask & *mode)
264 return 0;
265 *mode /= 2;
268 return -EINVAL;
271 /* dynamic regulator mode switching constraint check */
272 static int regulator_check_drms(struct regulator_dev *rdev)
274 if (!rdev->constraints) {
275 rdev_err(rdev, "no constraints\n");
276 return -ENODEV;
278 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
279 rdev_err(rdev, "operation not allowed\n");
280 return -EPERM;
282 return 0;
285 static ssize_t regulator_uV_show(struct device *dev,
286 struct device_attribute *attr, char *buf)
288 struct regulator_dev *rdev = dev_get_drvdata(dev);
289 ssize_t ret;
291 mutex_lock(&rdev->mutex);
292 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
293 mutex_unlock(&rdev->mutex);
295 return ret;
297 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
299 static ssize_t regulator_uA_show(struct device *dev,
300 struct device_attribute *attr, char *buf)
302 struct regulator_dev *rdev = dev_get_drvdata(dev);
304 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
306 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
308 static ssize_t regulator_name_show(struct device *dev,
309 struct device_attribute *attr, char *buf)
311 struct regulator_dev *rdev = dev_get_drvdata(dev);
313 return sprintf(buf, "%s\n", rdev_get_name(rdev));
316 static ssize_t regulator_print_opmode(char *buf, int mode)
318 switch (mode) {
319 case REGULATOR_MODE_FAST:
320 return sprintf(buf, "fast\n");
321 case REGULATOR_MODE_NORMAL:
322 return sprintf(buf, "normal\n");
323 case REGULATOR_MODE_IDLE:
324 return sprintf(buf, "idle\n");
325 case REGULATOR_MODE_STANDBY:
326 return sprintf(buf, "standby\n");
328 return sprintf(buf, "unknown\n");
331 static ssize_t regulator_opmode_show(struct device *dev,
332 struct device_attribute *attr, char *buf)
334 struct regulator_dev *rdev = dev_get_drvdata(dev);
336 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
338 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
340 static ssize_t regulator_print_state(char *buf, int state)
342 if (state > 0)
343 return sprintf(buf, "enabled\n");
344 else if (state == 0)
345 return sprintf(buf, "disabled\n");
346 else
347 return sprintf(buf, "unknown\n");
350 static ssize_t regulator_state_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354 ssize_t ret;
356 mutex_lock(&rdev->mutex);
357 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
358 mutex_unlock(&rdev->mutex);
360 return ret;
362 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
364 static ssize_t regulator_status_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
367 struct regulator_dev *rdev = dev_get_drvdata(dev);
368 int status;
369 char *label;
371 status = rdev->desc->ops->get_status(rdev);
372 if (status < 0)
373 return status;
375 switch (status) {
376 case REGULATOR_STATUS_OFF:
377 label = "off";
378 break;
379 case REGULATOR_STATUS_ON:
380 label = "on";
381 break;
382 case REGULATOR_STATUS_ERROR:
383 label = "error";
384 break;
385 case REGULATOR_STATUS_FAST:
386 label = "fast";
387 break;
388 case REGULATOR_STATUS_NORMAL:
389 label = "normal";
390 break;
391 case REGULATOR_STATUS_IDLE:
392 label = "idle";
393 break;
394 case REGULATOR_STATUS_STANDBY:
395 label = "standby";
396 break;
397 case REGULATOR_STATUS_UNDEFINED:
398 label = "undefined";
399 break;
400 default:
401 return -ERANGE;
404 return sprintf(buf, "%s\n", label);
406 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
408 static ssize_t regulator_min_uA_show(struct device *dev,
409 struct device_attribute *attr, char *buf)
411 struct regulator_dev *rdev = dev_get_drvdata(dev);
413 if (!rdev->constraints)
414 return sprintf(buf, "constraint not defined\n");
416 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
418 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
420 static ssize_t regulator_max_uA_show(struct device *dev,
421 struct device_attribute *attr, char *buf)
423 struct regulator_dev *rdev = dev_get_drvdata(dev);
425 if (!rdev->constraints)
426 return sprintf(buf, "constraint not defined\n");
428 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
430 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
432 static ssize_t regulator_min_uV_show(struct device *dev,
433 struct device_attribute *attr, char *buf)
435 struct regulator_dev *rdev = dev_get_drvdata(dev);
437 if (!rdev->constraints)
438 return sprintf(buf, "constraint not defined\n");
440 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
442 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
444 static ssize_t regulator_max_uV_show(struct device *dev,
445 struct device_attribute *attr, char *buf)
447 struct regulator_dev *rdev = dev_get_drvdata(dev);
449 if (!rdev->constraints)
450 return sprintf(buf, "constraint not defined\n");
452 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
454 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
456 static ssize_t regulator_total_uA_show(struct device *dev,
457 struct device_attribute *attr, char *buf)
459 struct regulator_dev *rdev = dev_get_drvdata(dev);
460 struct regulator *regulator;
461 int uA = 0;
463 mutex_lock(&rdev->mutex);
464 list_for_each_entry(regulator, &rdev->consumer_list, list)
465 uA += regulator->uA_load;
466 mutex_unlock(&rdev->mutex);
467 return sprintf(buf, "%d\n", uA);
469 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
471 static ssize_t regulator_num_users_show(struct device *dev,
472 struct device_attribute *attr, char *buf)
474 struct regulator_dev *rdev = dev_get_drvdata(dev);
475 return sprintf(buf, "%d\n", rdev->use_count);
478 static ssize_t regulator_type_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 switch (rdev->desc->type) {
484 case REGULATOR_VOLTAGE:
485 return sprintf(buf, "voltage\n");
486 case REGULATOR_CURRENT:
487 return sprintf(buf, "current\n");
489 return sprintf(buf, "unknown\n");
492 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
493 struct device_attribute *attr, char *buf)
495 struct regulator_dev *rdev = dev_get_drvdata(dev);
497 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
499 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
500 regulator_suspend_mem_uV_show, NULL);
502 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
503 struct device_attribute *attr, char *buf)
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
507 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
509 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
510 regulator_suspend_disk_uV_show, NULL);
512 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
513 struct device_attribute *attr, char *buf)
515 struct regulator_dev *rdev = dev_get_drvdata(dev);
517 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
519 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
520 regulator_suspend_standby_uV_show, NULL);
522 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
523 struct device_attribute *attr, char *buf)
525 struct regulator_dev *rdev = dev_get_drvdata(dev);
527 return regulator_print_opmode(buf,
528 rdev->constraints->state_mem.mode);
530 static DEVICE_ATTR(suspend_mem_mode, 0444,
531 regulator_suspend_mem_mode_show, NULL);
533 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
534 struct device_attribute *attr, char *buf)
536 struct regulator_dev *rdev = dev_get_drvdata(dev);
538 return regulator_print_opmode(buf,
539 rdev->constraints->state_disk.mode);
541 static DEVICE_ATTR(suspend_disk_mode, 0444,
542 regulator_suspend_disk_mode_show, NULL);
544 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
545 struct device_attribute *attr, char *buf)
547 struct regulator_dev *rdev = dev_get_drvdata(dev);
549 return regulator_print_opmode(buf,
550 rdev->constraints->state_standby.mode);
552 static DEVICE_ATTR(suspend_standby_mode, 0444,
553 regulator_suspend_standby_mode_show, NULL);
555 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
556 struct device_attribute *attr, char *buf)
558 struct regulator_dev *rdev = dev_get_drvdata(dev);
560 return regulator_print_state(buf,
561 rdev->constraints->state_mem.enabled);
563 static DEVICE_ATTR(suspend_mem_state, 0444,
564 regulator_suspend_mem_state_show, NULL);
566 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
567 struct device_attribute *attr, char *buf)
569 struct regulator_dev *rdev = dev_get_drvdata(dev);
571 return regulator_print_state(buf,
572 rdev->constraints->state_disk.enabled);
574 static DEVICE_ATTR(suspend_disk_state, 0444,
575 regulator_suspend_disk_state_show, NULL);
577 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
578 struct device_attribute *attr, char *buf)
580 struct regulator_dev *rdev = dev_get_drvdata(dev);
582 return regulator_print_state(buf,
583 rdev->constraints->state_standby.enabled);
585 static DEVICE_ATTR(suspend_standby_state, 0444,
586 regulator_suspend_standby_state_show, NULL);
590 * These are the only attributes are present for all regulators.
591 * Other attributes are a function of regulator functionality.
593 static struct device_attribute regulator_dev_attrs[] = {
594 __ATTR(name, 0444, regulator_name_show, NULL),
595 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
596 __ATTR(type, 0444, regulator_type_show, NULL),
597 __ATTR_NULL,
600 static void regulator_dev_release(struct device *dev)
602 struct regulator_dev *rdev = dev_get_drvdata(dev);
603 kfree(rdev);
606 static struct class regulator_class = {
607 .name = "regulator",
608 .dev_release = regulator_dev_release,
609 .dev_attrs = regulator_dev_attrs,
612 /* Calculate the new optimum regulator operating mode based on the new total
613 * consumer load. All locks held by caller */
614 static void drms_uA_update(struct regulator_dev *rdev)
616 struct regulator *sibling;
617 int current_uA = 0, output_uV, input_uV, err;
618 unsigned int mode;
620 err = regulator_check_drms(rdev);
621 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
622 (!rdev->desc->ops->get_voltage &&
623 !rdev->desc->ops->get_voltage_sel) ||
624 !rdev->desc->ops->set_mode)
625 return;
627 /* get output voltage */
628 output_uV = _regulator_get_voltage(rdev);
629 if (output_uV <= 0)
630 return;
632 /* get input voltage */
633 input_uV = 0;
634 if (rdev->supply)
635 input_uV = regulator_get_voltage(rdev->supply);
636 if (input_uV <= 0)
637 input_uV = rdev->constraints->input_uV;
638 if (input_uV <= 0)
639 return;
641 /* calc total requested load */
642 list_for_each_entry(sibling, &rdev->consumer_list, list)
643 current_uA += sibling->uA_load;
645 /* now get the optimum mode for our new total regulator load */
646 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
647 output_uV, current_uA);
649 /* check the new mode is allowed */
650 err = regulator_mode_constrain(rdev, &mode);
651 if (err == 0)
652 rdev->desc->ops->set_mode(rdev, mode);
655 static int suspend_set_state(struct regulator_dev *rdev,
656 struct regulator_state *rstate)
658 int ret = 0;
660 /* If we have no suspend mode configration don't set anything;
661 * only warn if the driver implements set_suspend_voltage or
662 * set_suspend_mode callback.
664 if (!rstate->enabled && !rstate->disabled) {
665 if (rdev->desc->ops->set_suspend_voltage ||
666 rdev->desc->ops->set_suspend_mode)
667 rdev_warn(rdev, "No configuration\n");
668 return 0;
671 if (rstate->enabled && rstate->disabled) {
672 rdev_err(rdev, "invalid configuration\n");
673 return -EINVAL;
676 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
677 ret = rdev->desc->ops->set_suspend_enable(rdev);
678 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
679 ret = rdev->desc->ops->set_suspend_disable(rdev);
680 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
681 ret = 0;
683 if (ret < 0) {
684 rdev_err(rdev, "failed to enabled/disable\n");
685 return ret;
688 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
689 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
690 if (ret < 0) {
691 rdev_err(rdev, "failed to set voltage\n");
692 return ret;
696 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
697 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
698 if (ret < 0) {
699 rdev_err(rdev, "failed to set mode\n");
700 return ret;
703 return ret;
706 /* locks held by caller */
707 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
709 if (!rdev->constraints)
710 return -EINVAL;
712 switch (state) {
713 case PM_SUSPEND_STANDBY:
714 return suspend_set_state(rdev,
715 &rdev->constraints->state_standby);
716 case PM_SUSPEND_MEM:
717 return suspend_set_state(rdev,
718 &rdev->constraints->state_mem);
719 case PM_SUSPEND_MAX:
720 return suspend_set_state(rdev,
721 &rdev->constraints->state_disk);
722 default:
723 return -EINVAL;
727 static void print_constraints(struct regulator_dev *rdev)
729 struct regulation_constraints *constraints = rdev->constraints;
730 char buf[80] = "";
731 int count = 0;
732 int ret;
734 if (constraints->min_uV && constraints->max_uV) {
735 if (constraints->min_uV == constraints->max_uV)
736 count += sprintf(buf + count, "%d mV ",
737 constraints->min_uV / 1000);
738 else
739 count += sprintf(buf + count, "%d <--> %d mV ",
740 constraints->min_uV / 1000,
741 constraints->max_uV / 1000);
744 if (!constraints->min_uV ||
745 constraints->min_uV != constraints->max_uV) {
746 ret = _regulator_get_voltage(rdev);
747 if (ret > 0)
748 count += sprintf(buf + count, "at %d mV ", ret / 1000);
751 if (constraints->uV_offset)
752 count += sprintf(buf, "%dmV offset ",
753 constraints->uV_offset / 1000);
755 if (constraints->min_uA && constraints->max_uA) {
756 if (constraints->min_uA == constraints->max_uA)
757 count += sprintf(buf + count, "%d mA ",
758 constraints->min_uA / 1000);
759 else
760 count += sprintf(buf + count, "%d <--> %d mA ",
761 constraints->min_uA / 1000,
762 constraints->max_uA / 1000);
765 if (!constraints->min_uA ||
766 constraints->min_uA != constraints->max_uA) {
767 ret = _regulator_get_current_limit(rdev);
768 if (ret > 0)
769 count += sprintf(buf + count, "at %d mA ", ret / 1000);
772 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
773 count += sprintf(buf + count, "fast ");
774 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
775 count += sprintf(buf + count, "normal ");
776 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
777 count += sprintf(buf + count, "idle ");
778 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
779 count += sprintf(buf + count, "standby");
781 rdev_info(rdev, "%s\n", buf);
783 if ((constraints->min_uV != constraints->max_uV) &&
784 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
785 rdev_warn(rdev,
786 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
789 static int machine_constraints_voltage(struct regulator_dev *rdev,
790 struct regulation_constraints *constraints)
792 struct regulator_ops *ops = rdev->desc->ops;
793 int ret;
795 /* do we need to apply the constraint voltage */
796 if (rdev->constraints->apply_uV &&
797 rdev->constraints->min_uV == rdev->constraints->max_uV) {
798 ret = _regulator_do_set_voltage(rdev,
799 rdev->constraints->min_uV,
800 rdev->constraints->max_uV);
801 if (ret < 0) {
802 rdev_err(rdev, "failed to apply %duV constraint\n",
803 rdev->constraints->min_uV);
804 return ret;
808 /* constrain machine-level voltage specs to fit
809 * the actual range supported by this regulator.
811 if (ops->list_voltage && rdev->desc->n_voltages) {
812 int count = rdev->desc->n_voltages;
813 int i;
814 int min_uV = INT_MAX;
815 int max_uV = INT_MIN;
816 int cmin = constraints->min_uV;
817 int cmax = constraints->max_uV;
819 /* it's safe to autoconfigure fixed-voltage supplies
820 and the constraints are used by list_voltage. */
821 if (count == 1 && !cmin) {
822 cmin = 1;
823 cmax = INT_MAX;
824 constraints->min_uV = cmin;
825 constraints->max_uV = cmax;
828 /* voltage constraints are optional */
829 if ((cmin == 0) && (cmax == 0))
830 return 0;
832 /* else require explicit machine-level constraints */
833 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
834 rdev_err(rdev, "invalid voltage constraints\n");
835 return -EINVAL;
838 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
839 for (i = 0; i < count; i++) {
840 int value;
842 value = ops->list_voltage(rdev, i);
843 if (value <= 0)
844 continue;
846 /* maybe adjust [min_uV..max_uV] */
847 if (value >= cmin && value < min_uV)
848 min_uV = value;
849 if (value <= cmax && value > max_uV)
850 max_uV = value;
853 /* final: [min_uV..max_uV] valid iff constraints valid */
854 if (max_uV < min_uV) {
855 rdev_err(rdev, "unsupportable voltage constraints\n");
856 return -EINVAL;
859 /* use regulator's subset of machine constraints */
860 if (constraints->min_uV < min_uV) {
861 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
862 constraints->min_uV, min_uV);
863 constraints->min_uV = min_uV;
865 if (constraints->max_uV > max_uV) {
866 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
867 constraints->max_uV, max_uV);
868 constraints->max_uV = max_uV;
872 return 0;
876 * set_machine_constraints - sets regulator constraints
877 * @rdev: regulator source
878 * @constraints: constraints to apply
880 * Allows platform initialisation code to define and constrain
881 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
882 * Constraints *must* be set by platform code in order for some
883 * regulator operations to proceed i.e. set_voltage, set_current_limit,
884 * set_mode.
886 static int set_machine_constraints(struct regulator_dev *rdev,
887 const struct regulation_constraints *constraints)
889 int ret = 0;
890 struct regulator_ops *ops = rdev->desc->ops;
892 if (constraints)
893 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
894 GFP_KERNEL);
895 else
896 rdev->constraints = kzalloc(sizeof(*constraints),
897 GFP_KERNEL);
898 if (!rdev->constraints)
899 return -ENOMEM;
901 ret = machine_constraints_voltage(rdev, rdev->constraints);
902 if (ret != 0)
903 goto out;
905 /* do we need to setup our suspend state */
906 if (rdev->constraints->initial_state) {
907 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
908 if (ret < 0) {
909 rdev_err(rdev, "failed to set suspend state\n");
910 goto out;
914 if (rdev->constraints->initial_mode) {
915 if (!ops->set_mode) {
916 rdev_err(rdev, "no set_mode operation\n");
917 ret = -EINVAL;
918 goto out;
921 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
922 if (ret < 0) {
923 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
924 goto out;
928 /* If the constraints say the regulator should be on at this point
929 * and we have control then make sure it is enabled.
931 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
932 ops->enable) {
933 ret = ops->enable(rdev);
934 if (ret < 0) {
935 rdev_err(rdev, "failed to enable\n");
936 goto out;
940 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
941 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
942 if (ret < 0) {
943 rdev_err(rdev, "failed to set ramp_delay\n");
944 goto out;
948 print_constraints(rdev);
949 return 0;
950 out:
951 kfree(rdev->constraints);
952 rdev->constraints = NULL;
953 return ret;
957 * set_supply - set regulator supply regulator
958 * @rdev: regulator name
959 * @supply_rdev: supply regulator name
961 * Called by platform initialisation code to set the supply regulator for this
962 * regulator. This ensures that a regulators supply will also be enabled by the
963 * core if it's child is enabled.
965 static int set_supply(struct regulator_dev *rdev,
966 struct regulator_dev *supply_rdev)
968 int err;
970 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
972 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
973 if (rdev->supply == NULL) {
974 err = -ENOMEM;
975 return err;
978 return 0;
982 * set_consumer_device_supply - Bind a regulator to a symbolic supply
983 * @rdev: regulator source
984 * @consumer_dev_name: dev_name() string for device supply applies to
985 * @supply: symbolic name for supply
987 * Allows platform initialisation code to map physical regulator
988 * sources to symbolic names for supplies for use by devices. Devices
989 * should use these symbolic names to request regulators, avoiding the
990 * need to provide board-specific regulator names as platform data.
992 static int set_consumer_device_supply(struct regulator_dev *rdev,
993 const char *consumer_dev_name,
994 const char *supply)
996 struct regulator_map *node;
997 int has_dev;
999 if (supply == NULL)
1000 return -EINVAL;
1002 if (consumer_dev_name != NULL)
1003 has_dev = 1;
1004 else
1005 has_dev = 0;
1007 list_for_each_entry(node, &regulator_map_list, list) {
1008 if (node->dev_name && consumer_dev_name) {
1009 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1010 continue;
1011 } else if (node->dev_name || consumer_dev_name) {
1012 continue;
1015 if (strcmp(node->supply, supply) != 0)
1016 continue;
1018 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1019 consumer_dev_name,
1020 dev_name(&node->regulator->dev),
1021 node->regulator->desc->name,
1022 supply,
1023 dev_name(&rdev->dev), rdev_get_name(rdev));
1024 return -EBUSY;
1027 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1028 if (node == NULL)
1029 return -ENOMEM;
1031 node->regulator = rdev;
1032 node->supply = supply;
1034 if (has_dev) {
1035 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1036 if (node->dev_name == NULL) {
1037 kfree(node);
1038 return -ENOMEM;
1042 list_add(&node->list, &regulator_map_list);
1043 return 0;
1046 static void unset_regulator_supplies(struct regulator_dev *rdev)
1048 struct regulator_map *node, *n;
1050 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1051 if (rdev == node->regulator) {
1052 list_del(&node->list);
1053 kfree(node->dev_name);
1054 kfree(node);
1059 #define REG_STR_SIZE 64
1061 static struct regulator *create_regulator(struct regulator_dev *rdev,
1062 struct device *dev,
1063 const char *supply_name)
1065 struct regulator *regulator;
1066 char buf[REG_STR_SIZE];
1067 int err, size;
1069 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1070 if (regulator == NULL)
1071 return NULL;
1073 mutex_lock(&rdev->mutex);
1074 regulator->rdev = rdev;
1075 list_add(&regulator->list, &rdev->consumer_list);
1077 if (dev) {
1078 regulator->dev = dev;
1080 /* Add a link to the device sysfs entry */
1081 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1082 dev->kobj.name, supply_name);
1083 if (size >= REG_STR_SIZE)
1084 goto overflow_err;
1086 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1087 if (regulator->supply_name == NULL)
1088 goto overflow_err;
1090 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1091 buf);
1092 if (err) {
1093 rdev_warn(rdev, "could not add device link %s err %d\n",
1094 dev->kobj.name, err);
1095 /* non-fatal */
1097 } else {
1098 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1099 if (regulator->supply_name == NULL)
1100 goto overflow_err;
1103 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1104 rdev->debugfs);
1105 if (!regulator->debugfs) {
1106 rdev_warn(rdev, "Failed to create debugfs directory\n");
1107 } else {
1108 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1109 &regulator->uA_load);
1110 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1111 &regulator->min_uV);
1112 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1113 &regulator->max_uV);
1117 * Check now if the regulator is an always on regulator - if
1118 * it is then we don't need to do nearly so much work for
1119 * enable/disable calls.
1121 if (!_regulator_can_change_status(rdev) &&
1122 _regulator_is_enabled(rdev))
1123 regulator->always_on = true;
1125 mutex_unlock(&rdev->mutex);
1126 return regulator;
1127 overflow_err:
1128 list_del(&regulator->list);
1129 kfree(regulator);
1130 mutex_unlock(&rdev->mutex);
1131 return NULL;
1134 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1136 if (!rdev->desc->ops->enable_time)
1137 return rdev->desc->enable_time;
1138 return rdev->desc->ops->enable_time(rdev);
1141 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1142 const char *supply,
1143 int *ret)
1145 struct regulator_dev *r;
1146 struct device_node *node;
1147 struct regulator_map *map;
1148 const char *devname = NULL;
1150 /* first do a dt based lookup */
1151 if (dev && dev->of_node) {
1152 node = of_get_regulator(dev, supply);
1153 if (node) {
1154 list_for_each_entry(r, &regulator_list, list)
1155 if (r->dev.parent &&
1156 node == r->dev.of_node)
1157 return r;
1158 } else {
1160 * If we couldn't even get the node then it's
1161 * not just that the device didn't register
1162 * yet, there's no node and we'll never
1163 * succeed.
1165 *ret = -ENODEV;
1169 /* if not found, try doing it non-dt way */
1170 if (dev)
1171 devname = dev_name(dev);
1173 list_for_each_entry(r, &regulator_list, list)
1174 if (strcmp(rdev_get_name(r), supply) == 0)
1175 return r;
1177 list_for_each_entry(map, &regulator_map_list, list) {
1178 /* If the mapping has a device set up it must match */
1179 if (map->dev_name &&
1180 (!devname || strcmp(map->dev_name, devname)))
1181 continue;
1183 if (strcmp(map->supply, supply) == 0)
1184 return map->regulator;
1188 return NULL;
1191 /* Internal regulator request function */
1192 static struct regulator *_regulator_get(struct device *dev, const char *id,
1193 int exclusive)
1195 struct regulator_dev *rdev;
1196 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1197 const char *devname = NULL;
1198 int ret;
1200 if (id == NULL) {
1201 pr_err("get() with no identifier\n");
1202 return regulator;
1205 if (dev)
1206 devname = dev_name(dev);
1208 mutex_lock(&regulator_list_mutex);
1210 rdev = regulator_dev_lookup(dev, id, &ret);
1211 if (rdev)
1212 goto found;
1214 if (board_wants_dummy_regulator) {
1215 rdev = dummy_regulator_rdev;
1216 goto found;
1219 #ifdef CONFIG_REGULATOR_DUMMY
1220 if (!devname)
1221 devname = "deviceless";
1223 /* If the board didn't flag that it was fully constrained then
1224 * substitute in a dummy regulator so consumers can continue.
1226 if (!has_full_constraints) {
1227 pr_warn("%s supply %s not found, using dummy regulator\n",
1228 devname, id);
1229 rdev = dummy_regulator_rdev;
1230 goto found;
1232 #endif
1234 mutex_unlock(&regulator_list_mutex);
1235 return regulator;
1237 found:
1238 if (rdev->exclusive) {
1239 regulator = ERR_PTR(-EPERM);
1240 goto out;
1243 if (exclusive && rdev->open_count) {
1244 regulator = ERR_PTR(-EBUSY);
1245 goto out;
1248 if (!try_module_get(rdev->owner))
1249 goto out;
1251 regulator = create_regulator(rdev, dev, id);
1252 if (regulator == NULL) {
1253 regulator = ERR_PTR(-ENOMEM);
1254 module_put(rdev->owner);
1255 goto out;
1258 rdev->open_count++;
1259 if (exclusive) {
1260 rdev->exclusive = 1;
1262 ret = _regulator_is_enabled(rdev);
1263 if (ret > 0)
1264 rdev->use_count = 1;
1265 else
1266 rdev->use_count = 0;
1269 out:
1270 mutex_unlock(&regulator_list_mutex);
1272 return regulator;
1276 * regulator_get - lookup and obtain a reference to a regulator.
1277 * @dev: device for regulator "consumer"
1278 * @id: Supply name or regulator ID.
1280 * Returns a struct regulator corresponding to the regulator producer,
1281 * or IS_ERR() condition containing errno.
1283 * Use of supply names configured via regulator_set_device_supply() is
1284 * strongly encouraged. It is recommended that the supply name used
1285 * should match the name used for the supply and/or the relevant
1286 * device pins in the datasheet.
1288 struct regulator *regulator_get(struct device *dev, const char *id)
1290 return _regulator_get(dev, id, 0);
1292 EXPORT_SYMBOL_GPL(regulator_get);
1294 static void devm_regulator_release(struct device *dev, void *res)
1296 regulator_put(*(struct regulator **)res);
1300 * devm_regulator_get - Resource managed regulator_get()
1301 * @dev: device for regulator "consumer"
1302 * @id: Supply name or regulator ID.
1304 * Managed regulator_get(). Regulators returned from this function are
1305 * automatically regulator_put() on driver detach. See regulator_get() for more
1306 * information.
1308 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1310 struct regulator **ptr, *regulator;
1312 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1313 if (!ptr)
1314 return ERR_PTR(-ENOMEM);
1316 regulator = regulator_get(dev, id);
1317 if (!IS_ERR(regulator)) {
1318 *ptr = regulator;
1319 devres_add(dev, ptr);
1320 } else {
1321 devres_free(ptr);
1324 return regulator;
1326 EXPORT_SYMBOL_GPL(devm_regulator_get);
1329 * regulator_get_exclusive - obtain exclusive access to a regulator.
1330 * @dev: device for regulator "consumer"
1331 * @id: Supply name or regulator ID.
1333 * Returns a struct regulator corresponding to the regulator producer,
1334 * or IS_ERR() condition containing errno. Other consumers will be
1335 * unable to obtain this reference is held and the use count for the
1336 * regulator will be initialised to reflect the current state of the
1337 * regulator.
1339 * This is intended for use by consumers which cannot tolerate shared
1340 * use of the regulator such as those which need to force the
1341 * regulator off for correct operation of the hardware they are
1342 * controlling.
1344 * Use of supply names configured via regulator_set_device_supply() is
1345 * strongly encouraged. It is recommended that the supply name used
1346 * should match the name used for the supply and/or the relevant
1347 * device pins in the datasheet.
1349 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1351 return _regulator_get(dev, id, 1);
1353 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1356 * regulator_put - "free" the regulator source
1357 * @regulator: regulator source
1359 * Note: drivers must ensure that all regulator_enable calls made on this
1360 * regulator source are balanced by regulator_disable calls prior to calling
1361 * this function.
1363 void regulator_put(struct regulator *regulator)
1365 struct regulator_dev *rdev;
1367 if (regulator == NULL || IS_ERR(regulator))
1368 return;
1370 mutex_lock(&regulator_list_mutex);
1371 rdev = regulator->rdev;
1373 debugfs_remove_recursive(regulator->debugfs);
1375 /* remove any sysfs entries */
1376 if (regulator->dev)
1377 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1378 kfree(regulator->supply_name);
1379 list_del(&regulator->list);
1380 kfree(regulator);
1382 rdev->open_count--;
1383 rdev->exclusive = 0;
1385 module_put(rdev->owner);
1386 mutex_unlock(&regulator_list_mutex);
1388 EXPORT_SYMBOL_GPL(regulator_put);
1390 static int devm_regulator_match(struct device *dev, void *res, void *data)
1392 struct regulator **r = res;
1393 if (!r || !*r) {
1394 WARN_ON(!r || !*r);
1395 return 0;
1397 return *r == data;
1401 * devm_regulator_put - Resource managed regulator_put()
1402 * @regulator: regulator to free
1404 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1405 * this function will not need to be called and the resource management
1406 * code will ensure that the resource is freed.
1408 void devm_regulator_put(struct regulator *regulator)
1410 int rc;
1412 rc = devres_release(regulator->dev, devm_regulator_release,
1413 devm_regulator_match, regulator);
1414 if (rc != 0)
1415 WARN_ON(rc);
1417 EXPORT_SYMBOL_GPL(devm_regulator_put);
1419 static int _regulator_do_enable(struct regulator_dev *rdev)
1421 int ret, delay;
1423 /* Query before enabling in case configuration dependent. */
1424 ret = _regulator_get_enable_time(rdev);
1425 if (ret >= 0) {
1426 delay = ret;
1427 } else {
1428 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1429 delay = 0;
1432 trace_regulator_enable(rdev_get_name(rdev));
1434 if (rdev->ena_gpio) {
1435 gpio_set_value_cansleep(rdev->ena_gpio,
1436 !rdev->ena_gpio_invert);
1437 rdev->ena_gpio_state = 1;
1438 } else if (rdev->desc->ops->enable) {
1439 ret = rdev->desc->ops->enable(rdev);
1440 if (ret < 0)
1441 return ret;
1442 } else {
1443 return -EINVAL;
1446 /* Allow the regulator to ramp; it would be useful to extend
1447 * this for bulk operations so that the regulators can ramp
1448 * together. */
1449 trace_regulator_enable_delay(rdev_get_name(rdev));
1451 if (delay >= 1000) {
1452 mdelay(delay / 1000);
1453 udelay(delay % 1000);
1454 } else if (delay) {
1455 udelay(delay);
1458 trace_regulator_enable_complete(rdev_get_name(rdev));
1460 return 0;
1463 /* locks held by regulator_enable() */
1464 static int _regulator_enable(struct regulator_dev *rdev)
1466 int ret;
1468 /* check voltage and requested load before enabling */
1469 if (rdev->constraints &&
1470 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1471 drms_uA_update(rdev);
1473 if (rdev->use_count == 0) {
1474 /* The regulator may on if it's not switchable or left on */
1475 ret = _regulator_is_enabled(rdev);
1476 if (ret == -EINVAL || ret == 0) {
1477 if (!_regulator_can_change_status(rdev))
1478 return -EPERM;
1480 ret = _regulator_do_enable(rdev);
1481 if (ret < 0)
1482 return ret;
1484 } else if (ret < 0) {
1485 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1486 return ret;
1488 /* Fallthrough on positive return values - already enabled */
1491 rdev->use_count++;
1493 return 0;
1497 * regulator_enable - enable regulator output
1498 * @regulator: regulator source
1500 * Request that the regulator be enabled with the regulator output at
1501 * the predefined voltage or current value. Calls to regulator_enable()
1502 * must be balanced with calls to regulator_disable().
1504 * NOTE: the output value can be set by other drivers, boot loader or may be
1505 * hardwired in the regulator.
1507 int regulator_enable(struct regulator *regulator)
1509 struct regulator_dev *rdev = regulator->rdev;
1510 int ret = 0;
1512 if (regulator->always_on)
1513 return 0;
1515 if (rdev->supply) {
1516 ret = regulator_enable(rdev->supply);
1517 if (ret != 0)
1518 return ret;
1521 mutex_lock(&rdev->mutex);
1522 ret = _regulator_enable(rdev);
1523 mutex_unlock(&rdev->mutex);
1525 if (ret != 0 && rdev->supply)
1526 regulator_disable(rdev->supply);
1528 return ret;
1530 EXPORT_SYMBOL_GPL(regulator_enable);
1532 static int _regulator_do_disable(struct regulator_dev *rdev)
1534 int ret;
1536 trace_regulator_disable(rdev_get_name(rdev));
1538 if (rdev->ena_gpio) {
1539 gpio_set_value_cansleep(rdev->ena_gpio,
1540 rdev->ena_gpio_invert);
1541 rdev->ena_gpio_state = 0;
1543 } else if (rdev->desc->ops->disable) {
1544 ret = rdev->desc->ops->disable(rdev);
1545 if (ret != 0)
1546 return ret;
1549 trace_regulator_disable_complete(rdev_get_name(rdev));
1551 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1552 NULL);
1553 return 0;
1556 /* locks held by regulator_disable() */
1557 static int _regulator_disable(struct regulator_dev *rdev)
1559 int ret = 0;
1561 if (WARN(rdev->use_count <= 0,
1562 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1563 return -EIO;
1565 /* are we the last user and permitted to disable ? */
1566 if (rdev->use_count == 1 &&
1567 (rdev->constraints && !rdev->constraints->always_on)) {
1569 /* we are last user */
1570 if (_regulator_can_change_status(rdev)) {
1571 ret = _regulator_do_disable(rdev);
1572 if (ret < 0) {
1573 rdev_err(rdev, "failed to disable\n");
1574 return ret;
1578 rdev->use_count = 0;
1579 } else if (rdev->use_count > 1) {
1581 if (rdev->constraints &&
1582 (rdev->constraints->valid_ops_mask &
1583 REGULATOR_CHANGE_DRMS))
1584 drms_uA_update(rdev);
1586 rdev->use_count--;
1589 return ret;
1593 * regulator_disable - disable regulator output
1594 * @regulator: regulator source
1596 * Disable the regulator output voltage or current. Calls to
1597 * regulator_enable() must be balanced with calls to
1598 * regulator_disable().
1600 * NOTE: this will only disable the regulator output if no other consumer
1601 * devices have it enabled, the regulator device supports disabling and
1602 * machine constraints permit this operation.
1604 int regulator_disable(struct regulator *regulator)
1606 struct regulator_dev *rdev = regulator->rdev;
1607 int ret = 0;
1609 if (regulator->always_on)
1610 return 0;
1612 mutex_lock(&rdev->mutex);
1613 ret = _regulator_disable(rdev);
1614 mutex_unlock(&rdev->mutex);
1616 if (ret == 0 && rdev->supply)
1617 regulator_disable(rdev->supply);
1619 return ret;
1621 EXPORT_SYMBOL_GPL(regulator_disable);
1623 /* locks held by regulator_force_disable() */
1624 static int _regulator_force_disable(struct regulator_dev *rdev)
1626 int ret = 0;
1628 /* force disable */
1629 if (rdev->desc->ops->disable) {
1630 /* ah well, who wants to live forever... */
1631 ret = rdev->desc->ops->disable(rdev);
1632 if (ret < 0) {
1633 rdev_err(rdev, "failed to force disable\n");
1634 return ret;
1636 /* notify other consumers that power has been forced off */
1637 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1638 REGULATOR_EVENT_DISABLE, NULL);
1641 return ret;
1645 * regulator_force_disable - force disable regulator output
1646 * @regulator: regulator source
1648 * Forcibly disable the regulator output voltage or current.
1649 * NOTE: this *will* disable the regulator output even if other consumer
1650 * devices have it enabled. This should be used for situations when device
1651 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1653 int regulator_force_disable(struct regulator *regulator)
1655 struct regulator_dev *rdev = regulator->rdev;
1656 int ret;
1658 mutex_lock(&rdev->mutex);
1659 regulator->uA_load = 0;
1660 ret = _regulator_force_disable(regulator->rdev);
1661 mutex_unlock(&rdev->mutex);
1663 if (rdev->supply)
1664 while (rdev->open_count--)
1665 regulator_disable(rdev->supply);
1667 return ret;
1669 EXPORT_SYMBOL_GPL(regulator_force_disable);
1671 static void regulator_disable_work(struct work_struct *work)
1673 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1674 disable_work.work);
1675 int count, i, ret;
1677 mutex_lock(&rdev->mutex);
1679 BUG_ON(!rdev->deferred_disables);
1681 count = rdev->deferred_disables;
1682 rdev->deferred_disables = 0;
1684 for (i = 0; i < count; i++) {
1685 ret = _regulator_disable(rdev);
1686 if (ret != 0)
1687 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1690 mutex_unlock(&rdev->mutex);
1692 if (rdev->supply) {
1693 for (i = 0; i < count; i++) {
1694 ret = regulator_disable(rdev->supply);
1695 if (ret != 0) {
1696 rdev_err(rdev,
1697 "Supply disable failed: %d\n", ret);
1704 * regulator_disable_deferred - disable regulator output with delay
1705 * @regulator: regulator source
1706 * @ms: miliseconds until the regulator is disabled
1708 * Execute regulator_disable() on the regulator after a delay. This
1709 * is intended for use with devices that require some time to quiesce.
1711 * NOTE: this will only disable the regulator output if no other consumer
1712 * devices have it enabled, the regulator device supports disabling and
1713 * machine constraints permit this operation.
1715 int regulator_disable_deferred(struct regulator *regulator, int ms)
1717 struct regulator_dev *rdev = regulator->rdev;
1718 int ret;
1720 if (regulator->always_on)
1721 return 0;
1723 mutex_lock(&rdev->mutex);
1724 rdev->deferred_disables++;
1725 mutex_unlock(&rdev->mutex);
1727 ret = schedule_delayed_work(&rdev->disable_work,
1728 msecs_to_jiffies(ms));
1729 if (ret < 0)
1730 return ret;
1731 else
1732 return 0;
1734 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1737 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1739 * @rdev: regulator to operate on
1741 * Regulators that use regmap for their register I/O can set the
1742 * enable_reg and enable_mask fields in their descriptor and then use
1743 * this as their is_enabled operation, saving some code.
1745 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1747 unsigned int val;
1748 int ret;
1750 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1751 if (ret != 0)
1752 return ret;
1754 return (val & rdev->desc->enable_mask) != 0;
1756 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1759 * regulator_enable_regmap - standard enable() for regmap users
1761 * @rdev: regulator to operate on
1763 * Regulators that use regmap for their register I/O can set the
1764 * enable_reg and enable_mask fields in their descriptor and then use
1765 * this as their enable() operation, saving some code.
1767 int regulator_enable_regmap(struct regulator_dev *rdev)
1769 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1770 rdev->desc->enable_mask,
1771 rdev->desc->enable_mask);
1773 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1776 * regulator_disable_regmap - standard disable() for regmap users
1778 * @rdev: regulator to operate on
1780 * Regulators that use regmap for their register I/O can set the
1781 * enable_reg and enable_mask fields in their descriptor and then use
1782 * this as their disable() operation, saving some code.
1784 int regulator_disable_regmap(struct regulator_dev *rdev)
1786 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1787 rdev->desc->enable_mask, 0);
1789 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1791 static int _regulator_is_enabled(struct regulator_dev *rdev)
1793 /* A GPIO control always takes precedence */
1794 if (rdev->ena_gpio)
1795 return rdev->ena_gpio_state;
1797 /* If we don't know then assume that the regulator is always on */
1798 if (!rdev->desc->ops->is_enabled)
1799 return 1;
1801 return rdev->desc->ops->is_enabled(rdev);
1805 * regulator_is_enabled - is the regulator output enabled
1806 * @regulator: regulator source
1808 * Returns positive if the regulator driver backing the source/client
1809 * has requested that the device be enabled, zero if it hasn't, else a
1810 * negative errno code.
1812 * Note that the device backing this regulator handle can have multiple
1813 * users, so it might be enabled even if regulator_enable() was never
1814 * called for this particular source.
1816 int regulator_is_enabled(struct regulator *regulator)
1818 int ret;
1820 if (regulator->always_on)
1821 return 1;
1823 mutex_lock(&regulator->rdev->mutex);
1824 ret = _regulator_is_enabled(regulator->rdev);
1825 mutex_unlock(&regulator->rdev->mutex);
1827 return ret;
1829 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1832 * regulator_count_voltages - count regulator_list_voltage() selectors
1833 * @regulator: regulator source
1835 * Returns number of selectors, or negative errno. Selectors are
1836 * numbered starting at zero, and typically correspond to bitfields
1837 * in hardware registers.
1839 int regulator_count_voltages(struct regulator *regulator)
1841 struct regulator_dev *rdev = regulator->rdev;
1843 return rdev->desc->n_voltages ? : -EINVAL;
1845 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1848 * regulator_list_voltage_linear - List voltages with simple calculation
1850 * @rdev: Regulator device
1851 * @selector: Selector to convert into a voltage
1853 * Regulators with a simple linear mapping between voltages and
1854 * selectors can set min_uV and uV_step in the regulator descriptor
1855 * and then use this function as their list_voltage() operation,
1857 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1858 unsigned int selector)
1860 if (selector >= rdev->desc->n_voltages)
1861 return -EINVAL;
1863 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1865 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1868 * regulator_list_voltage_table - List voltages with table based mapping
1870 * @rdev: Regulator device
1871 * @selector: Selector to convert into a voltage
1873 * Regulators with table based mapping between voltages and
1874 * selectors can set volt_table in the regulator descriptor
1875 * and then use this function as their list_voltage() operation.
1877 int regulator_list_voltage_table(struct regulator_dev *rdev,
1878 unsigned int selector)
1880 if (!rdev->desc->volt_table) {
1881 BUG_ON(!rdev->desc->volt_table);
1882 return -EINVAL;
1885 if (selector >= rdev->desc->n_voltages)
1886 return -EINVAL;
1888 return rdev->desc->volt_table[selector];
1890 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1893 * regulator_list_voltage - enumerate supported voltages
1894 * @regulator: regulator source
1895 * @selector: identify voltage to list
1896 * Context: can sleep
1898 * Returns a voltage that can be passed to @regulator_set_voltage(),
1899 * zero if this selector code can't be used on this system, or a
1900 * negative errno.
1902 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1904 struct regulator_dev *rdev = regulator->rdev;
1905 struct regulator_ops *ops = rdev->desc->ops;
1906 int ret;
1908 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1909 return -EINVAL;
1911 mutex_lock(&rdev->mutex);
1912 ret = ops->list_voltage(rdev, selector);
1913 mutex_unlock(&rdev->mutex);
1915 if (ret > 0) {
1916 if (ret < rdev->constraints->min_uV)
1917 ret = 0;
1918 else if (ret > rdev->constraints->max_uV)
1919 ret = 0;
1922 return ret;
1924 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1927 * regulator_is_supported_voltage - check if a voltage range can be supported
1929 * @regulator: Regulator to check.
1930 * @min_uV: Minimum required voltage in uV.
1931 * @max_uV: Maximum required voltage in uV.
1933 * Returns a boolean or a negative error code.
1935 int regulator_is_supported_voltage(struct regulator *regulator,
1936 int min_uV, int max_uV)
1938 struct regulator_dev *rdev = regulator->rdev;
1939 int i, voltages, ret;
1941 /* If we can't change voltage check the current voltage */
1942 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1943 ret = regulator_get_voltage(regulator);
1944 if (ret >= 0)
1945 return (min_uV >= ret && ret <= max_uV);
1946 else
1947 return ret;
1950 ret = regulator_count_voltages(regulator);
1951 if (ret < 0)
1952 return ret;
1953 voltages = ret;
1955 for (i = 0; i < voltages; i++) {
1956 ret = regulator_list_voltage(regulator, i);
1958 if (ret >= min_uV && ret <= max_uV)
1959 return 1;
1962 return 0;
1964 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1967 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1969 * @rdev: regulator to operate on
1971 * Regulators that use regmap for their register I/O can set the
1972 * vsel_reg and vsel_mask fields in their descriptor and then use this
1973 * as their get_voltage_vsel operation, saving some code.
1975 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1977 unsigned int val;
1978 int ret;
1980 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1981 if (ret != 0)
1982 return ret;
1984 val &= rdev->desc->vsel_mask;
1985 val >>= ffs(rdev->desc->vsel_mask) - 1;
1987 return val;
1989 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1992 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1994 * @rdev: regulator to operate on
1995 * @sel: Selector to set
1997 * Regulators that use regmap for their register I/O can set the
1998 * vsel_reg and vsel_mask fields in their descriptor and then use this
1999 * as their set_voltage_vsel operation, saving some code.
2001 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2003 sel <<= ffs(rdev->desc->vsel_mask) - 1;
2005 return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2006 rdev->desc->vsel_mask, sel);
2008 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2011 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2013 * @rdev: Regulator to operate on
2014 * @min_uV: Lower bound for voltage
2015 * @max_uV: Upper bound for voltage
2017 * Drivers implementing set_voltage_sel() and list_voltage() can use
2018 * this as their map_voltage() operation. It will find a suitable
2019 * voltage by calling list_voltage() until it gets something in bounds
2020 * for the requested voltages.
2022 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2023 int min_uV, int max_uV)
2025 int best_val = INT_MAX;
2026 int selector = 0;
2027 int i, ret;
2029 /* Find the smallest voltage that falls within the specified
2030 * range.
2032 for (i = 0; i < rdev->desc->n_voltages; i++) {
2033 ret = rdev->desc->ops->list_voltage(rdev, i);
2034 if (ret < 0)
2035 continue;
2037 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2038 best_val = ret;
2039 selector = i;
2043 if (best_val != INT_MAX)
2044 return selector;
2045 else
2046 return -EINVAL;
2048 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2051 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2053 * @rdev: Regulator to operate on
2054 * @min_uV: Lower bound for voltage
2055 * @max_uV: Upper bound for voltage
2057 * Drivers providing min_uV and uV_step in their regulator_desc can
2058 * use this as their map_voltage() operation.
2060 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2061 int min_uV, int max_uV)
2063 int ret, voltage;
2065 /* Allow uV_step to be 0 for fixed voltage */
2066 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2067 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2068 return 0;
2069 else
2070 return -EINVAL;
2073 if (!rdev->desc->uV_step) {
2074 BUG_ON(!rdev->desc->uV_step);
2075 return -EINVAL;
2078 if (min_uV < rdev->desc->min_uV)
2079 min_uV = rdev->desc->min_uV;
2081 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2082 if (ret < 0)
2083 return ret;
2085 /* Map back into a voltage to verify we're still in bounds */
2086 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2087 if (voltage < min_uV || voltage > max_uV)
2088 return -EINVAL;
2090 return ret;
2092 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2094 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2095 int min_uV, int max_uV)
2097 int ret;
2098 int delay = 0;
2099 int best_val = 0;
2100 unsigned int selector;
2101 int old_selector = -1;
2103 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2105 min_uV += rdev->constraints->uV_offset;
2106 max_uV += rdev->constraints->uV_offset;
2109 * If we can't obtain the old selector there is not enough
2110 * info to call set_voltage_time_sel().
2112 if (_regulator_is_enabled(rdev) &&
2113 rdev->desc->ops->set_voltage_time_sel &&
2114 rdev->desc->ops->get_voltage_sel) {
2115 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2116 if (old_selector < 0)
2117 return old_selector;
2120 if (rdev->desc->ops->set_voltage) {
2121 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2122 &selector);
2124 if (ret >= 0) {
2125 if (rdev->desc->ops->list_voltage)
2126 best_val = rdev->desc->ops->list_voltage(rdev,
2127 selector);
2128 else
2129 best_val = _regulator_get_voltage(rdev);
2132 } else if (rdev->desc->ops->set_voltage_sel) {
2133 if (rdev->desc->ops->map_voltage) {
2134 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2135 max_uV);
2136 } else {
2137 if (rdev->desc->ops->list_voltage ==
2138 regulator_list_voltage_linear)
2139 ret = regulator_map_voltage_linear(rdev,
2140 min_uV, max_uV);
2141 else
2142 ret = regulator_map_voltage_iterate(rdev,
2143 min_uV, max_uV);
2146 if (ret >= 0) {
2147 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2148 if (min_uV <= best_val && max_uV >= best_val) {
2149 selector = ret;
2150 ret = rdev->desc->ops->set_voltage_sel(rdev,
2151 ret);
2152 } else {
2153 ret = -EINVAL;
2156 } else {
2157 ret = -EINVAL;
2160 /* Call set_voltage_time_sel if successfully obtained old_selector */
2161 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2162 rdev->desc->ops->set_voltage_time_sel) {
2164 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2165 old_selector, selector);
2166 if (delay < 0) {
2167 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2168 delay);
2169 delay = 0;
2172 /* Insert any necessary delays */
2173 if (delay >= 1000) {
2174 mdelay(delay / 1000);
2175 udelay(delay % 1000);
2176 } else if (delay) {
2177 udelay(delay);
2181 if (ret == 0 && best_val >= 0)
2182 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2183 (void *)best_val);
2185 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2187 return ret;
2191 * regulator_set_voltage - set regulator output voltage
2192 * @regulator: regulator source
2193 * @min_uV: Minimum required voltage in uV
2194 * @max_uV: Maximum acceptable voltage in uV
2196 * Sets a voltage regulator to the desired output voltage. This can be set
2197 * during any regulator state. IOW, regulator can be disabled or enabled.
2199 * If the regulator is enabled then the voltage will change to the new value
2200 * immediately otherwise if the regulator is disabled the regulator will
2201 * output at the new voltage when enabled.
2203 * NOTE: If the regulator is shared between several devices then the lowest
2204 * request voltage that meets the system constraints will be used.
2205 * Regulator system constraints must be set for this regulator before
2206 * calling this function otherwise this call will fail.
2208 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2210 struct regulator_dev *rdev = regulator->rdev;
2211 int ret = 0;
2213 mutex_lock(&rdev->mutex);
2215 /* If we're setting the same range as last time the change
2216 * should be a noop (some cpufreq implementations use the same
2217 * voltage for multiple frequencies, for example).
2219 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2220 goto out;
2222 /* sanity check */
2223 if (!rdev->desc->ops->set_voltage &&
2224 !rdev->desc->ops->set_voltage_sel) {
2225 ret = -EINVAL;
2226 goto out;
2229 /* constraints check */
2230 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2231 if (ret < 0)
2232 goto out;
2233 regulator->min_uV = min_uV;
2234 regulator->max_uV = max_uV;
2236 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2237 if (ret < 0)
2238 goto out;
2240 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2242 out:
2243 mutex_unlock(&rdev->mutex);
2244 return ret;
2246 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2249 * regulator_set_voltage_time - get raise/fall time
2250 * @regulator: regulator source
2251 * @old_uV: starting voltage in microvolts
2252 * @new_uV: target voltage in microvolts
2254 * Provided with the starting and ending voltage, this function attempts to
2255 * calculate the time in microseconds required to rise or fall to this new
2256 * voltage.
2258 int regulator_set_voltage_time(struct regulator *regulator,
2259 int old_uV, int new_uV)
2261 struct regulator_dev *rdev = regulator->rdev;
2262 struct regulator_ops *ops = rdev->desc->ops;
2263 int old_sel = -1;
2264 int new_sel = -1;
2265 int voltage;
2266 int i;
2268 /* Currently requires operations to do this */
2269 if (!ops->list_voltage || !ops->set_voltage_time_sel
2270 || !rdev->desc->n_voltages)
2271 return -EINVAL;
2273 for (i = 0; i < rdev->desc->n_voltages; i++) {
2274 /* We only look for exact voltage matches here */
2275 voltage = regulator_list_voltage(regulator, i);
2276 if (voltage < 0)
2277 return -EINVAL;
2278 if (voltage == 0)
2279 continue;
2280 if (voltage == old_uV)
2281 old_sel = i;
2282 if (voltage == new_uV)
2283 new_sel = i;
2286 if (old_sel < 0 || new_sel < 0)
2287 return -EINVAL;
2289 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2291 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2294 *regulator_set_voltage_time_sel - get raise/fall time
2295 * @regulator: regulator source
2296 * @old_selector: selector for starting voltage
2297 * @new_selector: selector for target voltage
2299 * Provided with the starting and target voltage selectors, this function
2300 * returns time in microseconds required to rise or fall to this new voltage
2302 * Drivers providing ramp_delay in regulation_constraints can use this as their
2303 * set_voltage_time_sel() operation.
2305 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2306 unsigned int old_selector,
2307 unsigned int new_selector)
2309 unsigned int ramp_delay = 0;
2310 int old_volt, new_volt;
2312 if (rdev->constraints->ramp_delay)
2313 ramp_delay = rdev->constraints->ramp_delay;
2314 else if (rdev->desc->ramp_delay)
2315 ramp_delay = rdev->desc->ramp_delay;
2317 if (ramp_delay == 0) {
2318 rdev_warn(rdev, "ramp_delay not set\n");
2319 return 0;
2322 /* sanity check */
2323 if (!rdev->desc->ops->list_voltage)
2324 return -EINVAL;
2326 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2327 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2329 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2331 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2334 * regulator_sync_voltage - re-apply last regulator output voltage
2335 * @regulator: regulator source
2337 * Re-apply the last configured voltage. This is intended to be used
2338 * where some external control source the consumer is cooperating with
2339 * has caused the configured voltage to change.
2341 int regulator_sync_voltage(struct regulator *regulator)
2343 struct regulator_dev *rdev = regulator->rdev;
2344 int ret, min_uV, max_uV;
2346 mutex_lock(&rdev->mutex);
2348 if (!rdev->desc->ops->set_voltage &&
2349 !rdev->desc->ops->set_voltage_sel) {
2350 ret = -EINVAL;
2351 goto out;
2354 /* This is only going to work if we've had a voltage configured. */
2355 if (!regulator->min_uV && !regulator->max_uV) {
2356 ret = -EINVAL;
2357 goto out;
2360 min_uV = regulator->min_uV;
2361 max_uV = regulator->max_uV;
2363 /* This should be a paranoia check... */
2364 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2365 if (ret < 0)
2366 goto out;
2368 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2369 if (ret < 0)
2370 goto out;
2372 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2374 out:
2375 mutex_unlock(&rdev->mutex);
2376 return ret;
2378 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2380 static int _regulator_get_voltage(struct regulator_dev *rdev)
2382 int sel, ret;
2384 if (rdev->desc->ops->get_voltage_sel) {
2385 sel = rdev->desc->ops->get_voltage_sel(rdev);
2386 if (sel < 0)
2387 return sel;
2388 ret = rdev->desc->ops->list_voltage(rdev, sel);
2389 } else if (rdev->desc->ops->get_voltage) {
2390 ret = rdev->desc->ops->get_voltage(rdev);
2391 } else {
2392 return -EINVAL;
2395 if (ret < 0)
2396 return ret;
2397 return ret - rdev->constraints->uV_offset;
2401 * regulator_get_voltage - get regulator output voltage
2402 * @regulator: regulator source
2404 * This returns the current regulator voltage in uV.
2406 * NOTE: If the regulator is disabled it will return the voltage value. This
2407 * function should not be used to determine regulator state.
2409 int regulator_get_voltage(struct regulator *regulator)
2411 int ret;
2413 mutex_lock(&regulator->rdev->mutex);
2415 ret = _regulator_get_voltage(regulator->rdev);
2417 mutex_unlock(&regulator->rdev->mutex);
2419 return ret;
2421 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2424 * regulator_set_current_limit - set regulator output current limit
2425 * @regulator: regulator source
2426 * @min_uA: Minimuum supported current in uA
2427 * @max_uA: Maximum supported current in uA
2429 * Sets current sink to the desired output current. This can be set during
2430 * any regulator state. IOW, regulator can be disabled or enabled.
2432 * If the regulator is enabled then the current will change to the new value
2433 * immediately otherwise if the regulator is disabled the regulator will
2434 * output at the new current when enabled.
2436 * NOTE: Regulator system constraints must be set for this regulator before
2437 * calling this function otherwise this call will fail.
2439 int regulator_set_current_limit(struct regulator *regulator,
2440 int min_uA, int max_uA)
2442 struct regulator_dev *rdev = regulator->rdev;
2443 int ret;
2445 mutex_lock(&rdev->mutex);
2447 /* sanity check */
2448 if (!rdev->desc->ops->set_current_limit) {
2449 ret = -EINVAL;
2450 goto out;
2453 /* constraints check */
2454 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2455 if (ret < 0)
2456 goto out;
2458 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2459 out:
2460 mutex_unlock(&rdev->mutex);
2461 return ret;
2463 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2465 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2467 int ret;
2469 mutex_lock(&rdev->mutex);
2471 /* sanity check */
2472 if (!rdev->desc->ops->get_current_limit) {
2473 ret = -EINVAL;
2474 goto out;
2477 ret = rdev->desc->ops->get_current_limit(rdev);
2478 out:
2479 mutex_unlock(&rdev->mutex);
2480 return ret;
2484 * regulator_get_current_limit - get regulator output current
2485 * @regulator: regulator source
2487 * This returns the current supplied by the specified current sink in uA.
2489 * NOTE: If the regulator is disabled it will return the current value. This
2490 * function should not be used to determine regulator state.
2492 int regulator_get_current_limit(struct regulator *regulator)
2494 return _regulator_get_current_limit(regulator->rdev);
2496 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2499 * regulator_set_mode - set regulator operating mode
2500 * @regulator: regulator source
2501 * @mode: operating mode - one of the REGULATOR_MODE constants
2503 * Set regulator operating mode to increase regulator efficiency or improve
2504 * regulation performance.
2506 * NOTE: Regulator system constraints must be set for this regulator before
2507 * calling this function otherwise this call will fail.
2509 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2511 struct regulator_dev *rdev = regulator->rdev;
2512 int ret;
2513 int regulator_curr_mode;
2515 mutex_lock(&rdev->mutex);
2517 /* sanity check */
2518 if (!rdev->desc->ops->set_mode) {
2519 ret = -EINVAL;
2520 goto out;
2523 /* return if the same mode is requested */
2524 if (rdev->desc->ops->get_mode) {
2525 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2526 if (regulator_curr_mode == mode) {
2527 ret = 0;
2528 goto out;
2532 /* constraints check */
2533 ret = regulator_mode_constrain(rdev, &mode);
2534 if (ret < 0)
2535 goto out;
2537 ret = rdev->desc->ops->set_mode(rdev, mode);
2538 out:
2539 mutex_unlock(&rdev->mutex);
2540 return ret;
2542 EXPORT_SYMBOL_GPL(regulator_set_mode);
2544 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2546 int ret;
2548 mutex_lock(&rdev->mutex);
2550 /* sanity check */
2551 if (!rdev->desc->ops->get_mode) {
2552 ret = -EINVAL;
2553 goto out;
2556 ret = rdev->desc->ops->get_mode(rdev);
2557 out:
2558 mutex_unlock(&rdev->mutex);
2559 return ret;
2563 * regulator_get_mode - get regulator operating mode
2564 * @regulator: regulator source
2566 * Get the current regulator operating mode.
2568 unsigned int regulator_get_mode(struct regulator *regulator)
2570 return _regulator_get_mode(regulator->rdev);
2572 EXPORT_SYMBOL_GPL(regulator_get_mode);
2575 * regulator_set_optimum_mode - set regulator optimum operating mode
2576 * @regulator: regulator source
2577 * @uA_load: load current
2579 * Notifies the regulator core of a new device load. This is then used by
2580 * DRMS (if enabled by constraints) to set the most efficient regulator
2581 * operating mode for the new regulator loading.
2583 * Consumer devices notify their supply regulator of the maximum power
2584 * they will require (can be taken from device datasheet in the power
2585 * consumption tables) when they change operational status and hence power
2586 * state. Examples of operational state changes that can affect power
2587 * consumption are :-
2589 * o Device is opened / closed.
2590 * o Device I/O is about to begin or has just finished.
2591 * o Device is idling in between work.
2593 * This information is also exported via sysfs to userspace.
2595 * DRMS will sum the total requested load on the regulator and change
2596 * to the most efficient operating mode if platform constraints allow.
2598 * Returns the new regulator mode or error.
2600 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2602 struct regulator_dev *rdev = regulator->rdev;
2603 struct regulator *consumer;
2604 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2605 unsigned int mode;
2607 if (rdev->supply)
2608 input_uV = regulator_get_voltage(rdev->supply);
2610 mutex_lock(&rdev->mutex);
2613 * first check to see if we can set modes at all, otherwise just
2614 * tell the consumer everything is OK.
2616 regulator->uA_load = uA_load;
2617 ret = regulator_check_drms(rdev);
2618 if (ret < 0) {
2619 ret = 0;
2620 goto out;
2623 if (!rdev->desc->ops->get_optimum_mode)
2624 goto out;
2627 * we can actually do this so any errors are indicators of
2628 * potential real failure.
2630 ret = -EINVAL;
2632 if (!rdev->desc->ops->set_mode)
2633 goto out;
2635 /* get output voltage */
2636 output_uV = _regulator_get_voltage(rdev);
2637 if (output_uV <= 0) {
2638 rdev_err(rdev, "invalid output voltage found\n");
2639 goto out;
2642 /* No supply? Use constraint voltage */
2643 if (input_uV <= 0)
2644 input_uV = rdev->constraints->input_uV;
2645 if (input_uV <= 0) {
2646 rdev_err(rdev, "invalid input voltage found\n");
2647 goto out;
2650 /* calc total requested load for this regulator */
2651 list_for_each_entry(consumer, &rdev->consumer_list, list)
2652 total_uA_load += consumer->uA_load;
2654 mode = rdev->desc->ops->get_optimum_mode(rdev,
2655 input_uV, output_uV,
2656 total_uA_load);
2657 ret = regulator_mode_constrain(rdev, &mode);
2658 if (ret < 0) {
2659 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2660 total_uA_load, input_uV, output_uV);
2661 goto out;
2664 ret = rdev->desc->ops->set_mode(rdev, mode);
2665 if (ret < 0) {
2666 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2667 goto out;
2669 ret = mode;
2670 out:
2671 mutex_unlock(&rdev->mutex);
2672 return ret;
2674 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2677 * regulator_register_notifier - register regulator event notifier
2678 * @regulator: regulator source
2679 * @nb: notifier block
2681 * Register notifier block to receive regulator events.
2683 int regulator_register_notifier(struct regulator *regulator,
2684 struct notifier_block *nb)
2686 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2687 nb);
2689 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2692 * regulator_unregister_notifier - unregister regulator event notifier
2693 * @regulator: regulator source
2694 * @nb: notifier block
2696 * Unregister regulator event notifier block.
2698 int regulator_unregister_notifier(struct regulator *regulator,
2699 struct notifier_block *nb)
2701 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2702 nb);
2704 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2706 /* notify regulator consumers and downstream regulator consumers.
2707 * Note mutex must be held by caller.
2709 static void _notifier_call_chain(struct regulator_dev *rdev,
2710 unsigned long event, void *data)
2712 /* call rdev chain first */
2713 blocking_notifier_call_chain(&rdev->notifier, event, data);
2717 * regulator_bulk_get - get multiple regulator consumers
2719 * @dev: Device to supply
2720 * @num_consumers: Number of consumers to register
2721 * @consumers: Configuration of consumers; clients are stored here.
2723 * @return 0 on success, an errno on failure.
2725 * This helper function allows drivers to get several regulator
2726 * consumers in one operation. If any of the regulators cannot be
2727 * acquired then any regulators that were allocated will be freed
2728 * before returning to the caller.
2730 int regulator_bulk_get(struct device *dev, int num_consumers,
2731 struct regulator_bulk_data *consumers)
2733 int i;
2734 int ret;
2736 for (i = 0; i < num_consumers; i++)
2737 consumers[i].consumer = NULL;
2739 for (i = 0; i < num_consumers; i++) {
2740 consumers[i].consumer = regulator_get(dev,
2741 consumers[i].supply);
2742 if (IS_ERR(consumers[i].consumer)) {
2743 ret = PTR_ERR(consumers[i].consumer);
2744 dev_err(dev, "Failed to get supply '%s': %d\n",
2745 consumers[i].supply, ret);
2746 consumers[i].consumer = NULL;
2747 goto err;
2751 return 0;
2753 err:
2754 while (--i >= 0)
2755 regulator_put(consumers[i].consumer);
2757 return ret;
2759 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2762 * devm_regulator_bulk_get - managed get multiple regulator consumers
2764 * @dev: Device to supply
2765 * @num_consumers: Number of consumers to register
2766 * @consumers: Configuration of consumers; clients are stored here.
2768 * @return 0 on success, an errno on failure.
2770 * This helper function allows drivers to get several regulator
2771 * consumers in one operation with management, the regulators will
2772 * automatically be freed when the device is unbound. If any of the
2773 * regulators cannot be acquired then any regulators that were
2774 * allocated will be freed before returning to the caller.
2776 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2777 struct regulator_bulk_data *consumers)
2779 int i;
2780 int ret;
2782 for (i = 0; i < num_consumers; i++)
2783 consumers[i].consumer = NULL;
2785 for (i = 0; i < num_consumers; i++) {
2786 consumers[i].consumer = devm_regulator_get(dev,
2787 consumers[i].supply);
2788 if (IS_ERR(consumers[i].consumer)) {
2789 ret = PTR_ERR(consumers[i].consumer);
2790 dev_err(dev, "Failed to get supply '%s': %d\n",
2791 consumers[i].supply, ret);
2792 consumers[i].consumer = NULL;
2793 goto err;
2797 return 0;
2799 err:
2800 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2801 devm_regulator_put(consumers[i].consumer);
2803 return ret;
2805 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2807 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2809 struct regulator_bulk_data *bulk = data;
2811 bulk->ret = regulator_enable(bulk->consumer);
2815 * regulator_bulk_enable - enable multiple regulator consumers
2817 * @num_consumers: Number of consumers
2818 * @consumers: Consumer data; clients are stored here.
2819 * @return 0 on success, an errno on failure
2821 * This convenience API allows consumers to enable multiple regulator
2822 * clients in a single API call. If any consumers cannot be enabled
2823 * then any others that were enabled will be disabled again prior to
2824 * return.
2826 int regulator_bulk_enable(int num_consumers,
2827 struct regulator_bulk_data *consumers)
2829 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2830 int i;
2831 int ret = 0;
2833 for (i = 0; i < num_consumers; i++) {
2834 if (consumers[i].consumer->always_on)
2835 consumers[i].ret = 0;
2836 else
2837 async_schedule_domain(regulator_bulk_enable_async,
2838 &consumers[i], &async_domain);
2841 async_synchronize_full_domain(&async_domain);
2843 /* If any consumer failed we need to unwind any that succeeded */
2844 for (i = 0; i < num_consumers; i++) {
2845 if (consumers[i].ret != 0) {
2846 ret = consumers[i].ret;
2847 goto err;
2851 return 0;
2853 err:
2854 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2855 while (--i >= 0)
2856 regulator_disable(consumers[i].consumer);
2858 return ret;
2860 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2863 * regulator_bulk_disable - disable multiple regulator consumers
2865 * @num_consumers: Number of consumers
2866 * @consumers: Consumer data; clients are stored here.
2867 * @return 0 on success, an errno on failure
2869 * This convenience API allows consumers to disable multiple regulator
2870 * clients in a single API call. If any consumers cannot be disabled
2871 * then any others that were disabled will be enabled again prior to
2872 * return.
2874 int regulator_bulk_disable(int num_consumers,
2875 struct regulator_bulk_data *consumers)
2877 int i;
2878 int ret, r;
2880 for (i = num_consumers - 1; i >= 0; --i) {
2881 ret = regulator_disable(consumers[i].consumer);
2882 if (ret != 0)
2883 goto err;
2886 return 0;
2888 err:
2889 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2890 for (++i; i < num_consumers; ++i) {
2891 r = regulator_enable(consumers[i].consumer);
2892 if (r != 0)
2893 pr_err("Failed to reename %s: %d\n",
2894 consumers[i].supply, r);
2897 return ret;
2899 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2902 * regulator_bulk_force_disable - force disable multiple regulator consumers
2904 * @num_consumers: Number of consumers
2905 * @consumers: Consumer data; clients are stored here.
2906 * @return 0 on success, an errno on failure
2908 * This convenience API allows consumers to forcibly disable multiple regulator
2909 * clients in a single API call.
2910 * NOTE: This should be used for situations when device damage will
2911 * likely occur if the regulators are not disabled (e.g. over temp).
2912 * Although regulator_force_disable function call for some consumers can
2913 * return error numbers, the function is called for all consumers.
2915 int regulator_bulk_force_disable(int num_consumers,
2916 struct regulator_bulk_data *consumers)
2918 int i;
2919 int ret;
2921 for (i = 0; i < num_consumers; i++)
2922 consumers[i].ret =
2923 regulator_force_disable(consumers[i].consumer);
2925 for (i = 0; i < num_consumers; i++) {
2926 if (consumers[i].ret != 0) {
2927 ret = consumers[i].ret;
2928 goto out;
2932 return 0;
2933 out:
2934 return ret;
2936 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2939 * regulator_bulk_free - free multiple regulator consumers
2941 * @num_consumers: Number of consumers
2942 * @consumers: Consumer data; clients are stored here.
2944 * This convenience API allows consumers to free multiple regulator
2945 * clients in a single API call.
2947 void regulator_bulk_free(int num_consumers,
2948 struct regulator_bulk_data *consumers)
2950 int i;
2952 for (i = 0; i < num_consumers; i++) {
2953 regulator_put(consumers[i].consumer);
2954 consumers[i].consumer = NULL;
2957 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2960 * regulator_notifier_call_chain - call regulator event notifier
2961 * @rdev: regulator source
2962 * @event: notifier block
2963 * @data: callback-specific data.
2965 * Called by regulator drivers to notify clients a regulator event has
2966 * occurred. We also notify regulator clients downstream.
2967 * Note lock must be held by caller.
2969 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2970 unsigned long event, void *data)
2972 _notifier_call_chain(rdev, event, data);
2973 return NOTIFY_DONE;
2976 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2979 * regulator_mode_to_status - convert a regulator mode into a status
2981 * @mode: Mode to convert
2983 * Convert a regulator mode into a status.
2985 int regulator_mode_to_status(unsigned int mode)
2987 switch (mode) {
2988 case REGULATOR_MODE_FAST:
2989 return REGULATOR_STATUS_FAST;
2990 case REGULATOR_MODE_NORMAL:
2991 return REGULATOR_STATUS_NORMAL;
2992 case REGULATOR_MODE_IDLE:
2993 return REGULATOR_STATUS_IDLE;
2994 case REGULATOR_MODE_STANDBY:
2995 return REGULATOR_STATUS_STANDBY;
2996 default:
2997 return REGULATOR_STATUS_UNDEFINED;
3000 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3003 * To avoid cluttering sysfs (and memory) with useless state, only
3004 * create attributes that can be meaningfully displayed.
3006 static int add_regulator_attributes(struct regulator_dev *rdev)
3008 struct device *dev = &rdev->dev;
3009 struct regulator_ops *ops = rdev->desc->ops;
3010 int status = 0;
3012 /* some attributes need specific methods to be displayed */
3013 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3014 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
3015 status = device_create_file(dev, &dev_attr_microvolts);
3016 if (status < 0)
3017 return status;
3019 if (ops->get_current_limit) {
3020 status = device_create_file(dev, &dev_attr_microamps);
3021 if (status < 0)
3022 return status;
3024 if (ops->get_mode) {
3025 status = device_create_file(dev, &dev_attr_opmode);
3026 if (status < 0)
3027 return status;
3029 if (ops->is_enabled) {
3030 status = device_create_file(dev, &dev_attr_state);
3031 if (status < 0)
3032 return status;
3034 if (ops->get_status) {
3035 status = device_create_file(dev, &dev_attr_status);
3036 if (status < 0)
3037 return status;
3040 /* some attributes are type-specific */
3041 if (rdev->desc->type == REGULATOR_CURRENT) {
3042 status = device_create_file(dev, &dev_attr_requested_microamps);
3043 if (status < 0)
3044 return status;
3047 /* all the other attributes exist to support constraints;
3048 * don't show them if there are no constraints, or if the
3049 * relevant supporting methods are missing.
3051 if (!rdev->constraints)
3052 return status;
3054 /* constraints need specific supporting methods */
3055 if (ops->set_voltage || ops->set_voltage_sel) {
3056 status = device_create_file(dev, &dev_attr_min_microvolts);
3057 if (status < 0)
3058 return status;
3059 status = device_create_file(dev, &dev_attr_max_microvolts);
3060 if (status < 0)
3061 return status;
3063 if (ops->set_current_limit) {
3064 status = device_create_file(dev, &dev_attr_min_microamps);
3065 if (status < 0)
3066 return status;
3067 status = device_create_file(dev, &dev_attr_max_microamps);
3068 if (status < 0)
3069 return status;
3072 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3073 if (status < 0)
3074 return status;
3075 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3076 if (status < 0)
3077 return status;
3078 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3079 if (status < 0)
3080 return status;
3082 if (ops->set_suspend_voltage) {
3083 status = device_create_file(dev,
3084 &dev_attr_suspend_standby_microvolts);
3085 if (status < 0)
3086 return status;
3087 status = device_create_file(dev,
3088 &dev_attr_suspend_mem_microvolts);
3089 if (status < 0)
3090 return status;
3091 status = device_create_file(dev,
3092 &dev_attr_suspend_disk_microvolts);
3093 if (status < 0)
3094 return status;
3097 if (ops->set_suspend_mode) {
3098 status = device_create_file(dev,
3099 &dev_attr_suspend_standby_mode);
3100 if (status < 0)
3101 return status;
3102 status = device_create_file(dev,
3103 &dev_attr_suspend_mem_mode);
3104 if (status < 0)
3105 return status;
3106 status = device_create_file(dev,
3107 &dev_attr_suspend_disk_mode);
3108 if (status < 0)
3109 return status;
3112 return status;
3115 static void rdev_init_debugfs(struct regulator_dev *rdev)
3117 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3118 if (!rdev->debugfs) {
3119 rdev_warn(rdev, "Failed to create debugfs directory\n");
3120 return;
3123 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3124 &rdev->use_count);
3125 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3126 &rdev->open_count);
3130 * regulator_register - register regulator
3131 * @regulator_desc: regulator to register
3132 * @config: runtime configuration for regulator
3134 * Called by regulator drivers to register a regulator.
3135 * Returns 0 on success.
3137 struct regulator_dev *
3138 regulator_register(const struct regulator_desc *regulator_desc,
3139 const struct regulator_config *config)
3141 const struct regulation_constraints *constraints = NULL;
3142 const struct regulator_init_data *init_data;
3143 static atomic_t regulator_no = ATOMIC_INIT(0);
3144 struct regulator_dev *rdev;
3145 struct device *dev;
3146 int ret, i;
3147 const char *supply = NULL;
3149 if (regulator_desc == NULL || config == NULL)
3150 return ERR_PTR(-EINVAL);
3152 dev = config->dev;
3153 WARN_ON(!dev);
3155 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3156 return ERR_PTR(-EINVAL);
3158 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3159 regulator_desc->type != REGULATOR_CURRENT)
3160 return ERR_PTR(-EINVAL);
3162 /* Only one of each should be implemented */
3163 WARN_ON(regulator_desc->ops->get_voltage &&
3164 regulator_desc->ops->get_voltage_sel);
3165 WARN_ON(regulator_desc->ops->set_voltage &&
3166 regulator_desc->ops->set_voltage_sel);
3168 /* If we're using selectors we must implement list_voltage. */
3169 if (regulator_desc->ops->get_voltage_sel &&
3170 !regulator_desc->ops->list_voltage) {
3171 return ERR_PTR(-EINVAL);
3173 if (regulator_desc->ops->set_voltage_sel &&
3174 !regulator_desc->ops->list_voltage) {
3175 return ERR_PTR(-EINVAL);
3178 init_data = config->init_data;
3180 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3181 if (rdev == NULL)
3182 return ERR_PTR(-ENOMEM);
3184 mutex_lock(&regulator_list_mutex);
3186 mutex_init(&rdev->mutex);
3187 rdev->reg_data = config->driver_data;
3188 rdev->owner = regulator_desc->owner;
3189 rdev->desc = regulator_desc;
3190 if (config->regmap)
3191 rdev->regmap = config->regmap;
3192 else
3193 rdev->regmap = dev_get_regmap(dev, NULL);
3194 INIT_LIST_HEAD(&rdev->consumer_list);
3195 INIT_LIST_HEAD(&rdev->list);
3196 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3197 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3199 /* preform any regulator specific init */
3200 if (init_data && init_data->regulator_init) {
3201 ret = init_data->regulator_init(rdev->reg_data);
3202 if (ret < 0)
3203 goto clean;
3206 /* register with sysfs */
3207 rdev->dev.class = &regulator_class;
3208 rdev->dev.of_node = config->of_node;
3209 rdev->dev.parent = dev;
3210 dev_set_name(&rdev->dev, "regulator.%d",
3211 atomic_inc_return(&regulator_no) - 1);
3212 ret = device_register(&rdev->dev);
3213 if (ret != 0) {
3214 put_device(&rdev->dev);
3215 goto clean;
3218 dev_set_drvdata(&rdev->dev, rdev);
3220 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3221 ret = gpio_request_one(config->ena_gpio,
3222 GPIOF_DIR_OUT | config->ena_gpio_flags,
3223 rdev_get_name(rdev));
3224 if (ret != 0) {
3225 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3226 config->ena_gpio, ret);
3227 goto clean;
3230 rdev->ena_gpio = config->ena_gpio;
3231 rdev->ena_gpio_invert = config->ena_gpio_invert;
3233 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3234 rdev->ena_gpio_state = 1;
3236 if (rdev->ena_gpio_invert)
3237 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3240 /* set regulator constraints */
3241 if (init_data)
3242 constraints = &init_data->constraints;
3244 ret = set_machine_constraints(rdev, constraints);
3245 if (ret < 0)
3246 goto scrub;
3248 /* add attributes supported by this regulator */
3249 ret = add_regulator_attributes(rdev);
3250 if (ret < 0)
3251 goto scrub;
3253 if (init_data && init_data->supply_regulator)
3254 supply = init_data->supply_regulator;
3255 else if (regulator_desc->supply_name)
3256 supply = regulator_desc->supply_name;
3258 if (supply) {
3259 struct regulator_dev *r;
3261 r = regulator_dev_lookup(dev, supply, &ret);
3263 if (!r) {
3264 dev_err(dev, "Failed to find supply %s\n", supply);
3265 ret = -EPROBE_DEFER;
3266 goto scrub;
3269 ret = set_supply(rdev, r);
3270 if (ret < 0)
3271 goto scrub;
3273 /* Enable supply if rail is enabled */
3274 if (_regulator_is_enabled(rdev)) {
3275 ret = regulator_enable(rdev->supply);
3276 if (ret < 0)
3277 goto scrub;
3281 /* add consumers devices */
3282 if (init_data) {
3283 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3284 ret = set_consumer_device_supply(rdev,
3285 init_data->consumer_supplies[i].dev_name,
3286 init_data->consumer_supplies[i].supply);
3287 if (ret < 0) {
3288 dev_err(dev, "Failed to set supply %s\n",
3289 init_data->consumer_supplies[i].supply);
3290 goto unset_supplies;
3295 list_add(&rdev->list, &regulator_list);
3297 rdev_init_debugfs(rdev);
3298 out:
3299 mutex_unlock(&regulator_list_mutex);
3300 return rdev;
3302 unset_supplies:
3303 unset_regulator_supplies(rdev);
3305 scrub:
3306 if (rdev->supply)
3307 regulator_put(rdev->supply);
3308 if (rdev->ena_gpio)
3309 gpio_free(rdev->ena_gpio);
3310 kfree(rdev->constraints);
3311 device_unregister(&rdev->dev);
3312 /* device core frees rdev */
3313 rdev = ERR_PTR(ret);
3314 goto out;
3316 clean:
3317 kfree(rdev);
3318 rdev = ERR_PTR(ret);
3319 goto out;
3321 EXPORT_SYMBOL_GPL(regulator_register);
3324 * regulator_unregister - unregister regulator
3325 * @rdev: regulator to unregister
3327 * Called by regulator drivers to unregister a regulator.
3329 void regulator_unregister(struct regulator_dev *rdev)
3331 if (rdev == NULL)
3332 return;
3334 if (rdev->supply)
3335 regulator_put(rdev->supply);
3336 mutex_lock(&regulator_list_mutex);
3337 debugfs_remove_recursive(rdev->debugfs);
3338 flush_work_sync(&rdev->disable_work.work);
3339 WARN_ON(rdev->open_count);
3340 unset_regulator_supplies(rdev);
3341 list_del(&rdev->list);
3342 kfree(rdev->constraints);
3343 if (rdev->ena_gpio)
3344 gpio_free(rdev->ena_gpio);
3345 device_unregister(&rdev->dev);
3346 mutex_unlock(&regulator_list_mutex);
3348 EXPORT_SYMBOL_GPL(regulator_unregister);
3351 * regulator_suspend_prepare - prepare regulators for system wide suspend
3352 * @state: system suspend state
3354 * Configure each regulator with it's suspend operating parameters for state.
3355 * This will usually be called by machine suspend code prior to supending.
3357 int regulator_suspend_prepare(suspend_state_t state)
3359 struct regulator_dev *rdev;
3360 int ret = 0;
3362 /* ON is handled by regulator active state */
3363 if (state == PM_SUSPEND_ON)
3364 return -EINVAL;
3366 mutex_lock(&regulator_list_mutex);
3367 list_for_each_entry(rdev, &regulator_list, list) {
3369 mutex_lock(&rdev->mutex);
3370 ret = suspend_prepare(rdev, state);
3371 mutex_unlock(&rdev->mutex);
3373 if (ret < 0) {
3374 rdev_err(rdev, "failed to prepare\n");
3375 goto out;
3378 out:
3379 mutex_unlock(&regulator_list_mutex);
3380 return ret;
3382 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3385 * regulator_suspend_finish - resume regulators from system wide suspend
3387 * Turn on regulators that might be turned off by regulator_suspend_prepare
3388 * and that should be turned on according to the regulators properties.
3390 int regulator_suspend_finish(void)
3392 struct regulator_dev *rdev;
3393 int ret = 0, error;
3395 mutex_lock(&regulator_list_mutex);
3396 list_for_each_entry(rdev, &regulator_list, list) {
3397 struct regulator_ops *ops = rdev->desc->ops;
3399 mutex_lock(&rdev->mutex);
3400 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3401 ops->enable) {
3402 error = ops->enable(rdev);
3403 if (error)
3404 ret = error;
3405 } else {
3406 if (!has_full_constraints)
3407 goto unlock;
3408 if (!ops->disable)
3409 goto unlock;
3410 if (!_regulator_is_enabled(rdev))
3411 goto unlock;
3413 error = ops->disable(rdev);
3414 if (error)
3415 ret = error;
3417 unlock:
3418 mutex_unlock(&rdev->mutex);
3420 mutex_unlock(&regulator_list_mutex);
3421 return ret;
3423 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3426 * regulator_has_full_constraints - the system has fully specified constraints
3428 * Calling this function will cause the regulator API to disable all
3429 * regulators which have a zero use count and don't have an always_on
3430 * constraint in a late_initcall.
3432 * The intention is that this will become the default behaviour in a
3433 * future kernel release so users are encouraged to use this facility
3434 * now.
3436 void regulator_has_full_constraints(void)
3438 has_full_constraints = 1;
3440 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3443 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3445 * Calling this function will cause the regulator API to provide a
3446 * dummy regulator to consumers if no physical regulator is found,
3447 * allowing most consumers to proceed as though a regulator were
3448 * configured. This allows systems such as those with software
3449 * controllable regulators for the CPU core only to be brought up more
3450 * readily.
3452 void regulator_use_dummy_regulator(void)
3454 board_wants_dummy_regulator = true;
3456 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3459 * rdev_get_drvdata - get rdev regulator driver data
3460 * @rdev: regulator
3462 * Get rdev regulator driver private data. This call can be used in the
3463 * regulator driver context.
3465 void *rdev_get_drvdata(struct regulator_dev *rdev)
3467 return rdev->reg_data;
3469 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3472 * regulator_get_drvdata - get regulator driver data
3473 * @regulator: regulator
3475 * Get regulator driver private data. This call can be used in the consumer
3476 * driver context when non API regulator specific functions need to be called.
3478 void *regulator_get_drvdata(struct regulator *regulator)
3480 return regulator->rdev->reg_data;
3482 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3485 * regulator_set_drvdata - set regulator driver data
3486 * @regulator: regulator
3487 * @data: data
3489 void regulator_set_drvdata(struct regulator *regulator, void *data)
3491 regulator->rdev->reg_data = data;
3493 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3496 * regulator_get_id - get regulator ID
3497 * @rdev: regulator
3499 int rdev_get_id(struct regulator_dev *rdev)
3501 return rdev->desc->id;
3503 EXPORT_SYMBOL_GPL(rdev_get_id);
3505 struct device *rdev_get_dev(struct regulator_dev *rdev)
3507 return &rdev->dev;
3509 EXPORT_SYMBOL_GPL(rdev_get_dev);
3511 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3513 return reg_init_data->driver_data;
3515 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3517 #ifdef CONFIG_DEBUG_FS
3518 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3519 size_t count, loff_t *ppos)
3521 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3522 ssize_t len, ret = 0;
3523 struct regulator_map *map;
3525 if (!buf)
3526 return -ENOMEM;
3528 list_for_each_entry(map, &regulator_map_list, list) {
3529 len = snprintf(buf + ret, PAGE_SIZE - ret,
3530 "%s -> %s.%s\n",
3531 rdev_get_name(map->regulator), map->dev_name,
3532 map->supply);
3533 if (len >= 0)
3534 ret += len;
3535 if (ret > PAGE_SIZE) {
3536 ret = PAGE_SIZE;
3537 break;
3541 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3543 kfree(buf);
3545 return ret;
3547 #endif
3549 static const struct file_operations supply_map_fops = {
3550 #ifdef CONFIG_DEBUG_FS
3551 .read = supply_map_read_file,
3552 .llseek = default_llseek,
3553 #endif
3556 static int __init regulator_init(void)
3558 int ret;
3560 ret = class_register(&regulator_class);
3562 debugfs_root = debugfs_create_dir("regulator", NULL);
3563 if (!debugfs_root)
3564 pr_warn("regulator: Failed to create debugfs directory\n");
3566 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3567 &supply_map_fops);
3569 regulator_dummy_init();
3571 return ret;
3574 /* init early to allow our consumers to complete system booting */
3575 core_initcall(regulator_init);
3577 static int __init regulator_init_complete(void)
3579 struct regulator_dev *rdev;
3580 struct regulator_ops *ops;
3581 struct regulation_constraints *c;
3582 int enabled, ret;
3585 * Since DT doesn't provide an idiomatic mechanism for
3586 * enabling full constraints and since it's much more natural
3587 * with DT to provide them just assume that a DT enabled
3588 * system has full constraints.
3590 if (of_have_populated_dt())
3591 has_full_constraints = true;
3593 mutex_lock(&regulator_list_mutex);
3595 /* If we have a full configuration then disable any regulators
3596 * which are not in use or always_on. This will become the
3597 * default behaviour in the future.
3599 list_for_each_entry(rdev, &regulator_list, list) {
3600 ops = rdev->desc->ops;
3601 c = rdev->constraints;
3603 if (!ops->disable || (c && c->always_on))
3604 continue;
3606 mutex_lock(&rdev->mutex);
3608 if (rdev->use_count)
3609 goto unlock;
3611 /* If we can't read the status assume it's on. */
3612 if (ops->is_enabled)
3613 enabled = ops->is_enabled(rdev);
3614 else
3615 enabled = 1;
3617 if (!enabled)
3618 goto unlock;
3620 if (has_full_constraints) {
3621 /* We log since this may kill the system if it
3622 * goes wrong. */
3623 rdev_info(rdev, "disabling\n");
3624 ret = ops->disable(rdev);
3625 if (ret != 0) {
3626 rdev_err(rdev, "couldn't disable: %d\n", ret);
3628 } else {
3629 /* The intention is that in future we will
3630 * assume that full constraints are provided
3631 * so warn even if we aren't going to do
3632 * anything here.
3634 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3637 unlock:
3638 mutex_unlock(&rdev->mutex);
3641 mutex_unlock(&regulator_list_mutex);
3643 return 0;
3645 late_initcall(regulator_init_complete);