2 * In-kernel transcendent memory (generic implementation)
4 * Copyright (c) 2009-2011, Dan Magenheimer, Oracle Corp.
6 * The primary purpose of Transcedent Memory ("tmem") is to map object-oriented
7 * "handles" (triples containing a pool id, and object id, and an index), to
8 * pages in a page-accessible memory (PAM). Tmem references the PAM pages via
9 * an abstract "pampd" (PAM page-descriptor), which can be operated on by a
10 * set of functions (pamops). Each pampd contains some representation of
11 * PAGE_SIZE bytes worth of data. Tmem must support potentially millions of
12 * pages and must be able to insert, find, and delete these pages at a
13 * potential frequency of thousands per second concurrently across many CPUs,
14 * (and, if used with KVM, across many vcpus across many guests).
15 * Tmem is tracked with a hierarchy of data structures, organized by
16 * the elements in a handle-tuple: pool_id, object_id, and page index.
17 * One or more "clients" (e.g. guests) each provide one or more tmem_pools.
18 * Each pool, contains a hash table of rb_trees of tmem_objs. Each
19 * tmem_obj contains a radix-tree-like tree of pointers, with intermediate
20 * nodes called tmem_objnodes. Each leaf pointer in this tree points to
21 * a pampd, which is accessible only through a small set of callbacks
22 * registered by the PAM implementation (see tmem_register_pamops). Tmem
23 * does all memory allocation via a set of callbacks registered by the tmem
24 * host implementation (e.g. see tmem_register_hostops).
27 #include <linux/list.h>
28 #include <linux/spinlock.h>
29 #include <linux/atomic.h>
30 #include <linux/delay.h>
34 /* data structure sentinels used for debugging... see tmem.h */
35 #define POOL_SENTINEL 0x87658765
36 #define OBJ_SENTINEL 0x12345678
37 #define OBJNODE_SENTINEL 0xfedcba09
40 * A tmem host implementation must use this function to register callbacks
41 * for memory allocation.
43 static struct tmem_hostops tmem_hostops
;
45 static void tmem_objnode_tree_init(void);
47 void tmem_register_hostops(struct tmem_hostops
*m
)
49 tmem_objnode_tree_init();
54 * A tmem host implementation must use this function to register
55 * callbacks for a page-accessible memory (PAM) implementation
57 static struct tmem_pamops tmem_pamops
;
59 void tmem_register_pamops(struct tmem_pamops
*m
)
65 * Oid's are potentially very sparse and tmem_objs may have an indeterminately
66 * short life, being added and deleted at a relatively high frequency.
67 * So an rb_tree is an ideal data structure to manage tmem_objs. But because
68 * of the potentially huge number of tmem_objs, each pool manages a hashtable
69 * of rb_trees to reduce search, insert, delete, and rebalancing time.
70 * Each hashbucket also has a lock to manage concurrent access.
72 * The following routines manage tmem_objs. When any tmem_obj is accessed,
73 * the hashbucket lock must be held.
76 /* searches for object==oid in pool, returns locked object if found */
77 static struct tmem_obj
*tmem_obj_find(struct tmem_hashbucket
*hb
,
78 struct tmem_oid
*oidp
)
80 struct rb_node
*rbnode
;
83 rbnode
= hb
->obj_rb_root
.rb_node
;
85 BUG_ON(RB_EMPTY_NODE(rbnode
));
86 obj
= rb_entry(rbnode
, struct tmem_obj
, rb_tree_node
);
87 switch (tmem_oid_compare(oidp
, &obj
->oid
)) {
91 rbnode
= rbnode
->rb_left
;
94 rbnode
= rbnode
->rb_right
;
103 static void tmem_pampd_destroy_all_in_obj(struct tmem_obj
*);
105 /* free an object that has no more pampds in it */
106 static void tmem_obj_free(struct tmem_obj
*obj
, struct tmem_hashbucket
*hb
)
108 struct tmem_pool
*pool
;
111 ASSERT_SENTINEL(obj
, OBJ
);
112 BUG_ON(obj
->pampd_count
> 0);
114 BUG_ON(pool
== NULL
);
115 if (obj
->objnode_tree_root
!= NULL
) /* may be "stump" with no leaves */
116 tmem_pampd_destroy_all_in_obj(obj
);
117 BUG_ON(obj
->objnode_tree_root
!= NULL
);
118 BUG_ON((long)obj
->objnode_count
!= 0);
119 atomic_dec(&pool
->obj_count
);
120 BUG_ON(atomic_read(&pool
->obj_count
) < 0);
121 INVERT_SENTINEL(obj
, OBJ
);
123 tmem_oid_set_invalid(&obj
->oid
);
124 rb_erase(&obj
->rb_tree_node
, &hb
->obj_rb_root
);
128 * initialize, and insert an tmem_object_root (called only if find failed)
130 static void tmem_obj_init(struct tmem_obj
*obj
, struct tmem_hashbucket
*hb
,
131 struct tmem_pool
*pool
,
132 struct tmem_oid
*oidp
)
134 struct rb_root
*root
= &hb
->obj_rb_root
;
135 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
136 struct tmem_obj
*this;
138 BUG_ON(pool
== NULL
);
139 atomic_inc(&pool
->obj_count
);
140 obj
->objnode_tree_height
= 0;
141 obj
->objnode_tree_root
= NULL
;
144 obj
->objnode_count
= 0;
145 obj
->pampd_count
= 0;
146 (*tmem_pamops
.new_obj
)(obj
);
147 SET_SENTINEL(obj
, OBJ
);
149 BUG_ON(RB_EMPTY_NODE(*new));
150 this = rb_entry(*new, struct tmem_obj
, rb_tree_node
);
152 switch (tmem_oid_compare(oidp
, &this->oid
)) {
154 BUG(); /* already present; should never happen! */
157 new = &(*new)->rb_left
;
160 new = &(*new)->rb_right
;
164 rb_link_node(&obj
->rb_tree_node
, parent
, new);
165 rb_insert_color(&obj
->rb_tree_node
, root
);
169 * Tmem is managed as a set of tmem_pools with certain attributes, such as
170 * "ephemeral" vs "persistent". These attributes apply to all tmem_objs
171 * and all pampds that belong to a tmem_pool. A tmem_pool is created
172 * or deleted relatively rarely (for example, when a filesystem is
173 * mounted or unmounted.
176 /* flush all data from a pool and, optionally, free it */
177 static void tmem_pool_flush(struct tmem_pool
*pool
, bool destroy
)
179 struct rb_node
*rbnode
;
180 struct tmem_obj
*obj
;
181 struct tmem_hashbucket
*hb
= &pool
->hashbucket
[0];
184 BUG_ON(pool
== NULL
);
185 for (i
= 0; i
< TMEM_HASH_BUCKETS
; i
++, hb
++) {
186 spin_lock(&hb
->lock
);
187 rbnode
= rb_first(&hb
->obj_rb_root
);
188 while (rbnode
!= NULL
) {
189 obj
= rb_entry(rbnode
, struct tmem_obj
, rb_tree_node
);
190 rbnode
= rb_next(rbnode
);
191 tmem_pampd_destroy_all_in_obj(obj
);
192 tmem_obj_free(obj
, hb
);
193 (*tmem_hostops
.obj_free
)(obj
, pool
);
195 spin_unlock(&hb
->lock
);
198 list_del(&pool
->pool_list
);
202 * A tmem_obj contains a radix-tree-like tree in which the intermediate
203 * nodes are called tmem_objnodes. (The kernel lib/radix-tree.c implementation
204 * is very specialized and tuned for specific uses and is not particularly
205 * suited for use from this code, though some code from the core algorithms has
206 * been reused, thus the copyright notices below). Each tmem_objnode contains
207 * a set of pointers which point to either a set of intermediate tmem_objnodes
208 * or a set of of pampds.
210 * Portions Copyright (C) 2001 Momchil Velikov
211 * Portions Copyright (C) 2001 Christoph Hellwig
212 * Portions Copyright (C) 2005 SGI, Christoph Lameter <clameter@sgi.com>
215 struct tmem_objnode_tree_path
{
216 struct tmem_objnode
*objnode
;
220 /* objnode height_to_maxindex translation */
221 static unsigned long tmem_objnode_tree_h2max
[OBJNODE_TREE_MAX_PATH
+ 1];
223 static void tmem_objnode_tree_init(void)
225 unsigned int ht
, tmp
;
227 for (ht
= 0; ht
< ARRAY_SIZE(tmem_objnode_tree_h2max
); ht
++) {
228 tmp
= ht
* OBJNODE_TREE_MAP_SHIFT
;
229 if (tmp
>= OBJNODE_TREE_INDEX_BITS
)
230 tmem_objnode_tree_h2max
[ht
] = ~0UL;
232 tmem_objnode_tree_h2max
[ht
] =
233 (~0UL >> (OBJNODE_TREE_INDEX_BITS
- tmp
- 1)) >> 1;
237 static struct tmem_objnode
*tmem_objnode_alloc(struct tmem_obj
*obj
)
239 struct tmem_objnode
*objnode
;
241 ASSERT_SENTINEL(obj
, OBJ
);
242 BUG_ON(obj
->pool
== NULL
);
243 ASSERT_SENTINEL(obj
->pool
, POOL
);
244 objnode
= (*tmem_hostops
.objnode_alloc
)(obj
->pool
);
245 if (unlikely(objnode
== NULL
))
248 SET_SENTINEL(objnode
, OBJNODE
);
249 memset(&objnode
->slots
, 0, sizeof(objnode
->slots
));
250 objnode
->slots_in_use
= 0;
251 obj
->objnode_count
++;
256 static void tmem_objnode_free(struct tmem_objnode
*objnode
)
258 struct tmem_pool
*pool
;
261 BUG_ON(objnode
== NULL
);
262 for (i
= 0; i
< OBJNODE_TREE_MAP_SIZE
; i
++)
263 BUG_ON(objnode
->slots
[i
] != NULL
);
264 ASSERT_SENTINEL(objnode
, OBJNODE
);
265 INVERT_SENTINEL(objnode
, OBJNODE
);
266 BUG_ON(objnode
->obj
== NULL
);
267 ASSERT_SENTINEL(objnode
->obj
, OBJ
);
268 pool
= objnode
->obj
->pool
;
269 BUG_ON(pool
== NULL
);
270 ASSERT_SENTINEL(pool
, POOL
);
271 objnode
->obj
->objnode_count
--;
273 (*tmem_hostops
.objnode_free
)(objnode
, pool
);
277 * lookup index in object and return associated pampd (or NULL if not found)
279 static void **__tmem_pampd_lookup_in_obj(struct tmem_obj
*obj
, uint32_t index
)
281 unsigned int height
, shift
;
282 struct tmem_objnode
**slot
= NULL
;
285 ASSERT_SENTINEL(obj
, OBJ
);
286 BUG_ON(obj
->pool
== NULL
);
287 ASSERT_SENTINEL(obj
->pool
, POOL
);
289 height
= obj
->objnode_tree_height
;
290 if (index
> tmem_objnode_tree_h2max
[obj
->objnode_tree_height
])
292 if (height
== 0 && obj
->objnode_tree_root
) {
293 slot
= &obj
->objnode_tree_root
;
296 shift
= (height
-1) * OBJNODE_TREE_MAP_SHIFT
;
297 slot
= &obj
->objnode_tree_root
;
301 slot
= (struct tmem_objnode
**)
303 ((index
>> shift
) & OBJNODE_TREE_MAP_MASK
));
304 shift
-= OBJNODE_TREE_MAP_SHIFT
;
308 return slot
!= NULL
? (void **)slot
: NULL
;
311 static void *tmem_pampd_lookup_in_obj(struct tmem_obj
*obj
, uint32_t index
)
313 struct tmem_objnode
**slot
;
315 slot
= (struct tmem_objnode
**)__tmem_pampd_lookup_in_obj(obj
, index
);
316 return slot
!= NULL
? *slot
: NULL
;
319 static void *tmem_pampd_replace_in_obj(struct tmem_obj
*obj
, uint32_t index
,
320 void *new_pampd
, bool no_free
)
322 struct tmem_objnode
**slot
;
325 slot
= (struct tmem_objnode
**)__tmem_pampd_lookup_in_obj(obj
, index
);
326 if ((slot
!= NULL
) && (*slot
!= NULL
)) {
327 void *old_pampd
= *(void **)slot
;
328 *(void **)slot
= new_pampd
;
330 (*tmem_pamops
.free
)(old_pampd
, obj
->pool
,
337 static int tmem_pampd_add_to_obj(struct tmem_obj
*obj
, uint32_t index
,
341 struct tmem_objnode
*objnode
= NULL
, *newnode
, *slot
;
342 unsigned int height
, shift
;
345 /* if necessary, extend the tree to be higher */
346 if (index
> tmem_objnode_tree_h2max
[obj
->objnode_tree_height
]) {
347 height
= obj
->objnode_tree_height
+ 1;
348 if (index
> tmem_objnode_tree_h2max
[height
])
349 while (index
> tmem_objnode_tree_h2max
[height
])
351 if (obj
->objnode_tree_root
== NULL
) {
352 obj
->objnode_tree_height
= height
;
356 newnode
= tmem_objnode_alloc(obj
);
361 newnode
->slots
[0] = obj
->objnode_tree_root
;
362 newnode
->slots_in_use
= 1;
363 obj
->objnode_tree_root
= newnode
;
364 obj
->objnode_tree_height
++;
365 } while (height
> obj
->objnode_tree_height
);
368 slot
= obj
->objnode_tree_root
;
369 height
= obj
->objnode_tree_height
;
370 shift
= (height
-1) * OBJNODE_TREE_MAP_SHIFT
;
373 /* add a child objnode. */
374 slot
= tmem_objnode_alloc(obj
);
381 objnode
->slots
[offset
] = slot
;
382 objnode
->slots_in_use
++;
384 obj
->objnode_tree_root
= slot
;
386 /* go down a level */
387 offset
= (index
>> shift
) & OBJNODE_TREE_MAP_MASK
;
389 slot
= objnode
->slots
[offset
];
390 shift
-= OBJNODE_TREE_MAP_SHIFT
;
393 BUG_ON(slot
!= NULL
);
395 objnode
->slots_in_use
++;
396 objnode
->slots
[offset
] = pampd
;
398 obj
->objnode_tree_root
= pampd
;
404 static void *tmem_pampd_delete_from_obj(struct tmem_obj
*obj
, uint32_t index
)
406 struct tmem_objnode_tree_path path
[OBJNODE_TREE_MAX_PATH
+ 1];
407 struct tmem_objnode_tree_path
*pathp
= path
;
408 struct tmem_objnode
*slot
= NULL
;
409 unsigned int height
, shift
;
413 ASSERT_SENTINEL(obj
, OBJ
);
414 BUG_ON(obj
->pool
== NULL
);
415 ASSERT_SENTINEL(obj
->pool
, POOL
);
416 height
= obj
->objnode_tree_height
;
417 if (index
> tmem_objnode_tree_h2max
[height
])
419 slot
= obj
->objnode_tree_root
;
420 if (height
== 0 && obj
->objnode_tree_root
) {
421 obj
->objnode_tree_root
= NULL
;
424 shift
= (height
- 1) * OBJNODE_TREE_MAP_SHIFT
;
425 pathp
->objnode
= NULL
;
430 offset
= (index
>> shift
) & OBJNODE_TREE_MAP_MASK
;
431 pathp
->offset
= offset
;
432 pathp
->objnode
= slot
;
433 slot
= slot
->slots
[offset
];
434 shift
-= OBJNODE_TREE_MAP_SHIFT
;
436 } while (height
> 0);
439 while (pathp
->objnode
) {
440 pathp
->objnode
->slots
[pathp
->offset
] = NULL
;
441 pathp
->objnode
->slots_in_use
--;
442 if (pathp
->objnode
->slots_in_use
) {
443 if (pathp
->objnode
== obj
->objnode_tree_root
) {
444 while (obj
->objnode_tree_height
> 0 &&
445 obj
->objnode_tree_root
->slots_in_use
== 1 &&
446 obj
->objnode_tree_root
->slots
[0]) {
447 struct tmem_objnode
*to_free
=
448 obj
->objnode_tree_root
;
450 obj
->objnode_tree_root
=
452 obj
->objnode_tree_height
--;
453 to_free
->slots
[0] = NULL
;
454 to_free
->slots_in_use
= 0;
455 tmem_objnode_free(to_free
);
460 tmem_objnode_free(pathp
->objnode
); /* 0 slots used, free it */
463 obj
->objnode_tree_height
= 0;
464 obj
->objnode_tree_root
= NULL
;
469 BUG_ON(obj
->pampd_count
< 0);
473 /* recursively walk the objnode_tree destroying pampds and objnodes */
474 static void tmem_objnode_node_destroy(struct tmem_obj
*obj
,
475 struct tmem_objnode
*objnode
,
482 for (i
= 0; i
< OBJNODE_TREE_MAP_SIZE
; i
++) {
483 if (objnode
->slots
[i
]) {
486 (*tmem_pamops
.free
)(objnode
->slots
[i
],
487 obj
->pool
, NULL
, 0, true);
488 objnode
->slots
[i
] = NULL
;
491 tmem_objnode_node_destroy(obj
, objnode
->slots
[i
], ht
-1);
492 tmem_objnode_free(objnode
->slots
[i
]);
493 objnode
->slots
[i
] = NULL
;
498 static void tmem_pampd_destroy_all_in_obj(struct tmem_obj
*obj
)
500 if (obj
->objnode_tree_root
== NULL
)
502 if (obj
->objnode_tree_height
== 0) {
504 (*tmem_pamops
.free
)(obj
->objnode_tree_root
,
505 obj
->pool
, NULL
, 0, true);
507 tmem_objnode_node_destroy(obj
, obj
->objnode_tree_root
,
508 obj
->objnode_tree_height
);
509 tmem_objnode_free(obj
->objnode_tree_root
);
510 obj
->objnode_tree_height
= 0;
512 obj
->objnode_tree_root
= NULL
;
513 (*tmem_pamops
.free_obj
)(obj
->pool
, obj
);
517 * Tmem is operated on by a set of well-defined actions:
518 * "put", "get", "flush", "flush_object", "new pool" and "destroy pool".
519 * (The tmem ABI allows for subpages and exchanges but these operations
520 * are not included in this implementation.)
522 * These "tmem core" operations are implemented in the following functions.
526 * "Put" a page, e.g. copy a page from the kernel into newly allocated
527 * PAM space (if such space is available). Tmem_put is complicated by
528 * a corner case: What if a page with matching handle already exists in
529 * tmem? To guarantee coherency, one of two actions is necessary: Either
530 * the data for the page must be overwritten, or the page must be
531 * "flushed" so that the data is not accessible to a subsequent "get".
532 * Since these "duplicate puts" are relatively rare, this implementation
533 * always flushes for simplicity.
535 int tmem_put(struct tmem_pool
*pool
, struct tmem_oid
*oidp
, uint32_t index
,
536 char *data
, size_t size
, bool raw
, int ephemeral
)
538 struct tmem_obj
*obj
= NULL
, *objfound
= NULL
, *objnew
= NULL
;
539 void *pampd
= NULL
, *pampd_del
= NULL
;
541 struct tmem_hashbucket
*hb
;
543 hb
= &pool
->hashbucket
[tmem_oid_hash(oidp
)];
544 spin_lock(&hb
->lock
);
545 obj
= objfound
= tmem_obj_find(hb
, oidp
);
547 pampd
= tmem_pampd_lookup_in_obj(objfound
, index
);
549 /* if found, is a dup put, flush the old one */
550 pampd_del
= tmem_pampd_delete_from_obj(obj
, index
);
551 BUG_ON(pampd_del
!= pampd
);
552 (*tmem_pamops
.free
)(pampd
, pool
, oidp
, index
, true);
553 if (obj
->pampd_count
== 0) {
560 obj
= objnew
= (*tmem_hostops
.obj_alloc
)(pool
);
561 if (unlikely(obj
== NULL
)) {
565 tmem_obj_init(obj
, hb
, pool
, oidp
);
568 BUG_ON(((objnew
!= obj
) && (objfound
!= obj
)) || (objnew
== objfound
));
569 pampd
= (*tmem_pamops
.create
)(data
, size
, raw
, ephemeral
,
570 obj
->pool
, &obj
->oid
, index
);
571 if (unlikely(pampd
== NULL
))
573 ret
= tmem_pampd_add_to_obj(obj
, index
, pampd
);
574 if (unlikely(ret
== -ENOMEM
))
575 /* may have partially built objnode tree ("stump") */
576 goto delete_and_free
;
580 (void)tmem_pampd_delete_from_obj(obj
, index
);
583 (*tmem_pamops
.free
)(pampd
, pool
, NULL
, 0, true);
585 tmem_obj_free(objnew
, hb
);
586 (*tmem_hostops
.obj_free
)(objnew
, pool
);
589 spin_unlock(&hb
->lock
);
593 void *tmem_localify_get_pampd(struct tmem_pool
*pool
, struct tmem_oid
*oidp
,
594 uint32_t index
, struct tmem_obj
**ret_obj
,
597 struct tmem_hashbucket
*hb
;
598 struct tmem_obj
*obj
= NULL
;
601 hb
= &pool
->hashbucket
[tmem_oid_hash(oidp
)];
602 spin_lock(&hb
->lock
);
603 obj
= tmem_obj_find(hb
, oidp
);
604 if (likely(obj
!= NULL
))
605 pampd
= tmem_pampd_lookup_in_obj(obj
, index
);
607 *saved_hb
= (void *)hb
;
608 /* note, hashbucket remains locked */
612 void tmem_localify_finish(struct tmem_obj
*obj
, uint32_t index
,
613 void *pampd
, void *saved_hb
, bool delete)
615 struct tmem_hashbucket
*hb
= (struct tmem_hashbucket
*)saved_hb
;
617 BUG_ON(!spin_is_locked(&hb
->lock
));
620 (void)tmem_pampd_replace_in_obj(obj
, index
, pampd
, 1);
623 (void)tmem_pampd_delete_from_obj(obj
, index
);
625 spin_unlock(&hb
->lock
);
628 static int tmem_repatriate(void **ppampd
, struct tmem_hashbucket
*hb
,
629 struct tmem_pool
*pool
, struct tmem_oid
*oidp
,
630 uint32_t index
, bool free
, char *data
)
632 void *old_pampd
= *ppampd
, *new_pampd
= NULL
;
633 bool intransit
= false;
637 if (!is_ephemeral(pool
))
638 new_pampd
= (*tmem_pamops
.repatriate_preload
)(
639 old_pampd
, pool
, oidp
, index
, &intransit
);
642 else if (new_pampd
!= NULL
)
644 /* must release the hb->lock else repatriate can't sleep */
645 spin_unlock(&hb
->lock
);
647 ret
= (*tmem_pamops
.repatriate
)(old_pampd
, new_pampd
, pool
,
648 oidp
, index
, free
, data
);
653 * "Get" a page, e.g. if one can be found, copy the tmem page with the
654 * matching handle from PAM space to the kernel. By tmem definition,
655 * when a "get" is successful on an ephemeral page, the page is "flushed",
656 * and when a "get" is successful on a persistent page, the page is retained
657 * in tmem. Note that to preserve
658 * coherency, "get" can never be skipped if tmem contains the data.
659 * That is, if a get is done with a certain handle and fails, any
660 * subsequent "get" must also fail (unless of course there is a
661 * "put" done with the same handle).
664 int tmem_get(struct tmem_pool
*pool
, struct tmem_oid
*oidp
, uint32_t index
,
665 char *data
, size_t *size
, bool raw
, int get_and_free
)
667 struct tmem_obj
*obj
;
669 bool ephemeral
= is_ephemeral(pool
);
671 struct tmem_hashbucket
*hb
;
672 bool free
= (get_and_free
== 1) || ((get_and_free
== 0) && ephemeral
);
677 hb
= &pool
->hashbucket
[tmem_oid_hash(oidp
)];
678 spin_lock(&hb
->lock
);
680 obj
= tmem_obj_find(hb
, oidp
);
683 ppampd
= __tmem_pampd_lookup_in_obj(obj
, index
);
686 if (tmem_pamops
.is_remote(*ppampd
)) {
687 ret
= tmem_repatriate(ppampd
, hb
, pool
, oidp
,
689 lock_held
= 0; /* note hb->lock has been unlocked */
690 if (ret
== -EAGAIN
) {
691 /* rare I think, but should cond_resched()??? */
692 usleep_range(10, 1000);
694 } else if (ret
!= 0) {
696 pr_err("UNTESTED case in tmem_get, ret=%d\n",
704 pampd
= tmem_pampd_delete_from_obj(obj
, index
);
706 pampd
= tmem_pampd_lookup_in_obj(obj
, index
);
710 if (obj
->pampd_count
== 0) {
711 tmem_obj_free(obj
, hb
);
712 (*tmem_hostops
.obj_free
)(obj
, pool
);
717 ret
= (*tmem_pamops
.get_data_and_free
)(
718 data
, size
, raw
, pampd
, pool
, oidp
, index
);
720 ret
= (*tmem_pamops
.get_data
)(
721 data
, size
, raw
, pampd
, pool
, oidp
, index
);
727 spin_unlock(&hb
->lock
);
732 * If a page in tmem matches the handle, "flush" this page from tmem such
733 * that any subsequent "get" does not succeed (unless, of course, there
734 * was another "put" with the same handle).
736 int tmem_flush_page(struct tmem_pool
*pool
,
737 struct tmem_oid
*oidp
, uint32_t index
)
739 struct tmem_obj
*obj
;
742 struct tmem_hashbucket
*hb
;
744 hb
= &pool
->hashbucket
[tmem_oid_hash(oidp
)];
745 spin_lock(&hb
->lock
);
746 obj
= tmem_obj_find(hb
, oidp
);
749 pampd
= tmem_pampd_delete_from_obj(obj
, index
);
752 (*tmem_pamops
.free
)(pampd
, pool
, oidp
, index
, true);
753 if (obj
->pampd_count
== 0) {
754 tmem_obj_free(obj
, hb
);
755 (*tmem_hostops
.obj_free
)(obj
, pool
);
760 spin_unlock(&hb
->lock
);
765 * If a page in tmem matches the handle, replace the page so that any
766 * subsequent "get" gets the new page. Returns the new page if
767 * there was a page to replace, else returns NULL.
769 int tmem_replace(struct tmem_pool
*pool
, struct tmem_oid
*oidp
,
770 uint32_t index
, void *new_pampd
)
772 struct tmem_obj
*obj
;
774 struct tmem_hashbucket
*hb
;
776 hb
= &pool
->hashbucket
[tmem_oid_hash(oidp
)];
777 spin_lock(&hb
->lock
);
778 obj
= tmem_obj_find(hb
, oidp
);
781 new_pampd
= tmem_pampd_replace_in_obj(obj
, index
, new_pampd
, 0);
782 ret
= (*tmem_pamops
.replace_in_obj
)(new_pampd
, obj
);
784 spin_unlock(&hb
->lock
);
789 * "Flush" all pages in tmem matching this oid.
791 int tmem_flush_object(struct tmem_pool
*pool
, struct tmem_oid
*oidp
)
793 struct tmem_obj
*obj
;
794 struct tmem_hashbucket
*hb
;
797 hb
= &pool
->hashbucket
[tmem_oid_hash(oidp
)];
798 spin_lock(&hb
->lock
);
799 obj
= tmem_obj_find(hb
, oidp
);
802 tmem_pampd_destroy_all_in_obj(obj
);
803 tmem_obj_free(obj
, hb
);
804 (*tmem_hostops
.obj_free
)(obj
, pool
);
808 spin_unlock(&hb
->lock
);
813 * "Flush" all pages (and tmem_objs) from this tmem_pool and disable
814 * all subsequent access to this tmem_pool.
816 int tmem_destroy_pool(struct tmem_pool
*pool
)
822 tmem_pool_flush(pool
, 1);
828 static LIST_HEAD(tmem_global_pool_list
);
831 * Create a new tmem_pool with the provided flag and return
832 * a pool id provided by the tmem host implementation.
834 void tmem_new_pool(struct tmem_pool
*pool
, uint32_t flags
)
836 int persistent
= flags
& TMEM_POOL_PERSIST
;
837 int shared
= flags
& TMEM_POOL_SHARED
;
838 struct tmem_hashbucket
*hb
= &pool
->hashbucket
[0];
841 for (i
= 0; i
< TMEM_HASH_BUCKETS
; i
++, hb
++) {
842 hb
->obj_rb_root
= RB_ROOT
;
843 spin_lock_init(&hb
->lock
);
845 INIT_LIST_HEAD(&pool
->pool_list
);
846 atomic_set(&pool
->obj_count
, 0);
847 SET_SENTINEL(pool
, POOL
);
848 list_add_tail(&pool
->pool_list
, &tmem_global_pool_list
);
849 pool
->persistent
= persistent
;
850 pool
->shared
= shared
;