2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION
);
74 MODULE_LICENSE("GPL");
76 static int hpsa_allow_any
;
77 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
78 MODULE_PARM_DESC(hpsa_allow_any
,
79 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode
;
81 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
82 MODULE_PARM_DESC(hpsa_simple_mode
,
83 "Use 'simple mode' rather than 'performant mode'");
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id
[] = {
87 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
88 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
89 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
90 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324a},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324b},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
102 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
103 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
107 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
109 /* board_id = Subsystem Device ID & Vendor ID
110 * product = Marketing Name for the board
111 * access = Address of the struct of function pointers
113 static struct board_type products
[] = {
114 {0x3241103C, "Smart Array P212", &SA5_access
},
115 {0x3243103C, "Smart Array P410", &SA5_access
},
116 {0x3245103C, "Smart Array P410i", &SA5_access
},
117 {0x3247103C, "Smart Array P411", &SA5_access
},
118 {0x3249103C, "Smart Array P812", &SA5_access
},
119 {0x324a103C, "Smart Array P712m", &SA5_access
},
120 {0x324b103C, "Smart Array P711m", &SA5_access
},
121 {0x3350103C, "Smart Array", &SA5_access
},
122 {0x3351103C, "Smart Array", &SA5_access
},
123 {0x3352103C, "Smart Array", &SA5_access
},
124 {0x3353103C, "Smart Array", &SA5_access
},
125 {0x3354103C, "Smart Array", &SA5_access
},
126 {0x3355103C, "Smart Array", &SA5_access
},
127 {0x3356103C, "Smart Array", &SA5_access
},
128 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
131 static int number_of_controllers
;
133 static struct list_head hpsa_ctlr_list
= LIST_HEAD_INIT(hpsa_ctlr_list
);
134 static spinlock_t lockup_detector_lock
;
135 static struct task_struct
*hpsa_lockup_detector
;
137 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
138 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
139 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
);
140 static void start_io(struct ctlr_info
*h
);
143 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
);
146 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
147 static void cmd_special_free(struct ctlr_info
*h
, struct CommandList
*c
);
148 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
149 static struct CommandList
*cmd_special_alloc(struct ctlr_info
*h
);
150 static void fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
151 void *buff
, size_t size
, u8 page_code
, unsigned char *scsi3addr
,
154 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
155 static void hpsa_scan_start(struct Scsi_Host
*);
156 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
157 unsigned long elapsed_time
);
158 static int hpsa_change_queue_depth(struct scsi_device
*sdev
,
159 int qdepth
, int reason
);
161 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
162 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
163 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
164 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
166 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
);
167 static int check_for_unit_attention(struct ctlr_info
*h
,
168 struct CommandList
*c
);
169 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
170 struct CommandList
*c
);
171 /* performant mode helper functions */
172 static void calc_bucket_map(int *bucket
, int num_buckets
,
173 int nsgs
, int *bucket_map
);
174 static __devinit
void hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
175 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
176 static int __devinit
hpsa_find_cfg_addrs(struct pci_dev
*pdev
,
177 void __iomem
*vaddr
, u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
179 static int __devinit
hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
180 unsigned long *memory_bar
);
181 static int __devinit
hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
182 static int __devinit
hpsa_wait_for_board_state(struct pci_dev
*pdev
,
183 void __iomem
*vaddr
, int wait_for_ready
);
184 static inline void finish_cmd(struct CommandList
*c
);
185 #define BOARD_NOT_READY 0
186 #define BOARD_READY 1
188 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
190 unsigned long *priv
= shost_priv(sdev
->host
);
191 return (struct ctlr_info
*) *priv
;
194 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
196 unsigned long *priv
= shost_priv(sh
);
197 return (struct ctlr_info
*) *priv
;
200 static int check_for_unit_attention(struct ctlr_info
*h
,
201 struct CommandList
*c
)
203 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
206 switch (c
->err_info
->SenseInfo
[12]) {
208 dev_warn(&h
->pdev
->dev
, HPSA
"%d: a state change "
209 "detected, command retried\n", h
->ctlr
);
212 dev_warn(&h
->pdev
->dev
, HPSA
"%d: LUN failure "
213 "detected, action required\n", h
->ctlr
);
215 case REPORT_LUNS_CHANGED
:
216 dev_warn(&h
->pdev
->dev
, HPSA
"%d: report LUN data "
217 "changed, action required\n", h
->ctlr
);
219 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
220 * target (array) devices.
224 dev_warn(&h
->pdev
->dev
, HPSA
"%d: a power on "
225 "or device reset detected\n", h
->ctlr
);
227 case UNIT_ATTENTION_CLEARED
:
228 dev_warn(&h
->pdev
->dev
, HPSA
"%d: unit attention "
229 "cleared by another initiator\n", h
->ctlr
);
232 dev_warn(&h
->pdev
->dev
, HPSA
"%d: unknown "
233 "unit attention detected\n", h
->ctlr
);
239 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
241 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
242 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
243 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
245 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
249 static ssize_t
host_store_rescan(struct device
*dev
,
250 struct device_attribute
*attr
,
251 const char *buf
, size_t count
)
254 struct Scsi_Host
*shost
= class_to_shost(dev
);
255 h
= shost_to_hba(shost
);
256 hpsa_scan_start(h
->scsi_host
);
260 static ssize_t
host_show_firmware_revision(struct device
*dev
,
261 struct device_attribute
*attr
, char *buf
)
264 struct Scsi_Host
*shost
= class_to_shost(dev
);
265 unsigned char *fwrev
;
267 h
= shost_to_hba(shost
);
268 if (!h
->hba_inquiry_data
)
270 fwrev
= &h
->hba_inquiry_data
[32];
271 return snprintf(buf
, 20, "%c%c%c%c\n",
272 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
275 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
276 struct device_attribute
*attr
, char *buf
)
278 struct Scsi_Host
*shost
= class_to_shost(dev
);
279 struct ctlr_info
*h
= shost_to_hba(shost
);
281 return snprintf(buf
, 20, "%d\n", h
->commands_outstanding
);
284 static ssize_t
host_show_transport_mode(struct device
*dev
,
285 struct device_attribute
*attr
, char *buf
)
288 struct Scsi_Host
*shost
= class_to_shost(dev
);
290 h
= shost_to_hba(shost
);
291 return snprintf(buf
, 20, "%s\n",
292 h
->transMethod
& CFGTBL_Trans_Performant
?
293 "performant" : "simple");
296 /* List of controllers which cannot be hard reset on kexec with reset_devices */
297 static u32 unresettable_controller
[] = {
298 0x324a103C, /* Smart Array P712m */
299 0x324b103C, /* SmartArray P711m */
300 0x3223103C, /* Smart Array P800 */
301 0x3234103C, /* Smart Array P400 */
302 0x3235103C, /* Smart Array P400i */
303 0x3211103C, /* Smart Array E200i */
304 0x3212103C, /* Smart Array E200 */
305 0x3213103C, /* Smart Array E200i */
306 0x3214103C, /* Smart Array E200i */
307 0x3215103C, /* Smart Array E200i */
308 0x3237103C, /* Smart Array E500 */
309 0x323D103C, /* Smart Array P700m */
310 0x40800E11, /* Smart Array 5i */
311 0x409C0E11, /* Smart Array 6400 */
312 0x409D0E11, /* Smart Array 6400 EM */
313 0x40700E11, /* Smart Array 5300 */
314 0x40820E11, /* Smart Array 532 */
315 0x40830E11, /* Smart Array 5312 */
316 0x409A0E11, /* Smart Array 641 */
317 0x409B0E11, /* Smart Array 642 */
318 0x40910E11, /* Smart Array 6i */
321 /* List of controllers which cannot even be soft reset */
322 static u32 soft_unresettable_controller
[] = {
323 0x40800E11, /* Smart Array 5i */
324 0x40700E11, /* Smart Array 5300 */
325 0x40820E11, /* Smart Array 532 */
326 0x40830E11, /* Smart Array 5312 */
327 0x409A0E11, /* Smart Array 641 */
328 0x409B0E11, /* Smart Array 642 */
329 0x40910E11, /* Smart Array 6i */
330 /* Exclude 640x boards. These are two pci devices in one slot
331 * which share a battery backed cache module. One controls the
332 * cache, the other accesses the cache through the one that controls
333 * it. If we reset the one controlling the cache, the other will
334 * likely not be happy. Just forbid resetting this conjoined mess.
335 * The 640x isn't really supported by hpsa anyway.
337 0x409C0E11, /* Smart Array 6400 */
338 0x409D0E11, /* Smart Array 6400 EM */
341 static int ctlr_is_hard_resettable(u32 board_id
)
345 for (i
= 0; i
< ARRAY_SIZE(unresettable_controller
); i
++)
346 if (unresettable_controller
[i
] == board_id
)
351 static int ctlr_is_soft_resettable(u32 board_id
)
355 for (i
= 0; i
< ARRAY_SIZE(soft_unresettable_controller
); i
++)
356 if (soft_unresettable_controller
[i
] == board_id
)
361 static int ctlr_is_resettable(u32 board_id
)
363 return ctlr_is_hard_resettable(board_id
) ||
364 ctlr_is_soft_resettable(board_id
);
367 static ssize_t
host_show_resettable(struct device
*dev
,
368 struct device_attribute
*attr
, char *buf
)
371 struct Scsi_Host
*shost
= class_to_shost(dev
);
373 h
= shost_to_hba(shost
);
374 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
377 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
379 return (scsi3addr
[3] & 0xC0) == 0x40;
382 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
385 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
387 static ssize_t
raid_level_show(struct device
*dev
,
388 struct device_attribute
*attr
, char *buf
)
391 unsigned char rlevel
;
393 struct scsi_device
*sdev
;
394 struct hpsa_scsi_dev_t
*hdev
;
397 sdev
= to_scsi_device(dev
);
398 h
= sdev_to_hba(sdev
);
399 spin_lock_irqsave(&h
->lock
, flags
);
400 hdev
= sdev
->hostdata
;
402 spin_unlock_irqrestore(&h
->lock
, flags
);
406 /* Is this even a logical drive? */
407 if (!is_logical_dev_addr_mode(hdev
->scsi3addr
)) {
408 spin_unlock_irqrestore(&h
->lock
, flags
);
409 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
413 rlevel
= hdev
->raid_level
;
414 spin_unlock_irqrestore(&h
->lock
, flags
);
415 if (rlevel
> RAID_UNKNOWN
)
416 rlevel
= RAID_UNKNOWN
;
417 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
421 static ssize_t
lunid_show(struct device
*dev
,
422 struct device_attribute
*attr
, char *buf
)
425 struct scsi_device
*sdev
;
426 struct hpsa_scsi_dev_t
*hdev
;
428 unsigned char lunid
[8];
430 sdev
= to_scsi_device(dev
);
431 h
= sdev_to_hba(sdev
);
432 spin_lock_irqsave(&h
->lock
, flags
);
433 hdev
= sdev
->hostdata
;
435 spin_unlock_irqrestore(&h
->lock
, flags
);
438 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
439 spin_unlock_irqrestore(&h
->lock
, flags
);
440 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
441 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
442 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
445 static ssize_t
unique_id_show(struct device
*dev
,
446 struct device_attribute
*attr
, char *buf
)
449 struct scsi_device
*sdev
;
450 struct hpsa_scsi_dev_t
*hdev
;
452 unsigned char sn
[16];
454 sdev
= to_scsi_device(dev
);
455 h
= sdev_to_hba(sdev
);
456 spin_lock_irqsave(&h
->lock
, flags
);
457 hdev
= sdev
->hostdata
;
459 spin_unlock_irqrestore(&h
->lock
, flags
);
462 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
463 spin_unlock_irqrestore(&h
->lock
, flags
);
464 return snprintf(buf
, 16 * 2 + 2,
465 "%02X%02X%02X%02X%02X%02X%02X%02X"
466 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
467 sn
[0], sn
[1], sn
[2], sn
[3],
468 sn
[4], sn
[5], sn
[6], sn
[7],
469 sn
[8], sn
[9], sn
[10], sn
[11],
470 sn
[12], sn
[13], sn
[14], sn
[15]);
473 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
474 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
475 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
476 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
477 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
478 host_show_firmware_revision
, NULL
);
479 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
480 host_show_commands_outstanding
, NULL
);
481 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
482 host_show_transport_mode
, NULL
);
483 static DEVICE_ATTR(resettable
, S_IRUGO
,
484 host_show_resettable
, NULL
);
486 static struct device_attribute
*hpsa_sdev_attrs
[] = {
487 &dev_attr_raid_level
,
493 static struct device_attribute
*hpsa_shost_attrs
[] = {
495 &dev_attr_firmware_revision
,
496 &dev_attr_commands_outstanding
,
497 &dev_attr_transport_mode
,
498 &dev_attr_resettable
,
502 static struct scsi_host_template hpsa_driver_template
= {
503 .module
= THIS_MODULE
,
506 .queuecommand
= hpsa_scsi_queue_command
,
507 .scan_start
= hpsa_scan_start
,
508 .scan_finished
= hpsa_scan_finished
,
509 .change_queue_depth
= hpsa_change_queue_depth
,
511 .use_clustering
= ENABLE_CLUSTERING
,
512 .eh_abort_handler
= hpsa_eh_abort_handler
,
513 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
515 .slave_alloc
= hpsa_slave_alloc
,
516 .slave_destroy
= hpsa_slave_destroy
,
518 .compat_ioctl
= hpsa_compat_ioctl
,
520 .sdev_attrs
= hpsa_sdev_attrs
,
521 .shost_attrs
= hpsa_shost_attrs
,
526 /* Enqueuing and dequeuing functions for cmdlists. */
527 static inline void addQ(struct list_head
*list
, struct CommandList
*c
)
529 list_add_tail(&c
->list
, list
);
532 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
535 struct reply_pool
*rq
= &h
->reply_queue
[q
];
538 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
539 return h
->access
.command_completed(h
, q
);
541 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
542 a
= rq
->head
[rq
->current_entry
];
544 spin_lock_irqsave(&h
->lock
, flags
);
545 h
->commands_outstanding
--;
546 spin_unlock_irqrestore(&h
->lock
, flags
);
550 /* Check for wraparound */
551 if (rq
->current_entry
== h
->max_commands
) {
552 rq
->current_entry
= 0;
558 /* set_performant_mode: Modify the tag for cciss performant
559 * set bit 0 for pull model, bits 3-1 for block fetch
562 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
)
564 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
565 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
566 if (likely(h
->msix_vector
))
567 c
->Header
.ReplyQueue
=
568 smp_processor_id() % h
->nreply_queues
;
572 static int is_firmware_flash_cmd(u8
*cdb
)
574 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
578 * During firmware flash, the heartbeat register may not update as frequently
579 * as it should. So we dial down lockup detection during firmware flash. and
580 * dial it back up when firmware flash completes.
582 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
583 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
584 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
585 struct CommandList
*c
)
587 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
589 atomic_inc(&h
->firmware_flash_in_progress
);
590 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
593 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
594 struct CommandList
*c
)
596 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
597 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
598 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
601 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
,
602 struct CommandList
*c
)
606 set_performant_mode(h
, c
);
607 dial_down_lockup_detection_during_fw_flash(h
, c
);
608 spin_lock_irqsave(&h
->lock
, flags
);
611 spin_unlock_irqrestore(&h
->lock
, flags
);
615 static inline void removeQ(struct CommandList
*c
)
617 if (WARN_ON(list_empty(&c
->list
)))
619 list_del_init(&c
->list
);
622 static inline int is_hba_lunid(unsigned char scsi3addr
[])
624 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
627 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
629 if (!h
->hba_inquiry_data
)
631 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
636 static int hpsa_find_target_lun(struct ctlr_info
*h
,
637 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
639 /* finds an unused bus, target, lun for a new physical device
640 * assumes h->devlock is held
643 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
645 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
647 for (i
= 0; i
< h
->ndevices
; i
++) {
648 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
649 __set_bit(h
->dev
[i
]->target
, lun_taken
);
652 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
653 if (i
< HPSA_MAX_DEVICES
) {
662 /* Add an entry into h->dev[] array. */
663 static int hpsa_scsi_add_entry(struct ctlr_info
*h
, int hostno
,
664 struct hpsa_scsi_dev_t
*device
,
665 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
667 /* assumes h->devlock is held */
670 unsigned char addr1
[8], addr2
[8];
671 struct hpsa_scsi_dev_t
*sd
;
673 if (n
>= HPSA_MAX_DEVICES
) {
674 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
679 /* physical devices do not have lun or target assigned until now. */
680 if (device
->lun
!= -1)
681 /* Logical device, lun is already assigned. */
684 /* If this device a non-zero lun of a multi-lun device
685 * byte 4 of the 8-byte LUN addr will contain the logical
686 * unit no, zero otherise.
688 if (device
->scsi3addr
[4] == 0) {
689 /* This is not a non-zero lun of a multi-lun device */
690 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
691 device
->bus
, &device
->target
, &device
->lun
) != 0)
696 /* This is a non-zero lun of a multi-lun device.
697 * Search through our list and find the device which
698 * has the same 8 byte LUN address, excepting byte 4.
699 * Assign the same bus and target for this new LUN.
700 * Use the logical unit number from the firmware.
702 memcpy(addr1
, device
->scsi3addr
, 8);
704 for (i
= 0; i
< n
; i
++) {
706 memcpy(addr2
, sd
->scsi3addr
, 8);
708 /* differ only in byte 4? */
709 if (memcmp(addr1
, addr2
, 8) == 0) {
710 device
->bus
= sd
->bus
;
711 device
->target
= sd
->target
;
712 device
->lun
= device
->scsi3addr
[4];
716 if (device
->lun
== -1) {
717 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
718 " suspect firmware bug or unsupported hardware "
727 added
[*nadded
] = device
;
730 /* initially, (before registering with scsi layer) we don't
731 * know our hostno and we don't want to print anything first
732 * time anyway (the scsi layer's inquiries will show that info)
734 /* if (hostno != -1) */
735 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d added.\n",
736 scsi_device_type(device
->devtype
), hostno
,
737 device
->bus
, device
->target
, device
->lun
);
741 /* Update an entry in h->dev[] array. */
742 static void hpsa_scsi_update_entry(struct ctlr_info
*h
, int hostno
,
743 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
745 /* assumes h->devlock is held */
746 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
748 /* Raid level changed. */
749 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
750 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d updated.\n",
751 scsi_device_type(new_entry
->devtype
), hostno
, new_entry
->bus
,
752 new_entry
->target
, new_entry
->lun
);
755 /* Replace an entry from h->dev[] array. */
756 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
, int hostno
,
757 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
758 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
759 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
761 /* assumes h->devlock is held */
762 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
763 removed
[*nremoved
] = h
->dev
[entry
];
767 * New physical devices won't have target/lun assigned yet
768 * so we need to preserve the values in the slot we are replacing.
770 if (new_entry
->target
== -1) {
771 new_entry
->target
= h
->dev
[entry
]->target
;
772 new_entry
->lun
= h
->dev
[entry
]->lun
;
775 h
->dev
[entry
] = new_entry
;
776 added
[*nadded
] = new_entry
;
778 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d changed.\n",
779 scsi_device_type(new_entry
->devtype
), hostno
, new_entry
->bus
,
780 new_entry
->target
, new_entry
->lun
);
783 /* Remove an entry from h->dev[] array. */
784 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int hostno
, int entry
,
785 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
787 /* assumes h->devlock is held */
789 struct hpsa_scsi_dev_t
*sd
;
791 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
794 removed
[*nremoved
] = h
->dev
[entry
];
797 for (i
= entry
; i
< h
->ndevices
-1; i
++)
798 h
->dev
[i
] = h
->dev
[i
+1];
800 dev_info(&h
->pdev
->dev
, "%s device c%db%dt%dl%d removed.\n",
801 scsi_device_type(sd
->devtype
), hostno
, sd
->bus
, sd
->target
,
805 #define SCSI3ADDR_EQ(a, b) ( \
806 (a)[7] == (b)[7] && \
807 (a)[6] == (b)[6] && \
808 (a)[5] == (b)[5] && \
809 (a)[4] == (b)[4] && \
810 (a)[3] == (b)[3] && \
811 (a)[2] == (b)[2] && \
812 (a)[1] == (b)[1] && \
815 static void fixup_botched_add(struct ctlr_info
*h
,
816 struct hpsa_scsi_dev_t
*added
)
818 /* called when scsi_add_device fails in order to re-adjust
819 * h->dev[] to match the mid layer's view.
824 spin_lock_irqsave(&h
->lock
, flags
);
825 for (i
= 0; i
< h
->ndevices
; i
++) {
826 if (h
->dev
[i
] == added
) {
827 for (j
= i
; j
< h
->ndevices
-1; j
++)
828 h
->dev
[j
] = h
->dev
[j
+1];
833 spin_unlock_irqrestore(&h
->lock
, flags
);
837 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
838 struct hpsa_scsi_dev_t
*dev2
)
840 /* we compare everything except lun and target as these
841 * are not yet assigned. Compare parts likely
844 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
845 sizeof(dev1
->scsi3addr
)) != 0)
847 if (memcmp(dev1
->device_id
, dev2
->device_id
,
848 sizeof(dev1
->device_id
)) != 0)
850 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
852 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
854 if (dev1
->devtype
!= dev2
->devtype
)
856 if (dev1
->bus
!= dev2
->bus
)
861 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
862 struct hpsa_scsi_dev_t
*dev2
)
864 /* Device attributes that can change, but don't mean
865 * that the device is a different device, nor that the OS
866 * needs to be told anything about the change.
868 if (dev1
->raid_level
!= dev2
->raid_level
)
873 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
874 * and return needle location in *index. If scsi3addr matches, but not
875 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
876 * location in *index.
877 * In the case of a minor device attribute change, such as RAID level, just
878 * return DEVICE_UPDATED, along with the updated device's location in index.
879 * If needle not found, return DEVICE_NOT_FOUND.
881 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
882 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
886 #define DEVICE_NOT_FOUND 0
887 #define DEVICE_CHANGED 1
888 #define DEVICE_SAME 2
889 #define DEVICE_UPDATED 3
890 for (i
= 0; i
< haystack_size
; i
++) {
891 if (haystack
[i
] == NULL
) /* previously removed. */
893 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
895 if (device_is_the_same(needle
, haystack
[i
])) {
896 if (device_updated(needle
, haystack
[i
]))
897 return DEVICE_UPDATED
;
900 return DEVICE_CHANGED
;
905 return DEVICE_NOT_FOUND
;
908 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
, int hostno
,
909 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
911 /* sd contains scsi3 addresses and devtypes, and inquiry
912 * data. This function takes what's in sd to be the current
913 * reality and updates h->dev[] to reflect that reality.
915 int i
, entry
, device_change
, changes
= 0;
916 struct hpsa_scsi_dev_t
*csd
;
918 struct hpsa_scsi_dev_t
**added
, **removed
;
919 int nadded
, nremoved
;
920 struct Scsi_Host
*sh
= NULL
;
922 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
923 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
925 if (!added
|| !removed
) {
926 dev_warn(&h
->pdev
->dev
, "out of memory in "
927 "adjust_hpsa_scsi_table\n");
931 spin_lock_irqsave(&h
->devlock
, flags
);
933 /* find any devices in h->dev[] that are not in
934 * sd[] and remove them from h->dev[], and for any
935 * devices which have changed, remove the old device
936 * info and add the new device info.
937 * If minor device attributes change, just update
938 * the existing device structure.
943 while (i
< h
->ndevices
) {
945 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
946 if (device_change
== DEVICE_NOT_FOUND
) {
948 hpsa_scsi_remove_entry(h
, hostno
, i
,
950 continue; /* remove ^^^, hence i not incremented */
951 } else if (device_change
== DEVICE_CHANGED
) {
953 hpsa_scsi_replace_entry(h
, hostno
, i
, sd
[entry
],
954 added
, &nadded
, removed
, &nremoved
);
955 /* Set it to NULL to prevent it from being freed
956 * at the bottom of hpsa_update_scsi_devices()
959 } else if (device_change
== DEVICE_UPDATED
) {
960 hpsa_scsi_update_entry(h
, hostno
, i
, sd
[entry
]);
965 /* Now, make sure every device listed in sd[] is also
966 * listed in h->dev[], adding them if they aren't found
969 for (i
= 0; i
< nsds
; i
++) {
970 if (!sd
[i
]) /* if already added above. */
972 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
973 h
->ndevices
, &entry
);
974 if (device_change
== DEVICE_NOT_FOUND
) {
976 if (hpsa_scsi_add_entry(h
, hostno
, sd
[i
],
977 added
, &nadded
) != 0)
979 sd
[i
] = NULL
; /* prevent from being freed later. */
980 } else if (device_change
== DEVICE_CHANGED
) {
981 /* should never happen... */
983 dev_warn(&h
->pdev
->dev
,
984 "device unexpectedly changed.\n");
985 /* but if it does happen, we just ignore that device */
988 spin_unlock_irqrestore(&h
->devlock
, flags
);
990 /* Don't notify scsi mid layer of any changes the first time through
991 * (or if there are no changes) scsi_scan_host will do it later the
992 * first time through.
994 if (hostno
== -1 || !changes
)
998 /* Notify scsi mid layer of any removed devices */
999 for (i
= 0; i
< nremoved
; i
++) {
1000 struct scsi_device
*sdev
=
1001 scsi_device_lookup(sh
, removed
[i
]->bus
,
1002 removed
[i
]->target
, removed
[i
]->lun
);
1004 scsi_remove_device(sdev
);
1005 scsi_device_put(sdev
);
1007 /* We don't expect to get here.
1008 * future cmds to this device will get selection
1009 * timeout as if the device was gone.
1011 dev_warn(&h
->pdev
->dev
, "didn't find c%db%dt%dl%d "
1012 " for removal.", hostno
, removed
[i
]->bus
,
1013 removed
[i
]->target
, removed
[i
]->lun
);
1019 /* Notify scsi mid layer of any added devices */
1020 for (i
= 0; i
< nadded
; i
++) {
1021 if (scsi_add_device(sh
, added
[i
]->bus
,
1022 added
[i
]->target
, added
[i
]->lun
) == 0)
1024 dev_warn(&h
->pdev
->dev
, "scsi_add_device c%db%dt%dl%d failed, "
1025 "device not added.\n", hostno
, added
[i
]->bus
,
1026 added
[i
]->target
, added
[i
]->lun
);
1027 /* now we have to remove it from h->dev,
1028 * since it didn't get added to scsi mid layer
1030 fixup_botched_add(h
, added
[i
]);
1039 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1040 * Assume's h->devlock is held.
1042 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1043 int bus
, int target
, int lun
)
1046 struct hpsa_scsi_dev_t
*sd
;
1048 for (i
= 0; i
< h
->ndevices
; i
++) {
1050 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
1056 /* link sdev->hostdata to our per-device structure. */
1057 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
1059 struct hpsa_scsi_dev_t
*sd
;
1060 unsigned long flags
;
1061 struct ctlr_info
*h
;
1063 h
= sdev_to_hba(sdev
);
1064 spin_lock_irqsave(&h
->devlock
, flags
);
1065 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
1066 sdev_id(sdev
), sdev
->lun
);
1068 sdev
->hostdata
= sd
;
1069 spin_unlock_irqrestore(&h
->devlock
, flags
);
1073 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
1075 /* nothing to do. */
1078 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
1082 if (!h
->cmd_sg_list
)
1084 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1085 kfree(h
->cmd_sg_list
[i
]);
1086 h
->cmd_sg_list
[i
] = NULL
;
1088 kfree(h
->cmd_sg_list
);
1089 h
->cmd_sg_list
= NULL
;
1092 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info
*h
)
1096 if (h
->chainsize
<= 0)
1099 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
1101 if (!h
->cmd_sg_list
)
1103 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1104 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
1105 h
->chainsize
, GFP_KERNEL
);
1106 if (!h
->cmd_sg_list
[i
])
1112 hpsa_free_sg_chain_blocks(h
);
1116 static void hpsa_map_sg_chain_block(struct ctlr_info
*h
,
1117 struct CommandList
*c
)
1119 struct SGDescriptor
*chain_sg
, *chain_block
;
1122 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1123 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
1124 chain_sg
->Ext
= HPSA_SG_CHAIN
;
1125 chain_sg
->Len
= sizeof(*chain_sg
) *
1126 (c
->Header
.SGTotal
- h
->max_cmd_sg_entries
);
1127 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_sg
->Len
,
1129 chain_sg
->Addr
.lower
= (u32
) (temp64
& 0x0FFFFFFFFULL
);
1130 chain_sg
->Addr
.upper
= (u32
) ((temp64
>> 32) & 0x0FFFFFFFFULL
);
1133 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
1134 struct CommandList
*c
)
1136 struct SGDescriptor
*chain_sg
;
1137 union u64bit temp64
;
1139 if (c
->Header
.SGTotal
<= h
->max_cmd_sg_entries
)
1142 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
1143 temp64
.val32
.lower
= chain_sg
->Addr
.lower
;
1144 temp64
.val32
.upper
= chain_sg
->Addr
.upper
;
1145 pci_unmap_single(h
->pdev
, temp64
.val
, chain_sg
->Len
, PCI_DMA_TODEVICE
);
1148 static void complete_scsi_command(struct CommandList
*cp
)
1150 struct scsi_cmnd
*cmd
;
1151 struct ctlr_info
*h
;
1152 struct ErrorInfo
*ei
;
1154 unsigned char sense_key
;
1155 unsigned char asc
; /* additional sense code */
1156 unsigned char ascq
; /* additional sense code qualifier */
1157 unsigned long sense_data_size
;
1160 cmd
= (struct scsi_cmnd
*) cp
->scsi_cmd
;
1163 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
1164 if (cp
->Header
.SGTotal
> h
->max_cmd_sg_entries
)
1165 hpsa_unmap_sg_chain_block(h
, cp
);
1167 cmd
->result
= (DID_OK
<< 16); /* host byte */
1168 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
1169 cmd
->result
|= ei
->ScsiStatus
;
1171 /* copy the sense data whether we need to or not. */
1172 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
1173 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
1175 sense_data_size
= sizeof(ei
->SenseInfo
);
1176 if (ei
->SenseLen
< sense_data_size
)
1177 sense_data_size
= ei
->SenseLen
;
1179 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
1180 scsi_set_resid(cmd
, ei
->ResidualCnt
);
1182 if (ei
->CommandStatus
== 0) {
1183 cmd
->scsi_done(cmd
);
1188 /* an error has occurred */
1189 switch (ei
->CommandStatus
) {
1191 case CMD_TARGET_STATUS
:
1192 if (ei
->ScsiStatus
) {
1194 sense_key
= 0xf & ei
->SenseInfo
[2];
1195 /* Get additional sense code */
1196 asc
= ei
->SenseInfo
[12];
1197 /* Get addition sense code qualifier */
1198 ascq
= ei
->SenseInfo
[13];
1201 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
1202 if (check_for_unit_attention(h
, cp
)) {
1203 cmd
->result
= DID_SOFT_ERROR
<< 16;
1206 if (sense_key
== ILLEGAL_REQUEST
) {
1208 * SCSI REPORT_LUNS is commonly unsupported on
1209 * Smart Array. Suppress noisy complaint.
1211 if (cp
->Request
.CDB
[0] == REPORT_LUNS
)
1214 /* If ASC/ASCQ indicate Logical Unit
1215 * Not Supported condition,
1217 if ((asc
== 0x25) && (ascq
== 0x0)) {
1218 dev_warn(&h
->pdev
->dev
, "cp %p "
1219 "has check condition\n", cp
);
1224 if (sense_key
== NOT_READY
) {
1225 /* If Sense is Not Ready, Logical Unit
1226 * Not ready, Manual Intervention
1229 if ((asc
== 0x04) && (ascq
== 0x03)) {
1230 dev_warn(&h
->pdev
->dev
, "cp %p "
1231 "has check condition: unit "
1232 "not ready, manual "
1233 "intervention required\n", cp
);
1237 if (sense_key
== ABORTED_COMMAND
) {
1238 /* Aborted command is retryable */
1239 dev_warn(&h
->pdev
->dev
, "cp %p "
1240 "has check condition: aborted command: "
1241 "ASC: 0x%x, ASCQ: 0x%x\n",
1243 cmd
->result
= DID_SOFT_ERROR
<< 16;
1246 /* Must be some other type of check condition */
1247 dev_dbg(&h
->pdev
->dev
, "cp %p has check condition: "
1249 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1250 "Returning result: 0x%x, "
1251 "cmd=[%02x %02x %02x %02x %02x "
1252 "%02x %02x %02x %02x %02x %02x "
1253 "%02x %02x %02x %02x %02x]\n",
1254 cp
, sense_key
, asc
, ascq
,
1256 cmd
->cmnd
[0], cmd
->cmnd
[1],
1257 cmd
->cmnd
[2], cmd
->cmnd
[3],
1258 cmd
->cmnd
[4], cmd
->cmnd
[5],
1259 cmd
->cmnd
[6], cmd
->cmnd
[7],
1260 cmd
->cmnd
[8], cmd
->cmnd
[9],
1261 cmd
->cmnd
[10], cmd
->cmnd
[11],
1262 cmd
->cmnd
[12], cmd
->cmnd
[13],
1263 cmd
->cmnd
[14], cmd
->cmnd
[15]);
1268 /* Problem was not a check condition
1269 * Pass it up to the upper layers...
1271 if (ei
->ScsiStatus
) {
1272 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
1273 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1274 "Returning result: 0x%x\n",
1276 sense_key
, asc
, ascq
,
1278 } else { /* scsi status is zero??? How??? */
1279 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
1280 "Returning no connection.\n", cp
),
1282 /* Ordinarily, this case should never happen,
1283 * but there is a bug in some released firmware
1284 * revisions that allows it to happen if, for
1285 * example, a 4100 backplane loses power and
1286 * the tape drive is in it. We assume that
1287 * it's a fatal error of some kind because we
1288 * can't show that it wasn't. We will make it
1289 * look like selection timeout since that is
1290 * the most common reason for this to occur,
1291 * and it's severe enough.
1294 cmd
->result
= DID_NO_CONNECT
<< 16;
1298 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
1300 case CMD_DATA_OVERRUN
:
1301 dev_warn(&h
->pdev
->dev
, "cp %p has"
1302 " completed with data overrun "
1306 /* print_bytes(cp, sizeof(*cp), 1, 0);
1308 /* We get CMD_INVALID if you address a non-existent device
1309 * instead of a selection timeout (no response). You will
1310 * see this if you yank out a drive, then try to access it.
1311 * This is kind of a shame because it means that any other
1312 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1313 * missing target. */
1314 cmd
->result
= DID_NO_CONNECT
<< 16;
1317 case CMD_PROTOCOL_ERR
:
1318 cmd
->result
= DID_ERROR
<< 16;
1319 dev_warn(&h
->pdev
->dev
, "cp %p has "
1320 "protocol error\n", cp
);
1322 case CMD_HARDWARE_ERR
:
1323 cmd
->result
= DID_ERROR
<< 16;
1324 dev_warn(&h
->pdev
->dev
, "cp %p had hardware error\n", cp
);
1326 case CMD_CONNECTION_LOST
:
1327 cmd
->result
= DID_ERROR
<< 16;
1328 dev_warn(&h
->pdev
->dev
, "cp %p had connection lost\n", cp
);
1331 cmd
->result
= DID_ABORT
<< 16;
1332 dev_warn(&h
->pdev
->dev
, "cp %p was aborted with status 0x%x\n",
1333 cp
, ei
->ScsiStatus
);
1335 case CMD_ABORT_FAILED
:
1336 cmd
->result
= DID_ERROR
<< 16;
1337 dev_warn(&h
->pdev
->dev
, "cp %p reports abort failed\n", cp
);
1339 case CMD_UNSOLICITED_ABORT
:
1340 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
1341 dev_warn(&h
->pdev
->dev
, "cp %p aborted due to an unsolicited "
1345 cmd
->result
= DID_TIME_OUT
<< 16;
1346 dev_warn(&h
->pdev
->dev
, "cp %p timedout\n", cp
);
1348 case CMD_UNABORTABLE
:
1349 cmd
->result
= DID_ERROR
<< 16;
1350 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
1353 cmd
->result
= DID_ERROR
<< 16;
1354 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
1355 cp
, ei
->CommandStatus
);
1357 cmd
->scsi_done(cmd
);
1361 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
1362 struct CommandList
*c
, int sg_used
, int data_direction
)
1365 union u64bit addr64
;
1367 for (i
= 0; i
< sg_used
; i
++) {
1368 addr64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1369 addr64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1370 pci_unmap_single(pdev
, (dma_addr_t
) addr64
.val
, c
->SG
[i
].Len
,
1375 static void hpsa_map_one(struct pci_dev
*pdev
,
1376 struct CommandList
*cp
,
1383 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
1384 cp
->Header
.SGList
= 0;
1385 cp
->Header
.SGTotal
= 0;
1389 addr64
= (u64
) pci_map_single(pdev
, buf
, buflen
, data_direction
);
1390 cp
->SG
[0].Addr
.lower
=
1391 (u32
) (addr64
& (u64
) 0x00000000FFFFFFFF);
1392 cp
->SG
[0].Addr
.upper
=
1393 (u32
) ((addr64
>> 32) & (u64
) 0x00000000FFFFFFFF);
1394 cp
->SG
[0].Len
= buflen
;
1395 cp
->Header
.SGList
= (u8
) 1; /* no. SGs contig in this cmd */
1396 cp
->Header
.SGTotal
= (u16
) 1; /* total sgs in this cmd list */
1399 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
1400 struct CommandList
*c
)
1402 DECLARE_COMPLETION_ONSTACK(wait
);
1405 enqueue_cmd_and_start_io(h
, c
);
1406 wait_for_completion(&wait
);
1409 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info
*h
,
1410 struct CommandList
*c
)
1412 unsigned long flags
;
1414 /* If controller lockup detected, fake a hardware error. */
1415 spin_lock_irqsave(&h
->lock
, flags
);
1416 if (unlikely(h
->lockup_detected
)) {
1417 spin_unlock_irqrestore(&h
->lock
, flags
);
1418 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
1420 spin_unlock_irqrestore(&h
->lock
, flags
);
1421 hpsa_scsi_do_simple_cmd_core(h
, c
);
1425 #define MAX_DRIVER_CMD_RETRIES 25
1426 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
1427 struct CommandList
*c
, int data_direction
)
1429 int backoff_time
= 10, retry_count
= 0;
1432 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
1433 hpsa_scsi_do_simple_cmd_core(h
, c
);
1435 if (retry_count
> 3) {
1436 msleep(backoff_time
);
1437 if (backoff_time
< 1000)
1440 } while ((check_for_unit_attention(h
, c
) ||
1441 check_for_busy(h
, c
)) &&
1442 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
1443 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
1446 static void hpsa_scsi_interpret_error(struct CommandList
*cp
)
1448 struct ErrorInfo
*ei
;
1449 struct device
*d
= &cp
->h
->pdev
->dev
;
1452 switch (ei
->CommandStatus
) {
1453 case CMD_TARGET_STATUS
:
1454 dev_warn(d
, "cmd %p has completed with errors\n", cp
);
1455 dev_warn(d
, "cmd %p has SCSI Status = %x\n", cp
,
1457 if (ei
->ScsiStatus
== 0)
1458 dev_warn(d
, "SCSI status is abnormally zero. "
1459 "(probably indicates selection timeout "
1460 "reported incorrectly due to a known "
1461 "firmware bug, circa July, 2001.)\n");
1463 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
1464 dev_info(d
, "UNDERRUN\n");
1466 case CMD_DATA_OVERRUN
:
1467 dev_warn(d
, "cp %p has completed with data overrun\n", cp
);
1470 /* controller unfortunately reports SCSI passthru's
1471 * to non-existent targets as invalid commands.
1473 dev_warn(d
, "cp %p is reported invalid (probably means "
1474 "target device no longer present)\n", cp
);
1475 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1479 case CMD_PROTOCOL_ERR
:
1480 dev_warn(d
, "cp %p has protocol error \n", cp
);
1482 case CMD_HARDWARE_ERR
:
1483 /* cmd->result = DID_ERROR << 16; */
1484 dev_warn(d
, "cp %p had hardware error\n", cp
);
1486 case CMD_CONNECTION_LOST
:
1487 dev_warn(d
, "cp %p had connection lost\n", cp
);
1490 dev_warn(d
, "cp %p was aborted\n", cp
);
1492 case CMD_ABORT_FAILED
:
1493 dev_warn(d
, "cp %p reports abort failed\n", cp
);
1495 case CMD_UNSOLICITED_ABORT
:
1496 dev_warn(d
, "cp %p aborted due to an unsolicited abort\n", cp
);
1499 dev_warn(d
, "cp %p timed out\n", cp
);
1501 case CMD_UNABORTABLE
:
1502 dev_warn(d
, "Command unabortable\n");
1505 dev_warn(d
, "cp %p returned unknown status %x\n", cp
,
1510 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
1511 unsigned char page
, unsigned char *buf
,
1512 unsigned char bufsize
)
1515 struct CommandList
*c
;
1516 struct ErrorInfo
*ei
;
1518 c
= cmd_special_alloc(h
);
1520 if (c
== NULL
) { /* trouble... */
1521 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
1525 fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
, page
, scsi3addr
, TYPE_CMD
);
1526 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
1528 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
1529 hpsa_scsi_interpret_error(c
);
1532 cmd_special_free(h
, c
);
1536 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
)
1539 struct CommandList
*c
;
1540 struct ErrorInfo
*ei
;
1542 c
= cmd_special_alloc(h
);
1544 if (c
== NULL
) { /* trouble... */
1545 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
1549 fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0, scsi3addr
, TYPE_MSG
);
1550 hpsa_scsi_do_simple_cmd_core(h
, c
);
1551 /* no unmap needed here because no data xfer. */
1554 if (ei
->CommandStatus
!= 0) {
1555 hpsa_scsi_interpret_error(c
);
1558 cmd_special_free(h
, c
);
1562 static void hpsa_get_raid_level(struct ctlr_info
*h
,
1563 unsigned char *scsi3addr
, unsigned char *raid_level
)
1568 *raid_level
= RAID_UNKNOWN
;
1569 buf
= kzalloc(64, GFP_KERNEL
);
1572 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, 0xC1, buf
, 64);
1574 *raid_level
= buf
[8];
1575 if (*raid_level
> RAID_UNKNOWN
)
1576 *raid_level
= RAID_UNKNOWN
;
1581 /* Get the device id from inquiry page 0x83 */
1582 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
1583 unsigned char *device_id
, int buflen
)
1590 buf
= kzalloc(64, GFP_KERNEL
);
1593 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, 0x83, buf
, 64);
1595 memcpy(device_id
, &buf
[8], buflen
);
1600 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
1601 struct ReportLUNdata
*buf
, int bufsize
,
1602 int extended_response
)
1605 struct CommandList
*c
;
1606 unsigned char scsi3addr
[8];
1607 struct ErrorInfo
*ei
;
1609 c
= cmd_special_alloc(h
);
1610 if (c
== NULL
) { /* trouble... */
1611 dev_err(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
1614 /* address the controller */
1615 memset(scsi3addr
, 0, sizeof(scsi3addr
));
1616 fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
1617 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
);
1618 if (extended_response
)
1619 c
->Request
.CDB
[1] = extended_response
;
1620 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
);
1622 if (ei
->CommandStatus
!= 0 &&
1623 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
1624 hpsa_scsi_interpret_error(c
);
1627 cmd_special_free(h
, c
);
1631 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
1632 struct ReportLUNdata
*buf
,
1633 int bufsize
, int extended_response
)
1635 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
, extended_response
);
1638 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
1639 struct ReportLUNdata
*buf
, int bufsize
)
1641 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
1644 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
1645 int bus
, int target
, int lun
)
1648 device
->target
= target
;
1652 static int hpsa_update_device_info(struct ctlr_info
*h
,
1653 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
1654 unsigned char *is_OBDR_device
)
1657 #define OBDR_SIG_OFFSET 43
1658 #define OBDR_TAPE_SIG "$DR-10"
1659 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1660 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1662 unsigned char *inq_buff
;
1663 unsigned char *obdr_sig
;
1665 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
1669 /* Do an inquiry to the device to see what it is. */
1670 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
1671 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
1672 /* Inquiry failed (msg printed already) */
1673 dev_err(&h
->pdev
->dev
,
1674 "hpsa_update_device_info: inquiry failed\n");
1678 this_device
->devtype
= (inq_buff
[0] & 0x1f);
1679 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
1680 memcpy(this_device
->vendor
, &inq_buff
[8],
1681 sizeof(this_device
->vendor
));
1682 memcpy(this_device
->model
, &inq_buff
[16],
1683 sizeof(this_device
->model
));
1684 memset(this_device
->device_id
, 0,
1685 sizeof(this_device
->device_id
));
1686 hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
,
1687 sizeof(this_device
->device_id
));
1689 if (this_device
->devtype
== TYPE_DISK
&&
1690 is_logical_dev_addr_mode(scsi3addr
))
1691 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
1693 this_device
->raid_level
= RAID_UNKNOWN
;
1695 if (is_OBDR_device
) {
1696 /* See if this is a One-Button-Disaster-Recovery device
1697 * by looking for "$DR-10" at offset 43 in inquiry data.
1699 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
1700 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
1701 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
1702 OBDR_SIG_LEN
) == 0);
1713 static unsigned char *ext_target_model
[] = {
1722 static int is_ext_target(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1726 for (i
= 0; ext_target_model
[i
]; i
++)
1727 if (strncmp(device
->model
, ext_target_model
[i
],
1728 strlen(ext_target_model
[i
])) == 0)
1733 /* Helper function to assign bus, target, lun mapping of devices.
1734 * Puts non-external target logical volumes on bus 0, external target logical
1735 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1736 * Logical drive target and lun are assigned at this time, but
1737 * physical device lun and target assignment are deferred (assigned
1738 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1740 static void figure_bus_target_lun(struct ctlr_info
*h
,
1741 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
1743 u32 lunid
= le32_to_cpu(*((__le32
*) lunaddrbytes
));
1745 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
1746 /* physical device, target and lun filled in later */
1747 if (is_hba_lunid(lunaddrbytes
))
1748 hpsa_set_bus_target_lun(device
, 3, 0, lunid
& 0x3fff);
1750 /* defer target, lun assignment for physical devices */
1751 hpsa_set_bus_target_lun(device
, 2, -1, -1);
1754 /* It's a logical device */
1755 if (is_ext_target(h
, device
)) {
1756 /* external target way, put logicals on bus 1
1757 * and match target/lun numbers box
1758 * reports, other smart array, bus 0, target 0, match lunid
1760 hpsa_set_bus_target_lun(device
,
1761 1, (lunid
>> 16) & 0x3fff, lunid
& 0x00ff);
1764 hpsa_set_bus_target_lun(device
, 0, 0, lunid
& 0x3fff);
1768 * If there is no lun 0 on a target, linux won't find any devices.
1769 * For the external targets (arrays), we have to manually detect the enclosure
1770 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1771 * it for some reason. *tmpdevice is the target we're adding,
1772 * this_device is a pointer into the current element of currentsd[]
1773 * that we're building up in update_scsi_devices(), below.
1774 * lunzerobits is a bitmap that tracks which targets already have a
1776 * Returns 1 if an enclosure was added, 0 if not.
1778 static int add_ext_target_dev(struct ctlr_info
*h
,
1779 struct hpsa_scsi_dev_t
*tmpdevice
,
1780 struct hpsa_scsi_dev_t
*this_device
, u8
*lunaddrbytes
,
1781 unsigned long lunzerobits
[], int *n_ext_target_devs
)
1783 unsigned char scsi3addr
[8];
1785 if (test_bit(tmpdevice
->target
, lunzerobits
))
1786 return 0; /* There is already a lun 0 on this target. */
1788 if (!is_logical_dev_addr_mode(lunaddrbytes
))
1789 return 0; /* It's the logical targets that may lack lun 0. */
1791 if (!is_ext_target(h
, tmpdevice
))
1792 return 0; /* Only external target devices have this problem. */
1794 if (tmpdevice
->lun
== 0) /* if lun is 0, then we have a lun 0. */
1797 memset(scsi3addr
, 0, 8);
1798 scsi3addr
[3] = tmpdevice
->target
;
1799 if (is_hba_lunid(scsi3addr
))
1800 return 0; /* Don't add the RAID controller here. */
1802 if (is_scsi_rev_5(h
))
1803 return 0; /* p1210m doesn't need to do this. */
1805 if (*n_ext_target_devs
>= MAX_EXT_TARGETS
) {
1806 dev_warn(&h
->pdev
->dev
, "Maximum number of external "
1807 "target devices exceeded. Check your hardware "
1812 if (hpsa_update_device_info(h
, scsi3addr
, this_device
, NULL
))
1814 (*n_ext_target_devs
)++;
1815 hpsa_set_bus_target_lun(this_device
,
1816 tmpdevice
->bus
, tmpdevice
->target
, 0);
1817 set_bit(tmpdevice
->target
, lunzerobits
);
1822 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1823 * logdev. The number of luns in physdev and logdev are returned in
1824 * *nphysicals and *nlogicals, respectively.
1825 * Returns 0 on success, -1 otherwise.
1827 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
1829 struct ReportLUNdata
*physdev
, u32
*nphysicals
,
1830 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
1832 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, reportlunsize
, 0)) {
1833 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
1836 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 8;
1837 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
1838 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded."
1839 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
1840 *nphysicals
- HPSA_MAX_PHYS_LUN
);
1841 *nphysicals
= HPSA_MAX_PHYS_LUN
;
1843 if (hpsa_scsi_do_report_log_luns(h
, logdev
, reportlunsize
)) {
1844 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
1847 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
1848 /* Reject Logicals in excess of our max capability. */
1849 if (*nlogicals
> HPSA_MAX_LUN
) {
1850 dev_warn(&h
->pdev
->dev
,
1851 "maximum logical LUNs (%d) exceeded. "
1852 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
1853 *nlogicals
- HPSA_MAX_LUN
);
1854 *nlogicals
= HPSA_MAX_LUN
;
1856 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
1857 dev_warn(&h
->pdev
->dev
,
1858 "maximum logical + physical LUNs (%d) exceeded. "
1859 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
1860 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
1861 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
1866 u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
, int i
,
1867 int nphysicals
, int nlogicals
, struct ReportLUNdata
*physdev_list
,
1868 struct ReportLUNdata
*logdev_list
)
1870 /* Helper function, figure out where the LUN ID info is coming from
1871 * given index i, lists of physical and logical devices, where in
1872 * the list the raid controller is supposed to appear (first or last)
1875 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
1876 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
1878 if (i
== raid_ctlr_position
)
1879 return RAID_CTLR_LUNID
;
1881 if (i
< logicals_start
)
1882 return &physdev_list
->LUN
[i
- (raid_ctlr_position
== 0)][0];
1884 if (i
< last_device
)
1885 return &logdev_list
->LUN
[i
- nphysicals
-
1886 (raid_ctlr_position
== 0)][0];
1891 static void hpsa_update_scsi_devices(struct ctlr_info
*h
, int hostno
)
1893 /* the idea here is we could get notified
1894 * that some devices have changed, so we do a report
1895 * physical luns and report logical luns cmd, and adjust
1896 * our list of devices accordingly.
1898 * The scsi3addr's of devices won't change so long as the
1899 * adapter is not reset. That means we can rescan and
1900 * tell which devices we already know about, vs. new
1901 * devices, vs. disappearing devices.
1903 struct ReportLUNdata
*physdev_list
= NULL
;
1904 struct ReportLUNdata
*logdev_list
= NULL
;
1907 u32 ndev_allocated
= 0;
1908 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
1910 int reportlunsize
= sizeof(*physdev_list
) + HPSA_MAX_PHYS_LUN
* 8;
1911 int i
, n_ext_target_devs
, ndevs_to_allocate
;
1912 int raid_ctlr_position
;
1913 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
1915 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1916 physdev_list
= kzalloc(reportlunsize
, GFP_KERNEL
);
1917 logdev_list
= kzalloc(reportlunsize
, GFP_KERNEL
);
1918 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
1920 if (!currentsd
|| !physdev_list
|| !logdev_list
|| !tmpdevice
) {
1921 dev_err(&h
->pdev
->dev
, "out of memory\n");
1924 memset(lunzerobits
, 0, sizeof(lunzerobits
));
1926 if (hpsa_gather_lun_info(h
, reportlunsize
, physdev_list
, &nphysicals
,
1927 logdev_list
, &nlogicals
))
1930 /* We might see up to the maximum number of logical and physical disks
1931 * plus external target devices, and a device for the local RAID
1934 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
1936 /* Allocate the per device structures */
1937 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
1938 if (i
>= HPSA_MAX_DEVICES
) {
1939 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
1940 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
1941 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
1945 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
1946 if (!currentsd
[i
]) {
1947 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
1948 __FILE__
, __LINE__
);
1954 if (unlikely(is_scsi_rev_5(h
)))
1955 raid_ctlr_position
= 0;
1957 raid_ctlr_position
= nphysicals
+ nlogicals
;
1959 /* adjust our table of devices */
1960 n_ext_target_devs
= 0;
1961 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
1962 u8
*lunaddrbytes
, is_OBDR
= 0;
1964 /* Figure out where the LUN ID info is coming from */
1965 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
1966 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
1967 /* skip masked physical devices. */
1968 if (lunaddrbytes
[3] & 0xC0 &&
1969 i
< nphysicals
+ (raid_ctlr_position
== 0))
1972 /* Get device type, vendor, model, device id */
1973 if (hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
1975 continue; /* skip it if we can't talk to it. */
1976 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
1977 this_device
= currentsd
[ncurrent
];
1980 * For external target devices, we have to insert a LUN 0 which
1981 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1982 * is nonetheless an enclosure device there. We have to
1983 * present that otherwise linux won't find anything if
1984 * there is no lun 0.
1986 if (add_ext_target_dev(h
, tmpdevice
, this_device
,
1987 lunaddrbytes
, lunzerobits
,
1988 &n_ext_target_devs
)) {
1990 this_device
= currentsd
[ncurrent
];
1993 *this_device
= *tmpdevice
;
1995 switch (this_device
->devtype
) {
1997 /* We don't *really* support actual CD-ROM devices,
1998 * just "One Button Disaster Recovery" tape drive
1999 * which temporarily pretends to be a CD-ROM drive.
2000 * So we check that the device is really an OBDR tape
2001 * device by checking for "$DR-10" in bytes 43-48 of
2013 case TYPE_MEDIUM_CHANGER
:
2017 /* Only present the Smartarray HBA as a RAID controller.
2018 * If it's a RAID controller other than the HBA itself
2019 * (an external RAID controller, MSA500 or similar)
2022 if (!is_hba_lunid(lunaddrbytes
))
2029 if (ncurrent
>= HPSA_MAX_DEVICES
)
2032 adjust_hpsa_scsi_table(h
, hostno
, currentsd
, ncurrent
);
2035 for (i
= 0; i
< ndev_allocated
; i
++)
2036 kfree(currentsd
[i
]);
2038 kfree(physdev_list
);
2042 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2043 * dma mapping and fills in the scatter gather entries of the
2046 static int hpsa_scatter_gather(struct ctlr_info
*h
,
2047 struct CommandList
*cp
,
2048 struct scsi_cmnd
*cmd
)
2051 struct scatterlist
*sg
;
2053 int use_sg
, i
, sg_index
, chained
;
2054 struct SGDescriptor
*curr_sg
;
2056 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
2058 use_sg
= scsi_dma_map(cmd
);
2063 goto sglist_finished
;
2068 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
2069 if (i
== h
->max_cmd_sg_entries
- 1 &&
2070 use_sg
> h
->max_cmd_sg_entries
) {
2072 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
2075 addr64
= (u64
) sg_dma_address(sg
);
2076 len
= sg_dma_len(sg
);
2077 curr_sg
->Addr
.lower
= (u32
) (addr64
& 0x0FFFFFFFFULL
);
2078 curr_sg
->Addr
.upper
= (u32
) ((addr64
>> 32) & 0x0FFFFFFFFULL
);
2080 curr_sg
->Ext
= 0; /* we are not chaining */
2084 if (use_sg
+ chained
> h
->maxSG
)
2085 h
->maxSG
= use_sg
+ chained
;
2088 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
2089 cp
->Header
.SGTotal
= (u16
) (use_sg
+ 1);
2090 hpsa_map_sg_chain_block(h
, cp
);
2096 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
2097 cp
->Header
.SGTotal
= (u16
) use_sg
; /* total sgs in this cmd list */
2102 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd
*cmd
,
2103 void (*done
)(struct scsi_cmnd
*))
2105 struct ctlr_info
*h
;
2106 struct hpsa_scsi_dev_t
*dev
;
2107 unsigned char scsi3addr
[8];
2108 struct CommandList
*c
;
2109 unsigned long flags
;
2111 /* Get the ptr to our adapter structure out of cmd->host. */
2112 h
= sdev_to_hba(cmd
->device
);
2113 dev
= cmd
->device
->hostdata
;
2115 cmd
->result
= DID_NO_CONNECT
<< 16;
2119 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
2121 spin_lock_irqsave(&h
->lock
, flags
);
2122 if (unlikely(h
->lockup_detected
)) {
2123 spin_unlock_irqrestore(&h
->lock
, flags
);
2124 cmd
->result
= DID_ERROR
<< 16;
2128 spin_unlock_irqrestore(&h
->lock
, flags
);
2130 if (c
== NULL
) { /* trouble... */
2131 dev_err(&h
->pdev
->dev
, "cmd_alloc returned NULL!\n");
2132 return SCSI_MLQUEUE_HOST_BUSY
;
2135 /* Fill in the command list header */
2137 cmd
->scsi_done
= done
; /* save this for use by completion code */
2139 /* save c in case we have to abort it */
2140 cmd
->host_scribble
= (unsigned char *) c
;
2142 c
->cmd_type
= CMD_SCSI
;
2144 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
2145 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
2146 c
->Header
.Tag
.lower
= (c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
2147 c
->Header
.Tag
.lower
|= DIRECT_LOOKUP_BIT
;
2149 /* Fill in the request block... */
2151 c
->Request
.Timeout
= 0;
2152 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
2153 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
2154 c
->Request
.CDBLen
= cmd
->cmd_len
;
2155 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
2156 c
->Request
.Type
.Type
= TYPE_CMD
;
2157 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2158 switch (cmd
->sc_data_direction
) {
2160 c
->Request
.Type
.Direction
= XFER_WRITE
;
2162 case DMA_FROM_DEVICE
:
2163 c
->Request
.Type
.Direction
= XFER_READ
;
2166 c
->Request
.Type
.Direction
= XFER_NONE
;
2168 case DMA_BIDIRECTIONAL
:
2169 /* This can happen if a buggy application does a scsi passthru
2170 * and sets both inlen and outlen to non-zero. ( see
2171 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2174 c
->Request
.Type
.Direction
= XFER_RSVD
;
2175 /* This is technically wrong, and hpsa controllers should
2176 * reject it with CMD_INVALID, which is the most correct
2177 * response, but non-fibre backends appear to let it
2178 * slide by, and give the same results as if this field
2179 * were set correctly. Either way is acceptable for
2180 * our purposes here.
2186 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
2187 cmd
->sc_data_direction
);
2192 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
2194 return SCSI_MLQUEUE_HOST_BUSY
;
2196 enqueue_cmd_and_start_io(h
, c
);
2197 /* the cmd'll come back via intr handler in complete_scsi_command() */
2201 static DEF_SCSI_QCMD(hpsa_scsi_queue_command
)
2203 static void hpsa_scan_start(struct Scsi_Host
*sh
)
2205 struct ctlr_info
*h
= shost_to_hba(sh
);
2206 unsigned long flags
;
2208 /* wait until any scan already in progress is finished. */
2210 spin_lock_irqsave(&h
->scan_lock
, flags
);
2211 if (h
->scan_finished
)
2213 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2214 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
2215 /* Note: We don't need to worry about a race between this
2216 * thread and driver unload because the midlayer will
2217 * have incremented the reference count, so unload won't
2218 * happen if we're in here.
2221 h
->scan_finished
= 0; /* mark scan as in progress */
2222 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2224 hpsa_update_scsi_devices(h
, h
->scsi_host
->host_no
);
2226 spin_lock_irqsave(&h
->scan_lock
, flags
);
2227 h
->scan_finished
= 1; /* mark scan as finished. */
2228 wake_up_all(&h
->scan_wait_queue
);
2229 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2232 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
2233 unsigned long elapsed_time
)
2235 struct ctlr_info
*h
= shost_to_hba(sh
);
2236 unsigned long flags
;
2239 spin_lock_irqsave(&h
->scan_lock
, flags
);
2240 finished
= h
->scan_finished
;
2241 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
2245 static int hpsa_change_queue_depth(struct scsi_device
*sdev
,
2246 int qdepth
, int reason
)
2248 struct ctlr_info
*h
= sdev_to_hba(sdev
);
2250 if (reason
!= SCSI_QDEPTH_DEFAULT
)
2256 if (qdepth
> h
->nr_cmds
)
2257 qdepth
= h
->nr_cmds
;
2258 scsi_adjust_queue_depth(sdev
, scsi_get_tag_type(sdev
), qdepth
);
2259 return sdev
->queue_depth
;
2262 static void hpsa_unregister_scsi(struct ctlr_info
*h
)
2264 /* we are being forcibly unloaded, and may not refuse. */
2265 scsi_remove_host(h
->scsi_host
);
2266 scsi_host_put(h
->scsi_host
);
2267 h
->scsi_host
= NULL
;
2270 static int hpsa_register_scsi(struct ctlr_info
*h
)
2272 struct Scsi_Host
*sh
;
2275 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
2282 sh
->max_channel
= 3;
2283 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
2284 sh
->max_lun
= HPSA_MAX_LUN
;
2285 sh
->max_id
= HPSA_MAX_LUN
;
2286 sh
->can_queue
= h
->nr_cmds
;
2287 sh
->cmd_per_lun
= h
->nr_cmds
;
2288 sh
->sg_tablesize
= h
->maxsgentries
;
2290 sh
->hostdata
[0] = (unsigned long) h
;
2291 sh
->irq
= h
->intr
[h
->intr_mode
];
2292 sh
->unique_id
= sh
->irq
;
2293 error
= scsi_add_host(sh
, &h
->pdev
->dev
);
2300 dev_err(&h
->pdev
->dev
, "%s: scsi_add_host"
2301 " failed for controller %d\n", __func__
, h
->ctlr
);
2305 dev_err(&h
->pdev
->dev
, "%s: scsi_host_alloc"
2306 " failed for controller %d\n", __func__
, h
->ctlr
);
2310 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
2311 unsigned char lunaddr
[])
2315 int waittime
= 1; /* seconds */
2316 struct CommandList
*c
;
2318 c
= cmd_special_alloc(h
);
2320 dev_warn(&h
->pdev
->dev
, "out of memory in "
2321 "wait_for_device_to_become_ready.\n");
2325 /* Send test unit ready until device ready, or give up. */
2326 while (count
< HPSA_TUR_RETRY_LIMIT
) {
2328 /* Wait for a bit. do this first, because if we send
2329 * the TUR right away, the reset will just abort it.
2331 msleep(1000 * waittime
);
2334 /* Increase wait time with each try, up to a point. */
2335 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
2336 waittime
= waittime
* 2;
2338 /* Send the Test Unit Ready */
2339 fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, lunaddr
, TYPE_CMD
);
2340 hpsa_scsi_do_simple_cmd_core(h
, c
);
2341 /* no unmap needed here because no data xfer. */
2343 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2346 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
2347 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
2348 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
2349 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
2352 dev_warn(&h
->pdev
->dev
, "waiting %d secs "
2353 "for device to become ready.\n", waittime
);
2354 rc
= 1; /* device not ready. */
2358 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
2360 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
2362 cmd_special_free(h
, c
);
2366 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2367 * complaining. Doing a host- or bus-reset can't do anything good here.
2369 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
2372 struct ctlr_info
*h
;
2373 struct hpsa_scsi_dev_t
*dev
;
2375 /* find the controller to which the command to be aborted was sent */
2376 h
= sdev_to_hba(scsicmd
->device
);
2377 if (h
== NULL
) /* paranoia */
2379 dev
= scsicmd
->device
->hostdata
;
2381 dev_err(&h
->pdev
->dev
, "hpsa_eh_device_reset_handler: "
2382 "device lookup failed.\n");
2385 dev_warn(&h
->pdev
->dev
, "resetting device %d:%d:%d:%d\n",
2386 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
);
2387 /* send a reset to the SCSI LUN which the command was sent to */
2388 rc
= hpsa_send_reset(h
, dev
->scsi3addr
);
2389 if (rc
== 0 && wait_for_device_to_become_ready(h
, dev
->scsi3addr
) == 0)
2392 dev_warn(&h
->pdev
->dev
, "resetting device failed.\n");
2396 static void swizzle_abort_tag(u8
*tag
)
2400 memcpy(original_tag
, tag
, 8);
2401 tag
[0] = original_tag
[3];
2402 tag
[1] = original_tag
[2];
2403 tag
[2] = original_tag
[1];
2404 tag
[3] = original_tag
[0];
2405 tag
[4] = original_tag
[7];
2406 tag
[5] = original_tag
[6];
2407 tag
[6] = original_tag
[5];
2408 tag
[7] = original_tag
[4];
2411 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2412 struct CommandList
*abort
, int swizzle
)
2415 struct CommandList
*c
;
2416 struct ErrorInfo
*ei
;
2418 c
= cmd_special_alloc(h
);
2419 if (c
== NULL
) { /* trouble... */
2420 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
2424 fill_cmd(c
, HPSA_ABORT_MSG
, h
, abort
, 0, 0, scsi3addr
, TYPE_MSG
);
2426 swizzle_abort_tag(&c
->Request
.CDB
[4]);
2427 hpsa_scsi_do_simple_cmd_core(h
, c
);
2428 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2429 __func__
, abort
->Header
.Tag
.upper
, abort
->Header
.Tag
.lower
);
2430 /* no unmap needed here because no data xfer. */
2433 switch (ei
->CommandStatus
) {
2436 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
2440 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2441 __func__
, abort
->Header
.Tag
.upper
,
2442 abort
->Header
.Tag
.lower
);
2443 hpsa_scsi_interpret_error(c
);
2447 cmd_special_free(h
, c
);
2448 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n", __func__
,
2449 abort
->Header
.Tag
.upper
, abort
->Header
.Tag
.lower
);
2454 * hpsa_find_cmd_in_queue
2456 * Used to determine whether a command (find) is still present
2457 * in queue_head. Optionally excludes the last element of queue_head.
2459 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
2460 * not yet been submitted, and so can be aborted by the driver without
2461 * sending an abort to the hardware.
2463 * Returns pointer to command if found in queue, NULL otherwise.
2465 static struct CommandList
*hpsa_find_cmd_in_queue(struct ctlr_info
*h
,
2466 struct scsi_cmnd
*find
, struct list_head
*queue_head
)
2468 unsigned long flags
;
2469 struct CommandList
*c
= NULL
; /* ptr into cmpQ */
2473 spin_lock_irqsave(&h
->lock
, flags
);
2474 list_for_each_entry(c
, queue_head
, list
) {
2475 if (c
->scsi_cmd
== NULL
) /* e.g.: passthru ioctl */
2477 if (c
->scsi_cmd
== find
) {
2478 spin_unlock_irqrestore(&h
->lock
, flags
);
2482 spin_unlock_irqrestore(&h
->lock
, flags
);
2486 static struct CommandList
*hpsa_find_cmd_in_queue_by_tag(struct ctlr_info
*h
,
2487 u8
*tag
, struct list_head
*queue_head
)
2489 unsigned long flags
;
2490 struct CommandList
*c
;
2492 spin_lock_irqsave(&h
->lock
, flags
);
2493 list_for_each_entry(c
, queue_head
, list
) {
2494 if (memcmp(&c
->Header
.Tag
, tag
, 8) != 0)
2496 spin_unlock_irqrestore(&h
->lock
, flags
);
2499 spin_unlock_irqrestore(&h
->lock
, flags
);
2503 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
2504 * tell which kind we're dealing with, so we send the abort both ways. There
2505 * shouldn't be any collisions between swizzled and unswizzled tags due to the
2506 * way we construct our tags but we check anyway in case the assumptions which
2507 * make this true someday become false.
2509 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
2510 unsigned char *scsi3addr
, struct CommandList
*abort
)
2513 struct CommandList
*c
;
2514 int rc
= 0, rc2
= 0;
2516 /* we do not expect to find the swizzled tag in our queue, but
2517 * check anyway just to be sure the assumptions which make this
2518 * the case haven't become wrong.
2520 memcpy(swizzled_tag
, &abort
->Request
.CDB
[4], 8);
2521 swizzle_abort_tag(swizzled_tag
);
2522 c
= hpsa_find_cmd_in_queue_by_tag(h
, swizzled_tag
, &h
->cmpQ
);
2524 dev_warn(&h
->pdev
->dev
, "Unexpectedly found byte-swapped tag in completion queue.\n");
2525 return hpsa_send_abort(h
, scsi3addr
, abort
, 0);
2527 rc
= hpsa_send_abort(h
, scsi3addr
, abort
, 0);
2529 /* if the command is still in our queue, we can't conclude that it was
2530 * aborted (it might have just completed normally) but in any case
2531 * we don't need to try to abort it another way.
2533 c
= hpsa_find_cmd_in_queue(h
, abort
->scsi_cmd
, &h
->cmpQ
);
2535 rc2
= hpsa_send_abort(h
, scsi3addr
, abort
, 1);
2539 /* Send an abort for the specified command.
2540 * If the device and controller support it,
2541 * send a task abort request.
2543 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
2547 struct ctlr_info
*h
;
2548 struct hpsa_scsi_dev_t
*dev
;
2549 struct CommandList
*abort
; /* pointer to command to be aborted */
2550 struct CommandList
*found
;
2551 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
2552 char msg
[256]; /* For debug messaging. */
2555 /* Find the controller of the command to be aborted */
2556 h
= sdev_to_hba(sc
->device
);
2558 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2561 /* Check that controller supports some kind of task abort */
2562 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
2563 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
2566 memset(msg
, 0, sizeof(msg
));
2567 ml
+= sprintf(msg
+ml
, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2568 h
->scsi_host
->host_no
, sc
->device
->channel
,
2569 sc
->device
->id
, sc
->device
->lun
);
2571 /* Find the device of the command to be aborted */
2572 dev
= sc
->device
->hostdata
;
2574 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
2579 /* Get SCSI command to be aborted */
2580 abort
= (struct CommandList
*) sc
->host_scribble
;
2581 if (abort
== NULL
) {
2582 dev_err(&h
->pdev
->dev
, "%s FAILED, Command to abort is NULL.\n",
2587 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ",
2588 abort
->Header
.Tag
.upper
, abort
->Header
.Tag
.lower
);
2589 as
= (struct scsi_cmnd
*) abort
->scsi_cmd
;
2591 ml
+= sprintf(msg
+ml
, "Command:0x%x SN:0x%lx ",
2592 as
->cmnd
[0], as
->serial_number
);
2593 dev_dbg(&h
->pdev
->dev
, "%s\n", msg
);
2594 dev_warn(&h
->pdev
->dev
, "Abort request on C%d:B%d:T%d:L%d\n",
2595 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
);
2597 /* Search reqQ to See if command is queued but not submitted,
2598 * if so, complete the command with aborted status and remove
2601 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->reqQ
);
2603 found
->err_info
->CommandStatus
= CMD_ABORTED
;
2605 dev_info(&h
->pdev
->dev
, "%s Request SUCCEEDED (driver queue).\n",
2610 /* not in reqQ, if also not in cmpQ, must have already completed */
2611 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->cmpQ
);
2613 dev_dbg(&h
->pdev
->dev
, "%s Request FAILED (not known to driver).\n",
2619 * Command is in flight, or possibly already completed
2620 * by the firmware (but not to the scsi mid layer) but we can't
2621 * distinguish which. Send the abort down.
2623 rc
= hpsa_send_abort_both_ways(h
, dev
->scsi3addr
, abort
);
2625 dev_dbg(&h
->pdev
->dev
, "%s Request FAILED.\n", msg
);
2626 dev_warn(&h
->pdev
->dev
, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2627 h
->scsi_host
->host_no
,
2628 dev
->bus
, dev
->target
, dev
->lun
);
2631 dev_info(&h
->pdev
->dev
, "%s REQUEST SUCCEEDED.\n", msg
);
2633 /* If the abort(s) above completed and actually aborted the
2634 * command, then the command to be aborted should already be
2635 * completed. If not, wait around a bit more to see if they
2636 * manage to complete normally.
2638 #define ABORT_COMPLETE_WAIT_SECS 30
2639 for (i
= 0; i
< ABORT_COMPLETE_WAIT_SECS
* 10; i
++) {
2640 found
= hpsa_find_cmd_in_queue(h
, sc
, &h
->cmpQ
);
2645 dev_warn(&h
->pdev
->dev
, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2646 msg
, ABORT_COMPLETE_WAIT_SECS
);
2652 * For operations that cannot sleep, a command block is allocated at init,
2653 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2654 * which ones are free or in use. Lock must be held when calling this.
2655 * cmd_free() is the complement.
2657 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
2659 struct CommandList
*c
;
2661 union u64bit temp64
;
2662 dma_addr_t cmd_dma_handle
, err_dma_handle
;
2663 unsigned long flags
;
2665 spin_lock_irqsave(&h
->lock
, flags
);
2667 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
2668 if (i
== h
->nr_cmds
) {
2669 spin_unlock_irqrestore(&h
->lock
, flags
);
2672 } while (test_and_set_bit
2673 (i
& (BITS_PER_LONG
- 1),
2674 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
2676 spin_unlock_irqrestore(&h
->lock
, flags
);
2678 c
= h
->cmd_pool
+ i
;
2679 memset(c
, 0, sizeof(*c
));
2680 cmd_dma_handle
= h
->cmd_pool_dhandle
2682 c
->err_info
= h
->errinfo_pool
+ i
;
2683 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2684 err_dma_handle
= h
->errinfo_pool_dhandle
2685 + i
* sizeof(*c
->err_info
);
2689 INIT_LIST_HEAD(&c
->list
);
2690 c
->busaddr
= (u32
) cmd_dma_handle
;
2691 temp64
.val
= (u64
) err_dma_handle
;
2692 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
2693 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
2694 c
->ErrDesc
.Len
= sizeof(*c
->err_info
);
2700 /* For operations that can wait for kmalloc to possibly sleep,
2701 * this routine can be called. Lock need not be held to call
2702 * cmd_special_alloc. cmd_special_free() is the complement.
2704 static struct CommandList
*cmd_special_alloc(struct ctlr_info
*h
)
2706 struct CommandList
*c
;
2707 union u64bit temp64
;
2708 dma_addr_t cmd_dma_handle
, err_dma_handle
;
2710 c
= pci_alloc_consistent(h
->pdev
, sizeof(*c
), &cmd_dma_handle
);
2713 memset(c
, 0, sizeof(*c
));
2717 c
->err_info
= pci_alloc_consistent(h
->pdev
, sizeof(*c
->err_info
),
2720 if (c
->err_info
== NULL
) {
2721 pci_free_consistent(h
->pdev
,
2722 sizeof(*c
), c
, cmd_dma_handle
);
2725 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2727 INIT_LIST_HEAD(&c
->list
);
2728 c
->busaddr
= (u32
) cmd_dma_handle
;
2729 temp64
.val
= (u64
) err_dma_handle
;
2730 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
2731 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
2732 c
->ErrDesc
.Len
= sizeof(*c
->err_info
);
2738 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
2741 unsigned long flags
;
2743 i
= c
- h
->cmd_pool
;
2744 spin_lock_irqsave(&h
->lock
, flags
);
2745 clear_bit(i
& (BITS_PER_LONG
- 1),
2746 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
2748 spin_unlock_irqrestore(&h
->lock
, flags
);
2751 static void cmd_special_free(struct ctlr_info
*h
, struct CommandList
*c
)
2753 union u64bit temp64
;
2755 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
2756 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
2757 pci_free_consistent(h
->pdev
, sizeof(*c
->err_info
),
2758 c
->err_info
, (dma_addr_t
) temp64
.val
);
2759 pci_free_consistent(h
->pdev
, sizeof(*c
),
2760 c
, (dma_addr_t
) (c
->busaddr
& DIRECT_LOOKUP_MASK
));
2763 #ifdef CONFIG_COMPAT
2765 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
, void *arg
)
2767 IOCTL32_Command_struct __user
*arg32
=
2768 (IOCTL32_Command_struct __user
*) arg
;
2769 IOCTL_Command_struct arg64
;
2770 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
2774 memset(&arg64
, 0, sizeof(arg64
));
2776 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
2777 sizeof(arg64
.LUN_info
));
2778 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
2779 sizeof(arg64
.Request
));
2780 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
2781 sizeof(arg64
.error_info
));
2782 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
2783 err
|= get_user(cp
, &arg32
->buf
);
2784 arg64
.buf
= compat_ptr(cp
);
2785 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
2790 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, (void *)p
);
2793 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
2794 sizeof(arg32
->error_info
));
2800 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
2803 BIG_IOCTL32_Command_struct __user
*arg32
=
2804 (BIG_IOCTL32_Command_struct __user
*) arg
;
2805 BIG_IOCTL_Command_struct arg64
;
2806 BIG_IOCTL_Command_struct __user
*p
=
2807 compat_alloc_user_space(sizeof(arg64
));
2811 memset(&arg64
, 0, sizeof(arg64
));
2813 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
2814 sizeof(arg64
.LUN_info
));
2815 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
2816 sizeof(arg64
.Request
));
2817 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
2818 sizeof(arg64
.error_info
));
2819 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
2820 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
2821 err
|= get_user(cp
, &arg32
->buf
);
2822 arg64
.buf
= compat_ptr(cp
);
2823 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
2828 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, (void *)p
);
2831 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
2832 sizeof(arg32
->error_info
));
2838 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
)
2841 case CCISS_GETPCIINFO
:
2842 case CCISS_GETINTINFO
:
2843 case CCISS_SETINTINFO
:
2844 case CCISS_GETNODENAME
:
2845 case CCISS_SETNODENAME
:
2846 case CCISS_GETHEARTBEAT
:
2847 case CCISS_GETBUSTYPES
:
2848 case CCISS_GETFIRMVER
:
2849 case CCISS_GETDRIVVER
:
2850 case CCISS_REVALIDVOLS
:
2851 case CCISS_DEREGDISK
:
2852 case CCISS_REGNEWDISK
:
2854 case CCISS_RESCANDISK
:
2855 case CCISS_GETLUNINFO
:
2856 return hpsa_ioctl(dev
, cmd
, arg
);
2858 case CCISS_PASSTHRU32
:
2859 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
2860 case CCISS_BIG_PASSTHRU32
:
2861 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
2864 return -ENOIOCTLCMD
;
2869 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
2871 struct hpsa_pci_info pciinfo
;
2875 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
2876 pciinfo
.bus
= h
->pdev
->bus
->number
;
2877 pciinfo
.dev_fn
= h
->pdev
->devfn
;
2878 pciinfo
.board_id
= h
->board_id
;
2879 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
2884 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
2886 DriverVer_type DriverVer
;
2887 unsigned char vmaj
, vmin
, vsubmin
;
2890 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
2891 &vmaj
, &vmin
, &vsubmin
);
2893 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
2894 "unrecognized.", HPSA_DRIVER_VERSION
);
2899 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
2902 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
2907 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
2909 IOCTL_Command_struct iocommand
;
2910 struct CommandList
*c
;
2912 union u64bit temp64
;
2916 if (!capable(CAP_SYS_RAWIO
))
2918 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
2920 if ((iocommand
.buf_size
< 1) &&
2921 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
2924 if (iocommand
.buf_size
> 0) {
2925 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
2928 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
2929 /* Copy the data into the buffer we created */
2930 if (copy_from_user(buff
, iocommand
.buf
,
2931 iocommand
.buf_size
)) {
2936 memset(buff
, 0, iocommand
.buf_size
);
2939 c
= cmd_special_alloc(h
);
2944 /* Fill in the command type */
2945 c
->cmd_type
= CMD_IOCTL_PEND
;
2946 /* Fill in Command Header */
2947 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
2948 if (iocommand
.buf_size
> 0) { /* buffer to fill */
2949 c
->Header
.SGList
= 1;
2950 c
->Header
.SGTotal
= 1;
2951 } else { /* no buffers to fill */
2952 c
->Header
.SGList
= 0;
2953 c
->Header
.SGTotal
= 0;
2955 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
2956 /* use the kernel address the cmd block for tag */
2957 c
->Header
.Tag
.lower
= c
->busaddr
;
2959 /* Fill in Request block */
2960 memcpy(&c
->Request
, &iocommand
.Request
,
2961 sizeof(c
->Request
));
2963 /* Fill in the scatter gather information */
2964 if (iocommand
.buf_size
> 0) {
2965 temp64
.val
= pci_map_single(h
->pdev
, buff
,
2966 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
2967 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
2968 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
2969 c
->SG
[0].Len
= iocommand
.buf_size
;
2970 c
->SG
[0].Ext
= 0; /* we are not chaining*/
2972 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h
, c
);
2973 if (iocommand
.buf_size
> 0)
2974 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
2975 check_ioctl_unit_attention(h
, c
);
2977 /* Copy the error information out */
2978 memcpy(&iocommand
.error_info
, c
->err_info
,
2979 sizeof(iocommand
.error_info
));
2980 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
2982 cmd_special_free(h
, c
);
2985 if (iocommand
.Request
.Type
.Direction
== XFER_READ
&&
2986 iocommand
.buf_size
> 0) {
2987 /* Copy the data out of the buffer we created */
2988 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
2990 cmd_special_free(h
, c
);
2995 cmd_special_free(h
, c
);
2999 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
3001 BIG_IOCTL_Command_struct
*ioc
;
3002 struct CommandList
*c
;
3003 unsigned char **buff
= NULL
;
3004 int *buff_size
= NULL
;
3005 union u64bit temp64
;
3011 BYTE __user
*data_ptr
;
3015 if (!capable(CAP_SYS_RAWIO
))
3017 ioc
= (BIG_IOCTL_Command_struct
*)
3018 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
3023 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
3027 if ((ioc
->buf_size
< 1) &&
3028 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
3032 /* Check kmalloc limits using all SGs */
3033 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
3037 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
3041 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
3046 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
3051 left
= ioc
->buf_size
;
3052 data_ptr
= ioc
->buf
;
3054 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
3055 buff_size
[sg_used
] = sz
;
3056 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
3057 if (buff
[sg_used
] == NULL
) {
3061 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
3062 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
3067 memset(buff
[sg_used
], 0, sz
);
3072 c
= cmd_special_alloc(h
);
3077 c
->cmd_type
= CMD_IOCTL_PEND
;
3078 c
->Header
.ReplyQueue
= 0;
3079 c
->Header
.SGList
= c
->Header
.SGTotal
= sg_used
;
3080 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
3081 c
->Header
.Tag
.lower
= c
->busaddr
;
3082 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
3083 if (ioc
->buf_size
> 0) {
3085 for (i
= 0; i
< sg_used
; i
++) {
3086 temp64
.val
= pci_map_single(h
->pdev
, buff
[i
],
3087 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
3088 c
->SG
[i
].Addr
.lower
= temp64
.val32
.lower
;
3089 c
->SG
[i
].Addr
.upper
= temp64
.val32
.upper
;
3090 c
->SG
[i
].Len
= buff_size
[i
];
3091 /* we are not chaining */
3095 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h
, c
);
3097 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
3098 check_ioctl_unit_attention(h
, c
);
3099 /* Copy the error information out */
3100 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
3101 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
3102 cmd_special_free(h
, c
);
3106 if (ioc
->Request
.Type
.Direction
== XFER_READ
&& ioc
->buf_size
> 0) {
3107 /* Copy the data out of the buffer we created */
3108 BYTE __user
*ptr
= ioc
->buf
;
3109 for (i
= 0; i
< sg_used
; i
++) {
3110 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
3111 cmd_special_free(h
, c
);
3115 ptr
+= buff_size
[i
];
3118 cmd_special_free(h
, c
);
3122 for (i
= 0; i
< sg_used
; i
++)
3131 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
3132 struct CommandList
*c
)
3134 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
3135 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
3136 (void) check_for_unit_attention(h
, c
);
3141 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void *arg
)
3143 struct ctlr_info
*h
;
3144 void __user
*argp
= (void __user
*)arg
;
3146 h
= sdev_to_hba(dev
);
3149 case CCISS_DEREGDISK
:
3150 case CCISS_REGNEWDISK
:
3152 hpsa_scan_start(h
->scsi_host
);
3154 case CCISS_GETPCIINFO
:
3155 return hpsa_getpciinfo_ioctl(h
, argp
);
3156 case CCISS_GETDRIVVER
:
3157 return hpsa_getdrivver_ioctl(h
, argp
);
3158 case CCISS_PASSTHRU
:
3159 return hpsa_passthru_ioctl(h
, argp
);
3160 case CCISS_BIG_PASSTHRU
:
3161 return hpsa_big_passthru_ioctl(h
, argp
);
3167 static int __devinit
hpsa_send_host_reset(struct ctlr_info
*h
,
3168 unsigned char *scsi3addr
, u8 reset_type
)
3170 struct CommandList
*c
;
3175 fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
3176 RAID_CTLR_LUNID
, TYPE_MSG
);
3177 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
3179 enqueue_cmd_and_start_io(h
, c
);
3180 /* Don't wait for completion, the reset won't complete. Don't free
3181 * the command either. This is the last command we will send before
3182 * re-initializing everything, so it doesn't matter and won't leak.
3187 static void fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
3188 void *buff
, size_t size
, u8 page_code
, unsigned char *scsi3addr
,
3191 int pci_dir
= XFER_NONE
;
3192 struct CommandList
*a
; /* for commands to be aborted */
3194 c
->cmd_type
= CMD_IOCTL_PEND
;
3195 c
->Header
.ReplyQueue
= 0;
3196 if (buff
!= NULL
&& size
> 0) {
3197 c
->Header
.SGList
= 1;
3198 c
->Header
.SGTotal
= 1;
3200 c
->Header
.SGList
= 0;
3201 c
->Header
.SGTotal
= 0;
3203 c
->Header
.Tag
.lower
= c
->busaddr
;
3204 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
3206 c
->Request
.Type
.Type
= cmd_type
;
3207 if (cmd_type
== TYPE_CMD
) {
3210 /* are we trying to read a vital product page */
3211 if (page_code
!= 0) {
3212 c
->Request
.CDB
[1] = 0x01;
3213 c
->Request
.CDB
[2] = page_code
;
3215 c
->Request
.CDBLen
= 6;
3216 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3217 c
->Request
.Type
.Direction
= XFER_READ
;
3218 c
->Request
.Timeout
= 0;
3219 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
3220 c
->Request
.CDB
[4] = size
& 0xFF;
3222 case HPSA_REPORT_LOG
:
3223 case HPSA_REPORT_PHYS
:
3224 /* Talking to controller so It's a physical command
3225 mode = 00 target = 0. Nothing to write.
3227 c
->Request
.CDBLen
= 12;
3228 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3229 c
->Request
.Type
.Direction
= XFER_READ
;
3230 c
->Request
.Timeout
= 0;
3231 c
->Request
.CDB
[0] = cmd
;
3232 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
3233 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
3234 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
3235 c
->Request
.CDB
[9] = size
& 0xFF;
3237 case HPSA_CACHE_FLUSH
:
3238 c
->Request
.CDBLen
= 12;
3239 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3240 c
->Request
.Type
.Direction
= XFER_WRITE
;
3241 c
->Request
.Timeout
= 0;
3242 c
->Request
.CDB
[0] = BMIC_WRITE
;
3243 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
3244 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
3245 c
->Request
.CDB
[8] = size
& 0xFF;
3247 case TEST_UNIT_READY
:
3248 c
->Request
.CDBLen
= 6;
3249 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3250 c
->Request
.Type
.Direction
= XFER_NONE
;
3251 c
->Request
.Timeout
= 0;
3254 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
3258 } else if (cmd_type
== TYPE_MSG
) {
3261 case HPSA_DEVICE_RESET_MSG
:
3262 c
->Request
.CDBLen
= 16;
3263 c
->Request
.Type
.Type
= 1; /* It is a MSG not a CMD */
3264 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3265 c
->Request
.Type
.Direction
= XFER_NONE
;
3266 c
->Request
.Timeout
= 0; /* Don't time out */
3267 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
3268 c
->Request
.CDB
[0] = cmd
;
3269 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
3270 /* If bytes 4-7 are zero, it means reset the */
3272 c
->Request
.CDB
[4] = 0x00;
3273 c
->Request
.CDB
[5] = 0x00;
3274 c
->Request
.CDB
[6] = 0x00;
3275 c
->Request
.CDB
[7] = 0x00;
3277 case HPSA_ABORT_MSG
:
3278 a
= buff
; /* point to command to be aborted */
3279 dev_dbg(&h
->pdev
->dev
, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3280 a
->Header
.Tag
.upper
, a
->Header
.Tag
.lower
,
3281 c
->Header
.Tag
.upper
, c
->Header
.Tag
.lower
);
3282 c
->Request
.CDBLen
= 16;
3283 c
->Request
.Type
.Type
= TYPE_MSG
;
3284 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3285 c
->Request
.Type
.Direction
= XFER_WRITE
;
3286 c
->Request
.Timeout
= 0; /* Don't time out */
3287 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
3288 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
3289 c
->Request
.CDB
[2] = 0x00; /* reserved */
3290 c
->Request
.CDB
[3] = 0x00; /* reserved */
3291 /* Tag to abort goes in CDB[4]-CDB[11] */
3292 c
->Request
.CDB
[4] = a
->Header
.Tag
.lower
& 0xFF;
3293 c
->Request
.CDB
[5] = (a
->Header
.Tag
.lower
>> 8) & 0xFF;
3294 c
->Request
.CDB
[6] = (a
->Header
.Tag
.lower
>> 16) & 0xFF;
3295 c
->Request
.CDB
[7] = (a
->Header
.Tag
.lower
>> 24) & 0xFF;
3296 c
->Request
.CDB
[8] = a
->Header
.Tag
.upper
& 0xFF;
3297 c
->Request
.CDB
[9] = (a
->Header
.Tag
.upper
>> 8) & 0xFF;
3298 c
->Request
.CDB
[10] = (a
->Header
.Tag
.upper
>> 16) & 0xFF;
3299 c
->Request
.CDB
[11] = (a
->Header
.Tag
.upper
>> 24) & 0xFF;
3300 c
->Request
.CDB
[12] = 0x00; /* reserved */
3301 c
->Request
.CDB
[13] = 0x00; /* reserved */
3302 c
->Request
.CDB
[14] = 0x00; /* reserved */
3303 c
->Request
.CDB
[15] = 0x00; /* reserved */
3306 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
3311 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
3315 switch (c
->Request
.Type
.Direction
) {
3317 pci_dir
= PCI_DMA_FROMDEVICE
;
3320 pci_dir
= PCI_DMA_TODEVICE
;
3323 pci_dir
= PCI_DMA_NONE
;
3326 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
3329 hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
);
3335 * Map (physical) PCI mem into (virtual) kernel space
3337 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
3339 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
3340 ulong page_offs
= ((ulong
) base
) - page_base
;
3341 void __iomem
*page_remapped
= ioremap(page_base
, page_offs
+ size
);
3343 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
3346 /* Takes cmds off the submission queue and sends them to the hardware,
3347 * then puts them on the queue of cmds waiting for completion.
3349 static void start_io(struct ctlr_info
*h
)
3351 struct CommandList
*c
;
3352 unsigned long flags
;
3354 spin_lock_irqsave(&h
->lock
, flags
);
3355 while (!list_empty(&h
->reqQ
)) {
3356 c
= list_entry(h
->reqQ
.next
, struct CommandList
, list
);
3357 /* can't do anything if fifo is full */
3358 if ((h
->access
.fifo_full(h
))) {
3359 dev_warn(&h
->pdev
->dev
, "fifo full\n");
3363 /* Get the first entry from the Request Q */
3367 /* Put job onto the completed Q */
3370 /* Must increment commands_outstanding before unlocking
3371 * and submitting to avoid race checking for fifo full
3374 h
->commands_outstanding
++;
3375 if (h
->commands_outstanding
> h
->max_outstanding
)
3376 h
->max_outstanding
= h
->commands_outstanding
;
3378 /* Tell the controller execute command */
3379 spin_unlock_irqrestore(&h
->lock
, flags
);
3380 h
->access
.submit_command(h
, c
);
3381 spin_lock_irqsave(&h
->lock
, flags
);
3383 spin_unlock_irqrestore(&h
->lock
, flags
);
3386 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
3388 return h
->access
.command_completed(h
, q
);
3391 static inline bool interrupt_pending(struct ctlr_info
*h
)
3393 return h
->access
.intr_pending(h
);
3396 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
3398 return (h
->access
.intr_pending(h
) == 0) ||
3399 (h
->interrupts_enabled
== 0);
3402 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
3405 if (unlikely(tag_index
>= h
->nr_cmds
)) {
3406 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
3412 static inline void finish_cmd(struct CommandList
*c
)
3414 unsigned long flags
;
3416 spin_lock_irqsave(&c
->h
->lock
, flags
);
3418 spin_unlock_irqrestore(&c
->h
->lock
, flags
);
3419 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
3420 if (likely(c
->cmd_type
== CMD_SCSI
))
3421 complete_scsi_command(c
);
3422 else if (c
->cmd_type
== CMD_IOCTL_PEND
)
3423 complete(c
->waiting
);
3426 static inline u32
hpsa_tag_contains_index(u32 tag
)
3428 return tag
& DIRECT_LOOKUP_BIT
;
3431 static inline u32
hpsa_tag_to_index(u32 tag
)
3433 return tag
>> DIRECT_LOOKUP_SHIFT
;
3437 static inline u32
hpsa_tag_discard_error_bits(struct ctlr_info
*h
, u32 tag
)
3439 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3440 #define HPSA_SIMPLE_ERROR_BITS 0x03
3441 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
3442 return tag
& ~HPSA_SIMPLE_ERROR_BITS
;
3443 return tag
& ~HPSA_PERF_ERROR_BITS
;
3446 /* process completion of an indexed ("direct lookup") command */
3447 static inline void process_indexed_cmd(struct ctlr_info
*h
,
3451 struct CommandList
*c
;
3453 tag_index
= hpsa_tag_to_index(raw_tag
);
3454 if (!bad_tag(h
, tag_index
, raw_tag
)) {
3455 c
= h
->cmd_pool
+ tag_index
;
3460 /* process completion of a non-indexed command */
3461 static inline void process_nonindexed_cmd(struct ctlr_info
*h
,
3465 struct CommandList
*c
= NULL
;
3466 unsigned long flags
;
3468 tag
= hpsa_tag_discard_error_bits(h
, raw_tag
);
3469 spin_lock_irqsave(&h
->lock
, flags
);
3470 list_for_each_entry(c
, &h
->cmpQ
, list
) {
3471 if ((c
->busaddr
& 0xFFFFFFE0) == (tag
& 0xFFFFFFE0)) {
3472 spin_unlock_irqrestore(&h
->lock
, flags
);
3477 spin_unlock_irqrestore(&h
->lock
, flags
);
3478 bad_tag(h
, h
->nr_cmds
+ 1, raw_tag
);
3481 /* Some controllers, like p400, will give us one interrupt
3482 * after a soft reset, even if we turned interrupts off.
3483 * Only need to check for this in the hpsa_xxx_discard_completions
3486 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
3488 if (likely(!reset_devices
))
3491 if (likely(h
->interrupts_enabled
))
3494 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
3495 "(known firmware bug.) Ignoring.\n");
3501 * Convert &h->q[x] (passed to interrupt handlers) back to h.
3502 * Relies on (h-q[x] == x) being true for x such that
3503 * 0 <= x < MAX_REPLY_QUEUES.
3505 static struct ctlr_info
*queue_to_hba(u8
*queue
)
3507 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
3510 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
3512 struct ctlr_info
*h
= queue_to_hba(queue
);
3513 u8 q
= *(u8
*) queue
;
3516 if (ignore_bogus_interrupt(h
))
3519 if (interrupt_not_for_us(h
))
3521 h
->last_intr_timestamp
= get_jiffies_64();
3522 while (interrupt_pending(h
)) {
3523 raw_tag
= get_next_completion(h
, q
);
3524 while (raw_tag
!= FIFO_EMPTY
)
3525 raw_tag
= next_command(h
, q
);
3530 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
3532 struct ctlr_info
*h
= queue_to_hba(queue
);
3534 u8 q
= *(u8
*) queue
;
3536 if (ignore_bogus_interrupt(h
))
3539 h
->last_intr_timestamp
= get_jiffies_64();
3540 raw_tag
= get_next_completion(h
, q
);
3541 while (raw_tag
!= FIFO_EMPTY
)
3542 raw_tag
= next_command(h
, q
);
3546 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
3548 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
3550 u8 q
= *(u8
*) queue
;
3552 if (interrupt_not_for_us(h
))
3554 h
->last_intr_timestamp
= get_jiffies_64();
3555 while (interrupt_pending(h
)) {
3556 raw_tag
= get_next_completion(h
, q
);
3557 while (raw_tag
!= FIFO_EMPTY
) {
3558 if (likely(hpsa_tag_contains_index(raw_tag
)))
3559 process_indexed_cmd(h
, raw_tag
);
3561 process_nonindexed_cmd(h
, raw_tag
);
3562 raw_tag
= next_command(h
, q
);
3568 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
3570 struct ctlr_info
*h
= queue_to_hba(queue
);
3572 u8 q
= *(u8
*) queue
;
3574 h
->last_intr_timestamp
= get_jiffies_64();
3575 raw_tag
= get_next_completion(h
, q
);
3576 while (raw_tag
!= FIFO_EMPTY
) {
3577 if (likely(hpsa_tag_contains_index(raw_tag
)))
3578 process_indexed_cmd(h
, raw_tag
);
3580 process_nonindexed_cmd(h
, raw_tag
);
3581 raw_tag
= next_command(h
, q
);
3586 /* Send a message CDB to the firmware. Careful, this only works
3587 * in simple mode, not performant mode due to the tag lookup.
3588 * We only ever use this immediately after a controller reset.
3590 static __devinit
int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
3594 struct CommandListHeader CommandHeader
;
3595 struct RequestBlock Request
;
3596 struct ErrDescriptor ErrorDescriptor
;
3598 struct Command
*cmd
;
3599 static const size_t cmd_sz
= sizeof(*cmd
) +
3600 sizeof(cmd
->ErrorDescriptor
);
3602 uint32_t paddr32
, tag
;
3603 void __iomem
*vaddr
;
3606 vaddr
= pci_ioremap_bar(pdev
, 0);
3610 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3611 * CCISS commands, so they must be allocated from the lower 4GiB of
3614 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3620 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
3626 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3627 * although there's no guarantee, we assume that the address is at
3628 * least 4-byte aligned (most likely, it's page-aligned).
3632 cmd
->CommandHeader
.ReplyQueue
= 0;
3633 cmd
->CommandHeader
.SGList
= 0;
3634 cmd
->CommandHeader
.SGTotal
= 0;
3635 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
3636 cmd
->CommandHeader
.Tag
.upper
= 0;
3637 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
3639 cmd
->Request
.CDBLen
= 16;
3640 cmd
->Request
.Type
.Type
= TYPE_MSG
;
3641 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
3642 cmd
->Request
.Type
.Direction
= XFER_NONE
;
3643 cmd
->Request
.Timeout
= 0; /* Don't time out */
3644 cmd
->Request
.CDB
[0] = opcode
;
3645 cmd
->Request
.CDB
[1] = type
;
3646 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
3647 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(*cmd
);
3648 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
3649 cmd
->ErrorDescriptor
.Len
= sizeof(struct ErrorInfo
);
3651 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
3653 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
3654 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
3655 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr32
)
3657 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
3662 /* we leak the DMA buffer here ... no choice since the controller could
3663 * still complete the command.
3665 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
3666 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
3671 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
3673 if (tag
& HPSA_ERROR_BIT
) {
3674 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
3679 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
3684 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3686 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
3687 void * __iomem vaddr
, u32 use_doorbell
)
3693 /* For everything after the P600, the PCI power state method
3694 * of resetting the controller doesn't work, so we have this
3695 * other way using the doorbell register.
3697 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
3698 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
3699 } else { /* Try to do it the PCI power state way */
3701 /* Quoting from the Open CISS Specification: "The Power
3702 * Management Control/Status Register (CSR) controls the power
3703 * state of the device. The normal operating state is D0,
3704 * CSR=00h. The software off state is D3, CSR=03h. To reset
3705 * the controller, place the interface device in D3 then to D0,
3706 * this causes a secondary PCI reset which will reset the
3709 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
3712 "hpsa_reset_controller: "
3713 "PCI PM not supported\n");
3716 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
3717 /* enter the D3hot power management state */
3718 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
3719 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3721 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
3725 /* enter the D0 power management state */
3726 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3728 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
3731 * The P600 requires a small delay when changing states.
3732 * Otherwise we may think the board did not reset and we bail.
3733 * This for kdump only and is particular to the P600.
3740 static __devinit
void init_driver_version(char *driver_version
, int len
)
3742 memset(driver_version
, 0, len
);
3743 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
3746 static __devinit
int write_driver_ver_to_cfgtable(
3747 struct CfgTable __iomem
*cfgtable
)
3749 char *driver_version
;
3750 int i
, size
= sizeof(cfgtable
->driver_version
);
3752 driver_version
= kmalloc(size
, GFP_KERNEL
);
3753 if (!driver_version
)
3756 init_driver_version(driver_version
, size
);
3757 for (i
= 0; i
< size
; i
++)
3758 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
3759 kfree(driver_version
);
3763 static __devinit
void read_driver_ver_from_cfgtable(
3764 struct CfgTable __iomem
*cfgtable
, unsigned char *driver_ver
)
3768 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
3769 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
3772 static __devinit
int controller_reset_failed(
3773 struct CfgTable __iomem
*cfgtable
)
3776 char *driver_ver
, *old_driver_ver
;
3777 int rc
, size
= sizeof(cfgtable
->driver_version
);
3779 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
3780 if (!old_driver_ver
)
3782 driver_ver
= old_driver_ver
+ size
;
3784 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3785 * should have been changed, otherwise we know the reset failed.
3787 init_driver_version(old_driver_ver
, size
);
3788 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
3789 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
3790 kfree(old_driver_ver
);
3793 /* This does a hard reset of the controller using PCI power management
3794 * states or the using the doorbell register.
3796 static __devinit
int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
)
3800 u64 cfg_base_addr_index
;
3801 void __iomem
*vaddr
;
3802 unsigned long paddr
;
3803 u32 misc_fw_support
;
3805 struct CfgTable __iomem
*cfgtable
;
3808 u16 command_register
;
3810 /* For controllers as old as the P600, this is very nearly
3813 * pci_save_state(pci_dev);
3814 * pci_set_power_state(pci_dev, PCI_D3hot);
3815 * pci_set_power_state(pci_dev, PCI_D0);
3816 * pci_restore_state(pci_dev);
3818 * For controllers newer than the P600, the pci power state
3819 * method of resetting doesn't work so we have another way
3820 * using the doorbell register.
3823 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
3824 if (rc
< 0 || !ctlr_is_resettable(board_id
)) {
3825 dev_warn(&pdev
->dev
, "Not resetting device.\n");
3829 /* if controller is soft- but not hard resettable... */
3830 if (!ctlr_is_hard_resettable(board_id
))
3831 return -ENOTSUPP
; /* try soft reset later. */
3833 /* Save the PCI command register */
3834 pci_read_config_word(pdev
, 4, &command_register
);
3835 /* Turn the board off. This is so that later pci_restore_state()
3836 * won't turn the board on before the rest of config space is ready.
3838 pci_disable_device(pdev
);
3839 pci_save_state(pdev
);
3841 /* find the first memory BAR, so we can find the cfg table */
3842 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
3845 vaddr
= remap_pci_mem(paddr
, 0x250);
3849 /* find cfgtable in order to check if reset via doorbell is supported */
3850 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
3851 &cfg_base_addr_index
, &cfg_offset
);
3854 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
3855 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
3860 rc
= write_driver_ver_to_cfgtable(cfgtable
);
3864 /* If reset via doorbell register is supported, use that.
3865 * There are two such methods. Favor the newest method.
3867 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
3868 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
3870 use_doorbell
= DOORBELL_CTLR_RESET2
;
3872 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
3874 dev_warn(&pdev
->dev
, "Soft reset not supported. "
3875 "Firmware update is required.\n");
3876 rc
= -ENOTSUPP
; /* try soft reset */
3877 goto unmap_cfgtable
;
3881 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
3883 goto unmap_cfgtable
;
3885 pci_restore_state(pdev
);
3886 rc
= pci_enable_device(pdev
);
3888 dev_warn(&pdev
->dev
, "failed to enable device.\n");
3889 goto unmap_cfgtable
;
3891 pci_write_config_word(pdev
, 4, command_register
);
3893 /* Some devices (notably the HP Smart Array 5i Controller)
3894 need a little pause here */
3895 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
3897 /* Wait for board to become not ready, then ready. */
3898 dev_info(&pdev
->dev
, "Waiting for board to reset.\n");
3899 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_NOT_READY
);
3901 dev_warn(&pdev
->dev
,
3902 "failed waiting for board to reset."
3903 " Will try soft reset.\n");
3904 rc
= -ENOTSUPP
; /* Not expected, but try soft reset later */
3905 goto unmap_cfgtable
;
3907 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
3909 dev_warn(&pdev
->dev
,
3910 "failed waiting for board to become ready "
3911 "after hard reset\n");
3912 goto unmap_cfgtable
;
3915 rc
= controller_reset_failed(vaddr
);
3917 goto unmap_cfgtable
;
3919 dev_warn(&pdev
->dev
, "Unable to successfully reset "
3920 "controller. Will try soft reset.\n");
3923 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
3935 * We cannot read the structure directly, for portability we must use
3937 * This is for debug only.
3939 static void print_cfg_table(struct device
*dev
, struct CfgTable
*tb
)
3945 dev_info(dev
, "Controller Configuration information\n");
3946 dev_info(dev
, "------------------------------------\n");
3947 for (i
= 0; i
< 4; i
++)
3948 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
3949 temp_name
[4] = '\0';
3950 dev_info(dev
, " Signature = %s\n", temp_name
);
3951 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
3952 dev_info(dev
, " Transport methods supported = 0x%x\n",
3953 readl(&(tb
->TransportSupport
)));
3954 dev_info(dev
, " Transport methods active = 0x%x\n",
3955 readl(&(tb
->TransportActive
)));
3956 dev_info(dev
, " Requested transport Method = 0x%x\n",
3957 readl(&(tb
->HostWrite
.TransportRequest
)));
3958 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
3959 readl(&(tb
->HostWrite
.CoalIntDelay
)));
3960 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
3961 readl(&(tb
->HostWrite
.CoalIntCount
)));
3962 dev_info(dev
, " Max outstanding commands = 0x%d\n",
3963 readl(&(tb
->CmdsOutMax
)));
3964 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
3965 for (i
= 0; i
< 16; i
++)
3966 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
3967 temp_name
[16] = '\0';
3968 dev_info(dev
, " Server Name = %s\n", temp_name
);
3969 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
3970 readl(&(tb
->HeartBeat
)));
3971 #endif /* HPSA_DEBUG */
3974 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
3976 int i
, offset
, mem_type
, bar_type
;
3978 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
3981 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3982 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
3983 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
3986 mem_type
= pci_resource_flags(pdev
, i
) &
3987 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
3989 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
3990 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
3991 offset
+= 4; /* 32 bit */
3993 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
3996 default: /* reserved in PCI 2.2 */
3997 dev_warn(&pdev
->dev
,
3998 "base address is invalid\n");
4003 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
4009 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4010 * controllers that are capable. If not, we use IO-APIC mode.
4013 static void __devinit
hpsa_interrupt_mode(struct ctlr_info
*h
)
4015 #ifdef CONFIG_PCI_MSI
4017 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
4019 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
4020 hpsa_msix_entries
[i
].vector
= 0;
4021 hpsa_msix_entries
[i
].entry
= i
;
4024 /* Some boards advertise MSI but don't really support it */
4025 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
4026 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
4027 goto default_int_mode
;
4028 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
4029 dev_info(&h
->pdev
->dev
, "MSIX\n");
4030 err
= pci_enable_msix(h
->pdev
, hpsa_msix_entries
,
4033 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4034 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
4039 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
4040 "available\n", err
);
4041 goto default_int_mode
;
4043 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n",
4045 goto default_int_mode
;
4048 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
4049 dev_info(&h
->pdev
->dev
, "MSI\n");
4050 if (!pci_enable_msi(h
->pdev
))
4053 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
4056 #endif /* CONFIG_PCI_MSI */
4057 /* if we get here we're going to use the default interrupt mode */
4058 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
4061 static int __devinit
hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
4064 u32 subsystem_vendor_id
, subsystem_device_id
;
4066 subsystem_vendor_id
= pdev
->subsystem_vendor
;
4067 subsystem_device_id
= pdev
->subsystem_device
;
4068 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
4069 subsystem_vendor_id
;
4071 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
4072 if (*board_id
== products
[i
].board_id
)
4075 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
4076 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
4078 dev_warn(&pdev
->dev
, "unrecognized board ID: "
4079 "0x%08x, ignoring.\n", *board_id
);
4082 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
4085 static int __devinit
hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
4086 unsigned long *memory_bar
)
4090 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
4091 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
4092 /* addressing mode bits already removed */
4093 *memory_bar
= pci_resource_start(pdev
, i
);
4094 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
4098 dev_warn(&pdev
->dev
, "no memory BAR found\n");
4102 static int __devinit
hpsa_wait_for_board_state(struct pci_dev
*pdev
,
4103 void __iomem
*vaddr
, int wait_for_ready
)
4108 iterations
= HPSA_BOARD_READY_ITERATIONS
;
4110 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
4112 for (i
= 0; i
< iterations
; i
++) {
4113 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
4114 if (wait_for_ready
) {
4115 if (scratchpad
== HPSA_FIRMWARE_READY
)
4118 if (scratchpad
!= HPSA_FIRMWARE_READY
)
4121 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
4123 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
4127 static int __devinit
hpsa_find_cfg_addrs(struct pci_dev
*pdev
,
4128 void __iomem
*vaddr
, u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
4131 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
4132 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
4133 *cfg_base_addr
&= (u32
) 0x0000ffff;
4134 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
4135 if (*cfg_base_addr_index
== -1) {
4136 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
4142 static int __devinit
hpsa_find_cfgtables(struct ctlr_info
*h
)
4146 u64 cfg_base_addr_index
;
4150 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
4151 &cfg_base_addr_index
, &cfg_offset
);
4154 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4155 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
4158 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
4161 /* Find performant mode table. */
4162 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
4163 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4164 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
4165 sizeof(*h
->transtable
));
4171 static void __devinit
hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
4173 h
->max_commands
= readl(&(h
->cfgtable
->MaxPerformantModeCommands
));
4175 /* Limit commands in memory limited kdump scenario. */
4176 if (reset_devices
&& h
->max_commands
> 32)
4177 h
->max_commands
= 32;
4179 if (h
->max_commands
< 16) {
4180 dev_warn(&h
->pdev
->dev
, "Controller reports "
4181 "max supported commands of %d, an obvious lie. "
4182 "Using 16. Ensure that firmware is up to date.\n",
4184 h
->max_commands
= 16;
4188 /* Interrogate the hardware for some limits:
4189 * max commands, max SG elements without chaining, and with chaining,
4190 * SG chain block size, etc.
4192 static void __devinit
hpsa_find_board_params(struct ctlr_info
*h
)
4194 hpsa_get_max_perf_mode_cmds(h
);
4195 h
->nr_cmds
= h
->max_commands
- 4; /* Allow room for some ioctls */
4196 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
4198 * Limit in-command s/g elements to 32 save dma'able memory.
4199 * Howvever spec says if 0, use 31
4201 h
->max_cmd_sg_entries
= 31;
4202 if (h
->maxsgentries
> 512) {
4203 h
->max_cmd_sg_entries
= 32;
4204 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
+ 1;
4205 h
->maxsgentries
--; /* save one for chain pointer */
4207 h
->maxsgentries
= 31; /* default to traditional values */
4211 /* Find out what task management functions are supported and cache */
4212 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
4215 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
4217 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
4218 dev_warn(&h
->pdev
->dev
, "not a valid CISS config table\n");
4224 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4225 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info
*h
)
4230 prefetch
= readl(&(h
->cfgtable
->SCSI_Prefetch
));
4232 writel(prefetch
, &(h
->cfgtable
->SCSI_Prefetch
));
4236 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4237 * in a prefetch beyond physical memory.
4239 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
4243 if (h
->board_id
!= 0x3225103C)
4245 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
4246 dma_prefetch
|= 0x8000;
4247 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
4250 static void __devinit
hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
4254 unsigned long flags
;
4256 /* under certain very rare conditions, this can take awhile.
4257 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4258 * as we enter this code.)
4260 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
4261 spin_lock_irqsave(&h
->lock
, flags
);
4262 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
4263 spin_unlock_irqrestore(&h
->lock
, flags
);
4264 if (!(doorbell_value
& CFGTBL_ChangeReq
))
4266 /* delay and try again */
4267 usleep_range(10000, 20000);
4271 static int __devinit
hpsa_enter_simple_mode(struct ctlr_info
*h
)
4275 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
4276 if (!(trans_support
& SIMPLE_MODE
))
4279 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
4280 /* Update the field, and then ring the doorbell */
4281 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
4282 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
4283 hpsa_wait_for_mode_change_ack(h
);
4284 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
4285 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
)) {
4286 dev_warn(&h
->pdev
->dev
,
4287 "unable to get board into simple mode\n");
4290 h
->transMethod
= CFGTBL_Trans_Simple
;
4294 static int __devinit
hpsa_pci_init(struct ctlr_info
*h
)
4296 int prod_index
, err
;
4298 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
4301 h
->product_name
= products
[prod_index
].product_name
;
4302 h
->access
= *(products
[prod_index
].access
);
4304 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
4305 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
4307 err
= pci_enable_device(h
->pdev
);
4309 dev_warn(&h
->pdev
->dev
, "unable to enable PCI device\n");
4313 /* Enable bus mastering (pci_disable_device may disable this) */
4314 pci_set_master(h
->pdev
);
4316 err
= pci_request_regions(h
->pdev
, HPSA
);
4318 dev_err(&h
->pdev
->dev
,
4319 "cannot obtain PCI resources, aborting\n");
4322 hpsa_interrupt_mode(h
);
4323 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
4325 goto err_out_free_res
;
4326 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
4329 goto err_out_free_res
;
4331 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
4333 goto err_out_free_res
;
4334 err
= hpsa_find_cfgtables(h
);
4336 goto err_out_free_res
;
4337 hpsa_find_board_params(h
);
4339 if (!hpsa_CISS_signature_present(h
)) {
4341 goto err_out_free_res
;
4343 hpsa_enable_scsi_prefetch(h
);
4344 hpsa_p600_dma_prefetch_quirk(h
);
4345 err
= hpsa_enter_simple_mode(h
);
4347 goto err_out_free_res
;
4352 iounmap(h
->transtable
);
4354 iounmap(h
->cfgtable
);
4357 pci_disable_device(h
->pdev
);
4358 pci_release_regions(h
->pdev
);
4362 static void __devinit
hpsa_hba_inquiry(struct ctlr_info
*h
)
4366 #define HBA_INQUIRY_BYTE_COUNT 64
4367 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
4368 if (!h
->hba_inquiry_data
)
4370 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
4371 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
4373 kfree(h
->hba_inquiry_data
);
4374 h
->hba_inquiry_data
= NULL
;
4378 static __devinit
int hpsa_init_reset_devices(struct pci_dev
*pdev
)
4385 /* Reset the controller with a PCI power-cycle or via doorbell */
4386 rc
= hpsa_kdump_hard_reset_controller(pdev
);
4388 /* -ENOTSUPP here means we cannot reset the controller
4389 * but it's already (and still) up and running in
4390 * "performant mode". Or, it might be 640x, which can't reset
4391 * due to concerns about shared bbwc between 6402/6404 pair.
4393 if (rc
== -ENOTSUPP
)
4394 return rc
; /* just try to do the kdump anyhow. */
4398 /* Now try to get the controller to respond to a no-op */
4399 dev_warn(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
4400 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
4401 if (hpsa_noop(pdev
) == 0)
4404 dev_warn(&pdev
->dev
, "no-op failed%s\n",
4405 (i
< 11 ? "; re-trying" : ""));
4410 static __devinit
int hpsa_allocate_cmd_pool(struct ctlr_info
*h
)
4412 h
->cmd_pool_bits
= kzalloc(
4413 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
4414 sizeof(unsigned long), GFP_KERNEL
);
4415 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
4416 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
4417 &(h
->cmd_pool_dhandle
));
4418 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
4419 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
4420 &(h
->errinfo_pool_dhandle
));
4421 if ((h
->cmd_pool_bits
== NULL
)
4422 || (h
->cmd_pool
== NULL
)
4423 || (h
->errinfo_pool
== NULL
)) {
4424 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
4430 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
4432 kfree(h
->cmd_pool_bits
);
4434 pci_free_consistent(h
->pdev
,
4435 h
->nr_cmds
* sizeof(struct CommandList
),
4436 h
->cmd_pool
, h
->cmd_pool_dhandle
);
4437 if (h
->errinfo_pool
)
4438 pci_free_consistent(h
->pdev
,
4439 h
->nr_cmds
* sizeof(struct ErrorInfo
),
4441 h
->errinfo_pool_dhandle
);
4444 static int hpsa_request_irq(struct ctlr_info
*h
,
4445 irqreturn_t (*msixhandler
)(int, void *),
4446 irqreturn_t (*intxhandler
)(int, void *))
4451 * initialize h->q[x] = x so that interrupt handlers know which
4454 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4457 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
) {
4458 /* If performant mode and MSI-X, use multiple reply queues */
4459 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4460 rc
= request_irq(h
->intr
[i
], msixhandler
,
4464 /* Use single reply pool */
4465 if (h
->msix_vector
|| h
->msi_vector
) {
4466 rc
= request_irq(h
->intr
[h
->intr_mode
],
4467 msixhandler
, 0, h
->devname
,
4468 &h
->q
[h
->intr_mode
]);
4470 rc
= request_irq(h
->intr
[h
->intr_mode
],
4471 intxhandler
, IRQF_SHARED
, h
->devname
,
4472 &h
->q
[h
->intr_mode
]);
4476 dev_err(&h
->pdev
->dev
, "unable to get irq %d for %s\n",
4477 h
->intr
[h
->intr_mode
], h
->devname
);
4483 static int __devinit
hpsa_kdump_soft_reset(struct ctlr_info
*h
)
4485 if (hpsa_send_host_reset(h
, RAID_CTLR_LUNID
,
4486 HPSA_RESET_TYPE_CONTROLLER
)) {
4487 dev_warn(&h
->pdev
->dev
, "Resetting array controller failed.\n");
4491 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
4492 if (hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
)) {
4493 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
4497 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
4498 if (hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
)) {
4499 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
4500 "after soft reset.\n");
4507 static void free_irqs(struct ctlr_info
*h
)
4511 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
4512 /* Single reply queue, only one irq to free */
4514 free_irq(h
->intr
[i
], &h
->q
[i
]);
4518 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
4519 free_irq(h
->intr
[i
], &h
->q
[i
]);
4522 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info
*h
)
4525 #ifdef CONFIG_PCI_MSI
4526 if (h
->msix_vector
) {
4527 if (h
->pdev
->msix_enabled
)
4528 pci_disable_msix(h
->pdev
);
4529 } else if (h
->msi_vector
) {
4530 if (h
->pdev
->msi_enabled
)
4531 pci_disable_msi(h
->pdev
);
4533 #endif /* CONFIG_PCI_MSI */
4536 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
4538 hpsa_free_irqs_and_disable_msix(h
);
4539 hpsa_free_sg_chain_blocks(h
);
4540 hpsa_free_cmd_pool(h
);
4541 kfree(h
->blockFetchTable
);
4542 pci_free_consistent(h
->pdev
, h
->reply_pool_size
,
4543 h
->reply_pool
, h
->reply_pool_dhandle
);
4547 iounmap(h
->transtable
);
4549 iounmap(h
->cfgtable
);
4550 pci_release_regions(h
->pdev
);
4554 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info
*h
)
4556 assert_spin_locked(&lockup_detector_lock
);
4557 if (!hpsa_lockup_detector
)
4559 if (h
->lockup_detected
)
4560 return; /* already stopped the lockup detector */
4561 list_del(&h
->lockup_list
);
4564 /* Called when controller lockup detected. */
4565 static void fail_all_cmds_on_list(struct ctlr_info
*h
, struct list_head
*list
)
4567 struct CommandList
*c
= NULL
;
4569 assert_spin_locked(&h
->lock
);
4570 /* Mark all outstanding commands as failed and complete them. */
4571 while (!list_empty(list
)) {
4572 c
= list_entry(list
->next
, struct CommandList
, list
);
4573 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
4578 static void controller_lockup_detected(struct ctlr_info
*h
)
4580 unsigned long flags
;
4582 assert_spin_locked(&lockup_detector_lock
);
4583 remove_ctlr_from_lockup_detector_list(h
);
4584 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4585 spin_lock_irqsave(&h
->lock
, flags
);
4586 h
->lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
4587 spin_unlock_irqrestore(&h
->lock
, flags
);
4588 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x\n",
4589 h
->lockup_detected
);
4590 pci_disable_device(h
->pdev
);
4591 spin_lock_irqsave(&h
->lock
, flags
);
4592 fail_all_cmds_on_list(h
, &h
->cmpQ
);
4593 fail_all_cmds_on_list(h
, &h
->reqQ
);
4594 spin_unlock_irqrestore(&h
->lock
, flags
);
4597 static void detect_controller_lockup(struct ctlr_info
*h
)
4601 unsigned long flags
;
4603 assert_spin_locked(&lockup_detector_lock
);
4604 now
= get_jiffies_64();
4605 /* If we've received an interrupt recently, we're ok. */
4606 if (time_after64(h
->last_intr_timestamp
+
4607 (h
->heartbeat_sample_interval
), now
))
4611 * If we've already checked the heartbeat recently, we're ok.
4612 * This could happen if someone sends us a signal. We
4613 * otherwise don't care about signals in this thread.
4615 if (time_after64(h
->last_heartbeat_timestamp
+
4616 (h
->heartbeat_sample_interval
), now
))
4619 /* If heartbeat has not changed since we last looked, we're not ok. */
4620 spin_lock_irqsave(&h
->lock
, flags
);
4621 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
4622 spin_unlock_irqrestore(&h
->lock
, flags
);
4623 if (h
->last_heartbeat
== heartbeat
) {
4624 controller_lockup_detected(h
);
4629 h
->last_heartbeat
= heartbeat
;
4630 h
->last_heartbeat_timestamp
= now
;
4633 static int detect_controller_lockup_thread(void *notused
)
4635 struct ctlr_info
*h
;
4636 unsigned long flags
;
4639 struct list_head
*this, *tmp
;
4641 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL
);
4642 if (kthread_should_stop())
4644 spin_lock_irqsave(&lockup_detector_lock
, flags
);
4645 list_for_each_safe(this, tmp
, &hpsa_ctlr_list
) {
4646 h
= list_entry(this, struct ctlr_info
, lockup_list
);
4647 detect_controller_lockup(h
);
4649 spin_unlock_irqrestore(&lockup_detector_lock
, flags
);
4654 static void add_ctlr_to_lockup_detector_list(struct ctlr_info
*h
)
4656 unsigned long flags
;
4658 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
4659 spin_lock_irqsave(&lockup_detector_lock
, flags
);
4660 list_add_tail(&h
->lockup_list
, &hpsa_ctlr_list
);
4661 spin_unlock_irqrestore(&lockup_detector_lock
, flags
);
4664 static void start_controller_lockup_detector(struct ctlr_info
*h
)
4666 /* Start the lockup detector thread if not already started */
4667 if (!hpsa_lockup_detector
) {
4668 spin_lock_init(&lockup_detector_lock
);
4669 hpsa_lockup_detector
=
4670 kthread_run(detect_controller_lockup_thread
,
4673 if (!hpsa_lockup_detector
) {
4674 dev_warn(&h
->pdev
->dev
,
4675 "Could not start lockup detector thread\n");
4678 add_ctlr_to_lockup_detector_list(h
);
4681 static void stop_controller_lockup_detector(struct ctlr_info
*h
)
4683 unsigned long flags
;
4685 spin_lock_irqsave(&lockup_detector_lock
, flags
);
4686 remove_ctlr_from_lockup_detector_list(h
);
4687 /* If the list of ctlr's to monitor is empty, stop the thread */
4688 if (list_empty(&hpsa_ctlr_list
)) {
4689 spin_unlock_irqrestore(&lockup_detector_lock
, flags
);
4690 kthread_stop(hpsa_lockup_detector
);
4691 spin_lock_irqsave(&lockup_detector_lock
, flags
);
4692 hpsa_lockup_detector
= NULL
;
4694 spin_unlock_irqrestore(&lockup_detector_lock
, flags
);
4697 static int __devinit
hpsa_init_one(struct pci_dev
*pdev
,
4698 const struct pci_device_id
*ent
)
4701 struct ctlr_info
*h
;
4702 int try_soft_reset
= 0;
4703 unsigned long flags
;
4705 if (number_of_controllers
== 0)
4706 printk(KERN_INFO DRIVER_NAME
"\n");
4708 rc
= hpsa_init_reset_devices(pdev
);
4710 if (rc
!= -ENOTSUPP
)
4712 /* If the reset fails in a particular way (it has no way to do
4713 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4714 * a soft reset once we get the controller configured up to the
4715 * point that it can accept a command.
4721 reinit_after_soft_reset
:
4723 /* Command structures must be aligned on a 32-byte boundary because
4724 * the 5 lower bits of the address are used by the hardware. and by
4725 * the driver. See comments in hpsa.h for more info.
4727 #define COMMANDLIST_ALIGNMENT 32
4728 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
4729 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
4734 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
4735 INIT_LIST_HEAD(&h
->cmpQ
);
4736 INIT_LIST_HEAD(&h
->reqQ
);
4737 spin_lock_init(&h
->lock
);
4738 spin_lock_init(&h
->scan_lock
);
4739 rc
= hpsa_pci_init(h
);
4743 sprintf(h
->devname
, HPSA
"%d", number_of_controllers
);
4744 h
->ctlr
= number_of_controllers
;
4745 number_of_controllers
++;
4747 /* configure PCI DMA stuff */
4748 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
4752 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
4756 dev_err(&pdev
->dev
, "no suitable DMA available\n");
4761 /* make sure the board interrupts are off */
4762 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4764 if (hpsa_request_irq(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
))
4766 dev_info(&pdev
->dev
, "%s: <0x%x> at IRQ %d%s using DAC\n",
4767 h
->devname
, pdev
->device
,
4768 h
->intr
[h
->intr_mode
], dac
? "" : " not");
4769 if (hpsa_allocate_cmd_pool(h
))
4771 if (hpsa_allocate_sg_chain_blocks(h
))
4773 init_waitqueue_head(&h
->scan_wait_queue
);
4774 h
->scan_finished
= 1; /* no scan currently in progress */
4776 pci_set_drvdata(pdev
, h
);
4778 h
->scsi_host
= NULL
;
4779 spin_lock_init(&h
->devlock
);
4780 hpsa_put_ctlr_into_performant_mode(h
);
4782 /* At this point, the controller is ready to take commands.
4783 * Now, if reset_devices and the hard reset didn't work, try
4784 * the soft reset and see if that works.
4786 if (try_soft_reset
) {
4788 /* This is kind of gross. We may or may not get a completion
4789 * from the soft reset command, and if we do, then the value
4790 * from the fifo may or may not be valid. So, we wait 10 secs
4791 * after the reset throwing away any completions we get during
4792 * that time. Unregister the interrupt handler and register
4793 * fake ones to scoop up any residual completions.
4795 spin_lock_irqsave(&h
->lock
, flags
);
4796 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4797 spin_unlock_irqrestore(&h
->lock
, flags
);
4799 rc
= hpsa_request_irq(h
, hpsa_msix_discard_completions
,
4800 hpsa_intx_discard_completions
);
4802 dev_warn(&h
->pdev
->dev
, "Failed to request_irq after "
4807 rc
= hpsa_kdump_soft_reset(h
);
4809 /* Neither hard nor soft reset worked, we're hosed. */
4812 dev_info(&h
->pdev
->dev
, "Board READY.\n");
4813 dev_info(&h
->pdev
->dev
,
4814 "Waiting for stale completions to drain.\n");
4815 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
4817 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4819 rc
= controller_reset_failed(h
->cfgtable
);
4821 dev_info(&h
->pdev
->dev
,
4822 "Soft reset appears to have failed.\n");
4824 /* since the controller's reset, we have to go back and re-init
4825 * everything. Easiest to just forget what we've done and do it
4828 hpsa_undo_allocations_after_kdump_soft_reset(h
);
4831 /* don't go to clean4, we already unallocated */
4834 goto reinit_after_soft_reset
;
4837 /* Turn the interrupts on so we can service requests */
4838 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
4840 hpsa_hba_inquiry(h
);
4841 hpsa_register_scsi(h
); /* hook ourselves into SCSI subsystem */
4842 start_controller_lockup_detector(h
);
4846 hpsa_free_sg_chain_blocks(h
);
4847 hpsa_free_cmd_pool(h
);
4855 static void hpsa_flush_cache(struct ctlr_info
*h
)
4858 struct CommandList
*c
;
4860 flush_buf
= kzalloc(4, GFP_KERNEL
);
4864 c
= cmd_special_alloc(h
);
4866 dev_warn(&h
->pdev
->dev
, "cmd_special_alloc returned NULL!\n");
4869 fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
4870 RAID_CTLR_LUNID
, TYPE_CMD
);
4871 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_TODEVICE
);
4872 if (c
->err_info
->CommandStatus
!= 0)
4873 dev_warn(&h
->pdev
->dev
,
4874 "error flushing cache on controller\n");
4875 cmd_special_free(h
, c
);
4880 static void hpsa_shutdown(struct pci_dev
*pdev
)
4882 struct ctlr_info
*h
;
4884 h
= pci_get_drvdata(pdev
);
4885 /* Turn board interrupts off and send the flush cache command
4886 * sendcmd will turn off interrupt, and send the flush...
4887 * To write all data in the battery backed cache to disks
4889 hpsa_flush_cache(h
);
4890 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
4891 hpsa_free_irqs_and_disable_msix(h
);
4894 static void __devexit
hpsa_free_device_info(struct ctlr_info
*h
)
4898 for (i
= 0; i
< h
->ndevices
; i
++)
4902 static void __devexit
hpsa_remove_one(struct pci_dev
*pdev
)
4904 struct ctlr_info
*h
;
4906 if (pci_get_drvdata(pdev
) == NULL
) {
4907 dev_err(&pdev
->dev
, "unable to remove device\n");
4910 h
= pci_get_drvdata(pdev
);
4911 stop_controller_lockup_detector(h
);
4912 hpsa_unregister_scsi(h
); /* unhook from SCSI subsystem */
4913 hpsa_shutdown(pdev
);
4915 iounmap(h
->transtable
);
4916 iounmap(h
->cfgtable
);
4917 hpsa_free_device_info(h
);
4918 hpsa_free_sg_chain_blocks(h
);
4919 pci_free_consistent(h
->pdev
,
4920 h
->nr_cmds
* sizeof(struct CommandList
),
4921 h
->cmd_pool
, h
->cmd_pool_dhandle
);
4922 pci_free_consistent(h
->pdev
,
4923 h
->nr_cmds
* sizeof(struct ErrorInfo
),
4924 h
->errinfo_pool
, h
->errinfo_pool_dhandle
);
4925 pci_free_consistent(h
->pdev
, h
->reply_pool_size
,
4926 h
->reply_pool
, h
->reply_pool_dhandle
);
4927 kfree(h
->cmd_pool_bits
);
4928 kfree(h
->blockFetchTable
);
4929 kfree(h
->hba_inquiry_data
);
4930 pci_disable_device(pdev
);
4931 pci_release_regions(pdev
);
4932 pci_set_drvdata(pdev
, NULL
);
4936 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
4937 __attribute__((unused
)) pm_message_t state
)
4942 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
4947 static struct pci_driver hpsa_pci_driver
= {
4949 .probe
= hpsa_init_one
,
4950 .remove
= __devexit_p(hpsa_remove_one
),
4951 .id_table
= hpsa_pci_device_id
, /* id_table */
4952 .shutdown
= hpsa_shutdown
,
4953 .suspend
= hpsa_suspend
,
4954 .resume
= hpsa_resume
,
4957 /* Fill in bucket_map[], given nsgs (the max number of
4958 * scatter gather elements supported) and bucket[],
4959 * which is an array of 8 integers. The bucket[] array
4960 * contains 8 different DMA transfer sizes (in 16
4961 * byte increments) which the controller uses to fetch
4962 * commands. This function fills in bucket_map[], which
4963 * maps a given number of scatter gather elements to one of
4964 * the 8 DMA transfer sizes. The point of it is to allow the
4965 * controller to only do as much DMA as needed to fetch the
4966 * command, with the DMA transfer size encoded in the lower
4967 * bits of the command address.
4969 static void calc_bucket_map(int bucket
[], int num_buckets
,
4970 int nsgs
, int *bucket_map
)
4974 /* even a command with 0 SGs requires 4 blocks */
4975 #define MINIMUM_TRANSFER_BLOCKS 4
4976 #define NUM_BUCKETS 8
4977 /* Note, bucket_map must have nsgs+1 entries. */
4978 for (i
= 0; i
<= nsgs
; i
++) {
4979 /* Compute size of a command with i SG entries */
4980 size
= i
+ MINIMUM_TRANSFER_BLOCKS
;
4981 b
= num_buckets
; /* Assume the biggest bucket */
4982 /* Find the bucket that is just big enough */
4983 for (j
= 0; j
< 8; j
++) {
4984 if (bucket
[j
] >= size
) {
4989 /* for a command with i SG entries, use bucket b. */
4994 static __devinit
void hpsa_enter_performant_mode(struct ctlr_info
*h
,
4998 unsigned long register_value
;
5000 /* This is a bit complicated. There are 8 registers on
5001 * the controller which we write to to tell it 8 different
5002 * sizes of commands which there may be. It's a way of
5003 * reducing the DMA done to fetch each command. Encoded into
5004 * each command's tag are 3 bits which communicate to the controller
5005 * which of the eight sizes that command fits within. The size of
5006 * each command depends on how many scatter gather entries there are.
5007 * Each SG entry requires 16 bytes. The eight registers are programmed
5008 * with the number of 16-byte blocks a command of that size requires.
5009 * The smallest command possible requires 5 such 16 byte blocks.
5010 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5011 * blocks. Note, this only extends to the SG entries contained
5012 * within the command block, and does not extend to chained blocks
5013 * of SG elements. bft[] contains the eight values we write to
5014 * the registers. They are not evenly distributed, but have more
5015 * sizes for small commands, and fewer sizes for larger commands.
5017 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
5018 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
5019 /* 5 = 1 s/g entry or 4k
5020 * 6 = 2 s/g entry or 8k
5021 * 8 = 4 s/g entry or 16k
5022 * 10 = 6 s/g entry or 24k
5025 /* Controller spec: zero out this buffer. */
5026 memset(h
->reply_pool
, 0, h
->reply_pool_size
);
5028 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
5029 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
5030 SG_ENTRIES_IN_CMD
, h
->blockFetchTable
);
5031 for (i
= 0; i
< 8; i
++)
5032 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
5034 /* size of controller ring buffer */
5035 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
5036 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
5037 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
5038 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
5040 for (i
= 0; i
< h
->nreply_queues
; i
++) {
5041 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
5042 writel(h
->reply_pool_dhandle
+
5043 (h
->max_commands
* sizeof(u64
) * i
),
5044 &h
->transtable
->RepQAddr
[i
].lower
);
5047 writel(CFGTBL_Trans_Performant
| use_short_tags
|
5048 CFGTBL_Trans_enable_directed_msix
,
5049 &(h
->cfgtable
->HostWrite
.TransportRequest
));
5050 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
5051 hpsa_wait_for_mode_change_ack(h
);
5052 register_value
= readl(&(h
->cfgtable
->TransportActive
));
5053 if (!(register_value
& CFGTBL_Trans_Performant
)) {
5054 dev_warn(&h
->pdev
->dev
, "unable to get board into"
5055 " performant mode\n");
5058 /* Change the access methods to the performant access methods */
5059 h
->access
= SA5_performant_access
;
5060 h
->transMethod
= CFGTBL_Trans_Performant
;
5063 static __devinit
void hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
5068 if (hpsa_simple_mode
)
5071 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
5072 if (!(trans_support
& PERFORMANT_MODE
))
5075 h
->nreply_queues
= h
->msix_vector
? MAX_REPLY_QUEUES
: 1;
5076 hpsa_get_max_perf_mode_cmds(h
);
5077 /* Performant mode ring buffer and supporting data structures */
5078 h
->reply_pool_size
= h
->max_commands
* sizeof(u64
) * h
->nreply_queues
;
5079 h
->reply_pool
= pci_alloc_consistent(h
->pdev
, h
->reply_pool_size
,
5080 &(h
->reply_pool_dhandle
));
5082 for (i
= 0; i
< h
->nreply_queues
; i
++) {
5083 h
->reply_queue
[i
].head
= &h
->reply_pool
[h
->max_commands
* i
];
5084 h
->reply_queue
[i
].size
= h
->max_commands
;
5085 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
5086 h
->reply_queue
[i
].current_entry
= 0;
5089 /* Need a block fetch table for performant mode */
5090 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
5091 sizeof(u32
)), GFP_KERNEL
);
5093 if ((h
->reply_pool
== NULL
)
5094 || (h
->blockFetchTable
== NULL
))
5097 hpsa_enter_performant_mode(h
,
5098 trans_support
& CFGTBL_Trans_use_short_tags
);
5104 pci_free_consistent(h
->pdev
, h
->reply_pool_size
,
5105 h
->reply_pool
, h
->reply_pool_dhandle
);
5106 kfree(h
->blockFetchTable
);
5110 * This is it. Register the PCI driver information for the cards we control
5111 * the OS will call our registered routines when it finds one of our cards.
5113 static int __init
hpsa_init(void)
5115 return pci_register_driver(&hpsa_pci_driver
);
5118 static void __exit
hpsa_cleanup(void)
5120 pci_unregister_driver(&hpsa_pci_driver
);
5123 module_init(hpsa_init
);
5124 module_exit(hpsa_cleanup
);