2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING. If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
28 * Abstract: Contain all routines that are required for FSA host/adapter
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
54 * fib_map_alloc - allocate the fib objects
55 * @dev: Adapter to allocate for
57 * Allocate and map the shared PCI space for the FIB blocks used to
58 * talk to the Adaptec firmware.
61 static int fib_map_alloc(struct aac_dev
*dev
)
64 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65 dev
->pdev
, dev
->max_fib_size
, dev
->scsi_host_ptr
->can_queue
,
66 AAC_NUM_MGT_FIB
, &dev
->hw_fib_pa
));
67 dev
->hw_fib_va
= pci_alloc_consistent(dev
->pdev
,
68 (dev
->max_fib_size
+ sizeof(struct aac_fib_xporthdr
))
69 * (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
) + (ALIGN32
- 1),
71 if (dev
->hw_fib_va
== NULL
)
77 * aac_fib_map_free - free the fib objects
78 * @dev: Adapter to free
80 * Free the PCI mappings and the memory allocated for FIB blocks
84 void aac_fib_map_free(struct aac_dev
*dev
)
86 pci_free_consistent(dev
->pdev
,
87 dev
->max_fib_size
* (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
),
88 dev
->hw_fib_va
, dev
->hw_fib_pa
);
89 dev
->hw_fib_va
= NULL
;
94 * aac_fib_setup - setup the fibs
95 * @dev: Adapter to set up
97 * Allocate the PCI space for the fibs, map it and then initialise the
98 * fib area, the unmapped fib data and also the free list
101 int aac_fib_setup(struct aac_dev
* dev
)
104 struct hw_fib
*hw_fib
;
105 dma_addr_t hw_fib_pa
;
108 while (((i
= fib_map_alloc(dev
)) == -ENOMEM
)
109 && (dev
->scsi_host_ptr
->can_queue
> (64 - AAC_NUM_MGT_FIB
))) {
110 dev
->init
->MaxIoCommands
= cpu_to_le32((dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
) >> 1);
111 dev
->scsi_host_ptr
->can_queue
= le32_to_cpu(dev
->init
->MaxIoCommands
) - AAC_NUM_MGT_FIB
;
116 /* 32 byte alignment for PMC */
117 hw_fib_pa
= (dev
->hw_fib_pa
+ (ALIGN32
- 1)) & ~(ALIGN32
- 1);
118 dev
->hw_fib_va
= (struct hw_fib
*)((unsigned char *)dev
->hw_fib_va
+
119 (hw_fib_pa
- dev
->hw_fib_pa
));
120 dev
->hw_fib_pa
= hw_fib_pa
;
121 memset(dev
->hw_fib_va
, 0,
122 (dev
->max_fib_size
+ sizeof(struct aac_fib_xporthdr
)) *
123 (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
));
125 /* add Xport header */
126 dev
->hw_fib_va
= (struct hw_fib
*)((unsigned char *)dev
->hw_fib_va
+
127 sizeof(struct aac_fib_xporthdr
));
128 dev
->hw_fib_pa
+= sizeof(struct aac_fib_xporthdr
);
130 hw_fib
= dev
->hw_fib_va
;
131 hw_fib_pa
= dev
->hw_fib_pa
;
133 * Initialise the fibs
135 for (i
= 0, fibptr
= &dev
->fibs
[i
];
136 i
< (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
);
141 fibptr
->hw_fib_va
= hw_fib
;
142 fibptr
->data
= (void *) fibptr
->hw_fib_va
->data
;
143 fibptr
->next
= fibptr
+1; /* Forward chain the fibs */
144 sema_init(&fibptr
->event_wait
, 0);
145 spin_lock_init(&fibptr
->event_lock
);
146 hw_fib
->header
.XferState
= cpu_to_le32(0xffffffff);
147 hw_fib
->header
.SenderSize
= cpu_to_le16(dev
->max_fib_size
);
148 fibptr
->hw_fib_pa
= hw_fib_pa
;
149 hw_fib
= (struct hw_fib
*)((unsigned char *)hw_fib
+
150 dev
->max_fib_size
+ sizeof(struct aac_fib_xporthdr
));
151 hw_fib_pa
= hw_fib_pa
+
152 dev
->max_fib_size
+ sizeof(struct aac_fib_xporthdr
);
155 * Add the fib chain to the free list
157 dev
->fibs
[dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
- 1].next
= NULL
;
159 * Enable this to debug out of queue space
161 dev
->free_fib
= &dev
->fibs
[0];
166 * aac_fib_alloc - allocate a fib
167 * @dev: Adapter to allocate the fib for
169 * Allocate a fib from the adapter fib pool. If the pool is empty we
173 struct fib
*aac_fib_alloc(struct aac_dev
*dev
)
177 spin_lock_irqsave(&dev
->fib_lock
, flags
);
178 fibptr
= dev
->free_fib
;
180 spin_unlock_irqrestore(&dev
->fib_lock
, flags
);
183 dev
->free_fib
= fibptr
->next
;
184 spin_unlock_irqrestore(&dev
->fib_lock
, flags
);
186 * Set the proper node type code and node byte size
188 fibptr
->type
= FSAFS_NTC_FIB_CONTEXT
;
189 fibptr
->size
= sizeof(struct fib
);
191 * Null out fields that depend on being zero at the start of
194 fibptr
->hw_fib_va
->header
.XferState
= 0;
196 fibptr
->callback
= NULL
;
197 fibptr
->callback_data
= NULL
;
203 * aac_fib_free - free a fib
204 * @fibptr: fib to free up
206 * Frees up a fib and places it on the appropriate queue
209 void aac_fib_free(struct fib
*fibptr
)
211 unsigned long flags
, flagsv
;
213 spin_lock_irqsave(&fibptr
->event_lock
, flagsv
);
214 if (fibptr
->done
== 2) {
215 spin_unlock_irqrestore(&fibptr
->event_lock
, flagsv
);
218 spin_unlock_irqrestore(&fibptr
->event_lock
, flagsv
);
220 spin_lock_irqsave(&fibptr
->dev
->fib_lock
, flags
);
221 if (unlikely(fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
))
222 aac_config
.fib_timeouts
++;
223 if (fibptr
->hw_fib_va
->header
.XferState
!= 0) {
224 printk(KERN_WARNING
"aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
226 le32_to_cpu(fibptr
->hw_fib_va
->header
.XferState
));
228 fibptr
->next
= fibptr
->dev
->free_fib
;
229 fibptr
->dev
->free_fib
= fibptr
;
230 spin_unlock_irqrestore(&fibptr
->dev
->fib_lock
, flags
);
234 * aac_fib_init - initialise a fib
235 * @fibptr: The fib to initialize
237 * Set up the generic fib fields ready for use
240 void aac_fib_init(struct fib
*fibptr
)
242 struct hw_fib
*hw_fib
= fibptr
->hw_fib_va
;
244 memset(&hw_fib
->header
, 0, sizeof(struct aac_fibhdr
));
245 hw_fib
->header
.StructType
= FIB_MAGIC
;
246 hw_fib
->header
.Size
= cpu_to_le16(fibptr
->dev
->max_fib_size
);
247 hw_fib
->header
.XferState
= cpu_to_le32(HostOwned
| FibInitialized
| FibEmpty
| FastResponseCapable
);
248 hw_fib
->header
.u
.ReceiverFibAddress
= cpu_to_le32(fibptr
->hw_fib_pa
);
249 hw_fib
->header
.SenderSize
= cpu_to_le16(fibptr
->dev
->max_fib_size
);
253 * fib_deallocate - deallocate a fib
254 * @fibptr: fib to deallocate
256 * Will deallocate and return to the free pool the FIB pointed to by the
260 static void fib_dealloc(struct fib
* fibptr
)
262 struct hw_fib
*hw_fib
= fibptr
->hw_fib_va
;
263 hw_fib
->header
.XferState
= 0;
267 * Commuication primitives define and support the queuing method we use to
268 * support host to adapter commuication. All queue accesses happen through
269 * these routines and are the only routines which have a knowledge of the
270 * how these queues are implemented.
274 * aac_get_entry - get a queue entry
277 * @entry: Entry return
278 * @index: Index return
279 * @nonotify: notification control
281 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
282 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
286 static int aac_get_entry (struct aac_dev
* dev
, u32 qid
, struct aac_entry
**entry
, u32
* index
, unsigned long *nonotify
)
288 struct aac_queue
* q
;
292 * All of the queues wrap when they reach the end, so we check
293 * to see if they have reached the end and if they have we just
294 * set the index back to zero. This is a wrap. You could or off
295 * the high bits in all updates but this is a bit faster I think.
298 q
= &dev
->queues
->queue
[qid
];
300 idx
= *index
= le32_to_cpu(*(q
->headers
.producer
));
301 /* Interrupt Moderation, only interrupt for first two entries */
302 if (idx
!= le32_to_cpu(*(q
->headers
.consumer
))) {
304 if (qid
== AdapNormCmdQueue
)
305 idx
= ADAP_NORM_CMD_ENTRIES
;
307 idx
= ADAP_NORM_RESP_ENTRIES
;
309 if (idx
!= le32_to_cpu(*(q
->headers
.consumer
)))
313 if (qid
== AdapNormCmdQueue
) {
314 if (*index
>= ADAP_NORM_CMD_ENTRIES
)
315 *index
= 0; /* Wrap to front of the Producer Queue. */
317 if (*index
>= ADAP_NORM_RESP_ENTRIES
)
318 *index
= 0; /* Wrap to front of the Producer Queue. */
322 if ((*index
+ 1) == le32_to_cpu(*(q
->headers
.consumer
))) {
323 printk(KERN_WARNING
"Queue %d full, %u outstanding.\n",
327 *entry
= q
->base
+ *index
;
333 * aac_queue_get - get the next free QE
335 * @index: Returned index
336 * @priority: Priority of fib
337 * @fib: Fib to associate with the queue entry
338 * @wait: Wait if queue full
339 * @fibptr: Driver fib object to go with fib
340 * @nonotify: Don't notify the adapter
342 * Gets the next free QE off the requested priorty adapter command
343 * queue and associates the Fib with the QE. The QE represented by
344 * index is ready to insert on the queue when this routine returns
348 int aac_queue_get(struct aac_dev
* dev
, u32
* index
, u32 qid
, struct hw_fib
* hw_fib
, int wait
, struct fib
* fibptr
, unsigned long *nonotify
)
350 struct aac_entry
* entry
= NULL
;
353 if (qid
== AdapNormCmdQueue
) {
354 /* if no entries wait for some if caller wants to */
355 while (!aac_get_entry(dev
, qid
, &entry
, index
, nonotify
)) {
356 printk(KERN_ERR
"GetEntries failed\n");
359 * Setup queue entry with a command, status and fib mapped
361 entry
->size
= cpu_to_le32(le16_to_cpu(hw_fib
->header
.Size
));
364 while (!aac_get_entry(dev
, qid
, &entry
, index
, nonotify
)) {
365 /* if no entries wait for some if caller wants to */
368 * Setup queue entry with command, status and fib mapped
370 entry
->size
= cpu_to_le32(le16_to_cpu(hw_fib
->header
.Size
));
371 entry
->addr
= hw_fib
->header
.SenderFibAddress
;
372 /* Restore adapters pointer to the FIB */
373 hw_fib
->header
.u
.ReceiverFibAddress
= hw_fib
->header
.SenderFibAddress
; /* Let the adapter now where to find its data */
377 * If MapFib is true than we need to map the Fib and put pointers
378 * in the queue entry.
381 entry
->addr
= cpu_to_le32(fibptr
->hw_fib_pa
);
386 * Define the highest level of host to adapter communication routines.
387 * These routines will support host to adapter FS commuication. These
388 * routines have no knowledge of the commuication method used. This level
389 * sends and receives FIBs. This level has no knowledge of how these FIBs
390 * get passed back and forth.
394 * aac_fib_send - send a fib to the adapter
395 * @command: Command to send
397 * @size: Size of fib data area
398 * @priority: Priority of Fib
399 * @wait: Async/sync select
400 * @reply: True if a reply is wanted
401 * @callback: Called with reply
402 * @callback_data: Passed to callback
404 * Sends the requested FIB to the adapter and optionally will wait for a
405 * response FIB. If the caller does not wish to wait for a response than
406 * an event to wait on must be supplied. This event will be set when a
407 * response FIB is received from the adapter.
410 int aac_fib_send(u16 command
, struct fib
*fibptr
, unsigned long size
,
411 int priority
, int wait
, int reply
, fib_callback callback
,
414 struct aac_dev
* dev
= fibptr
->dev
;
415 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
416 unsigned long flags
= 0;
417 unsigned long qflags
;
418 unsigned long mflags
= 0;
419 unsigned long sflags
= 0;
422 if (!(hw_fib
->header
.XferState
& cpu_to_le32(HostOwned
)))
425 * There are 5 cases with the wait and response requested flags.
426 * The only invalid cases are if the caller requests to wait and
427 * does not request a response and if the caller does not want a
428 * response and the Fib is not allocated from pool. If a response
429 * is not requesed the Fib will just be deallocaed by the DPC
430 * routine when the response comes back from the adapter. No
431 * further processing will be done besides deleting the Fib. We
432 * will have a debug mode where the adapter can notify the host
433 * it had a problem and the host can log that fact.
436 if (wait
&& !reply
) {
438 } else if (!wait
&& reply
) {
439 hw_fib
->header
.XferState
|= cpu_to_le32(Async
| ResponseExpected
);
440 FIB_COUNTER_INCREMENT(aac_config
.AsyncSent
);
441 } else if (!wait
&& !reply
) {
442 hw_fib
->header
.XferState
|= cpu_to_le32(NoResponseExpected
);
443 FIB_COUNTER_INCREMENT(aac_config
.NoResponseSent
);
444 } else if (wait
&& reply
) {
445 hw_fib
->header
.XferState
|= cpu_to_le32(ResponseExpected
);
446 FIB_COUNTER_INCREMENT(aac_config
.NormalSent
);
449 * Map the fib into 32bits by using the fib number
452 hw_fib
->header
.SenderFibAddress
= cpu_to_le32(((u32
)(fibptr
- dev
->fibs
)) << 2);
453 hw_fib
->header
.Handle
= (u32
)(fibptr
- dev
->fibs
) + 1;
455 * Set FIB state to indicate where it came from and if we want a
456 * response from the adapter. Also load the command from the
459 * Map the hw fib pointer as a 32bit value
461 hw_fib
->header
.Command
= cpu_to_le16(command
);
462 hw_fib
->header
.XferState
|= cpu_to_le32(SentFromHost
);
464 * Set the size of the Fib we want to send to the adapter
466 hw_fib
->header
.Size
= cpu_to_le16(sizeof(struct aac_fibhdr
) + size
);
467 if (le16_to_cpu(hw_fib
->header
.Size
) > le16_to_cpu(hw_fib
->header
.SenderSize
)) {
471 * Get a queue entry connect the FIB to it and send an notify
472 * the adapter a command is ready.
474 hw_fib
->header
.XferState
|= cpu_to_le32(NormalPriority
);
477 * Fill in the Callback and CallbackContext if we are not
481 fibptr
->callback
= callback
;
482 fibptr
->callback_data
= callback_data
;
483 fibptr
->flags
= FIB_CONTEXT_FLAG
;
488 FIB_COUNTER_INCREMENT(aac_config
.FibsSent
);
490 dprintk((KERN_DEBUG
"Fib contents:.\n"));
491 dprintk((KERN_DEBUG
" Command = %d.\n", le32_to_cpu(hw_fib
->header
.Command
)));
492 dprintk((KERN_DEBUG
" SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount
*)fib_data(fibptr
))->command
)));
493 dprintk((KERN_DEBUG
" XferState = %x.\n", le32_to_cpu(hw_fib
->header
.XferState
)));
494 dprintk((KERN_DEBUG
" hw_fib va being sent=%p\n",fibptr
->hw_fib_va
));
495 dprintk((KERN_DEBUG
" hw_fib pa being sent=%lx\n",(ulong
)fibptr
->hw_fib_pa
));
496 dprintk((KERN_DEBUG
" fib being sent=%p\n",fibptr
));
503 spin_lock_irqsave(&dev
->manage_lock
, mflags
);
504 if (dev
->management_fib_count
>= AAC_NUM_MGT_FIB
) {
505 printk(KERN_INFO
"No management Fibs Available:%d\n",
506 dev
->management_fib_count
);
507 spin_unlock_irqrestore(&dev
->manage_lock
, mflags
);
510 dev
->management_fib_count
++;
511 spin_unlock_irqrestore(&dev
->manage_lock
, mflags
);
512 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
515 if (dev
->sync_mode
) {
517 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
518 spin_lock_irqsave(&dev
->sync_lock
, sflags
);
520 list_add_tail(&fibptr
->fiblink
, &dev
->sync_fib_list
);
521 spin_unlock_irqrestore(&dev
->sync_lock
, sflags
);
523 dev
->sync_fib
= fibptr
;
524 spin_unlock_irqrestore(&dev
->sync_lock
, sflags
);
525 aac_adapter_sync_cmd(dev
, SEND_SYNCHRONOUS_FIB
,
526 (u32
)fibptr
->hw_fib_pa
, 0, 0, 0, 0, 0,
527 NULL
, NULL
, NULL
, NULL
, NULL
);
530 fibptr
->flags
|= FIB_CONTEXT_FLAG_WAIT
;
531 if (down_interruptible(&fibptr
->event_wait
)) {
532 fibptr
->flags
&= ~FIB_CONTEXT_FLAG_WAIT
;
540 if (aac_adapter_deliver(fibptr
) != 0) {
541 printk(KERN_ERR
"aac_fib_send: returned -EBUSY\n");
543 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
544 spin_lock_irqsave(&dev
->manage_lock
, mflags
);
545 dev
->management_fib_count
--;
546 spin_unlock_irqrestore(&dev
->manage_lock
, mflags
);
553 * If the caller wanted us to wait for response wait now.
557 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
558 /* Only set for first known interruptable command */
561 * *VERY* Dangerous to time out a command, the
562 * assumption is made that we have no hope of
563 * functioning because an interrupt routing or other
564 * hardware failure has occurred.
566 unsigned long timeout
= jiffies
+ (180 * HZ
); /* 3 minutes */
567 while (down_trylock(&fibptr
->event_wait
)) {
569 if (time_is_before_eq_jiffies(timeout
)) {
570 struct aac_queue
* q
= &dev
->queues
->queue
[AdapNormCmdQueue
];
571 spin_lock_irqsave(q
->lock
, qflags
);
573 spin_unlock_irqrestore(q
->lock
, qflags
);
575 printk(KERN_ERR
"aacraid: aac_fib_send: first asynchronous command timed out.\n"
576 "Usually a result of a PCI interrupt routing problem;\n"
577 "update mother board BIOS or consider utilizing one of\n"
578 "the SAFE mode kernel options (acpi, apic etc)\n");
582 if ((blink
= aac_adapter_check_health(dev
)) > 0) {
584 printk(KERN_ERR
"aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
585 "Usually a result of a serious unrecoverable hardware problem\n",
590 /* We used to udelay() here but that absorbed
591 * a CPU when a timeout occured. Not very
595 } else if (down_interruptible(&fibptr
->event_wait
)) {
596 /* Do nothing ... satisfy
597 * down_interruptible must_check */
600 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
601 if (fibptr
->done
== 0) {
602 fibptr
->done
= 2; /* Tell interrupt we aborted */
603 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
606 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
607 BUG_ON(fibptr
->done
== 0);
609 if(unlikely(fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
))
614 * If the user does not want a response than return success otherwise
624 * aac_consumer_get - get the top of the queue
627 * @entry: Return entry
629 * Will return a pointer to the entry on the top of the queue requested that
630 * we are a consumer of, and return the address of the queue entry. It does
631 * not change the state of the queue.
634 int aac_consumer_get(struct aac_dev
* dev
, struct aac_queue
* q
, struct aac_entry
**entry
)
638 if (le32_to_cpu(*q
->headers
.producer
) == le32_to_cpu(*q
->headers
.consumer
)) {
642 * The consumer index must be wrapped if we have reached
643 * the end of the queue, else we just use the entry
644 * pointed to by the header index
646 if (le32_to_cpu(*q
->headers
.consumer
) >= q
->entries
)
649 index
= le32_to_cpu(*q
->headers
.consumer
);
650 *entry
= q
->base
+ index
;
657 * aac_consumer_free - free consumer entry
662 * Frees up the current top of the queue we are a consumer of. If the
663 * queue was full notify the producer that the queue is no longer full.
666 void aac_consumer_free(struct aac_dev
* dev
, struct aac_queue
*q
, u32 qid
)
671 if ((le32_to_cpu(*q
->headers
.producer
)+1) == le32_to_cpu(*q
->headers
.consumer
))
674 if (le32_to_cpu(*q
->headers
.consumer
) >= q
->entries
)
675 *q
->headers
.consumer
= cpu_to_le32(1);
677 le32_add_cpu(q
->headers
.consumer
, 1);
682 case HostNormCmdQueue
:
683 notify
= HostNormCmdNotFull
;
685 case HostNormRespQueue
:
686 notify
= HostNormRespNotFull
;
692 aac_adapter_notify(dev
, notify
);
697 * aac_fib_adapter_complete - complete adapter issued fib
698 * @fibptr: fib to complete
701 * Will do all necessary work to complete a FIB that was sent from
705 int aac_fib_adapter_complete(struct fib
*fibptr
, unsigned short size
)
707 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
708 struct aac_dev
* dev
= fibptr
->dev
;
709 struct aac_queue
* q
;
710 unsigned long nointr
= 0;
711 unsigned long qflags
;
713 if (dev
->comm_interface
== AAC_COMM_MESSAGE_TYPE1
||
714 dev
->comm_interface
== AAC_COMM_MESSAGE_TYPE2
) {
719 if (hw_fib
->header
.XferState
== 0) {
720 if (dev
->comm_interface
== AAC_COMM_MESSAGE
)
725 * If we plan to do anything check the structure type first.
727 if (hw_fib
->header
.StructType
!= FIB_MAGIC
&&
728 hw_fib
->header
.StructType
!= FIB_MAGIC2
&&
729 hw_fib
->header
.StructType
!= FIB_MAGIC2_64
) {
730 if (dev
->comm_interface
== AAC_COMM_MESSAGE
)
735 * This block handles the case where the adapter had sent us a
736 * command and we have finished processing the command. We
737 * call completeFib when we are done processing the command
738 * and want to send a response back to the adapter. This will
739 * send the completed cdb to the adapter.
741 if (hw_fib
->header
.XferState
& cpu_to_le32(SentFromAdapter
)) {
742 if (dev
->comm_interface
== AAC_COMM_MESSAGE
) {
746 hw_fib
->header
.XferState
|= cpu_to_le32(HostProcessed
);
748 size
+= sizeof(struct aac_fibhdr
);
749 if (size
> le16_to_cpu(hw_fib
->header
.SenderSize
))
751 hw_fib
->header
.Size
= cpu_to_le16(size
);
753 q
= &dev
->queues
->queue
[AdapNormRespQueue
];
754 spin_lock_irqsave(q
->lock
, qflags
);
755 aac_queue_get(dev
, &index
, AdapNormRespQueue
, hw_fib
, 1, NULL
, &nointr
);
756 *(q
->headers
.producer
) = cpu_to_le32(index
+ 1);
757 spin_unlock_irqrestore(q
->lock
, qflags
);
758 if (!(nointr
& (int)aac_config
.irq_mod
))
759 aac_adapter_notify(dev
, AdapNormRespQueue
);
762 printk(KERN_WARNING
"aac_fib_adapter_complete: "
763 "Unknown xferstate detected.\n");
770 * aac_fib_complete - fib completion handler
771 * @fib: FIB to complete
773 * Will do all necessary work to complete a FIB.
776 int aac_fib_complete(struct fib
*fibptr
)
779 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
782 * Check for a fib which has already been completed
785 if (hw_fib
->header
.XferState
== 0)
788 * If we plan to do anything check the structure type first.
791 if (hw_fib
->header
.StructType
!= FIB_MAGIC
&&
792 hw_fib
->header
.StructType
!= FIB_MAGIC2
&&
793 hw_fib
->header
.StructType
!= FIB_MAGIC2_64
)
796 * This block completes a cdb which orginated on the host and we
797 * just need to deallocate the cdb or reinit it. At this point the
798 * command is complete that we had sent to the adapter and this
799 * cdb could be reused.
801 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
802 if (fibptr
->done
== 2) {
803 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
806 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
808 if((hw_fib
->header
.XferState
& cpu_to_le32(SentFromHost
)) &&
809 (hw_fib
->header
.XferState
& cpu_to_le32(AdapterProcessed
)))
813 else if(hw_fib
->header
.XferState
& cpu_to_le32(SentFromHost
))
816 * This handles the case when the host has aborted the I/O
817 * to the adapter because the adapter is not responding
820 } else if(hw_fib
->header
.XferState
& cpu_to_le32(HostOwned
)) {
829 * aac_printf - handle printf from firmware
833 * Print a message passed to us by the controller firmware on the
837 void aac_printf(struct aac_dev
*dev
, u32 val
)
839 char *cp
= dev
->printfbuf
;
840 if (dev
->printf_enabled
)
842 int length
= val
& 0xffff;
843 int level
= (val
>> 16) & 0xffff;
846 * The size of the printfbuf is set in port.c
847 * There is no variable or define for it
853 if (level
== LOG_AAC_HIGH_ERROR
)
854 printk(KERN_WARNING
"%s:%s", dev
->name
, cp
);
856 printk(KERN_INFO
"%s:%s", dev
->name
, cp
);
863 * aac_handle_aif - Handle a message from the firmware
864 * @dev: Which adapter this fib is from
865 * @fibptr: Pointer to fibptr from adapter
867 * This routine handles a driver notify fib from the adapter and
868 * dispatches it to the appropriate routine for handling.
871 #define AIF_SNIFF_TIMEOUT (30*HZ)
872 static void aac_handle_aif(struct aac_dev
* dev
, struct fib
* fibptr
)
874 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
875 struct aac_aifcmd
* aifcmd
= (struct aac_aifcmd
*)hw_fib
->data
;
876 u32 channel
, id
, lun
, container
;
877 struct scsi_device
*device
;
883 } device_config_needed
= NOTHING
;
885 /* Sniff for container changes */
887 if (!dev
|| !dev
->fsa_dev
)
889 container
= channel
= id
= lun
= (u32
)-1;
892 * We have set this up to try and minimize the number of
893 * re-configures that take place. As a result of this when
894 * certain AIF's come in we will set a flag waiting for another
895 * type of AIF before setting the re-config flag.
897 switch (le32_to_cpu(aifcmd
->command
)) {
898 case AifCmdDriverNotify
:
899 switch (le32_to_cpu(((__le32
*)aifcmd
->data
)[0])) {
901 * Morph or Expand complete
903 case AifDenMorphComplete
:
904 case AifDenVolumeExtendComplete
:
905 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
906 if (container
>= dev
->maximum_num_containers
)
910 * Find the scsi_device associated with the SCSI
911 * address. Make sure we have the right array, and if
912 * so set the flag to initiate a new re-config once we
913 * see an AifEnConfigChange AIF come through.
916 if ((dev
!= NULL
) && (dev
->scsi_host_ptr
!= NULL
)) {
917 device
= scsi_device_lookup(dev
->scsi_host_ptr
,
918 CONTAINER_TO_CHANNEL(container
),
919 CONTAINER_TO_ID(container
),
920 CONTAINER_TO_LUN(container
));
922 dev
->fsa_dev
[container
].config_needed
= CHANGE
;
923 dev
->fsa_dev
[container
].config_waiting_on
= AifEnConfigChange
;
924 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
925 scsi_device_put(device
);
931 * If we are waiting on something and this happens to be
932 * that thing then set the re-configure flag.
934 if (container
!= (u32
)-1) {
935 if (container
>= dev
->maximum_num_containers
)
937 if ((dev
->fsa_dev
[container
].config_waiting_on
==
938 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
939 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
940 dev
->fsa_dev
[container
].config_waiting_on
= 0;
941 } else for (container
= 0;
942 container
< dev
->maximum_num_containers
; ++container
) {
943 if ((dev
->fsa_dev
[container
].config_waiting_on
==
944 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
945 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
946 dev
->fsa_dev
[container
].config_waiting_on
= 0;
950 case AifCmdEventNotify
:
951 switch (le32_to_cpu(((__le32
*)aifcmd
->data
)[0])) {
952 case AifEnBatteryEvent
:
953 dev
->cache_protected
=
954 (((__le32
*)aifcmd
->data
)[1] == cpu_to_le32(3));
959 case AifEnAddContainer
:
960 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
961 if (container
>= dev
->maximum_num_containers
)
963 dev
->fsa_dev
[container
].config_needed
= ADD
;
964 dev
->fsa_dev
[container
].config_waiting_on
=
966 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
972 case AifEnDeleteContainer
:
973 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
974 if (container
>= dev
->maximum_num_containers
)
976 dev
->fsa_dev
[container
].config_needed
= DELETE
;
977 dev
->fsa_dev
[container
].config_waiting_on
=
979 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
983 * Container change detected. If we currently are not
984 * waiting on something else, setup to wait on a Config Change.
986 case AifEnContainerChange
:
987 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
988 if (container
>= dev
->maximum_num_containers
)
990 if (dev
->fsa_dev
[container
].config_waiting_on
&&
991 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
993 dev
->fsa_dev
[container
].config_needed
= CHANGE
;
994 dev
->fsa_dev
[container
].config_waiting_on
=
996 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
999 case AifEnConfigChange
:
1003 case AifEnDeleteJBOD
:
1004 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
1005 if ((container
>> 28)) {
1006 container
= (u32
)-1;
1009 channel
= (container
>> 24) & 0xF;
1010 if (channel
>= dev
->maximum_num_channels
) {
1011 container
= (u32
)-1;
1014 id
= container
& 0xFFFF;
1015 if (id
>= dev
->maximum_num_physicals
) {
1016 container
= (u32
)-1;
1019 lun
= (container
>> 16) & 0xFF;
1020 container
= (u32
)-1;
1021 channel
= aac_phys_to_logical(channel
);
1022 device_config_needed
=
1023 (((__le32
*)aifcmd
->data
)[0] ==
1024 cpu_to_le32(AifEnAddJBOD
)) ? ADD
: DELETE
;
1025 if (device_config_needed
== ADD
) {
1026 device
= scsi_device_lookup(dev
->scsi_host_ptr
,
1031 scsi_remove_device(device
);
1032 scsi_device_put(device
);
1037 case AifEnEnclosureManagement
:
1039 * If in JBOD mode, automatic exposure of new
1040 * physical target to be suppressed until configured.
1044 switch (le32_to_cpu(((__le32
*)aifcmd
->data
)[3])) {
1045 case EM_DRIVE_INSERTION
:
1046 case EM_DRIVE_REMOVAL
:
1047 container
= le32_to_cpu(
1048 ((__le32
*)aifcmd
->data
)[2]);
1049 if ((container
>> 28)) {
1050 container
= (u32
)-1;
1053 channel
= (container
>> 24) & 0xF;
1054 if (channel
>= dev
->maximum_num_channels
) {
1055 container
= (u32
)-1;
1058 id
= container
& 0xFFFF;
1059 lun
= (container
>> 16) & 0xFF;
1060 container
= (u32
)-1;
1061 if (id
>= dev
->maximum_num_physicals
) {
1062 /* legacy dev_t ? */
1063 if ((0x2000 <= id
) || lun
|| channel
||
1064 ((channel
= (id
>> 7) & 0x3F) >=
1065 dev
->maximum_num_channels
))
1067 lun
= (id
>> 4) & 7;
1070 channel
= aac_phys_to_logical(channel
);
1071 device_config_needed
=
1072 (((__le32
*)aifcmd
->data
)[3]
1073 == cpu_to_le32(EM_DRIVE_INSERTION
)) ?
1081 * If we are waiting on something and this happens to be
1082 * that thing then set the re-configure flag.
1084 if (container
!= (u32
)-1) {
1085 if (container
>= dev
->maximum_num_containers
)
1087 if ((dev
->fsa_dev
[container
].config_waiting_on
==
1088 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
1089 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
1090 dev
->fsa_dev
[container
].config_waiting_on
= 0;
1091 } else for (container
= 0;
1092 container
< dev
->maximum_num_containers
; ++container
) {
1093 if ((dev
->fsa_dev
[container
].config_waiting_on
==
1094 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
1095 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
1096 dev
->fsa_dev
[container
].config_waiting_on
= 0;
1100 case AifCmdJobProgress
:
1102 * These are job progress AIF's. When a Clear is being
1103 * done on a container it is initially created then hidden from
1104 * the OS. When the clear completes we don't get a config
1105 * change so we monitor the job status complete on a clear then
1106 * wait for a container change.
1109 if (((__le32
*)aifcmd
->data
)[1] == cpu_to_le32(AifJobCtrZero
) &&
1110 (((__le32
*)aifcmd
->data
)[6] == ((__le32
*)aifcmd
->data
)[5] ||
1111 ((__le32
*)aifcmd
->data
)[4] == cpu_to_le32(AifJobStsSuccess
))) {
1113 container
< dev
->maximum_num_containers
;
1116 * Stomp on all config sequencing for all
1119 dev
->fsa_dev
[container
].config_waiting_on
=
1120 AifEnContainerChange
;
1121 dev
->fsa_dev
[container
].config_needed
= ADD
;
1122 dev
->fsa_dev
[container
].config_waiting_stamp
=
1126 if (((__le32
*)aifcmd
->data
)[1] == cpu_to_le32(AifJobCtrZero
) &&
1127 ((__le32
*)aifcmd
->data
)[6] == 0 &&
1128 ((__le32
*)aifcmd
->data
)[4] == cpu_to_le32(AifJobStsRunning
)) {
1130 container
< dev
->maximum_num_containers
;
1133 * Stomp on all config sequencing for all
1136 dev
->fsa_dev
[container
].config_waiting_on
=
1137 AifEnContainerChange
;
1138 dev
->fsa_dev
[container
].config_needed
= DELETE
;
1139 dev
->fsa_dev
[container
].config_waiting_stamp
=
1148 if (device_config_needed
== NOTHING
)
1149 for (; container
< dev
->maximum_num_containers
; ++container
) {
1150 if ((dev
->fsa_dev
[container
].config_waiting_on
== 0) &&
1151 (dev
->fsa_dev
[container
].config_needed
!= NOTHING
) &&
1152 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
)) {
1153 device_config_needed
=
1154 dev
->fsa_dev
[container
].config_needed
;
1155 dev
->fsa_dev
[container
].config_needed
= NOTHING
;
1156 channel
= CONTAINER_TO_CHANNEL(container
);
1157 id
= CONTAINER_TO_ID(container
);
1158 lun
= CONTAINER_TO_LUN(container
);
1162 if (device_config_needed
== NOTHING
)
1166 * If we decided that a re-configuration needs to be done,
1167 * schedule it here on the way out the door, please close the door
1172 * Find the scsi_device associated with the SCSI address,
1173 * and mark it as changed, invalidating the cache. This deals
1174 * with changes to existing device IDs.
1177 if (!dev
|| !dev
->scsi_host_ptr
)
1180 * force reload of disk info via aac_probe_container
1182 if ((channel
== CONTAINER_CHANNEL
) &&
1183 (device_config_needed
!= NOTHING
)) {
1184 if (dev
->fsa_dev
[container
].valid
== 1)
1185 dev
->fsa_dev
[container
].valid
= 2;
1186 aac_probe_container(dev
, container
);
1188 device
= scsi_device_lookup(dev
->scsi_host_ptr
, channel
, id
, lun
);
1190 switch (device_config_needed
) {
1192 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1193 scsi_remove_device(device
);
1195 if (scsi_device_online(device
)) {
1196 scsi_device_set_state(device
, SDEV_OFFLINE
);
1197 sdev_printk(KERN_INFO
, device
,
1198 "Device offlined - %s\n",
1199 (channel
== CONTAINER_CHANNEL
) ?
1201 "enclosure services event");
1206 if (!scsi_device_online(device
)) {
1207 sdev_printk(KERN_INFO
, device
,
1208 "Device online - %s\n",
1209 (channel
== CONTAINER_CHANNEL
) ?
1211 "enclosure services event");
1212 scsi_device_set_state(device
, SDEV_RUNNING
);
1216 if ((channel
== CONTAINER_CHANNEL
)
1217 && (!dev
->fsa_dev
[container
].valid
)) {
1218 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1219 scsi_remove_device(device
);
1221 if (!scsi_device_online(device
))
1223 scsi_device_set_state(device
, SDEV_OFFLINE
);
1224 sdev_printk(KERN_INFO
, device
,
1225 "Device offlined - %s\n",
1230 scsi_rescan_device(&device
->sdev_gendev
);
1235 scsi_device_put(device
);
1236 device_config_needed
= NOTHING
;
1238 if (device_config_needed
== ADD
)
1239 scsi_add_device(dev
->scsi_host_ptr
, channel
, id
, lun
);
1240 if (channel
== CONTAINER_CHANNEL
) {
1242 device_config_needed
= NOTHING
;
1247 static int _aac_reset_adapter(struct aac_dev
*aac
, int forced
)
1251 struct Scsi_Host
*host
;
1252 struct scsi_device
*dev
;
1253 struct scsi_cmnd
*command
;
1254 struct scsi_cmnd
*command_list
;
1259 * - host is locked, unless called by the aacraid thread.
1260 * (a matter of convenience, due to legacy issues surrounding
1261 * eh_host_adapter_reset).
1262 * - in_reset is asserted, so no new i/o is getting to the
1264 * - The card is dead, or will be very shortly ;-/ so no new
1265 * commands are completing in the interrupt service.
1267 host
= aac
->scsi_host_ptr
;
1268 scsi_block_requests(host
);
1269 aac_adapter_disable_int(aac
);
1270 if (aac
->thread
->pid
!= current
->pid
) {
1271 spin_unlock_irq(host
->host_lock
);
1272 kthread_stop(aac
->thread
);
1277 * If a positive health, means in a known DEAD PANIC
1278 * state and the adapter could be reset to `try again'.
1280 retval
= aac_adapter_restart(aac
, forced
? 0 : aac_adapter_check_health(aac
));
1286 * Loop through the fibs, close the synchronous FIBS
1288 for (retval
= 1, index
= 0; index
< (aac
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
); index
++) {
1289 struct fib
*fib
= &aac
->fibs
[index
];
1290 if (!(fib
->hw_fib_va
->header
.XferState
& cpu_to_le32(NoResponseExpected
| Async
)) &&
1291 (fib
->hw_fib_va
->header
.XferState
& cpu_to_le32(ResponseExpected
))) {
1292 unsigned long flagv
;
1293 spin_lock_irqsave(&fib
->event_lock
, flagv
);
1294 up(&fib
->event_wait
);
1295 spin_unlock_irqrestore(&fib
->event_lock
, flagv
);
1300 /* Give some extra time for ioctls to complete. */
1303 index
= aac
->cardtype
;
1306 * Re-initialize the adapter, first free resources, then carefully
1307 * apply the initialization sequence to come back again. Only risk
1308 * is a change in Firmware dropping cache, it is assumed the caller
1309 * will ensure that i/o is queisced and the card is flushed in that
1312 aac_fib_map_free(aac
);
1313 pci_free_consistent(aac
->pdev
, aac
->comm_size
, aac
->comm_addr
, aac
->comm_phys
);
1314 aac
->comm_addr
= NULL
;
1318 free_irq(aac
->pdev
->irq
, aac
);
1320 pci_disable_msi(aac
->pdev
);
1321 kfree(aac
->fsa_dev
);
1322 aac
->fsa_dev
= NULL
;
1323 quirks
= aac_get_driver_ident(index
)->quirks
;
1324 if (quirks
& AAC_QUIRK_31BIT
) {
1325 if (((retval
= pci_set_dma_mask(aac
->pdev
, DMA_BIT_MASK(31)))) ||
1326 ((retval
= pci_set_consistent_dma_mask(aac
->pdev
, DMA_BIT_MASK(31)))))
1329 if (((retval
= pci_set_dma_mask(aac
->pdev
, DMA_BIT_MASK(32)))) ||
1330 ((retval
= pci_set_consistent_dma_mask(aac
->pdev
, DMA_BIT_MASK(32)))))
1333 if ((retval
= (*(aac_get_driver_ident(index
)->init
))(aac
)))
1335 if (quirks
& AAC_QUIRK_31BIT
)
1336 if ((retval
= pci_set_dma_mask(aac
->pdev
, DMA_BIT_MASK(32))))
1339 aac
->thread
= kthread_run(aac_command_thread
, aac
, aac
->name
);
1340 if (IS_ERR(aac
->thread
)) {
1341 retval
= PTR_ERR(aac
->thread
);
1345 (void)aac_get_adapter_info(aac
);
1346 if ((quirks
& AAC_QUIRK_34SG
) && (host
->sg_tablesize
> 34)) {
1347 host
->sg_tablesize
= 34;
1348 host
->max_sectors
= (host
->sg_tablesize
* 8) + 112;
1350 if ((quirks
& AAC_QUIRK_17SG
) && (host
->sg_tablesize
> 17)) {
1351 host
->sg_tablesize
= 17;
1352 host
->max_sectors
= (host
->sg_tablesize
* 8) + 112;
1354 aac_get_config_status(aac
, 1);
1355 aac_get_containers(aac
);
1357 * This is where the assumption that the Adapter is quiesced
1360 command_list
= NULL
;
1361 __shost_for_each_device(dev
, host
) {
1362 unsigned long flags
;
1363 spin_lock_irqsave(&dev
->list_lock
, flags
);
1364 list_for_each_entry(command
, &dev
->cmd_list
, list
)
1365 if (command
->SCp
.phase
== AAC_OWNER_FIRMWARE
) {
1366 command
->SCp
.buffer
= (struct scatterlist
*)command_list
;
1367 command_list
= command
;
1369 spin_unlock_irqrestore(&dev
->list_lock
, flags
);
1371 while ((command
= command_list
)) {
1372 command_list
= (struct scsi_cmnd
*)command
->SCp
.buffer
;
1373 command
->SCp
.buffer
= NULL
;
1374 command
->result
= DID_OK
<< 16
1375 | COMMAND_COMPLETE
<< 8
1376 | SAM_STAT_TASK_SET_FULL
;
1377 command
->SCp
.phase
= AAC_OWNER_ERROR_HANDLER
;
1378 command
->scsi_done(command
);
1384 scsi_unblock_requests(host
);
1386 spin_lock_irq(host
->host_lock
);
1391 int aac_reset_adapter(struct aac_dev
* aac
, int forced
)
1393 unsigned long flagv
= 0;
1395 struct Scsi_Host
* host
;
1397 if (spin_trylock_irqsave(&aac
->fib_lock
, flagv
) == 0)
1400 if (aac
->in_reset
) {
1401 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1405 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1408 * Wait for all commands to complete to this specific
1409 * target (block maximum 60 seconds). Although not necessary,
1410 * it does make us a good storage citizen.
1412 host
= aac
->scsi_host_ptr
;
1413 scsi_block_requests(host
);
1414 if (forced
< 2) for (retval
= 60; retval
; --retval
) {
1415 struct scsi_device
* dev
;
1416 struct scsi_cmnd
* command
;
1419 __shost_for_each_device(dev
, host
) {
1420 spin_lock_irqsave(&dev
->list_lock
, flagv
);
1421 list_for_each_entry(command
, &dev
->cmd_list
, list
) {
1422 if (command
->SCp
.phase
== AAC_OWNER_FIRMWARE
) {
1427 spin_unlock_irqrestore(&dev
->list_lock
, flagv
);
1433 * We can exit If all the commands are complete
1440 /* Quiesce build, flush cache, write through mode */
1442 aac_send_shutdown(aac
);
1443 spin_lock_irqsave(host
->host_lock
, flagv
);
1444 retval
= _aac_reset_adapter(aac
, forced
? forced
: ((aac_check_reset
!= 0) && (aac_check_reset
!= 1)));
1445 spin_unlock_irqrestore(host
->host_lock
, flagv
);
1447 if ((forced
< 2) && (retval
== -ENODEV
)) {
1448 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1449 struct fib
* fibctx
= aac_fib_alloc(aac
);
1451 struct aac_pause
*cmd
;
1454 aac_fib_init(fibctx
);
1456 cmd
= (struct aac_pause
*) fib_data(fibctx
);
1458 cmd
->command
= cpu_to_le32(VM_ContainerConfig
);
1459 cmd
->type
= cpu_to_le32(CT_PAUSE_IO
);
1460 cmd
->timeout
= cpu_to_le32(1);
1461 cmd
->min
= cpu_to_le32(1);
1462 cmd
->noRescan
= cpu_to_le32(1);
1463 cmd
->count
= cpu_to_le32(0);
1465 status
= aac_fib_send(ContainerCommand
,
1467 sizeof(struct aac_pause
),
1469 -2 /* Timeout silently */, 1,
1473 aac_fib_complete(fibctx
);
1474 /* FIB should be freed only after getting
1475 * the response from the F/W */
1476 if (status
!= -ERESTARTSYS
)
1477 aac_fib_free(fibctx
);
1484 int aac_check_health(struct aac_dev
* aac
)
1487 unsigned long time_now
, flagv
= 0;
1488 struct list_head
* entry
;
1489 struct Scsi_Host
* host
;
1491 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1492 if (spin_trylock_irqsave(&aac
->fib_lock
, flagv
) == 0)
1495 if (aac
->in_reset
|| !(BlinkLED
= aac_adapter_check_health(aac
))) {
1496 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1503 * aac_aifcmd.command = AifCmdEventNotify = 1
1504 * aac_aifcmd.seqnum = 0xFFFFFFFF
1505 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1506 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1507 * aac.aifcmd.data[2] = AifHighPriority = 3
1508 * aac.aifcmd.data[3] = BlinkLED
1511 time_now
= jiffies
/HZ
;
1512 entry
= aac
->fib_list
.next
;
1515 * For each Context that is on the
1516 * fibctxList, make a copy of the
1517 * fib, and then set the event to wake up the
1518 * thread that is waiting for it.
1520 while (entry
!= &aac
->fib_list
) {
1522 * Extract the fibctx
1524 struct aac_fib_context
*fibctx
= list_entry(entry
, struct aac_fib_context
, next
);
1525 struct hw_fib
* hw_fib
;
1528 * Check if the queue is getting
1531 if (fibctx
->count
> 20) {
1533 * It's *not* jiffies folks,
1534 * but jiffies / HZ, so do not
1537 u32 time_last
= fibctx
->jiffies
;
1539 * Has it been > 2 minutes
1540 * since the last read off
1543 if ((time_now
- time_last
) > aif_timeout
) {
1544 entry
= entry
->next
;
1545 aac_close_fib_context(aac
, fibctx
);
1550 * Warning: no sleep allowed while
1553 hw_fib
= kzalloc(sizeof(struct hw_fib
), GFP_ATOMIC
);
1554 fib
= kzalloc(sizeof(struct fib
), GFP_ATOMIC
);
1555 if (fib
&& hw_fib
) {
1556 struct aac_aifcmd
* aif
;
1558 fib
->hw_fib_va
= hw_fib
;
1561 fib
->type
= FSAFS_NTC_FIB_CONTEXT
;
1562 fib
->size
= sizeof (struct fib
);
1563 fib
->data
= hw_fib
->data
;
1564 aif
= (struct aac_aifcmd
*)hw_fib
->data
;
1565 aif
->command
= cpu_to_le32(AifCmdEventNotify
);
1566 aif
->seqnum
= cpu_to_le32(0xFFFFFFFF);
1567 ((__le32
*)aif
->data
)[0] = cpu_to_le32(AifEnExpEvent
);
1568 ((__le32
*)aif
->data
)[1] = cpu_to_le32(AifExeFirmwarePanic
);
1569 ((__le32
*)aif
->data
)[2] = cpu_to_le32(AifHighPriority
);
1570 ((__le32
*)aif
->data
)[3] = cpu_to_le32(BlinkLED
);
1573 * Put the FIB onto the
1576 list_add_tail(&fib
->fiblink
, &fibctx
->fib_list
);
1579 * Set the event to wake up the
1580 * thread that will waiting.
1582 up(&fibctx
->wait_sem
);
1584 printk(KERN_WARNING
"aifd: didn't allocate NewFib.\n");
1588 entry
= entry
->next
;
1591 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1594 printk(KERN_ERR
"%s: Host adapter dead %d\n", aac
->name
, BlinkLED
);
1598 printk(KERN_ERR
"%s: Host adapter BLINK LED 0x%x\n", aac
->name
, BlinkLED
);
1600 if (!aac_check_reset
|| ((aac_check_reset
== 1) &&
1601 (aac
->supplement_adapter_info
.SupportedOptions2
&
1602 AAC_OPTION_IGNORE_RESET
)))
1604 host
= aac
->scsi_host_ptr
;
1605 if (aac
->thread
->pid
!= current
->pid
)
1606 spin_lock_irqsave(host
->host_lock
, flagv
);
1607 BlinkLED
= _aac_reset_adapter(aac
, aac_check_reset
!= 1);
1608 if (aac
->thread
->pid
!= current
->pid
)
1609 spin_unlock_irqrestore(host
->host_lock
, flagv
);
1619 * aac_command_thread - command processing thread
1620 * @dev: Adapter to monitor
1622 * Waits on the commandready event in it's queue. When the event gets set
1623 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1624 * until the queue is empty. When the queue is empty it will wait for
1628 int aac_command_thread(void *data
)
1630 struct aac_dev
*dev
= data
;
1631 struct hw_fib
*hw_fib
, *hw_newfib
;
1632 struct fib
*fib
, *newfib
;
1633 struct aac_fib_context
*fibctx
;
1634 unsigned long flags
;
1635 DECLARE_WAITQUEUE(wait
, current
);
1636 unsigned long next_jiffies
= jiffies
+ HZ
;
1637 unsigned long next_check_jiffies
= next_jiffies
;
1638 long difference
= HZ
;
1641 * We can only have one thread per adapter for AIF's.
1643 if (dev
->aif_thread
)
1647 * Let the DPC know it has a place to send the AIF's to.
1649 dev
->aif_thread
= 1;
1650 add_wait_queue(&dev
->queues
->queue
[HostNormCmdQueue
].cmdready
, &wait
);
1651 set_current_state(TASK_INTERRUPTIBLE
);
1652 dprintk ((KERN_INFO
"aac_command_thread start\n"));
1654 spin_lock_irqsave(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1655 while(!list_empty(&(dev
->queues
->queue
[HostNormCmdQueue
].cmdq
))) {
1656 struct list_head
*entry
;
1657 struct aac_aifcmd
* aifcmd
;
1659 set_current_state(TASK_RUNNING
);
1661 entry
= dev
->queues
->queue
[HostNormCmdQueue
].cmdq
.next
;
1664 spin_unlock_irqrestore(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1665 fib
= list_entry(entry
, struct fib
, fiblink
);
1667 * We will process the FIB here or pass it to a
1668 * worker thread that is TBD. We Really can't
1669 * do anything at this point since we don't have
1670 * anything defined for this thread to do.
1672 hw_fib
= fib
->hw_fib_va
;
1673 memset(fib
, 0, sizeof(struct fib
));
1674 fib
->type
= FSAFS_NTC_FIB_CONTEXT
;
1675 fib
->size
= sizeof(struct fib
);
1676 fib
->hw_fib_va
= hw_fib
;
1677 fib
->data
= hw_fib
->data
;
1680 * We only handle AifRequest fibs from the adapter.
1682 aifcmd
= (struct aac_aifcmd
*) hw_fib
->data
;
1683 if (aifcmd
->command
== cpu_to_le32(AifCmdDriverNotify
)) {
1684 /* Handle Driver Notify Events */
1685 aac_handle_aif(dev
, fib
);
1686 *(__le32
*)hw_fib
->data
= cpu_to_le32(ST_OK
);
1687 aac_fib_adapter_complete(fib
, (u16
)sizeof(u32
));
1689 /* The u32 here is important and intended. We are using
1690 32bit wrapping time to fit the adapter field */
1692 u32 time_now
, time_last
;
1693 unsigned long flagv
;
1695 struct hw_fib
** hw_fib_pool
, ** hw_fib_p
;
1696 struct fib
** fib_pool
, ** fib_p
;
1699 if ((aifcmd
->command
==
1700 cpu_to_le32(AifCmdEventNotify
)) ||
1702 cpu_to_le32(AifCmdJobProgress
))) {
1703 aac_handle_aif(dev
, fib
);
1706 time_now
= jiffies
/HZ
;
1709 * Warning: no sleep allowed while
1710 * holding spinlock. We take the estimate
1711 * and pre-allocate a set of fibs outside the
1714 num
= le32_to_cpu(dev
->init
->AdapterFibsSize
)
1715 / sizeof(struct hw_fib
); /* some extra */
1716 spin_lock_irqsave(&dev
->fib_lock
, flagv
);
1717 entry
= dev
->fib_list
.next
;
1718 while (entry
!= &dev
->fib_list
) {
1719 entry
= entry
->next
;
1722 spin_unlock_irqrestore(&dev
->fib_lock
, flagv
);
1726 && ((hw_fib_pool
= kmalloc(sizeof(struct hw_fib
*) * num
, GFP_KERNEL
)))
1727 && ((fib_pool
= kmalloc(sizeof(struct fib
*) * num
, GFP_KERNEL
)))) {
1728 hw_fib_p
= hw_fib_pool
;
1730 while (hw_fib_p
< &hw_fib_pool
[num
]) {
1731 if (!(*(hw_fib_p
++) = kmalloc(sizeof(struct hw_fib
), GFP_KERNEL
))) {
1735 if (!(*(fib_p
++) = kmalloc(sizeof(struct fib
), GFP_KERNEL
))) {
1736 kfree(*(--hw_fib_p
));
1740 if ((num
= hw_fib_p
- hw_fib_pool
) == 0) {
1750 spin_lock_irqsave(&dev
->fib_lock
, flagv
);
1751 entry
= dev
->fib_list
.next
;
1753 * For each Context that is on the
1754 * fibctxList, make a copy of the
1755 * fib, and then set the event to wake up the
1756 * thread that is waiting for it.
1758 hw_fib_p
= hw_fib_pool
;
1760 while (entry
!= &dev
->fib_list
) {
1762 * Extract the fibctx
1764 fibctx
= list_entry(entry
, struct aac_fib_context
, next
);
1766 * Check if the queue is getting
1769 if (fibctx
->count
> 20)
1772 * It's *not* jiffies folks,
1773 * but jiffies / HZ so do not
1776 time_last
= fibctx
->jiffies
;
1778 * Has it been > 2 minutes
1779 * since the last read off
1782 if ((time_now
- time_last
) > aif_timeout
) {
1783 entry
= entry
->next
;
1784 aac_close_fib_context(dev
, fibctx
);
1789 * Warning: no sleep allowed while
1792 if (hw_fib_p
< &hw_fib_pool
[num
]) {
1793 hw_newfib
= *hw_fib_p
;
1794 *(hw_fib_p
++) = NULL
;
1798 * Make the copy of the FIB
1800 memcpy(hw_newfib
, hw_fib
, sizeof(struct hw_fib
));
1801 memcpy(newfib
, fib
, sizeof(struct fib
));
1802 newfib
->hw_fib_va
= hw_newfib
;
1804 * Put the FIB onto the
1807 list_add_tail(&newfib
->fiblink
, &fibctx
->fib_list
);
1810 * Set the event to wake up the
1811 * thread that is waiting.
1813 up(&fibctx
->wait_sem
);
1815 printk(KERN_WARNING
"aifd: didn't allocate NewFib.\n");
1817 entry
= entry
->next
;
1820 * Set the status of this FIB
1822 *(__le32
*)hw_fib
->data
= cpu_to_le32(ST_OK
);
1823 aac_fib_adapter_complete(fib
, sizeof(u32
));
1824 spin_unlock_irqrestore(&dev
->fib_lock
, flagv
);
1825 /* Free up the remaining resources */
1826 hw_fib_p
= hw_fib_pool
;
1828 while (hw_fib_p
< &hw_fib_pool
[num
]) {
1838 spin_lock_irqsave(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1841 * There are no more AIF's
1843 spin_unlock_irqrestore(dev
->queues
->queue
[HostNormCmdQueue
].lock
, flags
);
1846 * Background activity
1848 if ((time_before(next_check_jiffies
,next_jiffies
))
1849 && ((difference
= next_check_jiffies
- jiffies
) <= 0)) {
1850 next_check_jiffies
= next_jiffies
;
1851 if (aac_check_health(dev
) == 0) {
1852 difference
= ((long)(unsigned)check_interval
)
1854 next_check_jiffies
= jiffies
+ difference
;
1855 } else if (!dev
->queues
)
1858 if (!time_before(next_check_jiffies
,next_jiffies
)
1859 && ((difference
= next_jiffies
- jiffies
) <= 0)) {
1863 /* Don't even try to talk to adapter if its sick */
1864 ret
= aac_check_health(dev
);
1865 if (!ret
&& !dev
->queues
)
1867 next_check_jiffies
= jiffies
1868 + ((long)(unsigned)check_interval
)
1870 do_gettimeofday(&now
);
1872 /* Synchronize our watches */
1873 if (((1000000 - (1000000 / HZ
)) > now
.tv_usec
)
1874 && (now
.tv_usec
> (1000000 / HZ
)))
1875 difference
= (((1000000 - now
.tv_usec
) * HZ
)
1876 + 500000) / 1000000;
1877 else if (ret
== 0) {
1880 if ((fibptr
= aac_fib_alloc(dev
))) {
1884 aac_fib_init(fibptr
);
1886 info
= (__le32
*) fib_data(fibptr
);
1887 if (now
.tv_usec
> 500000)
1890 *info
= cpu_to_le32(now
.tv_sec
);
1892 status
= aac_fib_send(SendHostTime
,
1899 /* Do not set XferState to zero unless
1900 * receives a response from F/W */
1902 aac_fib_complete(fibptr
);
1903 /* FIB should be freed only after
1904 * getting the response from the F/W */
1905 if (status
!= -ERESTARTSYS
)
1906 aac_fib_free(fibptr
);
1908 difference
= (long)(unsigned)update_interval
*HZ
;
1911 difference
= 10 * HZ
;
1913 next_jiffies
= jiffies
+ difference
;
1914 if (time_before(next_check_jiffies
,next_jiffies
))
1915 difference
= next_check_jiffies
- jiffies
;
1917 if (difference
<= 0)
1919 set_current_state(TASK_INTERRUPTIBLE
);
1920 schedule_timeout(difference
);
1922 if (kthread_should_stop())
1926 remove_wait_queue(&dev
->queues
->queue
[HostNormCmdQueue
].cmdready
, &wait
);
1927 dev
->aif_thread
= 0;