1 /************************************************************************************************************
5 * DATE : $Date: 2004/08/05 11:47:10 $ $Revision: 1.10 $
6 * Original: 2004/06/02 10:22:22 Revision: 1.85 Tag: hcf7_t20040602_01
7 * Original: 2004/04/15 09:24:41 Revision: 1.63 Tag: hcf7_t7_20040415_01
8 * Original: 2004/04/13 14:22:44 Revision: 1.62 Tag: t7_20040413_01
9 * Original: 2004/04/01 15:32:55 Revision: 1.59 Tag: t7_20040401_01
10 * Original: 2004/03/10 15:39:27 Revision: 1.55 Tag: t20040310_01
11 * Original: 2004/03/04 11:03:37 Revision: 1.53 Tag: t20040304_01
12 * Original: 2004/03/02 14:51:21 Revision: 1.50 Tag: t20040302_03
13 * Original: 2004/02/24 13:00:27 Revision: 1.43 Tag: t20040224_01
14 * Original: 2004/02/19 10:57:25 Revision: 1.39 Tag: t20040219_01
16 * AUTHOR : Nico Valster
18 * SPECIFICATION: ........
20 * DESCRIPTION : HCF Routines for Hermes-II (callable via the Wireless Connection I/F or WCI)
21 * Local Support Routines for above procedures
23 * Customizable via HCFCFG.H, which is included by HCF.H
25 *************************************************************************************************************
30 * This software is provided subject to the following terms and conditions,
31 * which you should read carefully before using the software. Using this
32 * software indicates your acceptance of these terms and conditions. If you do
33 * not agree with these terms and conditions, do not use the software.
35 * COPYRIGHT © 1994 - 1995 by AT&T. All Rights Reserved
36 * COPYRIGHT © 1996 - 2000 by Lucent Technologies. All Rights Reserved
37 * COPYRIGHT © 2001 - 2004 by Agere Systems Inc. All Rights Reserved
38 * All rights reserved.
40 * Redistribution and use in source or binary forms, with or without
41 * modifications, are permitted provided that the following conditions are met:
43 * . Redistributions of source code must retain the above copyright notice, this
44 * list of conditions and the following Disclaimer as comments in the code as
45 * well as in the documentation and/or other materials provided with the
48 * . Redistributions in binary form must reproduce the above copyright notice,
49 * this list of conditions and the following Disclaimer in the documentation
50 * and/or other materials provided with the distribution.
52 * . Neither the name of Agere Systems Inc. nor the names of the contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
58 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
59 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
60 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
61 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
62 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
63 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
65 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
66 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
68 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
72 ************************************************************************************************************/
75 /************************************************************************************************************
77 ** Implementation Notes
79 * - a leading marker of //! is used. The purpose of such a sequence is to help to understand the flow
80 * An example is: //!rc = HCF_SUCCESS;
81 * if this is superfluous because rc is already guaranteed to be 0 but it shows to the (maintenance)
82 * programmer it is an intentional omission at the place where someone could consider it most appropriate at
84 * - using near pointers in a model where ss!=ds is an invitation for disaster, so be aware of how you specify
85 * your model and how you define variables which are used at interrupt time
86 * - remember that sign extension on 32 bit platforms may cause problems unless code is carefully constructed,
87 * e.g. use "(hcf_16)~foo" rather than "~foo"
89 ************************************************************************************************************/
91 #include "hcf.h" // HCF and MSF common include file
92 #include "hcfdef.h" // HCF specific include file
93 #include "mmd.h" // MoreModularDriver common include file
94 #include <linux/bug.h>
95 #include <linux/kernel.h>
97 #if ! defined offsetof
98 #define offsetof(s,m) ((unsigned int)&(((s *)0)->m))
102 /***********************************************************************************************************/
103 /*************************************** PROTOTYPES ******************************************************/
104 /***********************************************************************************************************/
105 HCF_STATIC
int cmd_exe( IFBP ifbp
, hcf_16 cmd_code
, hcf_16 par_0
);
106 HCF_STATIC
int init( IFBP ifbp
);
107 HCF_STATIC
int put_info( IFBP ifbp
, LTVP ltvp
);
108 HCF_STATIC
int put_info_mb( IFBP ifbp
, CFG_MB_INFO_STRCT FAR
* ltvp
);
109 #if (HCF_TYPE) & HCF_TYPE_WPA
110 HCF_STATIC
void calc_mic( hcf_32
* p
, hcf_32 M
);
111 void calc_mic_rx_frag( IFBP ifbp
, wci_bufp p
, int len
);
112 void calc_mic_tx_frag( IFBP ifbp
, wci_bufp p
, int len
);
113 HCF_STATIC
int check_mic( IFBP ifbp
);
114 #endif // HCF_TYPE_WPA
116 HCF_STATIC
void calibrate( IFBP ifbp
);
117 HCF_STATIC
int cmd_cmpl( IFBP ifbp
);
118 HCF_STATIC hcf_16
get_fid( IFBP ifbp
);
119 HCF_STATIC
void isr_info( IFBP ifbp
);
121 HCF_STATIC DESC_STRCT
* get_frame_lst(IFBP ifbp
, int tx_rx_flag
);
123 HCF_STATIC
void get_frag( IFBP ifbp
, wci_bufp bufp
, int len
BE_PAR( int word_len
) ); //char*, byte count (usually even)
125 HCF_STATIC
void put_frame_lst( IFBP ifbp
, DESC_STRCT
*descp
, int tx_rx_flag
);
127 HCF_STATIC
void put_frag( IFBP ifbp
, wci_bufp bufp
, int len
BE_PAR( int word_len
) );
128 HCF_STATIC
void put_frag_finalize( IFBP ifbp
);
129 HCF_STATIC
int setup_bap( IFBP ifbp
, hcf_16 fid
, int offset
, int type
);
130 #if (HCF_ASSERT) & HCF_ASSERT_PRINTF
131 static int fw_printf(IFBP ifbp
, CFG_FW_PRINTF_STRCT FAR
*ltvp
);
132 #endif // HCF_ASSERT_PRINTF
134 HCF_STATIC
int download( IFBP ifbp
, CFG_PROG_STRCT FAR
*ltvp
);
135 HCF_STATIC hcf_8
hcf_encap( wci_bufp type
);
136 HCF_STATIC hcf_8 null_addr
[4] = { 0, 0, 0, 0 };
137 #if ! defined IN_PORT_WORD //replace I/O Macros with logging facility
138 extern FILE *log_file
;
140 #define IN_PORT_WORD(port) in_port_word( (hcf_io)(port) )
142 static hcf_16
in_port_word( hcf_io port
) {
143 hcf_16 i
= (hcf_16
)_inpw( port
);
145 fprintf( log_file
, "\nR %2.2x %4.4x", (port
)&0xFF, i
);
150 #define OUT_PORT_WORD(port, value) out_port_word( (hcf_io)(port), (hcf_16)(value) )
152 static void out_port_word( hcf_io port
, hcf_16 value
) {
153 _outpw( port
, value
);
155 fprintf( log_file
, "\nW %2.02x %4.04x", (port
)&0xFF, value
);
159 void IN_PORT_STRING_32( hcf_io prt
, hcf_32 FAR
* dst
, int n
) {
163 fprintf( log_file
, "\nread string_32 length %04x (%04d) at port %02.2x to addr %lp",
164 (hcf_16
)n
, (hcf_16
)n
, (hcf_16
)(prt
)&0xFF, dst
);
167 p
= (hcf_16 FAR
*)dst
;
168 *p
++ = (hcf_16
)_inpw( prt
);
169 *p
= (hcf_16
)_inpw( prt
);
171 fprintf( log_file
, "%s%08lx ", i
++ % 0x08 ? " " : "\n", *dst
);
175 } // IN_PORT_STRING_32
177 void IN_PORT_STRING_8_16( hcf_io prt
, hcf_8 FAR
* dst
, int n
) { //also handles byte alignment problems
178 hcf_16 FAR
* p
= (hcf_16 FAR
*)dst
; //this needs more elaborate code in non-x86 platforms
181 fprintf( log_file
, "\nread string_16 length %04x (%04d) at port %02.2x to addr %lp",
182 (hcf_16
)n
, (hcf_16
)n
, (hcf_16
)(prt
)&0xFF, dst
);
185 *p
=(hcf_16
)_inpw( prt
);
188 fprintf( log_file
, "%04x ", *p
);
190 fprintf( log_file
, "\n%04x ", *p
);
195 } // IN_PORT_STRING_8_16
197 void OUT_PORT_STRING_32( hcf_io prt
, hcf_32 FAR
* src
, int n
) {
201 fprintf( log_file
, "\nwrite string_32 length %04x (%04d) at port %02.2x",
202 (hcf_16
)n
, (hcf_16
)n
, (hcf_16
)(prt
)&0xFF);
205 p
= (hcf_16 FAR
*)src
;
209 fprintf( log_file
, "%s%08lx ", i
++ % 0x08 ? " " : "\n", *src
);
213 } // OUT_PORT_STRING_32
215 void OUT_PORT_STRING_8_16( hcf_io prt
, hcf_8 FAR
* src
, int n
) { //also handles byte alignment problems
216 hcf_16 FAR
* p
= (hcf_16 FAR
*)src
; //this needs more elaborate code in non-x86 platforms
219 fprintf( log_file
, "\nwrite string_16 length %04x (%04d) at port %04x", n
, n
, (hcf_16
)prt
);
222 (void)_outpw( prt
, *p
);
225 fprintf( log_file
, "%04x ", *p
);
227 fprintf( log_file
, "\n%04x ", *p
);
232 } // OUT_PORT_STRING_8_16
234 #endif // IN_PORT_WORD
236 /************************************************************************************************************
237 ******************************* D A T A D E F I N I T I O N S ********************************************
238 ************************************************************************************************************/
241 IFBP BASED assert_ifbp
= NULL
; //to make asserts easily work under MMD and DHF
244 /* SNAP header to be inserted in Ethernet-II frames */
245 HCF_STATIC hcf_8 BASED snap_header
[] = { 0xAA, 0xAA, 0x03, 0x00, 0x00, //5 bytes signature +
246 0 }; //1 byte protocol identifier
248 #if (HCF_TYPE) & HCF_TYPE_WPA
249 HCF_STATIC hcf_8 BASED mic_pad
[8] = { 0x5A, 0, 0, 0, 0, 0, 0, 0 }; //MIC padding of message
250 #endif // HCF_TYPE_WPA
252 #if defined MSF_COMPONENT_ID
253 CFG_IDENTITY_STRCT BASED cfg_drv_identity
= {
254 sizeof(cfg_drv_identity
)/sizeof(hcf_16
) - 1, //length of RID
255 CFG_DRV_IDENTITY
, // (0x0826)
258 MSF_COMPONENT_MAJOR_VER
,
259 MSF_COMPONENT_MINOR_VER
262 CFG_RANGES_STRCT BASED cfg_drv_sup_range
= {
263 sizeof(cfg_drv_sup_range
)/sizeof(hcf_16
) - 1, //length of RID
264 CFG_DRV_SUP_RANGE
, // (0x0827)
274 struct CFG_RANGE3_STRCT BASED cfg_drv_act_ranges_pri
= {
275 sizeof(cfg_drv_act_ranges_pri
)/sizeof(hcf_16
) - 1, //length of RID
276 CFG_DRV_ACT_RANGES_PRI
, // (0x0828)
281 { 0, 0, 0 }, // HCF_PRI_VAR_1 not supported by HCF 7
282 { 0, 0, 0 }, // HCF_PRI_VAR_2 not supported by HCF 7
283 { 3, //var_rec[2] - Variant number
284 CFG_DRV_ACT_RANGES_PRI_3_BOTTOM
, // - Bottom Compatibility
285 CFG_DRV_ACT_RANGES_PRI_3_TOP
// - Top Compatibility
291 struct CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_sta
= {
292 sizeof(cfg_drv_act_ranges_sta
)/sizeof(hcf_16
) - 1, //length of RID
293 CFG_DRV_ACT_RANGES_STA
, // (0x0829)
298 #if defined HCF_STA_VAR_1
299 { 1, //var_rec[1] - Variant number
300 CFG_DRV_ACT_RANGES_STA_1_BOTTOM
, // - Bottom Compatibility
301 CFG_DRV_ACT_RANGES_STA_1_TOP
// - Top Compatibility
305 #endif // HCF_STA_VAR_1
306 #if defined HCF_STA_VAR_2
307 { 2, //var_rec[1] - Variant number
308 CFG_DRV_ACT_RANGES_STA_2_BOTTOM
, // - Bottom Compatibility
309 CFG_DRV_ACT_RANGES_STA_2_TOP
// - Top Compatibility
313 #endif // HCF_STA_VAR_2
314 // For Native_USB (Not used!)
315 #if defined HCF_STA_VAR_3
316 { 3, //var_rec[1] - Variant number
317 CFG_DRV_ACT_RANGES_STA_3_BOTTOM
, // - Bottom Compatibility
318 CFG_DRV_ACT_RANGES_STA_3_TOP
// - Top Compatibility
322 #endif // HCF_STA_VAR_3
324 #if defined HCF_STA_VAR_4
325 { 4, //var_rec[1] - Variant number
326 CFG_DRV_ACT_RANGES_STA_4_BOTTOM
, // - Bottom Compatibility
327 CFG_DRV_ACT_RANGES_STA_4_TOP
// - Top Compatibility
331 #endif // HCF_STA_VAR_4
336 struct CFG_RANGE6_STRCT BASED cfg_drv_act_ranges_hsi
= {
337 sizeof(cfg_drv_act_ranges_hsi
)/sizeof(hcf_16
) - 1, //length of RID
338 CFG_DRV_ACT_RANGES_HSI
, // (0x082A)
342 #if defined HCF_HSI_VAR_0 // Controlled deployment
343 { 0, // var_rec[1] - Variant number
344 CFG_DRV_ACT_RANGES_HSI_0_BOTTOM
, // - Bottom Compatibility
345 CFG_DRV_ACT_RANGES_HSI_0_TOP
// - Top Compatibility
349 #endif // HCF_HSI_VAR_0
350 { 0, 0, 0 }, // HCF_HSI_VAR_1 not supported by HCF 7
351 { 0, 0, 0 }, // HCF_HSI_VAR_2 not supported by HCF 7
352 { 0, 0, 0 }, // HCF_HSI_VAR_3 not supported by HCF 7
353 #if defined HCF_HSI_VAR_4 // Hermes-II all types
354 { 4, // var_rec[1] - Variant number
355 CFG_DRV_ACT_RANGES_HSI_4_BOTTOM
, // - Bottom Compatibility
356 CFG_DRV_ACT_RANGES_HSI_4_TOP
// - Top Compatibility
360 #endif // HCF_HSI_VAR_4
361 #if defined HCF_HSI_VAR_5 // WARP Hermes-2.5
362 { 5, // var_rec[1] - Variant number
363 CFG_DRV_ACT_RANGES_HSI_5_BOTTOM
, // - Bottom Compatibility
364 CFG_DRV_ACT_RANGES_HSI_5_TOP
// - Top Compatibility
368 #endif // HCF_HSI_VAR_5
373 CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_apf
= {
374 sizeof(cfg_drv_act_ranges_apf
)/sizeof(hcf_16
) - 1, //length of RID
375 CFG_DRV_ACT_RANGES_APF
, // (0x082B)
380 #if defined HCF_APF_VAR_1 //(Fake) Hermes-I
381 { 1, //var_rec[1] - Variant number
382 CFG_DRV_ACT_RANGES_APF_1_BOTTOM
, // - Bottom Compatibility
383 CFG_DRV_ACT_RANGES_APF_1_TOP
// - Top Compatibility
387 #endif // HCF_APF_VAR_1
388 #if defined HCF_APF_VAR_2 //Hermes-II
389 { 2, // var_rec[1] - Variant number
390 CFG_DRV_ACT_RANGES_APF_2_BOTTOM
, // - Bottom Compatibility
391 CFG_DRV_ACT_RANGES_APF_2_TOP
// - Top Compatibility
395 #endif // HCF_APF_VAR_2
396 #if defined HCF_APF_VAR_3 // Native_USB
397 { 3, // var_rec[1] - Variant number
398 CFG_DRV_ACT_RANGES_APF_3_BOTTOM
, // - Bottom Compatibility !!!!!see note below!!!!!!!
399 CFG_DRV_ACT_RANGES_APF_3_TOP
// - Top Compatibility
403 #endif // HCF_APF_VAR_3
404 #if defined HCF_APF_VAR_4 // WARP Hermes 2.5
405 { 4, // var_rec[1] - Variant number
406 CFG_DRV_ACT_RANGES_APF_4_BOTTOM
, // - Bottom Compatibility !!!!!see note below!!!!!!!
407 CFG_DRV_ACT_RANGES_APF_4_TOP
// - Top Compatibility
411 #endif // HCF_APF_VAR_4
414 #define HCF_VERSION TEXT( "HCF$Revision: 1.10 $" )
416 static struct /*CFG_HCF_OPT_STRCT*/ {
417 hcf_16 len
; //length of cfg_hcf_opt struct
418 hcf_16 typ
; //type 0x082C
419 hcf_16 v0
; //offset HCF_VERSION
420 hcf_16 v1
; // MSF_COMPONENT_ID
421 hcf_16 v2
; // HCF_ALIGN
422 hcf_16 v3
; // HCF_ASSERT
423 hcf_16 v4
; // HCF_BIG_ENDIAN
424 hcf_16 v5
; // /* HCF_DLV | HCF_DLNV */
425 hcf_16 v6
; // HCF_DMA
426 hcf_16 v7
; // HCF_ENCAP
427 hcf_16 v8
; // HCF_EXT
428 hcf_16 v9
; // HCF_INT_ON
429 hcf_16 v10
; // HCF_IO
430 hcf_16 v11
; // HCF_LEGACY
431 hcf_16 v12
; // HCF_MAX_LTV
432 hcf_16 v13
; // HCF_PROT_TIME
433 hcf_16 v14
; // HCF_SLEEP
434 hcf_16 v15
; // HCF_TALLIES
435 hcf_16 v16
; // HCF_TYPE
436 hcf_16 v17
; // HCF_NIC_TAL_CNT
437 hcf_16 v18
; // HCF_HCF_TAL_CNT
438 hcf_16 v19
; // offset tallies
439 char val
[sizeof(HCF_VERSION
)];
440 } BASED cfg_hcf_opt
= {
441 sizeof(cfg_hcf_opt
)/sizeof(hcf_16
) -1,
442 CFG_HCF_OPT
, // (0x082C)
443 ( sizeof(cfg_hcf_opt
) - sizeof(HCF_VERSION
) - 4 )/sizeof(hcf_16
),
444 #if defined MSF_COMPONENT_ID
448 #endif // MSF_COMPONENT_ID
452 0, // /* HCF_DLV | HCF_DLNV*/,
464 #if (HCF_TALLIES) & ( HCF_TALLIES_NIC | HCF_TALLIES_HCF )
467 offsetof(IFB_STRCT
, IFB_TallyLen
),
470 #endif // HCF_TALLIES_NIC / HCF_TALLIES_HCF
473 #endif // MSF_COMPONENT_ID
475 HCF_STATIC LTV_STRCT BASED cfg_null
= { 1, CFG_NULL
, {0} };
477 HCF_STATIC hcf_16
* BASED xxxx
[ ] = {
478 &cfg_null
.len
, //CFG_NULL 0x0820
479 #if defined MSF_COMPONENT_ID
480 &cfg_drv_identity
.len
, //CFG_DRV_IDENTITY 0x0826
481 &cfg_drv_sup_range
.len
, //CFG_DRV_SUP_RANGE 0x0827
482 &cfg_drv_act_ranges_pri
.len
, //CFG_DRV_ACT_RANGES_PRI 0x0828
483 &cfg_drv_act_ranges_sta
.len
, //CFG_DRV_ACT_RANGES_STA 0x0829
484 &cfg_drv_act_ranges_hsi
.len
, //CFG_DRV_ACT_RANGES_HSI 0x082A
485 &cfg_drv_act_ranges_apf
.len
, //CFG_DRV_ACT_RANGES_APF 0x082B
486 &cfg_hcf_opt
.len
, //CFG_HCF_OPT 0x082C
487 NULL
, //IFB_PRIIdentity placeholder 0xFD02
488 NULL
, //IFB_PRISup placeholder 0xFD03
489 #endif // MSF_COMPONENT_ID
492 #define xxxx_PRI_IDENTITY_OFFSET (ARRAY_SIZE(xxxx) - 3)
495 /************************************************************************************************************
496 ************************** T O P L E V E L H C F R O U T I N E S **************************************
497 ************************************************************************************************************/
499 /************************************************************************************************************
501 *.MODULE int hcf_action( IFBP ifbp, hcf_16 action )
502 *.PURPOSE Changes the run-time Card behavior.
503 * Performs Miscellanuous actions.
506 * ifbp address of the Interface Block
507 * action number identifying the type of change
508 * - HCF_ACT_INT_FORCE_ON enable interrupt generation by WaveLAN NIC
509 * - HCF_ACT_INT_OFF disable interrupt generation by WaveLAN NIC
510 * - HCF_ACT_INT_ON compensate 1 HCF_ACT_INT_OFF, enable interrupt generation if balance reached
511 * - HCF_ACT_PRS_SCAN Hermes Probe Respons Scan (F102) command
512 * - HCF_ACT_RX_ACK acknowledge non-DMA receiver to Hermes
513 * - HCF_ACT_SCAN Hermes Inquire Scan (F101) command (non-WARP only)
514 * - HCF_ACT_SLEEP DDS Sleep request
515 * - HCF_ACT_TALLIES Hermes Inquire Tallies (F100) command
518 * HCF_SUCCESS all (including invalid)
519 * HCF_INT_PENDING HCF_ACT_INT_OFF, interrupt pending
520 * HCF_ERR_NO_NIC HCF_ACT_INT_OFF, NIC presence check fails
523 * Except for hcf_action with HCF_ACT_INT_FORCE_ON or HCF_ACT_INT_OFF as parameter or hcf_connect with an I/O
524 * address (i.e. not HCF_DISCONNECT), all hcf-function calls MUST be preceded by a call of hcf_action with
525 * HCF_ACT_INT_OFF as parameter.
526 * Note that hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF )
530 * hcf_action supports the following mode changing action-code pairs that are antonyms
531 * - HCF_ACT_INT_[FORCE_]ON / HCF_ACT_INT_OFF
533 * Additionally hcf_action can start the following actions in the NIC:
540 * o HCF_ACT_INT_OFF: Sets NIC Interrupts mode Disabled.
541 * This command, and the associated [Force] Enable NIC interrupts command, are only available if the HCF_INT_ON
542 * compile time option is not set at 0x0000.
544 * o HCF_ACT_INT_ON: Sets NIC Interrupts mode Enabled.
545 * Enable NIC Interrupts, depending on the number of preceding Disable NIC Interrupt calls.
547 * o HCF_ACT_INT_FORCE_ON: Force NIC Interrupts mode Enabled.
548 * Sets NIC Interrupts mode Enabled, regardless off the number of preceding Disable NIC Interrupt calls.
550 * The disabling and enabling of interrupts are antonyms.
551 * These actions must be balanced.
552 * For each "disable interrupts" there must be a matching "enable interrupts".
553 * The disable interrupts may be executed multiple times in a row without intervening enable interrupts, in
554 * other words, the disable interrupts may be nested.
555 * The interrupt generation mechanism is disabled at the first call with HCF_ACT_INT_OFF.
556 * The interrupt generation mechanism is re-enabled when the number of calls with HCF_ACT_INT_ON matches the
557 * number of calls with INT_OFF.
559 * It is not allowed to have more Enable NIC Interrupts calls than Disable NIC Interrupts calls.
560 * The interrupt generation mechanism is initially (i.e. after hcf_connect) disabled.
561 * An MSF based on a interrupt strategy must call hcf_action with INT_ON in its initialization logic.
563 *! The INT_OFF/INT_ON housekeeping is initialized at 0x0000 by hcf_connect, causing the interrupt generation
564 * mechanism to be disabled at first. This suits MSF implementation based on a polling strategy.
566 * o HCF_ACT_SLEEP: Initiates the Disconnected DeepSleep process
567 * This command is only available if the HCF_DDS compile time option is set. It triggers the F/W to start the
568 * sleep handshaking. Regardless whether the Host initiates a Disconnected DeepSleep (DDS) or the F/W initiates
569 * a Connected DeepSleep (CDS), the Host-F/W sleep handshaking is completed when the NIC Interrupts mode is
570 * enabled (by means of the balancing HCF_ACT_INT_ON), i.e. at that moment the F/W really goes into sleep mode.
571 * The F/W is wokenup by the HCF when the NIC Interrupts mode are disabled, i.e. at the first HCF_ACT_INT_OFF
572 * after going into sleep.
574 * The following Miscellanuous actions are defined:
576 * o HCF_ACT_RX_ACK: Receiver Acknowledgement (non-DMA, non-USB mode only)
577 * Acking the receiver, frees the NIC memory used to hold the Rx frame and allows the F/W to
578 * report the existence of the next Rx frame.
579 * If the MSF does not need access (any longer) to the current frame, e.g. because it is rejected based on the
580 * look ahead or copied to another buffer, the receiver may be acked. Acking earlier is assumed to have the
581 * potential of improving the performance.
582 * If the MSF does not explitly ack te receiver, the acking is done implicitly if:
583 * - the received frame fits in the look ahead buffer, by the hcf_service_nic call that reported the Rx frame
584 * - if not in the above step, by hcf_rcv_msg (assuming hcf_rcv_msg is called)
585 * - if neither of the above implicit acks nor an explicit ack by the MSF, by the first hcf_service_nic after
586 * the hcf_service_nic that reported the Rx frame.
587 * Note: If an Rx frame is already acked, an explicit ACK by the MSF acts as a NoOperation.
589 * o HCF_ACT_TALLIES: Inquire Tallies command
590 * This command is only operational if the F/W is enabled.
591 * The Inquire Tallies command requests the F/W to provide its current set of tallies.
592 * See also hcf_get_info with CFG_TALLIES as parameter.
594 * o HCF_ACT_PRS_SCAN: Inquire Probe Respons Scan command
595 * This command is only operational if the F/W is enabled.
596 * The Probe Respons Scan command starts a scan sequence.
597 * The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT).
599 * o HCF_ACT_SCAN: Inquire Scan command
600 * This command is only supported for HII F/W (i.e. pre-WARP) and it is operational if the F/W is enabled.
601 * The Inquire Scan command starts a scan sequence.
602 * The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT).
605 * - ifbp has a recognizable out-of-range value.
606 * - NIC interrupts are not disabled while required by parameter action.
607 * - an invalid code is specified in parameter action.
608 * - HCF_ACT_INT_ON commands outnumber the HCF_ACT_INT_OFF commands.
609 * - reentrancy, may be caused by calling hcf_functions without adequate protection against NIC interrupts or
612 * - Since the HCF does not maintain status information relative to the F/W enabled state, it is not asserted
613 * whether HCF_ACT_SCAN, HCF_ACT_PRS_SCAN or HCF_ACT_TALLIES are only used while F/W is enabled.
616 * 0: The assert embedded in HCFLOGENTRY checks against re-entrancy. Re-entrancy could be caused by a MSF logic
617 * at task-level calling hcf_functions without shielding with HCF_ACT_ON/_OFF. However the HCF_ACT_INT_OFF
618 * action itself can per definition not be protected this way. Based on code inspection, it can be concluded,
619 * that there is no re-entrancy PROBLEM in this particular flow. It does not seem worth the trouble to
620 * explicitly check for this condition (although there was a report of an MSF which ran into this assert.
621 * 2:IFB_IntOffCnt is used to balance the INT_OFF and INT_ON calls. Disabling of the interrupts is achieved by
622 * writing a zero to the Hermes IntEn register. In a shared interrupt environment (e.g. the mini-PCI NDIS
623 * driver) it is considered more correct to return the status HCF_INT_PENDING if and only if, the current
624 * invocation of hcf_service_nic is (apparently) called in the ISR when the ISR was activated as result of a
625 * change in HREG_EV_STAT matching a bit in HREG_INT_EN, i.e. not if invoked as result of another device
626 * generating an interrupt on the shared interrupt line.
627 * Note 1: it has been observed that under certain adverse conditions on certain platforms the writing of
628 * HREG_INT_EN can apparently fail, therefor it is paramount that HREG_INT_EN is written again with 0 for
629 * each and every call to HCF_ACT_INT_OFF.
630 * Note 2: it has been observed that under certain H/W & S/W architectures this logic is called when there is
631 * no NIC at all. To cater for this, the value of HREG_INT_EN is validated. If the unused bit 0x0100 is set,
632 * it is assumed there is no NIC.
633 * Note 3: During the download process, some versions of the F/W reset HREG_SW_0, hence checking this
634 * register for HCF_MAGIC (the classical NIC presence test) when HCF_ACT_INT_OFF is called due to another
635 * card interrupting via a shared IRQ during a download, fails.
636 *4: The construction "if ( ifbp->IFB_IntOffCnt-- == 0 )" is optimal (in the sense of shortest/quickest
637 * path in error free flows) but NOT fail safe in case of too many INT_ON invocations compared to INT_OFF).
638 * Enabling of the interrupts is achieved by writing the Hermes IntEn register.
639 * - If the HCF is in Defunct mode, the interrupts stay disabled.
640 * - Under "normal" conditions, the HCF is only interested in Info Events, Rx Events and Notify Events.
641 * - When the HCF is out of Tx/Notify resources, the HCF is also interested in Alloc Events.
642 * - via HCF_EXT, the MSF programmer can also request HREG_EV_TICK and/or HREG_EV_TX_EXC interrupts.
643 * For DMA operation, the DMA hardware handles the alloc events. The DMA engine will generate a 'TxDmaDone'
644 * event as soon as it has pumped a frame from host ram into NIC-RAM (note that the frame does not have to be
645 * transmitted then), and a 'RxDmaDone' event as soon as a received frame has been pumped from NIC-RAM into
646 * host ram. Note that the 'alloc' event has been removed from the event-mask, because the DMA engine will
647 * react to and acknowledge this event.
648 *6: ack the "old" Rx-event. See "Rx Buffer free strategy" in hcf_service_nic above for more explanation.
649 * IFB_RxFID and IFB_RxLen must be cleared to bring both the internal HCF house keeping and the information
650 * supplied to the MSF in the state "no frame received".
651 *8: The HCF_ACT_SCAN, HCF_ACT_PRS_SCAN and HCF_ACT_TALLIES activity are merged by "clever" algebraic
652 * manipulations of the RID-values and action codes, so foregoing robustness against migration problems for
653 * ease of implementation. The assumptions about numerical relationships between CFG_TALLIES etc and
654 * HCF_ACT_TALLIES etc are checked by the "#if" statements just prior to the body of this routine, resulting
655 * in: err "maintenance" during compilation if the assumptions are no longer met. The writing of HREG_PARAM_1
656 * with 0x3FFF in case of an PRS scan, is a kludge to get around lack of specification, hence different
657 * implementation in F/W and Host.
658 * When there is no NIC RAM available, some versions of the Hermes F/W do report 0x7F00 as error in the
659 * Result field of the Status register and some F/W versions don't. To mask this difference to the MSF all
660 * return codes of the Hermes are ignored ("best" and "most simple" solution to these types of analomies with
661 * an acceptable loss due to ignoring all error situations as well).
662 * The "No inquire space" is reported via the Hermes tallies.
663 *30: do not HCFASSERT( rc, rc ) since rc == HCF_INT_PENDING is no error
665 *.ENDDOC END DOCUMENTATION
667 ************************************************************************************************************/
668 #if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
669 #if CFG_SCAN != CFG_TALLIES - HCF_ACT_TALLIES + HCF_ACT_SCAN
670 err
: "maintenance" apparently inviolated the underlying assumption about the numerical values of these macros
672 #endif // HCF_TYPE_HII5
673 #if CFG_PRS_SCAN != CFG_TALLIES - HCF_ACT_TALLIES + HCF_ACT_PRS_SCAN
674 err
: "maintenance" apparently inviolated the underlying assumption about the numerical values of these macros
677 hcf_action( IFBP ifbp
, hcf_16 action
)
679 int rc
= HCF_SUCCESS
;
681 HCFASSERT( ifbp
->IFB_Magic
== HCF_MAGIC
, ifbp
->IFB_Magic
);
683 HCFLOGENTRY( action
== HCF_ACT_INT_FORCE_ON
? HCF_TRACE_ACTION_KLUDGE
: HCF_TRACE_ACTION
, action
); /* 0 */
685 HCFASSERT( ifbp
->IFB_IntOffCnt
!= 0xFFFE || action
== HCF_ACT_INT_OFF
,
686 MERGE_2( action
, ifbp
->IFB_IntOffCnt
) );
688 HCFASSERT( ifbp
->IFB_IntOffCnt
!= 0xFFFE, action
);
690 HCFASSERT( ifbp
->IFB_IntOffCnt
!= 0xFFFF ||
691 action
== HCF_ACT_INT_OFF
|| action
== HCF_ACT_INT_FORCE_ON
, action
);
692 HCFASSERT( ifbp
->IFB_IntOffCnt
<= 16 || ifbp
->IFB_IntOffCnt
>= 0xFFFE,
693 MERGE_2( action
, ifbp
->IFB_IntOffCnt
) ); //nesting more than 16 deep seems unreasonable
699 case HCF_ACT_INT_OFF
: // Disable Interrupt generation
701 if ( ifbp
->IFB_IntOffCnt
== 0xFFFE ) { // WakeUp test ;?tie this to the "new" super-LinkStat
702 ifbp
->IFB_IntOffCnt
++; // restore conventional I/F
703 OPW(HREG_IO
, HREG_IO_WAKEUP_ASYNC
); // set wakeup bit
704 OPW(HREG_IO
, HREG_IO_WAKEUP_ASYNC
); // set wakeup bit to counteract the clearing by F/W
705 // 800 us latency before FW switches to high power
706 MSF_WAIT(800); // MSF-defined function to wait n microseconds.
707 //OOR if ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_DS_OOR ) { // OutOfRange
708 // printk(KERN_NOTICE "ACT_INT_OFF: Deepsleep phase terminated, enable and go to AwaitConnection\n" ); //;?remove me 1 day
709 // hcf_cntl( ifbp, HCF_CNTL_ENABLE );
711 // ifbp->IFB_DSLinkStat &= ~( CFG_LINK_STAT_DS_IR | CFG_LINK_STAT_DS_OOR); //clear IR/OOR state
714 /*2*/ ifbp
->IFB_IntOffCnt
++;
716 i
= IPW( HREG_INT_EN
);
717 OPW( HREG_INT_EN
, 0 );
721 if ( i
& IPW( HREG_EV_STAT
) ) {
722 rc
= HCF_INT_PENDING
;
727 case HCF_ACT_INT_FORCE_ON
: // Enforce Enable Interrupt generation
728 ifbp
->IFB_IntOffCnt
= 0;
729 //Fall through in HCF_ACT_INT_ON
731 case HCF_ACT_INT_ON
: // Enable Interrupt generation
732 /*4*/ if ( ifbp
->IFB_IntOffCnt
-- == 0 && ifbp
->IFB_CardStat
== 0 ) {
733 //determine Interrupt Event mask
735 if ( ifbp
->IFB_CntlOpt
& USE_DMA
) {
736 i
= HREG_EV_INFO
| HREG_EV_RDMAD
| HREG_EV_TDMAD
| HREG_EV_TX_EXT
; //mask when DMA active
740 i
= HREG_EV_INFO
| HREG_EV_RX
| HREG_EV_TX_EXT
; //mask when DMA not active
741 if ( ifbp
->IFB_RscInd
== 0 ) {
742 i
|= HREG_EV_ALLOC
; //mask when no TxFID available
746 if ( ( IPW(HREG_EV_STAT
) & ( i
| HREG_EV_SLEEP_REQ
) ) == HREG_EV_SLEEP_REQ
) {
747 // firmware indicates it would like to go into sleep modus
748 // only acknowledge this request if no other events that can cause an interrupt are pending
749 ifbp
->IFB_IntOffCnt
--; //becomes 0xFFFE
750 OPW( HREG_INT_EN
, i
| HREG_EV_TICK
);
751 OPW( HREG_EV_ACK
, HREG_EV_SLEEP_REQ
| HREG_EV_TICK
| HREG_EV_ACK_REG_READY
);
755 OPW( HREG_INT_EN
, i
| HREG_EV_SLEEP_REQ
);
761 #if (HCF_SLEEP) & HCF_DDS
762 case HCF_ACT_SLEEP
: // DDS Sleep request
763 hcf_cntl( ifbp
, HCF_CNTL_DISABLE
);
764 cmd_exe( ifbp
, HCMD_SLEEP
, 0 );
766 // case HCF_ACT_WAKEUP: // DDS Wakeup request
767 // HCFASSERT( ifbp->IFB_IntOffCnt == 0xFFFE, ifbp->IFB_IntOffCnt );
768 // ifbp->IFB_IntOffCnt++; // restore conventional I/F
769 // OPW( HREG_IO, HREG_IO_WAKEUP_ASYNC );
770 // MSF_WAIT(800); // MSF-defined function to wait n microseconds.
771 // rc = hcf_action( ifbp, HCF_ACT_INT_OFF ); /*bogus, IFB_IntOffCnt == 0xFFFF, so if you carefully look
772 // *at the #if HCF_DDS statements, HCF_ACT_INT_OFF is empty
773 // *for DDS. "Much" better would be to merge the flows for
774 // *DDS and DEEP_SLEEP
779 case HCF_ACT_RX_ACK
: //Receiver ACK
780 /*6*/ if ( ifbp
->IFB_RxFID
) {
781 DAWA_ACK( HREG_EV_RX
);
783 ifbp
->IFB_RxFID
= ifbp
->IFB_RxLen
= 0;
786 /*8*/ case HCF_ACT_PRS_SCAN
: // Hermes PRS Scan (F102)
787 OPW( HREG_PARAM_1
, 0x3FFF );
788 //Fall through in HCF_ACT_TALLIES
789 case HCF_ACT_TALLIES
: // Hermes Inquire Tallies (F100)
790 #if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
791 case HCF_ACT_SCAN
: // Hermes Inquire Scan (F101)
792 #endif // HCF_TYPE_HII5
793 /*!! the assumptions about numerical relationships between CFG_TALLIES etc and HCF_ACT_TALLIES etc
794 * are checked by #if statements just prior to this routine resulting in: err "maintenance" */
795 cmd_exe( ifbp
, HCMD_INQUIRE
, action
- HCF_ACT_TALLIES
+ CFG_TALLIES
);
799 HCFASSERT( DO_ASSERT
, action
);
802 //! do not HCFASSERT( rc == HCF_SUCCESS, rc ) /* 30*/
803 HCFLOGEXIT( HCF_TRACE_ACTION
);
808 /************************************************************************************************************
810 *.MODULE int hcf_cntl( IFBP ifbp, hcf_16 cmd )
811 *.PURPOSE Connect or disconnect a specific port to a specific network.
812 *!! ;???????????????? continue needs more explanation
813 * recovers by means of "continue" when the connect process in CCX mode fails
814 * Enables or disables data transmission and reception for the NIC.
815 * Activates static NIC configuration for a specific port at connect.
816 * Activates static configuration for all ports at enable.
819 * ifbp address of the Interface Block
820 * cmd 0x001F: Hermes command (disable, enable, connect, disconnect, continue)
821 * HCF_CNTL_ENABLE Enable
822 * HCF_CNTL_DISABLE Disable
823 * HCF_CNTL_CONTINUE Continue
824 * HCF_CNTL_CONNECT Connect
825 * HCF_CNTL_DISCONNECT Disconnect
826 * 0x0100: command qualifier (continue)
827 * HCMD_RETRY retry flag
828 * 0x0700: port number (connect/disconnect)
829 * HCF_PORT_0 MAC Port 0
830 * HCF_PORT_1 MAC Port 1
831 * HCF_PORT_2 MAC Port 2
832 * HCF_PORT_3 MAC Port 3
833 * HCF_PORT_4 MAC Port 4
834 * HCF_PORT_5 MAC Port 5
835 * HCF_PORT_6 MAC Port 6
841 * HCF_ERR_DEFUNCT_...
845 * The parameter cmd contains a number of subfields.
846 * The actual value for cmd is created by logical or-ing the appropriate mnemonics for the subfields.
847 * The field 0x001F contains the command code
851 * - HCF_CNTL_DISCONNECT
852 * - HCF_CNTL_CONTINUE
854 * For HCF_CNTL_CONTINUE, the field 0x0100 contains the retry flag HCMD_RETRY.
855 * For HCF_CNTL_CONNECT and HCF_CNTL_DISCONNECT, the field 0x0700 contains the port number as HCF_PORT_#.
856 * For Station as well as AccessPoint F/W, MAC Port 0 is the "normal" communication channel.
857 * For AccessPoint F/W, MAC Port 1 through 6 control the WDS links.
859 * Note that despite the names HCF_CNTL_DISABLE and HCF_CNTL_ENABLE, hcf_cntl does not influence the NIC
862 * The Connect is used by the MSF to bring a particular port in an inactive state as far as data transmission
863 * and reception are concerned.
864 * When a particular port is disconnected:
865 * - the F/W disables the receiver for that port.
866 * - the F/W ignores send commands for that port.
867 * - all frames (Receive as well as pending Transmit) for that port on the NIC are discarded.
869 * When the NIC is disabled, above list applies to all ports, i.e. the result is like all ports are
872 * When a particular port is connected:
873 * - the F/W effectuates the static configuration for that port.
874 * - enables the receiver for that port.
875 * - accepts send commands for that port.
877 * Enabling has the following effects:
878 * - the F/W effectuates the static configuration for all ports.
879 * The F/W only updates its static configuration at a transition from disabled to enabled or from
880 * disconnected to connected.
881 * In order to enforce the static configuration, the MSF must assure that such a transition takes place.
882 * Due to such a disable/enable or disconnect/connect sequence, Rx/Tx frames may be lost, in other words,
883 * configuration may impact communication.
884 * - The DMA Engine (if applicable) is enabled.
885 * Note that the Enable Function by itself only enables data transmission and reception, it
886 * does not enable the Interrupt Generation mechanism. This is done by hcf_action.
888 * Disabling has the following effects:
889 *!! ;?????is the following statement really true
890 * - it acts as a disconnect on all ports.
891 * - The DMA Engine (if applicable) is disabled.
893 * For impact of the disable command on the behavior of hcf_dma_tx/rx_get see the appropriate sections.
895 * Although the Enable/Disable and Connect/Disconnect are antonyms, there is no restriction on their sequencing,
896 * in other words, they may be called multiple times in arbitrary sequence without being paired or balanced.
897 * Each time one of these functions is called, the effects of the preceding calls cease.
900 * - ifbp has a recognizable out-of-range value.
901 * - NIC interrupts are not disabled.
902 * - A command other than Continue, Enable, Disable, Connect or Disconnect is given.
903 * - An invalid combination of the subfields is given or a bit outside the subfields is given.
904 * - any return code besides HCF_SUCCESS.
905 * - reentrancy, may be caused by calling a hcf_function without adequate protection against NIC interrupts or
909 * hcf_cntl takes successively the following actions:
910 *2: If the HCF is in Defunct mode or incompatible with the Primary or Station Supplier in the Hermes,
911 * hcf_cntl() returns immediately with HCF_ERR_NO_NIC;? as status.
912 *8: when the port is disabled, the DMA engine needs to be de-activated, so the host can safely reclaim tx
913 * packets from the tx descriptor chain.
915 *.ENDDOC END DOCUMENTATION
917 ************************************************************************************************************/
919 hcf_cntl( IFBP ifbp
, hcf_16 cmd
)
921 int rc
= HCF_ERR_INCOMP_FW
;
923 { int x
= cmd
& HCMD_CMD_CODE
;
924 if ( x
== HCF_CNTL_CONTINUE
) x
&= ~HCMD_RETRY
;
925 else if ( (x
== HCMD_DISABLE
|| x
== HCMD_ENABLE
) && ifbp
->IFB_FWIdentity
.comp_id
== COMP_ID_FW_AP
) {
926 x
&= ~HFS_TX_CNTL_PORT
;
928 HCFASSERT( x
==HCF_CNTL_ENABLE
|| x
==HCF_CNTL_DISABLE
|| HCF_CNTL_CONTINUE
||
929 x
==HCF_CNTL_CONNECT
|| x
==HCF_CNTL_DISCONNECT
, cmd
);
932 // #if (HCF_SLEEP) & HCF_DDS
933 // HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, cmd );
935 HCFLOGENTRY( HCF_TRACE_CNTL
, cmd
);
936 if ( ifbp
->IFB_CardStat
== 0 ) { /*2*/
937 /*6*/ rc
= cmd_exe( ifbp
, cmd
, 0 );
938 #if (HCF_SLEEP) & HCF_DDS
939 ifbp
->IFB_TickCnt
= 0; //start 2 second period (with 1 tick uncertanty)
943 //!rlav : note that this piece of code is always executed, regardless of the DEFUNCT bit in IFB_CardStat.
944 // The reason behind this is that the MSF should be able to get all its DMA resources back from the HCF,
945 // even if the hardware is disfunctional. Practical example under Windows : surprise removal.
946 if ( ifbp
->IFB_CntlOpt
& USE_DMA
) {
947 hcf_io io_port
= ifbp
->IFB_IOBase
;
949 if ( cmd
== HCF_CNTL_DISABLE
|| cmd
== HCF_CNTL_ENABLE
) {
950 OUT_PORT_DWORD( (io_port
+ HREG_DMA_CTRL
), DMA_CTRLSTAT_RESET
); /*8*/
951 ifbp
->IFB_CntlOpt
&= ~DMA_ENABLED
;
953 if ( cmd
== HCF_CNTL_ENABLE
) {
954 OUT_PORT_DWORD( (io_port
+ HREG_DMA_CTRL
), DMA_CTRLSTAT_GO
);
955 /* ;? by rewriting hcf_dma_rx_put you can probably just call hcf_dma_rx_put( ifbp->IFB_FirstDesc[DMA_RX] )
956 * as additional beneficiary side effect, the SOP and EOP bits will also be cleared
958 ifbp
->IFB_CntlOpt
|= DMA_ENABLED
;
959 HCFASSERT( NT_ASSERT
, NEVER_TESTED
);
960 // make the entire rx descriptor chain DMA-owned, so the DMA engine can (re-)use it.
961 p
= ifbp
->IFB_FirstDesc
[DMA_RX
];
962 if (p
!= NULL
) { //;? Think this over again in the light of the new chaining strategy
963 if ( 1 ) { //begin alternative
964 HCFASSERT( NT_ASSERT
, NEVER_TESTED
);
965 put_frame_lst( ifbp
, ifbp
->IFB_FirstDesc
[DMA_RX
], DMA_RX
);
966 if ( ifbp
->IFB_FirstDesc
[DMA_RX
] ) {
967 put_frame_lst( ifbp
, ifbp
->IFB_FirstDesc
[DMA_RX
]->next_desc_addr
, DMA_RX
);
971 //p->buf_cntl.cntl_stat |= DESC_DMA_OWNED;
972 p
->BUF_CNT
|= DESC_DMA_OWNED
;
973 p
= p
->next_desc_addr
;
975 // a rx chain is available so hand it over to the DMA engine
976 p
= ifbp
->IFB_FirstDesc
[DMA_RX
];
977 OUT_PORT_DWORD( (io_port
+ HREG_RXDMA_PTR32
), p
->desc_phys_addr
);
983 HCFASSERT( rc
== HCF_SUCCESS
, rc
);
984 HCFLOGEXIT( HCF_TRACE_CNTL
);
989 /************************************************************************************************************
991 *.MODULE int hcf_connect( IFBP ifbp, hcf_io io_base )
992 *.PURPOSE Grants access right for the HCF to the IFB.
993 * Initializes Card and HCF housekeeping.
996 * ifbp (near) address of the Interface Block
997 * io_base non-USB: I/O Base address of the NIC (connect)
998 * non-USB: HCF_DISCONNECT
999 * USB: HCF_CONNECT, HCF_DISCONNECT
1003 * HCF_ERR_INCOMP_PRI
1005 * HCF_ERR_DEFUNCT_CMD_SEQ
1006 *!! HCF_ERR_NO_NIC really returned ;?
1010 * MSF-accessible fields of Result Block:
1011 * IFB_IOBase entry parameter io_base
1012 * IFB_IORange HREG_IO_RANGE (0x40/0x80)
1013 * IFB_Version version of the IFB layout
1014 * IFB_FWIdentity CFG_FW_IDENTITY_STRCT, specifies the identity of the
1015 * "running" F/W, i.e. tertiary F/W under normal conditions
1016 * IFB_FWSup CFG_SUP_RANGE_STRCT, specifies the supplier range of
1017 * the "running" F/W, i.e. tertiary F/W under normal conditions
1018 * IFB_HSISup CFG_SUP_RANGE_STRCT, specifies the HW/SW I/F range of the NIC
1019 * IFB_PRIIdentity CFG_PRI_IDENTITY_STRCT, specifies the Identity of the Primary F/W
1020 * IFB_PRISup CFG_SUP_RANGE_STRCT, specifies the supplier range of the Primary F/W
1021 * all other all MSF accessible fields, which are not specified above, are zero-filled
1024 * It is the responsibility of the MSF to assure the correctness of the I/O Base address.
1026 * Note: hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF )
1030 * hcf_connect passes the MSF-defined location of the IFB to the HCF and grants or revokes access right for the
1031 * HCF to the IFB. Revoking is done by specifying HCF_DISCONNECT rather than an I/O address for the parameter
1032 * io_base. Every call of hcf_connect in "connect" mode, must eventually be followed by a call of hcf_connect
1033 * in "disconnect" mode. Clalling hcf_connect in "connect"/"disconnect" mode can not be nested.
1034 * The IFB address must be used as a handle with all subsequent HCF-function calls and the HCF uses the IFB
1035 * address as a handle when it performs a call(back) of an MSF-function (i.e. msf_assert).
1037 * Note that not only the MSF accessible fields are cleared, but also all internal housekeeping
1038 * information is re-initialized.
1039 * This implies that all settings which are done via hcf_action and hcf_put_info (e.g. CFG_MB_ASSERT, CFG_REG_MB,
1040 * CFG_REG_INFO_LOG) must be done again. The only field which is not cleared, is IFB_MSFSup.
1042 * If HCF_INT_ON is selected as compile option, NIC interrupts are disabled.
1045 * - ifbp is not properly aligned ( ref chapter HCF_ALIGN in 4.1.1)
1046 * - I/O Base Address is not a multiple of 0x40 (note: 0x0000 is explicitly allowed).
1050 *0: Throughout hcf_connect you need to distinguish the connect from the disconnect case, which requires
1051 * some attention about what to use as "I/O" address when for which purpose.
1053 *2a: Reset H-II by toggling reset bit in IO-register on and off.
1054 * The HCF_TYPE_PRELOADED caters for the DOS environment where H-II is loaded by a separate program to
1055 * overcome the 64k size limit posed on DOS drivers.
1056 * The macro OPW is not yet useable because the IFB_IOBase field is not set.
1057 * Note 1: hopefully the clearing and initializing of the IFB (see below) acts as a delay which meets the
1058 * specification for S/W reset
1059 * Note 2: it turns out that on some H/W constellations, the clock to access the EEProm is not lowered
1060 * to an appropriate frequency by HREG_IO_SRESET. By giving an HCMD_INI first, this problem is worked around.
1061 *2b: Experimentally it is determined over a wide range of F/W versions that waiting for the for Cmd bit in
1062 * Ev register gives a workable strategy. The available documentation does not give much clues.
1063 *4: clear and initialize the IFB
1064 * The HCF house keeping info is designed such that zero is the appropriate initial value for as much as
1065 * feasible IFB-items.
1066 * The readable fields mentioned in the description section and some HCF specific fields are given their
1068 * IFB_TickIni is initialized at best guess before calibration
1069 * Hcf_connect defaults to "no interrupt generation" (implicitly achieved by the zero-filling).
1070 *6: Register compile-time linked MSF Routine and set default filter level
1071 * cast needed to get around the "near" problem in DOS COM model
1072 * er C2446: no conversion from void (__near __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int)
1073 * to void (__far __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int)
1074 *8: If a command is apparently still active (as indicated by the Busy bit in Cmd register) this may indicate a
1075 * blocked cmd pipe line. To unblock the following actions are done:
1077 * - Wait for Busy bit drop in Cmd register
1078 * - Wait for Cmd bit raise in Ev register
1079 * The two waits are combined in a single HCF_WAIT_WHILE to optimize memory size. If either of these waits
1080 * fail (prot_cnt becomes 0), then something is serious wrong. Rather than PANICK, the assumption is that the
1081 * next cmd_exe will fail, causing the HCF to go into DEFUNCT mode
1082 *10: Ack everything to unblock a (possibly blocked) cmd pipe line
1083 * Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is
1084 * pending on non-initial calls
1085 * Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an
1087 *12: Only H-II NEEDS the Hermes Initialize command. Due to the different semantics for H-I and H-II
1088 * Initialize command, init() does not (and can not, since it is called e.g. after a download) execute the
1089 * Hermes Initialize command. Executing the Hermes Initialize command for H-I would not harm but not do
1090 * anything useful either, so it is skipped.
1091 * The return status of cmd_exe is ignored. It is assumed that if cmd_exe fails, init fails too
1092 *14: use io_base as a flag to merge hcf_connect and hcf_disconnect into 1 routine
1093 * the call to init and its subsequent call of cmd_exe will return HCF_ERR_NO_NIC if appropriate. This status
1094 * is (badly) needed by some legacy combination of NT4 and card services which do not yield an I/O address in
1098 * On platforms where the NULL-pointer is not a bit-pattern of all zeros, the zero-filling of the IFB results
1099 * in an incorrect initialization of pointers.
1100 * The implementation of the MailBox manipulation in put_mb_info protects against the absence of a MailBox
1101 * based on IFB_MBSize, IFB_MBWp and ifbp->IFB_MBRp. This has ramifications on the initialization of the
1102 * MailBox via hcf_put_info with the CFG_REG_MB type, but it prevents dependency on the "NULL-"ness of
1106 * There are a number of problems when asserting and logging hcf_connect, e.g.
1107 * - Asserting on re-entrancy of hcf_connect by means of
1108 * "HCFASSERT( (ifbp->IFB_AssertTrace & HCF_ASSERT_CONNECT) == 0, 0 )" is not useful because IFB contents
1110 * - Asserting before the IFB is cleared will cause mdd_assert() to interpret the garbage in IFB_AssertRtn
1111 * as a routine address
1112 * Therefore HCFTRACE nor HCFLOGENTRY is called by hcf_connect.
1113 *.ENDDOC END DOCUMENTATION
1115 ************************************************************************************************************/
1117 hcf_connect( IFBP ifbp
, hcf_io io_base
)
1119 int rc
= HCF_SUCCESS
;
1125 hcf_16 xa
= ifbp
->IFB_FWIdentity
.typ
;
1126 /* is assumed to cause an assert later on if hcf_connect is called without intervening hcf_disconnect.
1127 * xa == CFG_FW_IDENTITY in subsequent calls without preceding hcf_disconnect,
1128 * xa == 0 in subsequent calls with preceding hcf_disconnect,
1129 * xa == "garbage" (any value except CFG_FW_IDENTITY is acceptable) in the initial call
1131 #endif // HCF_ASSERT
1133 if ( io_base
== HCF_DISCONNECT
) { //disconnect
1134 io_addr
= ifbp
->IFB_IOBase
;
1135 OPW( HREG_INT_EN
, 0 ); //;?workaround against dying F/W on subsequent hcf_connect calls
1136 } else { //connect /* 0 */
1140 #if 0 //;? if a subsequent hcf_connect is preceded by an hcf_disconnect the wakeup is not needed !!
1142 OUT_PORT_WORD( .....+HREG_IO
, HREG_IO_WAKEUP_ASYNC
); //OPW not yet useable
1143 MSF_WAIT(800); // MSF-defined function to wait n microseconds.
1144 note that MSF_WAIT uses
not yet defined
!!!! IFB_IOBase
and IFB_TickIni (via PROT_CNT_INI
)
1145 so be careful
if this code is restored
1149 #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 //switch clock back for SEEPROM access !!!
1150 OUT_PORT_WORD( io_addr
+ HREG_CMD
, HCMD_INI
); //OPW not yet useable
1151 prot_cnt
= INI_TICK_INI
;
1152 HCF_WAIT_WHILE( (IN_PORT_WORD( io_addr
+ HREG_EV_STAT
) & HREG_EV_CMD
) == 0 );
1153 OUT_PORT_WORD( (io_addr
+ HREG_IO
), HREG_IO_SRESET
); //OPW not yet useable /* 2a*/
1154 #endif // HCF_TYPE_PRELOADED
1155 for ( q
= (hcf_8
*)(&ifbp
->IFB_Magic
); q
> (hcf_8
*)ifbp
; *--q
= 0 ) /*NOP*/; /* 4 */
1156 ifbp
->IFB_Magic
= HCF_MAGIC
;
1157 ifbp
->IFB_Version
= IFB_VERSION
;
1158 #if defined MSF_COMPONENT_ID //a new IFB demonstrates how dirty the solution is
1159 xxxx
[xxxx_PRI_IDENTITY_OFFSET
] = NULL
; //IFB_PRIIdentity placeholder 0xFD02
1160 xxxx
[xxxx_PRI_IDENTITY_OFFSET
+1] = NULL
; //IFB_PRISup placeholder 0xFD03
1161 #endif // MSF_COMPONENT_ID
1162 #if (HCF_TALLIES) & ( HCF_TALLIES_NIC | HCF_TALLIES_HCF )
1163 ifbp
->IFB_TallyLen
= 1 + 2 * (HCF_NIC_TAL_CNT
+ HCF_HCF_TAL_CNT
); //convert # of Tallies to L value for LTV
1164 ifbp
->IFB_TallyTyp
= CFG_TALLIES
; //IFB_TallyTyp: set T value
1165 #endif // HCF_TALLIES_NIC / HCF_TALLIES_HCF
1166 ifbp
->IFB_IOBase
= io_addr
; //set IO_Base asap, so asserts via HREG_SW_2 don't harm
1167 ifbp
->IFB_IORange
= HREG_IO_RANGE
;
1168 ifbp
->IFB_CntlOpt
= USE_16BIT
;
1171 ifbp
->IFB_AssertLvl
= 1;
1172 #if (HCF_ASSERT) & HCF_ASSERT_LNK_MSF_RTN
1173 if ( io_base
!= HCF_DISCONNECT
) {
1174 ifbp
->IFB_AssertRtn
= (MSF_ASSERT_RTNP
)msf_assert
; /* 6 */
1176 #endif // HCF_ASSERT_LNK_MSF_RTN
1177 #if (HCF_ASSERT) & HCF_ASSERT_MB //build the structure to pass the assert info to hcf_put_info
1178 ifbp
->IFB_AssertStrct
.len
= sizeof(ifbp
->IFB_AssertStrct
)/sizeof(hcf_16
) - 1;
1179 ifbp
->IFB_AssertStrct
.typ
= CFG_MB_INFO
;
1180 ifbp
->IFB_AssertStrct
.base_typ
= CFG_MB_ASSERT
;
1181 ifbp
->IFB_AssertStrct
.frag_cnt
= 1;
1182 ifbp
->IFB_AssertStrct
.frag_buf
[0].frag_len
=
1183 ( offsetof(IFB_STRCT
, IFB_AssertLvl
) - offsetof(IFB_STRCT
, IFB_AssertLine
) ) / sizeof(hcf_16
);
1184 ifbp
->IFB_AssertStrct
.frag_buf
[0].frag_addr
= &ifbp
->IFB_AssertLine
;
1185 #endif // HCF_ASSERT_MB
1186 #endif // HCF_ASSERT
1187 IF_PROT_TIME( prot_cnt
= ifbp
->IFB_TickIni
= INI_TICK_INI
);
1188 #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0
1189 //!! No asserts before Reset-bit in HREG_IO is cleared
1190 OPW( HREG_IO
, 0x0000 ); //OPW useable /* 2b*/
1191 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT
) & HREG_EV_CMD
) == 0 );
1192 IF_PROT_TIME( HCFASSERT( prot_cnt
, IPW( HREG_EV_STAT
) ) );
1193 IF_PROT_TIME( if ( prot_cnt
) prot_cnt
= ifbp
->IFB_TickIni
);
1194 #endif // HCF_TYPE_PRELOADED
1195 //!! No asserts before Reset-bit in HREG_IO is cleared
1196 HCFASSERT( DO_ASSERT
, MERGE_2( HCF_ASSERT
, 0xCAF0 ) ); //just to proof that the complete assert machinery is working
1197 HCFASSERT( xa
!= CFG_FW_IDENTITY
, 0 ); // assert if hcf_connect is called without intervening hcf_disconnect.
1198 HCFASSERT( ((hcf_32
)(void*)ifbp
& (HCF_ALIGN
-1) ) == 0, (hcf_32
)(void*)ifbp
);
1199 HCFASSERT( (io_addr
& 0x003F) == 0, io_addr
);
1200 //if Busy bit in Cmd register
1201 if (IPW( HREG_CMD
) & HCMD_BUSY
) { /* 8 */
1202 //. Ack all to unblock a (possibly) blocked cmd pipe line
1203 OPW( HREG_EV_ACK
, ~HREG_EV_SLEEP_REQ
);
1204 //. Wait for Busy bit drop in Cmd register
1205 //. Wait for Cmd bit raise in Ev register
1206 HCF_WAIT_WHILE( ( IPW( HREG_CMD
) & HCMD_BUSY
) && (IPW( HREG_EV_STAT
) & HREG_EV_CMD
) == 0 );
1207 IF_PROT_TIME( HCFASSERT( prot_cnt
, IPW( HREG_EV_STAT
) ) ); /* if prot_cnt == 0, cmd_exe will fail, causing DEFUNCT */
1209 OPW( HREG_EV_ACK
, ~HREG_EV_SLEEP_REQ
);
1210 #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 /*12*/
1211 (void)cmd_exe( ifbp
, HCMD_INI
, 0 );
1212 #endif // HCF_TYPE_PRELOADED
1213 if ( io_base
!= HCF_DISCONNECT
) {
1214 rc
= init( ifbp
); /*14*/
1215 if ( rc
== HCF_SUCCESS
) {
1217 x
.typ
= CFG_NIC_BUS_TYPE
;
1218 (void)hcf_get_info( ifbp
, &x
);
1219 ifbp
->IFB_BusType
= x
.val
[0];
1220 //CFG_NIC_BUS_TYPE not supported -> default 32 bits/DMA, MSF has to overrule via CFG_CNTL_OPT
1221 if ( x
.len
== 0 || x
.val
[0] == 0x0002 || x
.val
[0] == 0x0003 ) {
1222 #if (HCF_IO) & HCF_IO_32BITS
1223 ifbp
->IFB_CntlOpt
&= ~USE_16BIT
; //reset USE_16BIT
1224 #endif // HCF_IO_32BITS
1226 ifbp
->IFB_CntlOpt
|= USE_DMA
; //SET DMA
1228 ifbp
->IFB_IORange
= 0x40 /*i.s.o. HREG_IO_RANGE*/;
1232 } else HCFASSERT( ( ifbp
->IFB_Magic
^= HCF_MAGIC
) == 0, ifbp
->IFB_Magic
) /*NOP*/;
1233 /* of above HCFASSERT only the side effect is needed, NOP in case HCFASSERT is dummy */
1234 ifbp
->IFB_IOBase
= io_base
; /* 0*/
1239 /************************************************************************************************************
1240 * Function get_frame_lst
1241 * - resolve the "last host-owned descriptor" problems when a descriptor list is reclaimed by the MSF.
1243 * The FrameList to be reclaimed as well as the DescriptorList always start in IFB_FirstDesc[tx_rx_flag]
1244 * and this is always the "current" DELWA Descriptor.
1246 * If a FrameList is available, the last descriptor of the FrameList to turned into a new DELWA Descriptor:
1247 * - a copy is made from the information in the last descriptor of the FrameList into the current
1249 * - the remainder of the DescriptorList is detached from the copy by setting the next_desc_addr at NULL
1250 * - the DMA control bits of the copy are cleared to do not confuse the MSF
1251 * - the copy of the last descriptor (i.e. the "old" DELWA Descriptor) is chained to the prev Descriptor
1252 * of the FrameList, thus replacing the original last Descriptor of the FrameList.
1253 * - IFB_FirstDesc is changed to the address of that replaced (original) last descriptor of the FrameList,
1254 * i.e. the "new" DELWA Descriptor.
1256 * This function makes a copy of that last host-owned descriptor, so the MSF will get a copy of the descriptor.
1257 * On top of that, it adjusts DMA related fields in the IFB structure.
1258 // perform a copying-scheme to circumvent the 'last host owned descriptor cannot be reclaimed' limitation imposed by H2.5's DMA hardware design
1259 // a 'reclaim descriptor' should be available in the HCF:
1261 * Returns: address of the first descriptor of the FrameList
1263 8: Be careful once you start re-ordering the steps in the copy process, that it still works for cases
1264 * of FrameLists of 1, 2 and more than 2 descriptors
1267 * tx_rx_flag : specifies 'transmit' or 'receive' descriptor.
1269 ************************************************************************************************************/
1270 HCF_STATIC DESC_STRCT
*
1271 get_frame_lst( IFBP ifbp
, int tx_rx_flag
)
1274 DESC_STRCT
*head
= ifbp
->IFB_FirstDesc
[tx_rx_flag
];
1275 DESC_STRCT
*copy
, *p
, *prev
;
1277 HCFASSERT( tx_rx_flag
== DMA_RX
|| tx_rx_flag
== DMA_TX
, tx_rx_flag
);
1280 //. search for last descriptor of first FrameList
1282 while ( ( p
->BUF_SIZE
& DESC_EOP
) == 0 && p
->next_desc_addr
) {
1283 if ( ( ifbp
->IFB_CntlOpt
& DMA_ENABLED
) == 0 ) { //clear control bits when disabled
1284 p
->BUF_CNT
&= DESC_CNT_MASK
;
1287 p
= p
->next_desc_addr
;
1290 if ( ifbp
->IFB_CntlOpt
& DMA_ENABLED
) {
1291 //. . if last descriptor of FrameList is DMA owned
1292 //. . or if FrameList is single (DELWA) Descriptor
1293 if ( p
->BUF_CNT
& DESC_DMA_OWNED
|| head
->next_desc_addr
== NULL
) {
1294 //. . . refuse to return FrameList to caller
1299 //if returnable FrameList found
1301 //. if FrameList is single (DELWA) Descriptor (implies DMA disabled)
1302 if ( head
->next_desc_addr
== NULL
) {
1303 //. . clear DescriptorList
1304 /*;?ifbp->IFB_LastDesc[tx_rx_flag] =*/ ifbp
->IFB_FirstDesc
[tx_rx_flag
] = NULL
;
1307 //. . strip hardware-related bits from last descriptor
1308 //. . remove DELWA Descriptor from head of DescriptorList
1310 head
= head
->next_desc_addr
;
1311 //. . exchange first (Confined) and last (possibly imprisoned) Descriptor
1312 copy
->buf_phys_addr
= p
->buf_phys_addr
;
1313 copy
->buf_addr
= p
->buf_addr
;
1314 copy
->BUF_SIZE
= p
->BUF_SIZE
&= DESC_CNT_MASK
; //get rid of DESC_EOP and possibly DESC_SOP
1315 copy
->BUF_CNT
= p
->BUF_CNT
&= DESC_CNT_MASK
; //get rid of DESC_DMA_OWNED
1316 #if (HCF_EXT) & HCF_DESC_STRCT_EXT
1317 copy
->DESC_MSFSup
= p
->DESC_MSFSup
;
1318 #endif // HCF_DESC_STRCT_EXT
1319 //. . turn into a DELWA Descriptor
1321 //. . chain copy to prev /* 8*/
1322 prev
->next_desc_addr
= copy
;
1323 //. . detach remainder of the DescriptorList from FrameList
1324 copy
->next_desc_addr
= NULL
;
1325 copy
->next_desc_phys_addr
= 0xDEAD0000; //! just to be nice, not really needed
1326 //. . save the new start (i.e. DELWA Descriptor) in IFB_FirstDesc
1327 ifbp
->IFB_FirstDesc
[tx_rx_flag
] = p
;
1329 //. strip DESC_SOP from first descriptor
1330 head
->BUF_SIZE
&= DESC_CNT_MASK
;
1331 //head->BUF_CNT &= DESC_CNT_MASK; get rid of DESC_DMA_OWNED
1332 head
->next_desc_phys_addr
= 0xDEAD0000; //! just to be nice, not really needed
1334 //return the just detached FrameList (if any)
1339 /************************************************************************************************************
1340 * Function put_frame_lst
1344 * Returns: address of the first descriptor of the FrameList
1347 * tx_rx_flag : specifies 'transmit' or 'receive' descriptor.
1349 * The following list should be kept in sync with hcf_dma_tx/rx_put, in order to get them in the WCI-spec !!!!
1351 * - DMA is not enabled
1352 * - descriptor list is NULL
1353 * - a descriptor in the descriptor list is not double word aligned
1354 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1355 * - the DELWA descriptor is not a "singleton" DescriptorList.
1356 * - the DELWA descriptor is not the first Descriptor supplied
1357 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1358 * - Possibly more checks could be added !!!!!!!!!!!!!
1361 * The asserts marked with *sc* are really sanity checks for the HCF, they can (supposedly) not be influenced
1362 * by incorrect MSF behavior
1364 // The MSF is required to supply the HCF with a single descriptor for MSF tx reclaim purposes.
1365 // This 'reclaim descriptor' can be recognized by the fact that its buf_addr field is zero.
1366 *********************************************************************************************
1367 * Although not required from a hardware perspective:
1368 * - make each descriptor in this rx-chain DMA-owned.
1369 * - Also set the count to zero. EOP and SOP bits are also cleared.
1370 *********************************************************************************************/
1372 put_frame_lst( IFBP ifbp
, DESC_STRCT
*descp
, int tx_rx_flag
)
1374 DESC_STRCT
*p
= descp
;
1377 HCFASSERT( ifbp
->IFB_CntlOpt
& USE_DMA
, ifbp
->IFB_CntlOpt
); //only hcf_dma_tx_put must also be DMA_ENABLED
1378 HCFASSERT( tx_rx_flag
== DMA_RX
|| tx_rx_flag
== DMA_TX
, tx_rx_flag
);
1382 HCFASSERT( ((hcf_32
)p
& 3 ) == 0, (hcf_32
)p
);
1383 HCFASSERT( (p
->BUF_CNT
& ~DESC_CNT_MASK
) == 0, p
->BUF_CNT
);
1384 HCFASSERT( (p
->BUF_SIZE
& ~DESC_CNT_MASK
) == 0, p
->BUF_SIZE
);
1385 p
->BUF_SIZE
&= DESC_CNT_MASK
; //!!this SHOULD be superfluous in case of correct MSF
1386 p
->BUF_CNT
&= tx_rx_flag
== DMA_RX
? 0 : DESC_CNT_MASK
; //!!this SHOULD be superfluous in case of correct MSF
1387 p
->BUF_CNT
|= DESC_DMA_OWNED
;
1388 if ( p
->next_desc_addr
) {
1389 // HCFASSERT( p->buf_addr && p->buf_phys_addr && p->BUF_SIZE && +/- p->BUF_SIZE, ... );
1390 HCFASSERT( p
->next_desc_addr
->desc_phys_addr
, (hcf_32
)p
->next_desc_addr
);
1391 p
->next_desc_phys_addr
= p
->next_desc_addr
->desc_phys_addr
;
1393 p
->next_desc_phys_addr
= 0;
1394 if ( p
->buf_addr
== NULL
) { // DELWA Descriptor
1395 HCFASSERT( descp
== p
, (hcf_32
)descp
); //singleton DescriptorList
1396 HCFASSERT( ifbp
->IFB_FirstDesc
[tx_rx_flag
] == NULL
, (hcf_32
)ifbp
->IFB_FirstDesc
[tx_rx_flag
]);
1397 HCFASSERT( ifbp
->IFB_LastDesc
[tx_rx_flag
] == NULL
, (hcf_32
)ifbp
->IFB_LastDesc
[tx_rx_flag
]);
1398 descp
->BUF_CNT
= 0; //&= ~DESC_DMA_OWNED;
1399 ifbp
->IFB_FirstDesc
[tx_rx_flag
] = descp
;
1400 // part of alternative ifbp->IFB_LastDesc[tx_rx_flag] = ifbp->IFB_FirstDesc[tx_rx_flag] = descp;
1401 // if "recycling" a FrameList
1402 // (e.g. called from hcf_cntl( HCF_CNTL_ENABLE )
1403 // . prepare for activation DMA controller
1404 // part of alternative descp = descp->next_desc_addr;
1405 } else { //a "real" FrameList, hand it over to the DMA engine
1406 HCFASSERT( ifbp
->IFB_FirstDesc
[tx_rx_flag
], (hcf_32
)descp
);
1407 HCFASSERT( ifbp
->IFB_LastDesc
[tx_rx_flag
], (hcf_32
)descp
);
1408 HCFASSERT( ifbp
->IFB_LastDesc
[tx_rx_flag
]->next_desc_addr
== NULL
,
1409 (hcf_32
)ifbp
->IFB_LastDesc
[tx_rx_flag
]->next_desc_addr
);
1410 // p->buf_cntl.cntl_stat |= DESC_DMA_OWNED;
1411 ifbp
->IFB_LastDesc
[tx_rx_flag
]->next_desc_addr
= descp
;
1412 ifbp
->IFB_LastDesc
[tx_rx_flag
]->next_desc_phys_addr
= descp
->desc_phys_addr
;
1413 port
= HREG_RXDMA_PTR32
;
1415 p
->BUF_SIZE
|= DESC_EOP
; // p points at the last descriptor in the caller-supplied descriptor chain
1416 descp
->BUF_SIZE
|= DESC_SOP
;
1417 port
= HREG_TXDMA_PTR32
;
1419 OUT_PORT_DWORD( (ifbp
->IFB_IOBase
+ port
), descp
->desc_phys_addr
);
1421 ifbp
->IFB_LastDesc
[tx_rx_flag
] = p
;
1423 p
= p
->next_desc_addr
;
1428 /************************************************************************************************************
1430 *.MODULE DESC_STRCT* hcf_dma_rx_get( IFBP ifbp )
1431 *.PURPOSE decapsulate a message and provides that message to the MSF.
1432 * reclaim all descriptors in the rx descriptor chain.
1435 * ifbp address of the Interface Block
1438 * pointer to a FrameList
1441 * hcf_dma_rx_get is intended to return a received frame when such a frame is deposited in Host memory by the
1442 * DMA engine. In addition hcf_dma_rx_get can be used to reclaim all descriptors in the rx descriptor chain
1443 * when the DMA Engine is disabled, e.g. as part of a driver unloading strategy.
1444 * hcf_dma_rx_get must be called repeatedly by the MSF when hcf_service_nic signals availability of a rx frame
1445 * through the HREG_EV_RDMAD flag of IFB_DmaPackets. The calling must stop when a NULL pointer is returned, at
1446 * which time the HREG_EV_RDMAD flag is also cleared by the HCF to arm the mechanism for the next frame
1448 * Regardless whether the DMA Engine is currently enabled (as controlled via hcf_cntl), if the DMA controller
1449 * deposited an Rx-frame in the Rx-DescriptorList, this frame is detached from the Rx-DescriptorList,
1450 * transformed into a FrameList (i.e. updating the housekeeping fields in the descriptors) and returned to the
1452 * If no such Rx-frame is available in the Rx-DescriptorList, the behavior of hcf_dma_rx_get depends on the
1453 * status of the DMA Engine.
1454 * If the DMA Engine is enabled, a NULL pointer is returned.
1455 * If the DMA Engine is disabled, the following strategy is used:
1456 * - the complete Rx-DescriptorList is returned. The DELWA Descriptor is not part of the Rx-DescriptorList.
1457 * - If there is no Rx-DescriptorList, the DELWA Descriptor is returned.
1458 * - If there is no DELWA Descriptor, a NULL pointer is returned.
1460 * If the MSF performs an disable/enable sequence without exhausting the Rx-DescriptorList as described above,
1461 * the enable command will reset all house keeping information, i.e. already received but not yet by the MSF
1462 * retrieved frames are lost and the next frame will be received starting with the oldest descriptor.
1464 * The HCF can be used in 2 fashions: with and without decapsulation for data transfer.
1465 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1466 * If appropriate, decapsulation is done by moving some data inside the buffers and updating the descriptors
1468 *!! ;?????where did I describe why a simple manipulation with the count values does not suffice?
1472 *.ENDDOC END DOCUMENTATION
1474 ************************************************************************************************************/
1477 hcf_dma_rx_get (IFBP ifbp
)
1479 DESC_STRCT
*descp
; // pointer to start of FrameList
1481 descp
= get_frame_lst( ifbp
, DMA_RX
);
1482 if ( descp
&& descp
->buf_addr
) {
1484 //skip decapsulation at confined descriptor
1485 #if (HCF_ENCAP) == HCF_ENC
1487 DESC_STRCT
*p
= descp
->next_desc_addr
; //pointer to 2nd descriptor of frame
1489 // The 2nd descriptor contains (maybe) a SNAP header plus part or whole of the payload.
1490 //determine decapsulation sub-flag in RxFS
1491 i
= *(wci_recordp
)&descp
->buf_addr
[HFS_STAT
] & ( HFS_STAT_MSG_TYPE
| HFS_STAT_ERR
);
1492 if ( i
== HFS_STAT_TUNNEL
||
1493 ( i
== HFS_STAT_1042
&& hcf_encap( (wci_bufp
)&p
->buf_addr
[HCF_DASA_SIZE
] ) != ENC_TUNNEL
)) {
1494 // The 2nd descriptor contains a SNAP header plus part or whole of the payload.
1495 HCFASSERT( p
->BUF_CNT
== (p
->buf_addr
[5] + (p
->buf_addr
[4]<<8) + 2*6 + 2 - 8), p
->BUF_CNT
);
1496 // perform decapsulation
1497 HCFASSERT(p
->BUF_SIZE
>=8, p
->BUF_SIZE
);
1498 // move SA[2:5] in the second buffer to replace part of the SNAP header
1499 for ( i
=3; i
>= 0; i
--) p
->buf_addr
[i
+8] = p
->buf_addr
[i
];
1500 // copy DA[0:5], SA[0:1] from first buffer to second buffer
1501 for ( i
=0; i
<8; i
++) p
->buf_addr
[i
] = descp
->buf_addr
[HFS_ADDR_DEST
+ i
];
1502 // make first buffer shorter in count
1503 descp
->BUF_CNT
= HFS_ADDR_DEST
;
1507 if ( descp
== NULL
) ifbp
->IFB_DmaPackets
&= (hcf_16
)~HREG_EV_RDMAD
; //;?could be integrated into get_frame_lst
1508 HCFLOGEXIT( HCF_TRACE_DMA_RX_GET
);
1513 /************************************************************************************************************
1515 *.MODULE void hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp )
1516 *.PURPOSE supply buffers for receive purposes.
1517 * supply the Rx-DELWA descriptor.
1520 * ifbp address of the Interface Block
1521 * descp address of a DescriptorList
1526 * This function is called by the MSF to supply the HCF with new/more buffers for receive purposes.
1527 * The HCF can be used in 2 fashions: with and without encapsulation for data transfer.
1528 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1529 * As a consequence, some additional constraints apply to the number of descriptor and the buffers associated
1530 * with the first 2 descriptors. Independent of the encapsulation feature, the COUNT fields are ignored.
1531 * A special case is the supplying of the DELWA descriptor, which must be supplied as the first descriptor.
1534 * - ifbp has a recognizable out-of-range value.
1535 * - NIC interrupts are not disabled while required by parameter action.
1536 * - in case decapsulation by the HCF is selected:
1537 * - The first databuffer does not have the exact size corresponding with the RxFS up to the 802.3 DestAddr
1538 * field (== 29 words).
1539 * - The FrameList does not consists of at least 2 Descriptors.
1540 * - The second databuffer does not have the minimum size of 8 bytes.
1541 *!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get
1542 *!! them in the WCI-spec !!!!
1543 * - DMA is not enabled
1544 * - descriptor list is NULL
1545 * - a descriptor in the descriptor list is not double word aligned
1546 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1547 * - the DELWA descriptor is not a "singleton" DescriptorList.
1548 * - the DELWA descriptor is not the first Descriptor supplied
1549 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1550 *!! - Possibly more checks could be added !!!!!!!!!!!!!
1555 *.ENDDOC END DOCUMENTATION
1557 ************************************************************************************************************/
1559 hcf_dma_rx_put( IFBP ifbp
, DESC_STRCT
*descp
)
1562 HCFLOGENTRY( HCF_TRACE_DMA_RX_PUT
, 0xDA01 );
1563 HCFASSERT( ifbp
->IFB_Magic
== HCF_MAGIC
, ifbp
->IFB_Magic
);
1566 put_frame_lst( ifbp
, descp
, DMA_RX
);
1567 #if HCF_ASSERT && (HCF_ENCAP) == HCF_ENC
1568 if ( descp
->buf_addr
) {
1569 HCFASSERT( descp
->BUF_SIZE
== HCF_DMA_RX_BUF1_SIZE
, descp
->BUF_SIZE
);
1570 HCFASSERT( descp
->next_desc_addr
, 0 ); // first descriptor should be followed by another descriptor
1571 // The second DB is for SNAP and payload purposes. It should be a minimum of 12 bytes in size.
1572 HCFASSERT( descp
->next_desc_addr
->BUF_SIZE
>= 12, descp
->next_desc_addr
->BUF_SIZE
);
1574 #endif // HCFASSERT / HCF_ENC
1575 HCFLOGEXIT( HCF_TRACE_DMA_RX_PUT
);
1579 /************************************************************************************************************
1581 *.MODULE DESC_STRCT* hcf_dma_tx_get( IFBP ifbp )
1582 *.PURPOSE DMA mode: reclaims and decapsulates packets in the tx descriptor chain if:
1583 * - A Tx packet has been copied from host-RAM into NIC-RAM by the DMA engine
1584 * - The Hermes/DMAengine have been disabled
1587 * ifbp address of the Interface Block
1590 * pointer to a reclaimed Tx packet.
1593 * impact of the disable command:
1594 * When a non-empty pool of Tx descriptors exists (created by means of hcf_dma_put_tx), the MSF
1595 * is supposed to empty that pool by means of hcf_dma_tx_get calls after the disable in an
1596 * disable/enable sequence.
1602 *.ENDDOC END DOCUMENTATION
1604 ************************************************************************************************************/
1606 hcf_dma_tx_get( IFBP ifbp
)
1608 DESC_STRCT
*descp
; // pointer to start of FrameList
1610 descp
= get_frame_lst( ifbp
, DMA_TX
);
1611 if ( descp
&& descp
->buf_addr
) {
1612 //skip decapsulation at confined descriptor
1613 #if (HCF_ENCAP) == HCF_ENC
1614 if ( ( descp
->BUF_CNT
== HFS_TYPE
)) {
1615 // perform decapsulation if needed
1616 descp
->next_desc_addr
->buf_phys_addr
-= HCF_DASA_SIZE
;
1617 descp
->next_desc_addr
->BUF_CNT
+= HCF_DASA_SIZE
;
1621 if ( descp
== NULL
) { //;?could be integrated into get_frame_lst
1622 ifbp
->IFB_DmaPackets
&= (hcf_16
)~HREG_EV_TDMAD
;
1624 HCFLOGEXIT( HCF_TRACE_DMA_TX_GET
);
1629 /************************************************************************************************************
1631 *.MODULE void hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
1632 *.PURPOSE puts a packet in the Tx DMA queue in host ram and kicks off the TxDma engine.
1633 * supply the Tx-DELWA descriptor.
1636 * ifbp address of the Interface Block
1637 * descp address of Tx Descriptor Chain (i.e. a single Tx frame)
1638 * tx_cntl indicates MAC-port and (Hermes) options
1643 * The HCF can be used in 2 fashions: with and without encapsulation for data transfer.
1644 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1646 * Regardless of the HCF_ENCAP system constant, the descriptor list created to describe the frame to be
1647 * transmitted, must supply space to contain the 802.11 header, preceding the actual frame to be transmitted.
1648 * Basically, this only supplies working storage to the HCF which passes this on to the DMA engine.
1649 * As a consequence the contents of this space do not matter.
1650 * Nevertheless BUF_CNT must take in account this storage.
1651 * This working space to contain the 802.11 header may not be fragmented, the first buffer must be
1652 * sufficiently large to contain at least the 802.11 header, i.e. HFS_ADDR_DEST (29 words or 0x3A bytes).
1653 * This way, the HCF can simply, regardless whether or not the HCF encapsulates the frame, write the parameter
1654 * tx_cntl at offset 0x36 (HFS_TX_CNTL) in the first buffer.
1655 * Note that it is allowed to have part or all of the actual frame represented by the first descriptor as long
1656 * as the requirement for storage for the 802.11 header is met, i.e. the 802.3 frame starts at offset
1658 * Except for the Assert on the 1st buffer in case of Encapsualtion, the SIZE fields are ignored.
1660 * In case the encapsulation feature is compiled in, there are the following additional requirements.
1661 * o The BUF_CNT of the first buffer changes from a minimum of 0x3A bytes to exactly 0x3A, i.e. the workspace
1662 * to store the 802.11 header
1663 * o The BUF_SIZE of the first buffer is at least the space needed to store the
1664 * - 802.11 header (29 words)
1665 * - 802.3 header, i.e. 12 bytes addressing information and 2 bytes length field
1666 * - 6 bytes SNAP-header
1667 * This results in 39 words or 0x4E bytes or HFS_TYPE.
1668 * Note that if the BUF_SIZE is larger than 0x4E, this surplus is not used.
1669 * o The actual frame begins in the 2nd descriptor (which is already implied by the BUF_CNT == 0x3A requirement) and the associated buffer contains at least the 802.3 header, i.e. the 14 bytes representing addressing information and length/type field
1671 * When the HCF does not encapsulates (i.e. length/type field <= 1500), no changes are made to descriptors
1674 * When the HCF actually encapsulates (i.e. length/type field > 1500), it successively writes, starting at
1675 * offset HFS_ADDR_DEST (0x3A) in the first buffer:
1676 * - the 802.3 addressing information, copied from the begin of the second buffer
1677 * - the frame length, derived from the total length of the individual fragments, corrected for the SNAP
1678 * header length and Type field and ignoring the Destination Address, Source Address and Length field
1679 * - the appropriate snap header (Tunnel or 1042, depending on the value of the type field).
1681 * The information in the first two descriptors is adjusted accordingly:
1682 * - the first descriptor count is changed from 0x3A to 0x4E (HFS_TYPE), which matches 0x3A + 12 + 2 + 6
1683 * - the second descriptor count is decreased by 12, being the moved addressing information
1684 * - the second descriptor (physical) buffer address is increased by 12.
1686 * When the descriptors are returned by hcf_dma_tx_get, the transformation of the first two descriptors is
1689 * Under any of the above scenarios, the assert BUF_CNT <= BUF_SIZE must be true for all descriptors
1690 * In case of encapsulation, BUF_SIZE of the 1st descriptor is asserted to be at least HFS_TYPE (0x4E), so it is NOT tested.
1693 * - ifbp has a recognizable out-of-range value.
1694 * - tx_cntl has a recognizable out-of-range value.
1695 * - NIC interrupts are not disabled while required by parameter action.
1696 * - in case encapsulation by the HCF is selected:
1697 * - The FrameList does not consists of at least 2 Descriptors.
1698 * - The first databuffer does not contain exactly the (space for) the 802.11 header (== 28 words)
1699 * - The first databuffer does not have a size to additionally accommodate the 802.3 header and the
1700 * SNAP header of the frame after encapsulation (== 39 words).
1701 * - The second databuffer does not contain at least DA, SA and 'type/length' (==14 bytes or 7 words)
1702 *!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get
1703 *!! them in the WCI-spec !!!!
1704 * - DMA is not enabled
1705 * - descriptor list is NULL
1706 * - a descriptor in the descriptor list is not double word aligned
1707 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1708 * - the DELWA descriptor is not a "singleton" DescriptorList.
1709 * - the DELWA descriptor is not the first Descriptor supplied
1710 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1711 *!! - Possibly more checks could be added !!!!!!!!!!!!!
1716 *.ENDDOC END DOCUMENTATION
1719 *1: Write tx_cntl parameter to HFS_TX_CNTL field into the Hermes-specific header in buffer 1
1720 *4: determine whether encapsulation is needed and write the type (tunnel or 1042) already at the appropriate
1721 * offset in the 1st buffer
1722 *6: Build the encapsualtion enveloppe in the free space at the end of the 1st buffer
1723 * - Copy DA/SA fields from the 2nd buffer
1724 * - Calculate total length of the message (snap-header + type-field + the length of all buffer fragments
1725 * associated with the 802.3 frame (i.e all descriptors except the first), but not the DestinationAddress,
1726 * SourceAddress and length-field)
1727 * Assert the message length
1728 * Write length. Note that the message is in BE format, hence on LE platforms the length must be converted
1729 * ;? THIS IS NOT WHAT CURRENTLY IS IMPLEMENTED
1730 * - Write snap header. Note that the last byte of the snap header is NOT copied, that byte is already in
1731 * place as result of the call to hcf_encap.
1732 * Note that there are many ways to skin a cat. To express the offsets in the 1st buffer while writing
1733 * the snap header, HFS_TYPE is chosen as a reference point to make it easier to grasp that the snap header
1734 * and encapsualtion type are at least relative in the right.
1735 *8: modify 1st descriptor to reflect moved part of the 802.3 header + Snap-header
1736 * modify 2nd descriptor to skip the moved part of the 802.3 header (DA/SA
1737 *10: set each descriptor to 'DMA owned', clear all other control bits.
1738 * Set SOP bit on first descriptor. Set EOP bit on last descriptor.
1739 *12: Either append the current frame to an existing descriptor list or
1740 *14: create a list beginning with the current frame
1741 *16: remember the new end of the list
1742 *20: hand the frame over to the DMA engine
1743 ************************************************************************************************************/
1745 hcf_dma_tx_put( IFBP ifbp
, DESC_STRCT
*descp
, hcf_16 tx_cntl
)
1747 DESC_STRCT
*p
= descp
->next_desc_addr
;
1751 int x
= ifbp
->IFB_FWIdentity
.comp_id
== COMP_ID_FW_AP
? tx_cntl
& ~HFS_TX_CNTL_PORT
: tx_cntl
;
1752 HCFASSERT( (x
& ~HCF_TX_CNTL_MASK
) == 0, tx_cntl
);
1753 #endif // HCF_ASSERT
1754 HCFLOGENTRY( HCF_TRACE_DMA_TX_PUT
, 0xDA03 );
1755 HCFASSERT( ifbp
->IFB_Magic
== HCF_MAGIC
, ifbp
->IFB_Magic
);
1757 HCFASSERT( ( ifbp
->IFB_CntlOpt
& (USE_DMA
|DMA_ENABLED
) ) == (USE_DMA
|DMA_ENABLED
), ifbp
->IFB_CntlOpt
);
1759 if ( descp
->buf_addr
) {
1760 *(hcf_16
*)(descp
->buf_addr
+ HFS_TX_CNTL
) = tx_cntl
; /*1*/
1761 #if (HCF_ENCAP) == HCF_ENC
1762 HCFASSERT( descp
->next_desc_addr
, 0 ); //at least 2 descripors
1763 HCFASSERT( descp
->BUF_CNT
== HFS_ADDR_DEST
, descp
->BUF_CNT
); //exact length required for 1st buffer
1764 HCFASSERT( descp
->BUF_SIZE
>= HCF_DMA_TX_BUF1_SIZE
, descp
->BUF_SIZE
); //minimal storage for encapsulation
1765 HCFASSERT( p
->BUF_CNT
>= 14, p
->BUF_CNT
); //at least DA, SA and 'type' in 2nd buffer
1767 descp
->buf_addr
[HFS_TYPE
-1] = hcf_encap(&descp
->next_desc_addr
->buf_addr
[HCF_DASA_SIZE
]); /*4*/
1768 if ( descp
->buf_addr
[HFS_TYPE
-1] != ENC_NONE
) {
1769 for ( i
=0; i
< HCF_DASA_SIZE
; i
++ ) { /*6*/
1770 descp
->buf_addr
[i
+ HFS_ADDR_DEST
] = descp
->next_desc_addr
->buf_addr
[i
];
1772 i
= sizeof(snap_header
) + 2 - ( 2*6 + 2 );
1773 do { i
+= p
->BUF_CNT
; } while ( ( p
= p
->next_desc_addr
) != NULL
);
1774 *(hcf_16
*)(&descp
->buf_addr
[HFS_LEN
]) = CNV_END_SHORT(i
); //!! this converts on ALL platforms, how does that relate to the CCX code
1775 for ( i
=0; i
< sizeof(snap_header
) - 1; i
++) {
1776 descp
->buf_addr
[HFS_TYPE
- sizeof(snap_header
) + i
] = snap_header
[i
];
1778 descp
->BUF_CNT
= HFS_TYPE
; /*8*/
1779 descp
->next_desc_addr
->buf_phys_addr
+= HCF_DASA_SIZE
;
1780 descp
->next_desc_addr
->BUF_CNT
-= HCF_DASA_SIZE
;
1784 put_frame_lst( ifbp
, descp
, DMA_TX
);
1785 HCFLOGEXIT( HCF_TRACE_DMA_TX_PUT
);
1790 /************************************************************************************************************
1792 *.MODULE hcf_8 hcf_encap( wci_bufp type )
1793 *.PURPOSE test whether RFC1042 or Bridge-Tunnel encapsulation is needed.
1796 * type (Far) pointer to the (Big Endian) Type/Length field in the message
1799 * ENC_NONE len/type is "len" ( (BIG_ENDIAN)type <= 1500 )
1800 * ENC_TUNNEL len/type is "type" and 0x80F3 or 0x8137
1801 * ENC_1042 len/type is "type" but not 0x80F3 or 0x8137
1804 * NIC Interrupts d.c
1807 * Type must point to the Len/Type field of the message, this is the 2-byte field immediately after the 6 byte
1808 * Destination Address and 6 byte Source Address. The 2 successive bytes addressed by type are interpreted as
1809 * a Big Endian value. If that value is less than or equal to 1500, the message is assumed to be in 802.3
1810 * format. Otherwise the message is assumed to be in Ethernet-II format. Depending on the value of Len/Typ,
1811 * Bridge Tunnel or RFC1042 encapsulation is needed.
1815 * 1: presume 802.3, hence preset return value at ENC_NONE
1816 * 2: convert type from "network" Endian format to native Endian
1817 * 4: the litmus test to distinguish type and len.
1818 * The hard code "magic" value of 1500 is intentional and should NOT be replaced by a mnemonic because it is
1819 * not related at all to the maximum frame size supported by the Hermes.
1820 * 6: check type against:
1821 * 0x80F3 //AppleTalk Address Resolution Protocol (AARP)
1823 * to determine the type of encapsulation
1825 *.ENDDOC END DOCUMENTATION
1827 ************************************************************************************************************/
1829 hcf_encap( wci_bufp type
)
1832 hcf_8 rc
= ENC_NONE
; /* 1 */
1833 hcf_16 t
= (hcf_16
)(*type
<<8) + *(type
+1); /* 2 */
1835 if ( t
> 1500 ) { /* 4 */
1836 if ( t
== 0x8137 || t
== 0x80F3 ) {
1837 rc
= ENC_TUNNEL
; /* 6 */
1846 /************************************************************************************************************
1848 *.MODULE int hcf_get_info( IFBP ifbp, LTVP ltvp )
1849 *.PURPOSE Obtains transient and persistent configuration information from the Card and from the HCF.
1852 * ifbp address of the Interface Block
1853 * ltvp address of LengthTypeValue structure specifying the "what" and the "how much" of the
1854 * information to be collected from the HCF or from the Hermes
1857 * HCF_ERR_LEN The provided buffer was too small
1858 * HCF_SUCCESS Success
1859 *!! via cmd_exe ( type >= CFG_RID_FW_MIN )
1860 * HCF_ERR_NO_NIC NIC removed during retrieval
1861 * HCF_ERR_TIME_OUT Expected Hermes event did not occur in expected time
1862 *!! via cmd_exe and setup_bap (type >= CFG_RID_FW_MIN )
1863 * HCF_ERR_DEFUNCT_... HCF is in defunct mode (bits 0x7F reflect cause)
1866 * The T-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the RID wanted. The RID
1867 * information identified by the T-field is copied into the V-field.
1868 * On entry, the L-field specifies the size of the buffer, also called the "Initial DataLength". The L-value
1869 * includes the size of the T-field, but not the size of the L-field itself.
1870 * On return, the L-field indicates the number of words actually contained by the Type and Value fields.
1871 * As the size of the Type field in the LTV-record is included in the "Initial DataLength" of the record, the
1872 * V-field can contain at most "Initial DataLength" - 1 words of data.
1873 * Copying stops if either the complete Information is copied or if the number of words indicated by the
1874 * "Initial DataLength" were copied. The "Initial DataLength" acts as a safe guard against Configuration
1875 * Information blocks that have different sizes for different F/W versions, e.g. when later versions support
1876 * more tallies than earlier versions.
1877 * If the size of Value field of the RID exceeds the size of the "Initial DataLength" -1, as much data
1878 * as fits is copied, and an error status of HCF_ERR_LEN is returned.
1880 * It is the responsibility of the MSF to detect card removal and re-insertion and not call the HCF when the
1881 * NIC is absent. The MSF cannot, however, timely detect a Card removal if the Card is removed while
1882 * hcf_get_info is in progress. Therefore, the HCF performs its own check on Card presence after the read
1883 * operation of the NIC data. If the Card is not present or removed during the execution of hcf_get_info,
1884 * HCF_ERR_NO_NIC is returned and the content of the Data Buffer is unpredictable. This check is not performed
1885 * in case of the "HCF embedded" pseudo RIDs like CFG_TALLIES.
1888 * - ifbp has a recognizable out-of-range value.
1889 * - reentrancy, may be caused by calling hcf_functions without adequate protection
1890 * against NIC interrupts or multi-threading.
1891 * - ltvp is a NULL pointer.
1892 * - length field of the LTV-record at entry is 0 or 1 or has an excessive value (i.e. exceeds HCF_MAX_LTV).
1893 * - type field of the LTV-record is invalid.
1896 * Hcf_get_mb_info copies the contents of the oldest MailBox Info block in the MailBox to PC RAM. If len is
1897 * less than the size of the MailBox Info block, only as much as fits in the PC RAM buffer is copied. After
1898 * the copying the MailBox Read pointer is updated to point to the next MailBox Info block, hence the
1899 * remainder of an "oversized" MailBox Info block is lost. The truncation of the MailBox Info block is NOT
1900 * reflected in the return status. Note that hcf_get_info guarantees the length of the PC RAM buffer meets
1901 * the minimum requirements of at least 2, so no PC RAM buffer overrun.
1903 * Calling hcf_get_mb_info when their is no MailBox Info block available or when there is no MailBox at all,
1904 * results in a "NULL" MailBox Info block.
1907 *17: The return status of cmd_wait and the first hcfio_in_string can be ignored, because when one fails, the
1908 * other fails via the IFB_DefunctStat mechanism
1909 *20: "HCFASSERT( rc == HCF_SUCCESS, rc )" is not suitable because this will always trigger as side effect of
1910 * the HCFASSERT in hcf_put_info which calls hcf_get_info to figure out whether the RID exists at all.
1914 * "HCF embedded" pseudo RIDs:
1915 * CFG_MB_INFO, CFG_TALLIES, CFG_DRV_IDENTITY, CFG_DRV_SUP_RANGE, CFG_DRV_ACT_RANGES_PRI,
1916 * CFG_DRV_ACT_RANGES_STA, CFG_DRV_ACT_RANGES_HSI
1917 * Note the HCF_ERR_LEN is NOT adequately set, when L >= 2 but less than needed
1919 * Remarks: Transfers operation information and transient and persistent configuration information from the
1920 * Card and from the HCF to the MSF.
1921 * The exact layout of the provided data structure depends on the action code. Copying stops if either the
1922 * complete Configuration Information is copied or if the number of bytes indicated by len is copied. Len
1923 * acts as a safe guard against Configuration Information blocks which have different sizes for different
1924 * Hermes versions, e.g. when later versions support more tallies than earlier versions. It is a conscious
1925 * decision that unused parts of the PC RAM buffer are not cleared.
1927 * Remarks: The only error against which is protected is the "Read error" as result of Card removal. Only the
1928 * last hcf_io_string need to be protected because if the first fails the second will fail as well. Checking
1929 * for cmd_exe errors is supposed superfluous because problems in cmd_exe are already caught or will be
1930 * caught by hcf_enable.
1932 * CFG_MB_INFO: copy the oldest MailBox Info Block or the "null" block if none available.
1934 * The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy:
1935 * - during the pseudo-asynchronous Hermes commands (diagnose, download) only CFG_MB_INFO is acceptable
1936 * - some codes (e.g. CFG_TALLIES) are explicitly handled by the HCF which implies that these codes
1938 * - all other codes in the range 0xFC00 through 0xFFFF are passed to the Hermes. The Hermes returns an
1939 * LTV record with a zero value in the L-field for all Typ-codes it does not recognize. This is
1940 * defined and intended behavior, so HCF_ASSERT does not catch on this phenomena.
1941 * - all remaining codes are invalid and cause an ASSERT.
1944 * In case of USB, HCF_MAX_MSG ;?USED;? to limit the amount of data that can be retrieved via hcf_get_info.
1947 *.ENDDOC END DOCUMENTATION
1949 ************************************************************************************************************/
1951 hcf_get_info( IFBP ifbp
, LTVP ltvp
)
1954 int rc
= HCF_SUCCESS
;
1955 hcf_16 len
= ltvp
->len
;
1956 hcf_16 type
= ltvp
->typ
;
1957 wci_recordp p
= <vp
->len
; //destination word pointer (in LTV record)
1958 hcf_16
*q
= NULL
; /* source word pointer Note!! DOS COM can't cope with FAR
1959 * as a consequence MailBox must be near which is usually true anyway
1963 HCFLOGENTRY( HCF_TRACE_GET_INFO
, ltvp
->typ
);
1964 HCFASSERT( ifbp
->IFB_Magic
== HCF_MAGIC
, ifbp
->IFB_Magic
);
1966 HCFASSERT( ltvp
, 0 );
1967 HCFASSERT( 1 < ltvp
->len
&& ltvp
->len
<= HCF_MAX_LTV
+ 1, MERGE_2( ltvp
->typ
, ltvp
->len
) );
1969 ltvp
->len
= 0; //default to: No Info Available
1970 //filter out all specials
1971 for ( i
= 0; ( q
= xxxx
[i
] ) != NULL
&& q
[1] != type
; i
++ ) /*NOP*/;
1974 if ( type
== CFG_TALLIES
) { /*3*/
1975 (void)hcf_action( ifbp
, HCF_ACT_TALLIES
);
1976 q
= (hcf_16
*)&ifbp
->IFB_TallyLen
;
1978 #endif // HCF_TALLIES
1980 if ( type
== CFG_MB_INFO
) {
1981 if ( ifbp
->IFB_MBInfoLen
) {
1982 if ( ifbp
->IFB_MBp
[ifbp
->IFB_MBRp
] == 0xFFFF ) {
1983 ifbp
->IFB_MBRp
= 0; //;?Probably superfluous
1985 q
= &ifbp
->IFB_MBp
[ifbp
->IFB_MBRp
];
1986 ifbp
->IFB_MBRp
+= *q
+ 1; //update read pointer
1987 if ( ifbp
->IFB_MBp
[ifbp
->IFB_MBRp
] == 0xFFFF ) {
1990 ifbp
->IFB_MBInfoLen
= ifbp
->IFB_MBp
[ifbp
->IFB_MBRp
];
1994 if ( q
!= NULL
) { //a special or CFG_TALLIES or CFG_MB_INFO
1995 i
= min( len
, *q
) + 1; //total size of destination (including T-field)
1998 #if (HCF_TALLIES) & HCF_TALLIES_RESET
1999 if ( q
> &ifbp
->IFB_TallyTyp
&& type
== CFG_TALLIES
) {
2002 #endif // HCF_TALLIES_RESET
2005 } else { // not a special nor CFG_TALLIES nor CFG_MB_INFO
2006 if ( type
== CFG_CNTL_OPT
) { //read back effective options
2008 ltvp
->val
[0] = ifbp
->IFB_CntlOpt
;
2009 #if (HCF_EXT) & HCF_EXT_NIC_ACCESS
2010 } else if ( type
== CFG_PROD_DATA
) { //only needed for some test tool on top of H-II NDIS driver
2012 wci_bufp pt
; //pointer with the "right" type, just to help ease writing macros with embedded assembly
2013 OPW( HREG_AUX_PAGE
, (hcf_16
)(PLUG_DATA_OFFSET
>> 7) );
2014 OPW( HREG_AUX_OFFSET
, (hcf_16
)(PLUG_DATA_OFFSET
& 0x7E) );
2015 io_port
= ifbp
->IFB_IOBase
+ HREG_AUX_DATA
; //to prevent side effects of the MSF-defined macro
2016 p
= ltvp
->val
; //destination char pointer (in LTV record)
2019 pt
= (wci_bufp
)p
; //just to help ease writing macros with embedded assembly
2020 IN_PORT_STRING_8_16( io_port
, pt
, i
); //space used by T: -1
2022 } else if ( type
== CFG_CMD_HCF
) {
2023 #define P ((CFG_CMD_HCF_STRCT FAR *)ltvp)
2024 HCFASSERT( P
->cmd
== CFG_CMD_HCF_REG_ACCESS
, P
->cmd
); //only Hermes register access supported
2025 if ( P
->cmd
== CFG_CMD_HCF_REG_ACCESS
) {
2026 HCFASSERT( P
->mode
< ifbp
->IFB_IOBase
, P
->mode
); //Check Register space
2027 ltvp
->len
= min( len
, 4 ); //RESTORE ltv length
2028 P
->add_info
= IPW( P
->mode
);
2031 #endif // HCF_EXT_NIC_ACCESS
2032 #if (HCF_ASSERT) & HCF_ASSERT_PRINTF
2033 } else if (type
== CFG_FW_PRINTF
) {
2034 rc
= fw_printf(ifbp
, (CFG_FW_PRINTF_STRCT
*)ltvp
);
2035 #endif // HCF_ASSERT_PRINTF
2036 } else if ( type
>= CFG_RID_FW_MIN
) {
2037 //;? by using HCMD_BUSY option when calling cmd_exe, using a get_frag with length 0 just to set up the
2038 //;? BAP and calling cmd_cmpl, you could merge the 2 Busy waits. Whether this really helps (and what
2039 //;? would be the optimal sequence in cmd_exe and get_frag) would have to be MEASURED
2040 /*17*/ if ( ( rc
= cmd_exe( ifbp
, HCMD_ACCESS
, type
) ) == HCF_SUCCESS
&&
2041 ( rc
= setup_bap( ifbp
, type
, 0, IO_IN
) ) == HCF_SUCCESS
) {
2042 get_frag( ifbp
, (wci_bufp
)<vp
->len
, 2*len
+2 BE_PAR(2) );
2043 if ( IPW( HREG_STAT
) == 0xFFFF ) { //NIC removal test
2045 HCFASSERT( DO_ASSERT
, type
);
2048 /*12*/ } else HCFASSERT( DO_ASSERT
, type
) /*NOP*/; //NOP in case HCFASSERT is dummy
2050 if ( len
< ltvp
->len
) {
2052 if ( rc
== HCF_SUCCESS
) {
2056 HCFASSERT( rc
== HCF_SUCCESS
|| ( rc
== HCF_ERR_LEN
&& ifbp
->IFB_AssertTrace
& 1<<HCF_TRACE_PUT_INFO
),
2057 MERGE_2( type
, rc
) ); /*20*/
2058 HCFLOGEXIT( HCF_TRACE_GET_INFO
);
2063 /************************************************************************************************************
2065 *.MODULE int hcf_put_info( IFBP ifbp, LTVP ltvp )
2066 *.PURPOSE Transfers operation and configuration information to the Card and to the HCF.
2069 * ifbp address of the Interface Block
2070 * ltvp specifies the RID (as defined by Hermes I/F) or pseudo-RID (as defined by WCI)
2075 * HCF_ERR_NO_NIC NIC removed during data retrieval
2076 * HCF_ERR_TIME_OUT Expected F/W event did not occur in time
2077 * HCF_ERR_DEFUNCT_...
2078 *!! via download CFG_DLNV_START <= type <= CFG_DL_STOP
2079 *!! via put_info CFG_RID_CFG_MIN <= type <= CFG_RID_CFG_MAX
2083 * The L-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the size of the buffer.
2084 * The L-value includes the size of the T-field, but not the size of the L-field.
2085 * The T- field specifies the RID placed in the V-field by the MSF.
2087 * Not all CFG-codes can be used for hcf_put_info. The following CFG-codes are valid for hcf_put_info:
2088 * o One of the CFG-codes in the group "Network Parameters, Static Configuration Entities"
2089 * Changes made by hcf_put_info to CFG_codes in this group will not affect the F/W
2090 * and HCF behavior until hcf_cntl_port( HCF_PORT_ENABLE) is called.
2091 * o One of the CFG-codes in the group "Network Parameters, Dynamic Configuration Entities"
2092 * Changes made by hcf_put_info to CFG_codes will affect the F/W and HCF behavior immediately.
2094 * This code is used to initiate and terminate the process to download data either to
2095 * volatile or to non-volatile RAM on the NIC as well as for the actual download.
2096 * o CFG-codes related to the HCF behavior.
2097 * The related CFG-codes are:
2099 * - CFG_REG_ASSERT_RTNP
2100 * - CFG_REG_INFO_LOG
2106 * All LTV-records "unknown" to the HCF are forwarded to the F/W.
2109 * - ifbp has a recognizable out-of-range value.
2110 * - ltvp is a NULL pointer.
2111 * - hcf_put_info was called without prior call to hcf_connect
2112 * - type field of the LTV-record is invalid, i.e. neither HCF nor F/W can handle the value.
2113 * - length field of the LTV-record at entry is less than 1 or exceeds MAX_LTV_SIZE.
2114 * - registering a MailBox with size less than 60 or a non-aligned buffer address is used.
2115 * - reentrancy, may be caused by calling hcf_functions without adequate protection against
2116 * NIC interrupts or multi-threading.
2121 * Remarks: In case of Hermes Configuration LTVs, the codes for the type are "cleverly" chosen to be
2122 * identical to the RID. Hermes Configuration information is copied from the provided data structure into the
2124 * In case of HCF Configuration LTVs, the type values are chosen in a range which does not overlap the
2129 *.ENDDOC END DOCUMENTATION
2131 ************************************************************************************************************/
2134 hcf_put_info( IFBP ifbp
, LTVP ltvp
)
2136 int rc
= HCF_SUCCESS
;
2138 HCFLOGENTRY( HCF_TRACE_PUT_INFO
, ltvp
->typ
);
2139 HCFASSERT( ifbp
->IFB_Magic
== HCF_MAGIC
, ifbp
->IFB_Magic
);
2141 HCFASSERT( ltvp
, 0 );
2142 HCFASSERT( 1 < ltvp
->len
&& ltvp
->len
<= HCF_MAX_LTV
+ 1, ltvp
->len
);
2144 //all codes between 0xFA00 and 0xFCFF are passed to Hermes
2145 #if (HCF_TYPE) & HCF_TYPE_WPA
2150 if ( ltvp
->typ
== CFG_ADD_TKIP_DEFAULT_KEY
|| ltvp
->typ
== CFG_ADD_TKIP_MAPPED_KEY
) {
2151 key_p
= (hcf_32
*)((CFG_ADD_TKIP_MAPPED_KEY_STRCT FAR
*)ltvp
)->tx_mic_key
;
2152 i
= TX_KEY
; //i.e. TxKeyIndicator == 1, KeyID == 0
2153 if ( ltvp
->typ
== CFG_ADD_TKIP_DEFAULT_KEY
) {
2154 key_p
= (hcf_32
*)((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR
*)ltvp
)->tx_mic_key
;
2155 i
= CNV_LITTLE_TO_SHORT(((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR
*)ltvp
)->tkip_key_id_info
);
2157 if ( i
& TX_KEY
) { /* TxKeyIndicator == 1
2158 (either really set by MSF in case of DEFAULT or faked by HCF in case of MAPPED ) */
2159 ifbp
->IFB_MICTxCntl
= (hcf_16
)( HFS_TX_CNTL_MIC
| (i
& KEY_ID
)<<8 );
2160 ifbp
->IFB_MICTxKey
[0] = CNV_LONGP_TO_LITTLE( key_p
);
2161 ifbp
->IFB_MICTxKey
[1] = CNV_LONGP_TO_LITTLE( (key_p
+1) );
2163 i
= ( i
& KEY_ID
) * 2;
2164 ifbp
->IFB_MICRxKey
[i
] = CNV_LONGP_TO_LITTLE( (key_p
+2) );
2165 ifbp
->IFB_MICRxKey
[i
+1] = CNV_LONGP_TO_LITTLE( (key_p
+3) );
2167 #define P ((CFG_REMOVE_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)
2168 if ( ( ltvp
->typ
== CFG_REMOVE_TKIP_MAPPED_KEY
) ||
2169 ( ltvp
->typ
== CFG_REMOVE_TKIP_DEFAULT_KEY
&&
2170 ( (ifbp
->IFB_MICTxCntl
>> 8) & KEY_ID
) == CNV_SHORT_TO_LITTLE(P
->tkip_key_id
)
2172 ) { ifbp
->IFB_MICTxCntl
= 0; } //disable MIC-engine
2175 #endif // HCF_TYPE_WPA
2177 if ( ltvp
->typ
== CFG_PROG
) {
2178 rc
= download( ifbp
, (CFG_PROG_STRCT FAR
*)ltvp
);
2179 } else switch (ltvp
->typ
) {
2180 #if (HCF_ASSERT) & HCF_ASSERT_RT_MSF_RTN
2181 case CFG_REG_ASSERT_RTNP
: //Register MSF Routines
2182 #define P ((CFG_REG_ASSERT_RTNP_STRCT FAR *)ltvp)
2183 ifbp
->IFB_AssertRtn
= P
->rtnp
;
2184 // ifbp->IFB_AssertLvl = P->lvl; //TODO not yet supported so default is set in hcf_connect
2185 HCFASSERT( DO_ASSERT
, MERGE_2( HCF_ASSERT
, 0xCAF1 ) ); //just to proof that the complete assert machinery is working
2188 #endif // HCF_ASSERT_RT_MSF_RTN
2189 #if (HCF_EXT) & HCF_EXT_INFO_LOG
2190 case CFG_REG_INFO_LOG
: //Register Log filter
2191 ifbp
->IFB_RIDLogp
= ((CFG_RID_LOG_STRCT FAR
*)ltvp
)->recordp
;
2193 #endif // HCF_EXT_INFO_LOG
2194 case CFG_CNTL_OPT
: //overrule option
2195 HCFASSERT( ( ltvp
->val
[0] & ~(USE_DMA
| USE_16BIT
) ) == 0, ltvp
->val
[0] );
2196 if ( ( ltvp
->val
[0] & USE_DMA
) == 0 ) ifbp
->IFB_CntlOpt
&= ~USE_DMA
;
2197 ifbp
->IFB_CntlOpt
|= ltvp
->val
[0] & USE_16BIT
;
2200 case CFG_REG_MB
: //Register MailBox
2201 #define P ((CFG_REG_MB_STRCT FAR *)ltvp)
2202 HCFASSERT( ( (hcf_32
)P
->mb_addr
& 0x0001 ) == 0, (hcf_32
)P
->mb_addr
);
2203 HCFASSERT( (P
)->mb_size
>= 60, (P
)->mb_size
);
2204 ifbp
->IFB_MBp
= P
->mb_addr
;
2205 /* if no MB present, size must be 0 for ;?the old;? put_info_mb to work correctly */
2206 ifbp
->IFB_MBSize
= ifbp
->IFB_MBp
== NULL
? 0 : P
->mb_size
;
2207 ifbp
->IFB_MBWp
= ifbp
->IFB_MBRp
= 0;
2208 ifbp
->IFB_MBp
[0] = 0; //flag the MailBox as empty
2209 ifbp
->IFB_MBInfoLen
= 0;
2210 HCFASSERT( ifbp
->IFB_MBSize
>= 60 || ifbp
->IFB_MBp
== NULL
, ifbp
->IFB_MBSize
);
2213 case CFG_MB_INFO
: //store MailBoxInfoBlock
2214 rc
= put_info_mb( ifbp
, (CFG_MB_INFO_STRCT FAR
*)ltvp
);
2217 #if (HCF_EXT) & HCF_EXT_NIC_ACCESS
2219 #define P ((CFG_CMD_NIC_STRCT FAR *)ltvp)
2220 OPW( HREG_PARAM_2
, P
->parm2
);
2221 OPW( HREG_PARAM_1
, P
->parm1
);
2222 rc
= cmd_exe( ifbp
, P
->cmd
, P
->parm0
);
2223 P
->hcf_stat
= (hcf_16
)rc
;
2224 P
->stat
= IPW( HREG_STAT
);
2225 P
->resp0
= IPW( HREG_RESP_0
);
2226 P
->resp1
= IPW( HREG_RESP_1
);
2227 P
->resp2
= IPW( HREG_RESP_2
);
2228 P
->ifb_err_cmd
= ifbp
->IFB_ErrCmd
;
2229 P
->ifb_err_qualifier
= ifbp
->IFB_ErrQualifier
;
2233 #define P ((CFG_CMD_HCF_STRCT FAR *)ltvp)
2234 HCFASSERT( P
->cmd
== CFG_CMD_HCF_REG_ACCESS
, P
->cmd
); //only Hermes register access supported
2235 if ( P
->cmd
== CFG_CMD_HCF_REG_ACCESS
) {
2236 HCFASSERT( P
->mode
< ifbp
->IFB_IOBase
, P
->mode
); //Check Register space
2237 OPW( P
->mode
, P
->add_info
);
2241 #endif // HCF_EXT_NIC_ACCESS
2243 #if (HCF_ASSERT) & HCF_ASSERT_PRINTF
2244 case CFG_FW_PRINTF_BUFFER_LOCATION
:
2245 ifbp
->IFB_FwPfBuff
= *(CFG_FW_PRINTF_BUFFER_LOCATION_STRCT
*)ltvp
;
2247 #endif // HCF_ASSERT_PRINTF
2249 default: //pass everything unknown above the "FID" range to the Hermes or Dongle
2250 rc
= put_info( ifbp
, ltvp
);
2252 //DO NOT !!! HCFASSERT( rc == HCF_SUCCESS, rc ) /* 20 */
2253 HCFLOGEXIT( HCF_TRACE_PUT_INFO
);
2258 /************************************************************************************************************
2260 *.MODULE int hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset )
2261 *.PURPOSE All: decapsulate a message.
2262 * pre-HermesII.5: verify MIC.
2263 * non-USB, non-DMA mode: Transfer a message from the NIC to the Host and acknowledge reception.
2264 * USB: Transform a message from proprietary USB format to 802.3 format
2267 * ifbp address of the Interface Block
2268 * descp Pointer to the Descriptor List location.
2269 * offset USB: not used
2270 * non-USB: specifies the beginning of the data to be obtained (0 corresponds with DestAddr field
2274 * HCF_SUCCESS No WPA error ( or HCF_ERR_MIC already reported by hcf_service_nic)
2275 * HCF_ERR_MIC message contains an erroneous MIC ( HCF_SUCCESS is reported if HCF_ERR_MIC is already
2276 * reported by hcf_service_nic)
2277 * HCF_ERR_NO_NIC NIC removed during data retrieval
2278 * HCF_ERR_DEFUNCT...
2281 * The Receive Message Function can be executed by the MSF to obtain the Data Info fields of the message that
2282 * is reported to be available by the Service NIC Function.
2284 * The Receive Message Function copies the message data available in the Card memory into a buffer structure
2285 * provided by the MSF.
2286 * Only data of the message indicated by the Service NIC Function can be obtained.
2287 * Execution of the Service NIC function may result in the availability of a new message, but it definitely
2288 * makes the message reported by the preceding Service NIC function, unavailable.
2290 * in non-USB/non-DMA mode, hcf_rcv_msg starts the copy process at the (non-negative) offset requested by the
2291 * parameter offset, relative to HFS_ADDR_DEST, e.g offset 0 starts copying from the Destination Address, the
2292 * very begin of the 802.3 frame message. Offset must either lay within the part of the 802.3 frame as stored
2293 * by hcf_service_nic in the lookahead buffer or be just behind it, i.e. the first byte not yet read.
2294 * When offset is within lookahead, data is copied from lookahead.
2295 * When offset is beyond lookahead, data is read directly from RxFS in NIC with disregard of the actual value
2299 * o at entry: look ahead buffer as passed with hcf_service_nic is still accessible and unchanged
2300 * o at exit: Receive Frame in NIC memory is released
2303 * Starting at the byte indicated by the Offset value, the bytes are copied from the Data Info
2304 * Part of the current Receive Frame Structure to the Host memory data buffer structure
2305 * identified by descp.
2306 * The maximum value for Offset is the number of characters of the 802.3 frame read into the
2307 * look ahead buffer by hcf_service_nic (i.e. the look ahead buffer size minus
2308 * Control and 802.11 fields)
2309 * If Offset is less than the maximum value, copying starts from the look ahead buffer till the
2310 * end of that buffer is reached
2311 * Then (or if the maximum value is specified for Offset), the
2312 * message is directly copied from NIC memory to Host memory.
2313 * If an invalid (i.e. too large) offset is specified, an assert catches but the buffer contents are
2315 * Copying stops if either:
2316 * o the end of the 802.3 frame is reached
2317 * o the Descriptor with a NULL pointer in the next_desc_addr field is reached
2319 * When the copying stops, the receiver is ack'ed, thus freeing the NIC memory where the frame is stored
2320 * As a consequence, hcf_rcv_msg can only be called once for any particular Rx frame.
2322 * For the time being (PCI Bus mastering not yet supported), only the following fields of each
2323 * of the descriptors in the descriptor list must be set by the MSF:
2324 * o buf_cntl.buf_dim[1]
2327 * At return from hcf_rcv_msg, the field buf_cntl.buf_dim[0] of the used Descriptors reflects
2328 * the number of bytes in the buffer corresponding with the Descriptor.
2329 * On the last used Descriptor, buf_cntl.buf_dim[0] is less or equal to buf_cntl.buf_dim[1].
2330 * On all preceding Descriptors buf_cntl.buf_dim[0] is equal to buf_cntl.buf_dim[1].
2331 * On all succeeding (unused) Descriptors, buf_cntl.buf_dim[0] is zero.
2332 * Note: this I/F is based on the assumptions how the I/F needed for PCI Bus mastering will
2333 * be, so it may change.
2335 * The most likely handling of HCF_ERR_NO_NIC by the MSF is to drop the already copied
2336 * data as elegantly as possible under the constraints and requirements posed by the (N)OS.
2337 * If no received Frame Structure is pending, "Success" rather than "Read error" is returned.
2338 * This error constitutes a logic flaw in the MSF
2339 * The HCF can only catch a minority of this
2341 * Based on consistency ideas, the HCF catches none of these errors.
2344 * - ifbp has a recognizable out-of-range value
2345 * - there is no unacknowledged Rx-message available
2346 * - offset is out of range (outside look ahead buffer)
2347 * - descp is a NULL pointer
2348 * - any of the descriptors is not double word aligned
2349 * - reentrancy, may be caused by calling hcf_functions without adequate protection
2350 * against NIC interrupts or multi-threading.
2351 * - Interrupts are enabled.
2356 * - by using unsigned int as type for offset, no need to worry about negative offsets
2357 * - Asserting on being enabled/present is superfluous, since a non-zero IFB_lal implies that hcf_service_nic
2358 * was called and detected a Rx-message. A zero IFB_lal will set the BUF_CNT field of at least the first
2359 * descriptor to zero.
2361 *.ENDDOC END DOCUMENTATION
2363 ************************************************************************************************************/
2365 hcf_rcv_msg( IFBP ifbp
, DESC_STRCT
*descp
, unsigned int offset
)
2367 int rc
= HCF_SUCCESS
;
2368 wci_bufp cp
; //char oriented working pointer
2370 int tot_len
= ifbp
->IFB_RxLen
- offset
; //total length
2371 wci_bufp lap
= ifbp
->IFB_lap
+ offset
; //start address in LookAhead Buffer
2372 hcf_16 lal
= ifbp
->IFB_lal
- offset
; //available data within LookAhead Buffer
2375 HCFLOGENTRY( HCF_TRACE_RCV_MSG
, offset
);
2376 HCFASSERT( ifbp
->IFB_Magic
== HCF_MAGIC
, ifbp
->IFB_Magic
);
2378 HCFASSERT( descp
, HCF_TRACE_RCV_MSG
);
2379 HCFASSERT( ifbp
->IFB_RxLen
, HCF_TRACE_RCV_MSG
);
2380 HCFASSERT( ifbp
->IFB_RxLen
>= offset
, MERGE_2( offset
, ifbp
->IFB_RxLen
) );
2381 HCFASSERT( ifbp
->IFB_lal
>= offset
, offset
);
2382 HCFASSERT( (ifbp
->IFB_CntlOpt
& USE_DMA
) == 0, 0xDADA );
2384 if ( tot_len
< 0 ) {
2385 lal
= 0; tot_len
= 0; //suppress all copying activity in the do--while loop
2387 do { //loop over all available fragments
2388 // obnoxious hcf.c(1480) : warning C4769: conversion of near pointer to long integer
2389 HCFASSERT( ((hcf_32
)descp
& 3 ) == 0, (hcf_32
)descp
);
2390 cp
= descp
->buf_addr
;
2391 j
= min( (hcf_16
)tot_len
, descp
->BUF_SIZE
); //minimum of "what's` available" and fragment size
2393 tot_len
-= j
; //adjust length still to go
2394 if ( lal
) { //if lookahead Buffer not yet completely copied
2395 i
= min( lal
, j
); //minimum of "what's available" in LookAhead and fragment size
2396 lal
-= i
; //adjust length still available in LookAhead
2397 j
-= i
; //adjust length still available in current fragment
2398 /*;? while loop could be improved by moving words but that is complicated on platforms with
2399 * alignment requirements*/
2400 while ( i
-- ) *cp
++ = *lap
++;
2402 if ( j
) { //if LookAhead Buffer exhausted but still space in fragment, copy directly from NIC RAM
2403 get_frag( ifbp
, cp
, j
BE_PAR(0) );
2404 CALC_RX_MIC( cp
, j
);
2406 } while ( ( descp
= descp
->next_desc_addr
) != NULL
);
2407 #if (HCF_TYPE) & HCF_TYPE_WPA
2408 if ( ifbp
->IFB_RxFID
) {
2409 rc
= check_mic( ifbp
); //prevents MIC error report if hcf_service_nic already consumed all
2411 #endif // HCF_TYPE_WPA
2412 (void)hcf_action( ifbp
, HCF_ACT_RX_ACK
); //only 1 shot to get the data, so free the resources in the NIC
2413 HCFASSERT( rc
== HCF_SUCCESS
, rc
);
2414 HCFLOGEXIT( HCF_TRACE_RCV_MSG
);
2419 /************************************************************************************************************
2421 *.MODULE int hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
2422 *.PURPOSE Encapsulate a message and append padding and MIC.
2423 * non-USB: Transfers the resulting message from Host to NIC and initiates transmission.
2424 * USB: Transfer resulting message into a flat buffer.
2427 * ifbp address of the Interface Block
2428 * descp pointer to the DescriptorList or NULL
2429 * tx_cntl indicates MAC-port and (Hermes) options
2430 * HFS_TX_CNTL_SPECTRALINK
2434 * HFS_TX_CNTL_TX_DELAY
2435 * HFS_TX_CNTL_TX_CONT
2436 * HCF_PORT_0 MAC Port 0 (default)
2437 * HCF_PORT_1 (AP only) MAC Port 1
2438 * HCF_PORT_2 (AP only) MAC Port 2
2439 * HCF_PORT_3 (AP only) MAC Port 3
2440 * HCF_PORT_4 (AP only) MAC Port 4
2441 * HCF_PORT_5 (AP only) MAC Port 5
2442 * HCF_PORT_6 (AP only) MAC Port 6
2446 * HCF_ERR_DEFUNCT_..
2450 * The Send Message Function embodies 2 functions:
2451 * o transfers a message (including MAC header) from the provided buffer structure in Host memory to the Transmit
2452 * Frame Structure (TxFS) in NIC memory.
2453 * o Issue a send command to the F/W to actually transmit the contents of the TxFS.
2455 * Control is based on the Resource Indicator IFB_RscInd.
2456 * The Resource Indicator is maintained by the HCF and should only be interpreted but not changed by the MSF.
2457 * The MSF must check IFB_RscInd to be non-zero before executing the call to the Send Message Function.
2458 * When no resources are available, the MSF must handle the queuing of the Transmit frame and check the
2459 * Resource Indicator periodically after calling hcf_service_nic.
2461 * The Send Message Functions transfers a message to NIC memory when it is called with a non-NULL descp.
2462 * Before the Send Message Function is invoked this way, the Resource Indicator (IFB_RscInd) must be checked.
2463 * If the Resource is not available, Send Message Function execution must be postponed until after processing of
2464 * a next hcf_service_nic it appears that the Resource has become available.
2465 * The message is copied from the buffer structure identified by descp to the NIC.
2466 * Copying stops if a NULL pointer in the next_desc_addr field is reached.
2467 * Hcf_send_msg does not check for transmit buffer overflow, because the F/W does this protection.
2468 * In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped.
2470 * The Send Message Function activates the F/W to actually send the message to the medium when the
2471 * HFS_TX_CNTL_TX_DELAY bit of the tx_cntl parameter is not set.
2472 * If the descp parameter of the current call is non-NULL, the message as represented by descp is send.
2473 * If the descp parameter of the current call is NULL, and if the preceding call of the Send Message Function had
2474 * a non-NULL descp and the preceding call had the HFS_TX_CNTL_TX_DELAY bit of tx_cntl set, then the message as
2475 * represented by the descp of the preceding call is send.
2477 * Hcf_send_msg supports encapsulation (see HCF_ENCAP) of Ethernet-II frames.
2478 * An Ethernet-II frame is transferred to the Transmit Frame structure as an 802.3 frame.
2479 * Hcf_send_msg distinguishes between an 802.3 and an Ethernet-II frame by looking at the data length/type field
2480 * of the frame. If this field contains a value larger than 1514, the frame is considered to be an Ethernet-II
2481 * frame, otherwise it is treated as an 802.3 frame.
2482 * To ease implementation of the HCF, this type/type field must be located in the first descriptor structure,
2483 * i.e. the 1st fragment must have a size of at least 14 (to contain DestAddr, SrcAddr and Len/Type field).
2484 * An Ethernet-II frame is encapsulated by inserting a SNAP header between the addressing information and the
2485 * type field. This insertion is transparent for the MSF.
2486 * The HCF contains a fixed table that stores a number of types. If the value specified by the type/type field
2487 * occurs in this table, Bridge Tunnel Encapsulation is used, otherwise RFC1042 encapsulation is used.
2488 * Bridge Tunnel uses AA AA 03 00 00 F8 as SNAP header,
2489 * RFC1042 uses AA AA 03 00 00 00 as SNAP header.
2490 * The table currently contains:
2491 * 0 0x80F3 AppleTalk Address Resolution Protocol (AARP)
2494 * The algorithm to distinguish between 802.3 and Ethernet-II frames limits the maximum length for frames of
2495 * 802.3 frames to 1514 bytes.
2496 * Encapsulation can be suppressed by means of the system constant HCF_ENCAP, e.g. to support proprietary
2497 * protocols with 802.3 like frames with a size larger than 1514 bytes.
2499 * In case the HCF encapsulates the frame, the number of bytes that is actually transmitted is determined by the
2500 * cumulative value of the buf_cntl.buf_dim[0] fields.
2501 * In case the HCF does not encapsulate the frame, the number of bytes that is actually transmitted is not
2502 * determined by the cumulative value of the buf_cntl.buf_dim[DESC_CNTL_CNT] fields of the desc_strct's but by
2503 * the Length field of the 802.3 frame.
2504 * If there is a conflict between the cumulative value of the buf_cntl.buf_dim[0] fields and the
2505 * 802.3 Length field the 802.3 Length field determines the number of bytes actually transmitted by the NIC while
2506 * the cumulative value of the buf_cntl.buf_dim[0] fields determines the position of the MIC, hence a mismatch
2507 * will result in MIC errors on the Receiving side.
2508 * Currently this problem is flagged on the Transmit side by an Assert.
2509 * The following fields of each of the descriptors in the descriptor list must be set by the MSF:
2510 * o buf_cntl.buf_dim[0]
2514 * All bits of the tx_cntl parameter except HFS_TX_CNTL_TX_DELAY and the HCF_PORT# bits are passed to the F/W via
2515 * the HFS_TX_CNTL field of the TxFS.
2517 * Note that hcf_send_msg does not detect NIC absence. The MSF is supposed to have its own -platform dependent-
2518 * way to recognize card removal/insertion.
2519 * The total system must be robust against card removal and there is no principal difference between card removal
2520 * just after hcf_send_msg returns but before the actual transmission took place or sometime earlier.
2523 * - ifbp has a recognizable out-of-range value
2524 * - descp is a NULL pointer
2525 * - no resources for PIF available.
2526 * - Interrupts are enabled.
2527 * - reentrancy, may be caused by calling hcf_functions without adequate protection
2528 * against NIC interrupts or multi-threading.
2531 *4: for the normal case (i.e. no HFS_TX_CNTL_TX_DELAY option active), a fid is acquired via the
2532 * routine get_fid. If no FID is acquired, the remainder is skipped without an error notification. After
2533 * all, the MSF is not supposed to call hcf_send_msg when no Resource is available.
2534 *7: The ControlField of the TxFS is written. Since put_frag can only return the fatal Defunct or "No NIC", the
2535 * return status can be ignored because when it fails, cmd_wait will fail as well. (see also the note on the
2536 * need for a return code below).
2537 * Note that HFS_TX_CNTL has different values for H-I, H-I/WPA and H-II and HFS_ADDR_DEST has different
2538 * values for H-I (regardless of WPA) and H-II.
2539 * By writing 17, 1 or 2 ( implying 16, 0 or 1 garbage word after HFS_TX_CNTL) the BAP just gets to
2540 * HFS_ADDR_DEST for H-I, H-I/WPA and H-II respectively.
2541 *10: if neither encapsulation nor MIC calculation is needed, splitting the first fragment in two does not
2542 * really help but it makes the flow easier to follow to do not optimize on this difference
2544 * hcf_send_msg checks whether the frame is an Ethernet-II rather than an "official" 802.3 frame.
2545 * The E-II check is based on the length/type field in the MAC header. If this field has a value larger than
2546 * 1500, E-II is assumed. The implementation of this test fails if the length/type field is not in the first
2547 * descriptor. If E-II is recognized, a SNAP header is inserted. This SNAP header represents either RFC1042
2548 * or Bridge-Tunnel encapsulation, depending on the return status of the support routine hcf_encap.
2551 * hcf_send_msg leaves the responsibility to only send messages on enabled ports at the MSF level.
2552 * This is considered the strategy which is sufficiently adequate for all "robust" MSFs, have the least
2553 * processor utilization and being still acceptable robust at the WCI !!!!!
2555 * hcf_send_msg does not NEED a return value to report NIC absence or removal during the execution of
2556 * hcf_send_msg(), because the MSF and higher layers must be able to cope anyway with the NIC being removed
2557 * after a successful completion of hcf_send_msg() but before the actual transmission took place.
2558 * To accommodate user expectations the current implementation does report NIC absence.
2559 * Defunct blocks all NIC access and will (also) be reported on a number of other calls.
2561 * hcf_send_msg does not check for transmit buffer overflow because the Hermes does this protection.
2562 * In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped.
2563 * Note that this possibly results in the transmission of incomplete frames.
2565 * After some deliberation with F/W team, it is decided that - being in the twilight zone of not knowing
2566 * whether the problem at hand is an MSF bug, HCF buf, F/W bug, H/W malfunction or even something else - there
2567 * is no "best thing to do" in case of a failing send, hence the HCF considers the TxFID ownership to be taken
2568 * over by the F/W and hopes for an Allocate event in due time
2570 *.ENDDOC END DOCUMENTATION
2572 ************************************************************************************************************/
2574 hcf_send_msg( IFBP ifbp
, DESC_STRCT
*descp
, hcf_16 tx_cntl
)
2576 int rc
= HCF_SUCCESS
;
2577 DESC_STRCT
*p
/* = descp*/; //working pointer
2578 hcf_16 len
; // total byte count
2583 HCFASSERT( ifbp
->IFB_RscInd
|| descp
== NULL
, ifbp
->IFB_RscInd
);
2584 HCFASSERT( (ifbp
->IFB_CntlOpt
& USE_DMA
) == 0, 0xDADB );
2586 HCFLOGENTRY( HCF_TRACE_SEND_MSG
, tx_cntl
);
2587 HCFASSERT( ifbp
->IFB_Magic
== HCF_MAGIC
, ifbp
->IFB_Magic
);
2589 /* obnoxious c:/hcf/hcf.c(1480) : warning C4769: conversion of near pointer to long integer,
2591 HCFASSERT( ((hcf_32
)descp
& 3 ) == 0, (hcf_32
)descp
);
2593 { int x
= ifbp
->IFB_FWIdentity
.comp_id
== COMP_ID_FW_AP
? tx_cntl
& ~HFS_TX_CNTL_PORT
: tx_cntl
;
2594 HCFASSERT( (x
& ~HCF_TX_CNTL_MASK
) == 0, tx_cntl
);
2596 #endif // HCF_ASSERT
2598 if ( descp
) ifbp
->IFB_TxFID
= 0; //cancel a pre-put message
2600 /* the following initialization code is redundant for a pre-put message
2601 * but moving it inside the "if fid" logic makes the merging with the
2604 #if (HCF_TYPE) & HCF_TYPE_WPA
2605 tx_cntl
|= ifbp
->IFB_MICTxCntl
;
2606 #endif // HCF_TYPE_WPA
2607 fid
= ifbp
->IFB_TxFID
;
2608 if (fid
== 0 && ( fid
= get_fid( ifbp
) ) != 0 ) /* 4 */
2609 /* skip the next compound statement if:
2610 - pre-put message or
2611 - no fid available (which should never occur if the MSF adheres to the WCI)
2613 { // to match the closing curly bracket of above "if" in case of HCF_TYPE_USB
2614 //calculate total length ;? superfluous unless CCX or Encapsulation
2617 do len
+= p
->BUF_CNT
; while ( ( p
= p
->next_desc_addr
) != NULL
);
2619 //;? HCFASSERT( len <= HCF_MAX_MSG, len );
2620 /*7*/ (void)setup_bap( ifbp
, fid
, HFS_TX_CNTL
, IO_OUT
);
2621 #if (HCF_TYPE) & HCF_TYPE_TX_DELAY
2622 HCFASSERT( ( descp
!= NULL
) ^ ( tx_cntl
& HFS_TX_CNTL_TX_DELAY
), tx_cntl
);
2623 if ( tx_cntl
& HFS_TX_CNTL_TX_DELAY
) {
2624 tx_cntl
&= ~HFS_TX_CNTL_TX_DELAY
; //!!HFS_TX_CNTL_TX_DELAY no longer available
2625 ifbp
->IFB_TxFID
= fid
;
2626 fid
= 0; //!!fid no longer available, be careful when modifying code
2628 #endif // HCF_TYPE_TX_DELAY
2629 OPW( HREG_DATA_1
, tx_cntl
) ;
2630 OPW( HREG_DATA_1
, 0 );
2632 HCFASSERT( p
->BUF_CNT
>= 14, p
->BUF_CNT
);
2633 /* assume DestAddr/SrcAddr/Len/Type ALWAYS contained in 1st fragment
2634 * otherwise life gets too cumbersome for MIC and Encapsulation !!!!!!!!
2635 if ( p->BUF_CNT >= 14 ) { alternatively: add a safety escape !!!!!!!!!!!! } */
2637 CALC_TX_MIC( NULL
, -1 ); //initialize MIC
2638 /*10*/ put_frag( ifbp
, p
->buf_addr
, HCF_DASA_SIZE
BE_PAR(0) ); //write DA, SA with MIC calculation
2639 CALC_TX_MIC( p
->buf_addr
, HCF_DASA_SIZE
); //MIC over DA, SA
2640 CALC_TX_MIC( null_addr
, 4 ); //MIC over (virtual) priority field
2642 //if encapsulation needed
2643 #if (HCF_ENCAP) == HCF_ENC
2644 //write length (with SNAP-header,Type, without //DA,SA,Length ) no MIC calc.
2645 if ( ( snap_header
[sizeof(snap_header
)-1] = hcf_encap( &p
->buf_addr
[HCF_DASA_SIZE
] ) ) != ENC_NONE
) {
2646 OPW( HREG_DATA_1
, CNV_END_SHORT( len
+ (sizeof(snap_header
) + 2) - ( 2*6 + 2 ) ) );
2647 //write splice with MIC calculation
2648 put_frag( ifbp
, snap_header
, sizeof(snap_header
) BE_PAR(0) );
2649 CALC_TX_MIC( snap_header
, sizeof(snap_header
) ); //MIC over 6 byte SNAP
2654 OPW( HREG_DATA_1
, *(wci_recordp
)&p
->buf_addr
[HCF_DASA_SIZE
] );
2657 //complete 1st fragment starting with Type with MIC calculation
2658 put_frag( ifbp
, &p
->buf_addr
[i
], p
->BUF_CNT
- i
BE_PAR(0) );
2659 CALC_TX_MIC( &p
->buf_addr
[i
], p
->BUF_CNT
- i
);
2661 //do the remaining fragments with MIC calculation
2662 while ( ( p
= p
->next_desc_addr
) != NULL
) {
2663 /* obnoxious c:/hcf/hcf.c(1480) : warning C4769: conversion of near pointer to long integer,
2665 HCFASSERT( ((hcf_32
)p
& 3 ) == 0, (hcf_32
)p
);
2666 put_frag( ifbp
, p
->buf_addr
, p
->BUF_CNT
BE_PAR(0) );
2667 CALC_TX_MIC( p
->buf_addr
, p
->BUF_CNT
);
2669 //pad message, finalize MIC calculation and write MIC to NIC
2670 put_frag_finalize( ifbp
);
2673 /*16*/ rc
= cmd_exe( ifbp
, HCMD_BUSY
| HCMD_TX
| HCMD_RECL
, fid
);
2674 ifbp
->IFB_TxFID
= 0;
2675 /* probably this (i.e. no RscInd AND "HREG_EV_ALLOC") at this point in time occurs so infrequent,
2676 * that it might just as well be acceptable to skip this
2677 * "optimization" code and handle that additional interrupt once in a while
2679 // 180 degree error in logic ;? #if ALLOC_15
2680 /*20*/ if ( ifbp
->IFB_RscInd
== 0 ) {
2681 ifbp
->IFB_RscInd
= get_fid( ifbp
);
2683 // #endif // ALLOC_15
2685 // HCFASSERT( level::ifbp->IFB_RscInd, ifbp->IFB_RscInd );
2686 HCFLOGEXIT( HCF_TRACE_SEND_MSG
);
2691 /************************************************************************************************************
2693 *.MODULE int hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len )
2694 *.PURPOSE Services (most) NIC events.
2695 * Provides received message
2696 * Provides status information.
2699 * ifbp address of the Interface Block
2701 * bufp address of char buffer, sufficiently large to hold the first part of the RxFS up through HFS_TYPE
2702 * len length in bytes of buffer specified by bufp
2703 * value between HFS_TYPE + 2 and HFS_ADDR_DEST + HCF_MAX_MSG
2707 * HCF_ERR_MIC message contains an erroneous MIC (only if frame fits completely in bufp)
2711 * MSF-accessible fields of Result Block
2712 * - IFB_RxLen 0 or Frame size.
2713 * - IFB_MBInfoLen 0 or the L-field of the oldest MBIB.
2715 * - IFB_HCF_Tallies updated if a corresponding event occurred.
2716 * - IFB_NIC_Tallies updated if a Tally Info frame received from the NIC.
2720 * - IFB_LinkStat reflects new link status or 0x0000 if no change relative to previous hcf_service_nic call.
2722 * - IFB_LinkStat link status, 0x8000 reflects change relative to previous hcf_service_nic call.
2724 * When IFB_MBInfoLen is non-zero, at least one MBIB is available.
2726 * IFB_RxLen reflects the number of received bytes in 802.3 view (Including DestAddr, SrcAddr and Length,
2727 * excluding MIC-padding, MIC and sum check) of active Rx Frame Structure. If no Rx Data s available, IFB_RxLen
2729 * Repeated execution causes the Service NIC Function to provide information about subsequently received
2730 * messages, irrespective whether a hcf_rcv_msg or hcf_action(HCF_ACT_RX) is performed in between.
2732 * When IFB_RxLen is non-zero, a Received Frame Structure is available to be routed to the protocol stack.
2733 * When Monitor Mode is not active, this is guaranteed to be an error-free non-WMP frame.
2734 * In case of Monitor Mode, it may also be a frame with an error or a WMP frame.
2735 * Erroneous frames have a non-zero error-sub field in the HFS_STAT field in the look ahead buffer.
2737 * If a Receive message is available in NIC RAM, the Receive Frame Structure is (partly) copied from the NIC to
2738 * the buffer identified by bufp.
2739 * Copying stops either after len bytes or when the complete 802.3 frame is copied.
2740 * During the copying the message is decapsulated (if appropriate).
2741 * If the frame is read completely by hcf_service_nic (i.e. the frame fits completely in the lookahead buffer),
2742 * the frame is automatically ACK'ed to the F/W and still available via the look ahead buffer and hcf_rcv_msg.
2743 * Only if the frame is read completely by hcf_service_nic, hcf_service_nic checks the MIC and sets the return
2744 * status accordingly. In this case, hcf_rcv_msg does not check the MIC.
2746 * The MIC calculation algorithm works more efficient if the length of the look ahead buffer is
2747 * such that it fits exactly 4 n bytes of the 802.3 frame, i.e. len == HFS_ADDR_DEST + 4*n.
2749 * The Service NIC Function supports the NIC event service handling process.
2750 * It performs the appropriate actions to service the NIC, such that the event cause is eliminated and related
2751 * information is saved.
2752 * The Service NIC Function is executed by the MSF ISR or polling routine as first step to determine the event
2753 * cause(s). It is the responsibility of the MSF to perform all not directly NIC related interrupt service
2754 * actions, e.g. in a PC environment this includes servicing the PIC, and managing the Processor Interrupt
2755 * Enabling/Disabling.
2756 * In case of a polled based system, the Service NIC Function must be executed "frequently".
2757 * The Service NIC Function may have side effects related to the Mailbox and Resource Indicator (IFB_RscInd).
2759 * hcf_service_nic returns:
2760 * - The length of the data in the available MBIB (IFB_MBInfoLen)
2761 * - Changes in the link status (IFB_LinkStat)
2762 * - The length of the data in the available Receive Frame Structure (IFB_RxLen)
2763 * - updated IFB_RscInd
2766 * hcf_service_nic is presumed to neither interrupt other HCF-tasks nor to be interrupted by other HCF-tasks.
2767 * A way to achieve this is to precede hcf_service_nic as well as all other HCF-tasks with a call to
2768 * hcf_action to disable the card interrupts and, after all work is completed, with a call to hcf_action to
2769 * restore (which is not necessarily the same as enabling) the card interrupts.
2770 * In case of a polled environment, it is assumed that the MSF programmer is sufficiently familiar with the
2771 * specific requirements of that environment to translate the interrupt strategy to a polled strategy.
2773 * hcf_service_nic services the following Hermes events:
2774 * - HREG_EV_INFO Asynchronous Information Frame
2775 * - HREG_EV_INFO_DROP WMAC did not have sufficient RAM to build Unsolicited Information Frame
2776 * - HREG_EV_TX_EXC (if applicable, i.e. selected via HCF_EXT_INT_TX_EX bit of HCF_EXT)
2777 * - HREG_EV_SLEEP_REQ (if applicable, i.e. selected via HCF_DDS/HCF_CDS bit of HCF_SLEEP)
2778 * ** in non_DMA mode
2779 * - HREG_EV_ALLOC Asynchronous part of Allocation/Reclaim completed while out of resources at
2780 * completion of hcf_send_msg/notify
2781 * - HREG_EV_RX the detection of the availability of received messages
2782 * including WaveLAN Management Protocol (WMP) message processing
2786 *!! hcf_service_nic does not service the following Hermes events:
2787 *!! HREG_EV_TX (the "OK" Tx Event) is no longer supported by the WCI, if it occurs it is unclear
2788 *!! what the cause is, so no meaningful strategy is available. Not acking the bit is
2789 *!! probably the best help that can be given to the debugger.
2790 *!! HREG_EV_CMD handled in cmd_wait.
2791 *!! HREG_EV_FW_DMA (i.e. HREG_EV_RXDMA, HREG_EV_TXDMA and_EV_LPESC) are either not used or used
2792 *!! between the F/W and the DMA engine.
2793 *!! HREG_EV_ACK_REG_READY is only applicable for H-II (i.e. not HII.5 and up, see DAWA)
2795 * If, in non-DMA mode, a Rx message is available, its length is reflected by the IFB_RxLen field of the IFB.
2796 * This length reflects the data itself and the Destination Address, Source Address and DataLength/Type field
2797 * but not the SNAP-header in case of decapsulation by the HCF. If no message is available, IFB_RxLen is
2798 * zero. Former versions of the HCF handled WMP messages and supported a "monitor" mode in hcf_service_nic,
2799 * which deposited certain or all Rx messages in the MailBox. The responsibility to handle these frames is
2800 * moved to the MSF. The HCF offers as supports hcf_put_info with CFG_MB_INFO as parameter to emulate the old
2801 * implementation under control of the MSF.
2803 * **Rx Buffer free strategy
2804 * When hcf_service_nic reports the availability of a non-DMA message, the MSF can access that message by
2805 * means of hcf_rcv_msg. It must be prevented that the LAN Controller writes new data in the NIC buffer
2806 * before the MSF is finished with the current message. The NIC buffer is returned to the LAN Controller
2808 * - the complete frame fits in the lookahead buffer or
2809 * - hcf_rcv_msg is called or
2810 * - hcf_action with HCF_ACT_RX is called or
2811 * - hcf_service_nic is called again
2812 * It can be reasoned that hcf_action( INT_ON ) should not be given before the MSF has completely processed
2813 * a reported Rx-frame. The reason is that the INT_ON action is guaranteed to cause a (Rx-)interrupt (the
2814 * MSF is processing a Rx-frame, hence the Rx-event bit in the Hermes register must be active). This
2815 * interrupt will cause hcf_service_nic to be called, which will cause the ack-ing of the "last" Rx-event
2816 * to the Hermes, causing the Hermes to discard the associated NIC RAM buffer.
2818 * - ifbp is zero or other recognizable out-of-range value.
2819 * - hcf_service_nic is called without a prior call to hcf_connect.
2820 * - interrupts are enabled.
2821 * - reentrancy, may be caused by calling hcf_functions without adequate protection
2822 * against NIC interrupts or multi-threading.
2826 *1: IFB_LinkStat is cleared, if a LinkStatus frame is received, IFB_LinkStat will be updated accordingly
2829 *1: IFB_LinkStat change indication is cleared. If a LinkStatus frame is received, IFB_LinkStat will be updated
2830 * accordingly by isr_info.
2831 *2: IFB_RxLen must be cleared before the NIC presence check otherwise:
2832 * - this value may stay non-zero if the NIC is pulled out at an inconvenient moment.
2833 * - the RxAck on a zero-FID needs a zero-value for IFB_RxLen to work
2834 * Note that as side-effect of the hcf_action call, the remainder of Rx related info is re-initialized as
2836 *4: In case of Defunct mode, the information supplied by Hermes is unreliable, so the body of
2837 * hcf_service_nic is skipped. Since hcf_cntl turns into a NOP if Primary or Station F/W is incompatible,
2838 * hcf_service_nic is also skipped in those cases.
2839 * To prevent that hcf_service_nic reports bogus information to the MSF with all - possibly difficult to
2840 * debug - undesirable side effects, it is paramount to check the NIC presence. In former days the presence
2841 * test was based on the Hermes register HREG_SW_0. Since in HCF_ACT_INT_OFF is chosen for strategy based on
2842 * HREG_EV_STAT, this is now also used in hcf_service_nic. The motivation to change strategy is partly
2843 * due to inconsistent F/W implementations with respect to HREG_SW_0 manipulation around reset and download.
2844 * Note that in polled environments Card Removal is not detected by INT_OFF which makes the check in
2845 * hcf_service_nic even more important.
2846 *8: The event status register of the Hermes is sampled
2847 * The assert checks for unexpected events ;?????????????????????????????????????.
2848 * - HREG_EV_INFO_DROP is explicitly excluded from the acceptable HREG_EV_STAT bits because it indicates
2849 * a too heavily loaded system.
2850 * - HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5)
2853 * HREG_EV_TX_EXC is accepted (via HREG_EV_TX_EXT) if and only if HCF_EXT_INT_TX_EX set in the HCF_EXT
2854 * definition at compile time.
2855 * The following activities are handled:
2856 * - Alloc events are handled by hcf_send_msg (and notify). Only if there is no "spare" resource, the
2857 * alloc event is superficially serviced by hcf_service_nic to create a pseudo-resource with value
2858 * 0x001. This value is recognized by get_fid (called by hcf_send_msg and notify) where the real
2859 * TxFid is retrieved and the Hermes is acked and - hopefully - the "normal" case with a spare TxFid
2860 * in IFB_RscInd is restored.
2861 * - Info drop events are handled by incrementing a tally
2862 * - LinkEvent (including solicited and unsolicited tallies) are handled by procedure isr_info.
2863 * - TxEx (if selected at compile time) is handled by copying the significant part of the TxFS
2864 * into the IFB for further processing by the MSF.
2865 * Note the complication of the zero-FID protection sub-scheme in DAWA.
2866 * Note, the Ack of all of above events is handled at the end of hcf_service_nic
2867 *16: In case of non-DMA ( either not compiled in or due to a run-time choice):
2868 * If an Rx-frame is available, first the FID of that frame is read, including the complication of the
2869 * zero-FID protection sub-scheme in DAWA. Note that such a zero-FID is acknowledged at the end of
2870 * hcf_service_nic and that this depends on the IFB_RxLen initialization in the begin of hcf_service_nic.
2871 * The Assert validates the HCF assumption about Hermes implementation upon which the range of
2872 * Pseudo-RIDs is based.
2873 * Then the control fields up to the start of the 802.3 frame are read from the NIC into the lookahead buffer.
2874 * The status field is converted to native Endianness.
2875 * The length is, after implicit Endianness conversion if needed, and adjustment for the 14 bytes of the
2876 * 802.3 MAC header, stored in IFB_RxLen.
2877 * In MAC Monitor mode, 802.11 control frames with a TOTAL length of 14 are received, so without this
2878 * length adjustment, IFB_RxLen could not be used to distinguish these frames from "no frame".
2879 * No MIC calculation processes are associated with the reading of these Control fields.
2880 *26: This length test feels like superfluous robustness against malformed frames, but it turned out to be
2881 * needed in the real (hostile) world.
2882 * The decapsulation check needs sufficient data to represent DA, SA, L, SNAP and Type which amounts to
2883 * 22 bytes. In MAC Monitor mode, 802.11 control frames with a smaller length are received. To prevent
2884 * that the implementation goes haywire, a check on the length is needed.
2885 * The actual decapsulation takes place on the fly in the copying process by overwriting the SNAP header.
2886 * Note that in case of decapsulation the SNAP header is not passed to the MSF, hence IFB_RxLen must be
2887 * compensated for the SNAP header length.
2888 * The 22 bytes needed for decapsulation are (more than) sufficient for the exceptional handling of the
2889 * MIC algorithm of the L-field (replacing the 2 byte L-field with 4 0x00 bytes).
2890 *30: The 12 in the no-WPA branch corresponds with the get_frag, the 2 with the IPW of the WPA branch
2891 *32: If Hermes reported MIC-presence, than the MIC engine is initialized with the non-dummy MIC calculation
2892 * routine address and appropriate key.
2893 *34: The 8 bytes after the DA, SA, L are read and it is checked whether decapsulation is needed i.e.:
2894 * - the Hermes reported Tunnel encapsulation or
2895 * - the Hermes reported 1042 Encapsulation and hcf_encap reports that the HCF would not have used
2896 * 1042 as the encapsulation mechanism
2897 * Note that the first field of the RxFS in bufp has Native Endianness due to the conversion done by the
2898 * BE_PAR in get_frag.
2899 *36: The Type field is the only word kept (after moving) of the just read 8 bytes, it is moved to the
2900 * L-field. The original L-field and 6 byte SNAP header are discarded, so IFB_RxLen and buf_addr must
2902 *40: Determine how much of the frame (starting with DA) fits in the Lookahead buffer, then read the not-yet
2903 * read data into the lookahead buffer.
2904 * If the lookahead buffer contains the complete message, check the MIC. The majority considered this
2905 * I/F more appropriate then have the MSF call hcf_get_data only to check the MIC.
2906 *44: Since the complete message is copied from NIC RAM to PC RAM, the Rx can be acknowledged to the Hermes
2907 * to optimize the flow ( a better chance to get new Rx data in the next pass through hcf_service_nic ).
2908 * This acknowledgement can not be done via hcf_action( HCF_ACT_RX_ACK ) because this also clears
2909 * IFB_RxLEN thus corrupting the I/F to the MSF.
2910 *;?: In case of DMA (compiled in and activated):
2913 *54: Limiting the number of places where the F/W is acked (e.g. the merging of the Rx-ACK with the other
2914 * ACKs), is supposed to diminish the potential of race conditions in the F/W.
2915 * Note 1: The CMD event is acknowledged in cmd_cmpl
2916 * Note 2: HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5)
2917 * Note 3: The ALLOC event is acknowledged in get_fid (except for the initialization flow)
2920 * The Non-DMA HREG_EV_RX is handled different compared with the other F/W events.
2921 * The HREG_EV_RX event is acknowledged by the first hcf_service_nic call after the
2922 * hcf_service_nic call that reported the occurrence of this event.
2923 * This acknowledgment
2924 * makes the next Receive Frame Structure (if any) available.
2925 * An updated IFB_RxLen
2926 * field reflects this availability.
2929 * The minimum size for Len must supply space for:
2930 * - an F/W dependent number of bytes of Control Info field including the 802.11 Header field
2931 * - Destination Address
2935 * - [ Ethernet-II Type]
2936 * This results in 68 for Hermes-I and 80 for Hermes-II
2937 * This way the minimum amount of information is available needed by the HCF to determine whether the frame
2938 * must be decapsulated.
2939 *.ENDDOC END DOCUMENTATION
2941 ************************************************************************************************************/
2943 hcf_service_nic( IFBP ifbp
, wci_bufp bufp
, unsigned int len
)
2946 int rc
= HCF_SUCCESS
;
2951 HCFLOGENTRY( HCF_TRACE_SERVICE_NIC
, ifbp
->IFB_IntOffCnt
);
2952 HCFASSERT( ifbp
->IFB_Magic
== HCF_MAGIC
, ifbp
->IFB_Magic
);
2955 ifbp
->IFB_LinkStat
= 0; // ;? to be obsoleted ASAP /* 1*/
2956 ifbp
->IFB_DSLinkStat
&= ~CFG_LINK_STAT_CHANGE
; /* 1*/
2957 (void)hcf_action( ifbp
, HCF_ACT_RX_ACK
); /* 2*/
2958 if ( ifbp
->IFB_CardStat
== 0 && ( stat
= IPW( HREG_EV_STAT
) ) != 0xFFFF ) { /* 4*/
2959 /* IF_NOT_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) )
2960 * IF_NOT_USE_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) )
2961 * IF_USE_DMA( HCFASSERT( !( stat & ~( HREG_EV_BASIC_MASK ^ ( HREG_EV_...DMA.... ), stat ) )
2964 if ( ifbp
->IFB_RscInd
== 0 && stat
& HREG_EV_ALLOC
) { //Note: IFB_RscInd is ALWAYS 1 for DMA
2965 ifbp
->IFB_RscInd
= 1;
2967 IF_TALLY( if ( stat
& HREG_EV_INFO_DROP
) { ifbp
->IFB_HCF_Tallies
.NoBufInfo
++; } );
2968 #if (HCF_EXT) & HCF_EXT_INT_TICK
2969 if ( stat
& HREG_EV_TICK
) {
2970 ifbp
->IFB_TickCnt
++;
2972 #if 0 // (HCF_SLEEP) & HCF_DDS
2973 if ( ifbp
->IFB_TickCnt
== 3 && ( ifbp
->IFB_DSLinkStat
& CFG_LINK_STAT_CONNECTED
) == 0 ) {
2974 CFG_DDS_TICK_TIME_STRCT ltv
;
2975 // 2 second period (with 1 tick uncertanty) in not-connected mode -->go into DS_OOR
2976 hcf_action( ifbp
, HCF_ACT_SLEEP
);
2977 ifbp
->IFB_DSLinkStat
|= CFG_LINK_STAT_DS_OOR
; //set OutOfRange
2979 ltv
.typ
= CFG_DDS_TICK_TIME
;
2980 ltv
.tick_time
= ( ( ifbp
->IFB_DSLinkStat
& CFG_LINK_STAT_TIMER
) + 0x10 ) *64; //78 is more right
2981 hcf_put_info( ifbp
, (LTVP
)<v
);
2982 printk(KERN_NOTICE
"Preparing for sleep, link_status: %04X, timer : %d\n",
2983 ifbp
->IFB_DSLinkStat
, ltv
.tick_time
);//;?remove me 1 day
2984 ifbp
->IFB_TickCnt
++; //;?just to make sure we do not keep on printing above message
2985 if ( ltv
.tick_time
< 300 * 125 ) ifbp
->IFB_DSLinkStat
+= 0x0010;
2989 #endif // HCF_EXT_INT_TICK
2990 if ( stat
& HREG_EV_INFO
) {
2993 #if (HCF_EXT) & HCF_EXT_INT_TX_EX
2994 if ( stat
& HREG_EV_TX_EXT
&& ( i
= IPW( HREG_TX_COMPL_FID
) ) != 0 /*DAWA*/ ) {
2995 DAWA_ZERO_FID( HREG_TX_COMPL_FID
);
2996 (void)setup_bap( ifbp
, i
, 0, IO_IN
);
2997 get_frag( ifbp
, &ifbp
->IFB_TxFsStat
, HFS_SWSUP
BE_PAR(1) );
2999 #endif // HCF_EXT_INT_TX_EX
3000 //!rlav DMA engine will handle the rx event, not the driver
3002 if ( !( ifbp
->IFB_CntlOpt
& USE_DMA
) ) //!! be aware of the logical indentations
3004 /*16*/ if ( stat
& HREG_EV_RX
&& ( ifbp
->IFB_RxFID
= IPW( HREG_RX_FID
) ) != 0 ) { //if 0 then DAWA_ACK
3005 HCFASSERT( bufp
, len
);
3006 HCFASSERT( len
>= HFS_DAT
+ 2, len
);
3007 DAWA_ZERO_FID( HREG_RX_FID
);
3008 HCFASSERT( ifbp
->IFB_RxFID
< CFG_PROD_DATA
, ifbp
->IFB_RxFID
);
3009 (void)setup_bap( ifbp
, ifbp
->IFB_RxFID
, 0, IO_IN
);
3010 get_frag( ifbp
, bufp
, HFS_ADDR_DEST
BE_PAR(1) );
3011 ifbp
->IFB_lap
= buf_addr
= bufp
+ HFS_ADDR_DEST
;
3012 ifbp
->IFB_RxLen
= (hcf_16
)(bufp
[HFS_DAT_LEN
] + (bufp
[HFS_DAT_LEN
+1]<<8) + 2*6 + 2);
3013 /*26*/ if ( ifbp
->IFB_RxLen
>= 22 ) { // convenient for MIC calculation (5 DWs + 1 "skipped" W)
3014 //. get DA,SA,Len/Type and (SNAP,Type or 8 data bytes)
3015 /*30*/ get_frag( ifbp
, buf_addr
, 22 BE_PAR(0) );
3016 /*32*/ CALC_RX_MIC( bufp
, -1 ); //. initialize MIC
3017 CALC_RX_MIC( buf_addr
, HCF_DASA_SIZE
); //. MIC over DA, SA
3018 CALC_RX_MIC( null_addr
, 4 ); //. MIC over (virtual) priority field
3019 CALC_RX_MIC( buf_addr
+14, 8 ); //. skip Len, MIC over SNAP,Type or 8 data bytes)
3021 #if (HCF_ENCAP) == HCF_ENC
3022 HCFASSERT( len
>= HFS_DAT
+ 2 + sizeof(snap_header
), len
);
3023 /*34*/ i
= *(wci_recordp
)&bufp
[HFS_STAT
] & ( HFS_STAT_MSG_TYPE
| HFS_STAT_ERR
);
3024 if ( i
== HFS_STAT_TUNNEL
||
3025 ( i
== HFS_STAT_1042
&& hcf_encap( (wci_bufp
)&bufp
[HFS_TYPE
] ) != ENC_TUNNEL
) ) {
3026 //. copy E-II Type to 802.3 LEN field
3027 /*36*/ bufp
[HFS_LEN
] = bufp
[HFS_TYPE
];
3028 bufp
[HFS_LEN
+1] = bufp
[HFS_TYPE
+1];
3029 //. discard Snap by overwriting with data
3030 ifbp
->IFB_RxLen
-= (HFS_TYPE
- HFS_LEN
);
3031 buf_addr
-= ( HFS_TYPE
- HFS_LEN
); // this happens to bring us at a DW boundary of 36
3035 /*40*/ ifbp
->IFB_lal
= min( (hcf_16
)(len
- HFS_ADDR_DEST
), ifbp
->IFB_RxLen
);
3036 i
= ifbp
->IFB_lal
- ( buf_addr
- ( bufp
+ HFS_ADDR_DEST
) );
3037 get_frag( ifbp
, buf_addr
, i
BE_PAR(0) );
3038 CALC_RX_MIC( buf_addr
, i
);
3039 #if (HCF_TYPE) & HCF_TYPE_WPA
3040 if ( ifbp
->IFB_lal
== ifbp
->IFB_RxLen
) {
3041 rc
= check_mic( ifbp
);
3043 #endif // HCF_TYPE_WPA
3044 /*44*/ if ( len
- HFS_ADDR_DEST
>= ifbp
->IFB_RxLen
) {
3045 ifbp
->IFB_RxFID
= 0;
3046 } else { /* IFB_RxFID is cleared, so you do not get another Rx_Ack at next entry of hcf_service_nic */
3047 stat
&= (hcf_16
)~HREG_EV_RX
; //don't ack Rx if processing not yet completed
3050 // in case of DMA: signal availability of rx and/or tx packets to MSF
3051 IF_USE_DMA( ifbp
->IFB_DmaPackets
|= stat
& ( HREG_EV_RDMAD
| HREG_EV_TDMAD
) );
3052 // rlav : pending HREG_EV_RDMAD or HREG_EV_TDMAD events get acknowledged here.
3053 /*54*/ stat
&= (hcf_16
)~( HREG_EV_SLEEP_REQ
| HREG_EV_CMD
| HREG_EV_ACK_REG_READY
| HREG_EV_ALLOC
| HREG_EV_FW_DMA
);
3054 //a positive mask would be easier to understand /*54*/ stat &= (hcf_16)~( HREG_EV_SLEEP_REQ | HREG_EV_CMD | HREG_EV_ACK_REG_READY | HREG_EV_ALLOC | HREG_EV_FW_DMA );
3055 IF_USE_DMA( stat
&= (hcf_16
)~HREG_EV_RX
);
3057 DAWA_ACK( stat
); /*DAWA*/
3060 HCFLOGEXIT( HCF_TRACE_SERVICE_NIC
);
3062 } // hcf_service_nic
3065 /************************************************************************************************************
3066 ************************** H C F S U P P O R T R O U T I N E S ******************************************
3067 ************************************************************************************************************/
3070 /************************************************************************************************************
3072 *.SUBMODULE void calc_mic( hcf_32* p, hcf_32 m )
3073 *.PURPOSE calculate MIC on a quad byte.
3076 * p address of the MIC
3077 * m 32 bit value to be processed by the MIC calculation engine
3082 * calc_mic is the implementation of the MIC algorithm. It is a monkey-see monkey-do copy of
3083 * Michael::appendByte()
3084 * of Appendix C of ..........
3090 *.ENDDOC END DOCUMENTATION
3092 ************************************************************************************************************/
3094 #if (HCF_TYPE) & HCF_TYPE_WPA
3096 #define ROL32( A, n ) ( ((A) << (n)) | ( ((A)>>(32-(n))) & ( (1UL << (n)) - 1 ) ) )
3097 #define ROR32( A, n ) ROL32( (A), 32-(n) )
3103 calc_mic( hcf_32
* p
, hcf_32 m
)
3106 m
= (m
>> 16) | (m
<< 16);
3107 #endif // HCF_BIG_ENDIAN
3109 R
^= ROL32( L
, 17 );
3111 R
^= ((L
& 0xff00ff00) >> 8) | ((L
& 0x00ff00ff) << 8);
3120 #endif // HCF_TYPE_WPA
3124 #if (HCF_TYPE) & HCF_TYPE_WPA
3125 /************************************************************************************************************
3127 *.SUBMODULE void calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len )
3128 *.PURPOSE calculate MIC on a single fragment.
3131 * ifbp address of the Interface Block
3132 * bufp (byte) address of buffer
3133 * len length in bytes of buffer specified by bufp
3138 * calc_mic_rx_frag ........
3140 * The MIC is located in the IFB.
3141 * The MIC is separate for Tx and Rx, thus allowing hcf_send_msg to occur between hcf_service_nic and
3148 *.ENDDOC END DOCUMENTATION
3150 ************************************************************************************************************/
3152 calc_mic_rx_frag( IFBP ifbp
, wci_bufp p
, int len
)
3154 static union { hcf_32 x32
; hcf_16 x16
[2]; hcf_8 x8
[4]; } x
; //* area to accumulate 4 bytes input for MIC engine
3157 if ( len
== -1 ) { //initialize MIC housekeeping
3158 i
= *(wci_recordp
)&p
[HFS_STAT
];
3159 /* i = CNV_SHORTP_TO_LITTLE(&p[HFS_STAT]); should not be neede to prevent alignment poroblems
3160 * since len == -1 if and only if p is lookahaead buffer which MUST be word aligned
3161 * to be re-investigated by NvR
3164 if ( ( i
& HFS_STAT_MIC
) == 0 ) {
3165 ifbp
->IFB_MICRxCarry
= 0xFFFF; //suppress MIC calculation
3167 ifbp
->IFB_MICRxCarry
= 0;
3168 //* Note that "coincidentally" the bit positions used in HFS_STAT
3169 //* correspond with the offset of the key in IFB_MICKey
3170 i
= ( i
& HFS_STAT_MIC_KEY_ID
) >> 10; /* coincidentally no shift needed for i itself */
3171 ifbp
->IFB_MICRx
[0] = CNV_LONG_TO_LITTLE(ifbp
->IFB_MICRxKey
[i
]);
3172 ifbp
->IFB_MICRx
[1] = CNV_LONG_TO_LITTLE(ifbp
->IFB_MICRxKey
[i
+1]);
3175 if ( ifbp
->IFB_MICRxCarry
== 0 ) {
3176 x
.x32
= CNV_LONGP_TO_LITTLE(p
);
3179 ifbp
->IFB_MICRxCarry
= (hcf_16
)len
;
3181 ifbp
->IFB_MICRxCarry
= 4;
3184 } else while ( ifbp
->IFB_MICRxCarry
< 4 && len
) { //note for hcf_16 applies: 0xFFFF > 4
3185 x
.x8
[ifbp
->IFB_MICRxCarry
++] = *p
++;
3188 while ( ifbp
->IFB_MICRxCarry
== 4 ) { //contrived so we have only 1 call to calc_mic so we could bring it in-line
3189 calc_mic( ifbp
->IFB_MICRx
, x
.x32
);
3190 x
.x32
= CNV_LONGP_TO_LITTLE(p
);
3193 ifbp
->IFB_MICRxCarry
= (hcf_16
)len
;
3198 } // calc_mic_rx_frag
3199 #endif // HCF_TYPE_WPA
3202 #if (HCF_TYPE) & HCF_TYPE_WPA
3203 /************************************************************************************************************
3205 *.SUBMODULE void calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len )
3206 *.PURPOSE calculate MIC on a single fragment.
3209 * ifbp address of the Interface Block
3210 * bufp (byte) address of buffer
3211 * len length in bytes of buffer specified by bufp
3216 * calc_mic_tx_frag ........
3218 * The MIC is located in the IFB.
3219 * The MIC is separate for Tx and Rx, thus allowing hcf_send_msg to occur between hcf_service_nic and
3226 *.ENDDOC END DOCUMENTATION
3228 ************************************************************************************************************/
3230 calc_mic_tx_frag( IFBP ifbp
, wci_bufp p
, int len
)
3232 static union { hcf_32 x32
; hcf_16 x16
[2]; hcf_8 x8
[4]; } x
; //* area to accumulate 4 bytes input for MIC engine
3234 //if initialization request
3236 //. presume MIC calculation disabled
3237 ifbp
->IFB_MICTxCarry
= 0xFFFF;
3238 //. if MIC calculation enabled
3239 if ( ifbp
->IFB_MICTxCntl
) {
3240 //. . clear MIC carry
3241 ifbp
->IFB_MICTxCarry
= 0;
3242 //. . initialize MIC-engine
3243 ifbp
->IFB_MICTx
[0] = CNV_LONG_TO_LITTLE(ifbp
->IFB_MICTxKey
[0]); /*Tx always uses Key 0 */
3244 ifbp
->IFB_MICTx
[1] = CNV_LONG_TO_LITTLE(ifbp
->IFB_MICTxKey
[1]);
3248 //. if MIC enabled (Tx) / if MIC present (Rx)
3249 //. and no carry from previous calc_mic_frag
3250 if ( ifbp
->IFB_MICTxCarry
== 0 ) {
3251 //. . preset accu with 4 bytes from buffer
3252 x
.x32
= CNV_LONGP_TO_LITTLE(p
);
3253 //. . adjust pointer accordingly
3255 //. . if buffer contained less then 4 bytes
3257 //. . . promote valid bytes in accu to carry
3258 //. . . flag accu to contain incomplete double word
3259 ifbp
->IFB_MICTxCarry
= (hcf_16
)len
;
3262 //. . . flag accu to contain complete double word
3263 ifbp
->IFB_MICTxCarry
= 4;
3264 //. . adjust remaining buffer length
3267 //. else if MIC enabled
3268 //. and if carry bytes from previous calc_mic_tx_frag
3269 //. . move (1-3) bytes from carry into accu
3270 } else while ( ifbp
->IFB_MICTxCarry
< 4 && len
) { /* note for hcf_16 applies: 0xFFFF > 4 */
3271 x
.x8
[ifbp
->IFB_MICTxCarry
++] = *p
++;
3274 //. while accu contains complete double word
3276 while ( ifbp
->IFB_MICTxCarry
== 4 ) {
3277 //. . pass accu to MIC engine
3278 calc_mic( ifbp
->IFB_MICTx
, x
.x32
);
3279 //. . copy next 4 bytes from buffer to accu
3280 x
.x32
= CNV_LONGP_TO_LITTLE(p
);
3281 //. . adjust buffer pointer
3283 //. . if buffer contained less then 4 bytes
3284 //. . . promote valid bytes in accu to carry
3285 //. . . flag accu to contain incomplete double word
3287 ifbp
->IFB_MICTxCarry
= (hcf_16
)len
;
3289 //. . adjust remaining buffer length
3293 } // calc_mic_tx_frag
3294 #endif // HCF_TYPE_WPA
3298 /************************************************************************************************************
3300 *.SUBMODULE void calibrate( IFBP ifbp )
3301 *.PURPOSE calibrates the S/W protection counter against the Hermes Timer tick.
3304 * ifbp address of the Interface Block
3309 * calibrates the S/W protection counter against the Hermes Timer tick
3310 * IFB_TickIni is the value used to initialize the S/W protection counter such that the expiration period
3311 * more or less independent of the processor speed. If IFB_TickIni is not yet calibrated, it is done now.
3312 * This calibration is "reasonably" accurate because the Hermes is in a quiet state as a result of the
3313 * Initialize command.
3318 *1: IFB_TickIni is initialized at INI_TICK_INI by hcf_connect. If calibrate succeeds, IFB_TickIni is
3319 * guaranteed to be changed. As a consequence there will be only 1 shot at calibration (regardless of the
3320 * number of init calls) under normal circumstances.
3321 *2: Calibration is done HCF_PROT_TIME_CNT times. This diminish the effects of jitter and interference,
3322 * especially in a pre-emptive environment. HCF_PROT_TIME_CNT is in the range of 16 through 32 and derived
3323 * from the HCF_PROT_TIME specified by the MSF programmer. The divisor needed to scale HCF_PROT_TIME into the
3324 * 16-32 range, is used as a multiplicator after the calibration, to scale the found value back to the
3325 * requested range. This way a compromise is achieved between accuracy and duration of the calibration
3327 *3: Acknowledge the Timer Tick Event.
3328 * Each cycle is limited to at most INI_TICK_INI samples of the TimerTick status of the Hermes.
3329 * Since the start of calibrate is unrelated to the Hermes Internal Timer, the first interval may last from 0
3330 * to the normal interval, all subsequent intervals should be the full length of the Hermes Tick interval.
3331 * The Hermes Timer Tick is not reprogrammed by the HCF, hence it is running at the default of 10 k
3333 *4: If the Timer Tick Event is continuously up (prot_cnt still has the value INI_TICK_INI) or no Timer Tick
3334 * Event occurred before the protection counter expired, reset IFB_TickIni to INI_TICK_INI,
3335 * set the defunct bit of IFB_CardStat (thus rendering the Hermes inoperable) and exit the calibrate routine.
3336 *8: ifbp->IFB_TickIni is multiplied to scale the found value back to the requested range as explained under 2.
3339 * o Although there are a number of viewpoints possible, calibrate() uses as error strategy that a single
3340 * failure of the Hermes TimerTick is considered fatal.
3341 * o There is no hard and concrete time-out value defined for Hermes activities. The default 1 seconds is
3342 * believed to be sufficiently "relaxed" for real life and to be sufficiently short to be still useful in an
3343 * environment with humans.
3344 * o Note that via IFB_DefunctStat time outs in cmd_wait and in hcfio_string block all Hermes access till the
3345 * next init so functions which call a mix of cmd_wait and hcfio_string only need to check the return status
3347 * o The return code is preset at Time out.
3348 * The additional complication that no calibrated value for the protection count can be assumed since
3349 * calibrate() does not yet have determined a calibrated value (a catch 22), is handled by setting the
3350 * initial value at INI_TICK_INI (by hcf_connect). This approach is considered safe, because:
3351 * - the HCF does not use the pipeline mechanism of Hermes commands.
3352 * - the likelihood of failure (the only time when protection count is relevant) is small.
3353 * - the time will be sufficiently large on a fast machine (busy bit drops on good NIC before counter
3355 * - the time will be sufficiently small on a slow machine (counter expires on bad NIC before the end user
3356 * switches the power off in despair
3357 * The time needed to wrap a 32 bit counter around is longer than many humans want to wait, hence the more or
3358 * less arbitrary value of 0x40000L is chosen, assuming it does not take too long on an XT and is not too
3359 * short on a scream-machine.
3361 *.ENDDOC END DOCUMENTATION
3363 ************************************************************************************************************/
3365 calibrate( IFBP ifbp
)
3367 int cnt
= HCF_PROT_TIME_CNT
;
3370 HCFTRACE( ifbp
, HCF_TRACE_CALIBRATE
);
3371 if ( ifbp
->IFB_TickIni
== INI_TICK_INI
) { /*1*/
3372 ifbp
->IFB_TickIni
= 0; /*2*/
3374 prot_cnt
= INI_TICK_INI
;
3375 OPW( HREG_EV_ACK
, HREG_EV_TICK
); /*3*/
3376 while ( (IPW( HREG_EV_STAT
) & HREG_EV_TICK
) == 0 && --prot_cnt
) {
3377 ifbp
->IFB_TickIni
++;
3379 if ( prot_cnt
== 0 || prot_cnt
== INI_TICK_INI
) { /*4*/
3380 ifbp
->IFB_TickIni
= INI_TICK_INI
;
3381 ifbp
->IFB_DefunctStat
= HCF_ERR_DEFUNCT_TIMER
;
3382 ifbp
->IFB_CardStat
|= CARD_STAT_DEFUNCT
;
3383 HCFASSERT( DO_ASSERT
, prot_cnt
);
3386 ifbp
->IFB_TickIni
<<= HCF_PROT_TIME_SHFT
; /*8*/
3388 HCFTRACE( ifbp
, HCF_TRACE_CALIBRATE
| HCF_TRACE_EXIT
);
3390 #endif // HCF_PROT_TIME
3393 #if (HCF_TYPE) & HCF_TYPE_WPA
3394 /************************************************************************************************************
3396 *.SUBMODULE int check_mic( IFBP ifbp )
3397 *.PURPOSE verifies the MIC of a received non-USB frame.
3400 * ifbp address of the Interface Block
3411 *4: test whether or not a MIC is reported by the Hermes
3412 *14: the calculated MIC and the received MIC are compared, the return status is set when there is a mismatch
3415 *.ENDDOC END DOCUMENTATION
3417 ************************************************************************************************************/
3419 check_mic( IFBP ifbp
)
3421 int rc
= HCF_SUCCESS
;
3422 hcf_32 x32
[2]; //* area to save rcvd 8 bytes MIC
3424 //if MIC present in RxFS
3425 if ( *(wci_recordp
)&ifbp
->IFB_lap
[-HFS_ADDR_DEST
] & HFS_STAT_MIC
) {
3426 //or if ( ifbp->IFB_MICRxCarry != 0xFFFF )
3427 CALC_RX_MIC( mic_pad
, 8 ); //. process up to 3 remaining bytes of data and append 5 to 8 bytes of padding to MIC calculation
3428 get_frag( ifbp
, (wci_bufp
)x32
, 8 BE_PAR(0));//. get 8 byte MIC from NIC
3429 //. if calculated and received MIC do not match
3430 //. . set status at HCF_ERR_MIC
3431 /*14*/ if ( x32
[0] != CNV_LITTLE_TO_LONG(ifbp
->IFB_MICRx
[0]) ||
3432 x32
[1] != CNV_LITTLE_TO_LONG(ifbp
->IFB_MICRx
[1]) ) {
3439 #endif // HCF_TYPE_WPA
3442 /************************************************************************************************************
3444 *.SUBMODULE int cmd_cmpl( IFBP ifbp )
3445 *.PURPOSE waits for Hermes Command Completion.
3448 * ifbp address of the Interface Block
3453 * HCF_ERR_DEFUNCT_CMD_SEQ
3461 *2: Once cmd_cmpl is called, the Busy option bit in IFB_Cmd must be cleared
3462 *4: If Status register and command code don't match either:
3463 * - the Hermes and Host are out of sync ( a fatal error)
3464 * - error bits are reported via the Status Register.
3465 * Out of sync is considered fatal and brings the HCF in Defunct mode
3466 * Errors reported via the Status Register should be caused by sequence violations in Hermes command
3467 * sequences and hence these bugs should have been found during engineering testing. Since there is no
3468 * strategy to cope with this problem, it might as well be ignored at run time. Note that for any particular
3469 * situation where a strategy is formulated to handle the consequences of a particular bug causing a
3470 * particular Error situation reported via the Status Register, the bug should be removed rather than adding
3471 * logic to cope with the consequences of the bug.
3472 * There have been HCF versions where an error report via the Status Register even brought the HCF in defunct
3473 * mode (although it was not yet named like that at that time). This is particular undesirable behavior for a
3475 * Simply reporting the error (as "interesting") is debatable. There also have been HCF versions with this
3476 * strategy using the "vague" HCF_FAILURE code.
3477 * The error is reported via:
3478 * - MiscErr tally of the HCF Tally set
3479 * - the (informative) fields IFB_ErrCmd and IFB_ErrQualifier
3480 * - the assert mechanism
3481 *8: Here the Defunct case and the Status error are separately treated
3484 *.ENDDOC END DOCUMENTATION
3486 ************************************************************************************************************/
3488 cmd_cmpl( IFBP ifbp
)
3492 int rc
= HCF_SUCCESS
;
3495 HCFLOGENTRY( HCF_TRACE_CMD_CPL
, ifbp
->IFB_Cmd
);
3496 ifbp
->IFB_Cmd
&= ~HCMD_BUSY
; /* 2 */
3497 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT
) & HREG_EV_CMD
) == 0 ); /* 4 */
3498 stat
= IPW( HREG_STAT
);
3500 if ( prot_cnt
== 0 ) {
3501 IF_TALLY( ifbp
->IFB_HCF_Tallies
.MiscErr
++ );
3502 rc
= HCF_ERR_TIME_OUT
;
3503 HCFASSERT( DO_ASSERT
, ifbp
->IFB_Cmd
);
3505 #endif // HCF_PROT_TIME
3507 DAWA_ACK( HREG_EV_CMD
);
3508 /*4*/ if ( stat
!= (ifbp
->IFB_Cmd
& HCMD_CMD_CODE
) ) {
3509 /*8*/ if ( ( (stat
^ ifbp
->IFB_Cmd
) & HCMD_CMD_CODE
) != 0 ) {
3510 rc
= ifbp
->IFB_DefunctStat
= HCF_ERR_DEFUNCT_CMD_SEQ
;
3511 ifbp
->IFB_CardStat
|= CARD_STAT_DEFUNCT
;
3513 IF_TALLY( ifbp
->IFB_HCF_Tallies
.MiscErr
++ );
3514 ifbp
->IFB_ErrCmd
= stat
;
3515 ifbp
->IFB_ErrQualifier
= IPW( HREG_RESP_0
);
3516 HCFASSERT( DO_ASSERT
, MERGE_2( IPW( HREG_PARAM_0
), ifbp
->IFB_Cmd
) );
3517 HCFASSERT( DO_ASSERT
, MERGE_2( ifbp
->IFB_ErrQualifier
, ifbp
->IFB_ErrCmd
) );
3520 HCFASSERT( rc
== HCF_SUCCESS
, rc
);
3521 HCFLOGEXIT( HCF_TRACE_CMD_CPL
);
3526 /************************************************************************************************************
3528 *.SUBMODULE int cmd_exe( IFBP ifbp, int cmd_code, int par_0 )
3529 *.PURPOSE Executes synchronous part of Hermes Command and - optionally - waits for Command Completion.
3532 * ifbp address of the Interface Block
3538 * HCF_ERR_DEFUNCT_CMD_SEQ
3540 * HCF_ERR_TO_BE_ADDED <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
3543 * Executes synchronous Hermes Command and waits for Command Completion
3545 * The general HCF strategy is to wait for command completion. As a consequence:
3546 * - the read of the busy bit before writing the command register is superfluous
3547 * - the Hermes requirement that no Inquiry command may be executed if there is still an unacknowledged
3548 * Inquiry command outstanding, is automatically met.
3549 * The Tx command uses the "Busy" bit in the cmd_code parameter to deviate from this general HCF strategy.
3550 * The idea is that by not busy-waiting on completion of this frequently used command the processor
3551 * utilization is diminished while using the busy-wait on all other seldom used commands the flow is kept
3558 *1: skip the body of cmd_exe when in defunct mode or when - based on the S/W Support register write and
3559 * read back test - there is apparently no NIC.
3560 * Note: we gave up on the "old" strategy to write the S/W Support register at magic only when needed. Due to
3561 * the intricateness of Hermes F/W varieties ( which behave differently as far as corruption of the S/W
3562 * Support register is involved), the increasing number of Hermes commands which do an implicit initialize
3563 * (thus modifying the S/W Support register) and the workarounds of some OS/Support S/W induced aspects (e.g.
3564 * the System Soft library at WinNT which postpones the actual mapping of I/O space up to 30 seconds after
3565 * giving the go-ahead), the "magic" strategy is now reduced to a simple write and read back. This means that
3566 * problems like a bug tramping over the memory mapped Hermes registers will no longer be noticed as side
3567 * effect of the S/W Support register check.
3568 *2: check whether the preceding command skipped the busy wait and if so, check for command completion
3571 *.ENDDOC END DOCUMENTATION
3573 ************************************************************************************************************/
3576 cmd_exe( IFBP ifbp
, hcf_16 cmd_code
, hcf_16 par_0
) //if HCMD_BUSY of cmd_code set, then do NOT wait for completion
3580 HCFLOGENTRY( HCF_TRACE_CMD_EXE
, cmd_code
);
3581 HCFASSERT( (cmd_code
& HCMD_CMD_CODE
) != HCMD_TX
|| cmd_code
& HCMD_BUSY
, cmd_code
); //Tx must have Busy bit set
3582 OPW( HREG_SW_0
, HCF_MAGIC
);
3583 if ( IPW( HREG_SW_0
) == HCF_MAGIC
) { /* 1 */
3584 rc
= ifbp
->IFB_DefunctStat
;
3586 else rc
= HCF_ERR_NO_NIC
;
3587 if ( rc
== HCF_SUCCESS
) {
3588 //;?is this a hot idea, better MEASURE performance impact
3589 /*2*/ if ( ifbp
->IFB_Cmd
& HCMD_BUSY
) {
3590 rc
= cmd_cmpl( ifbp
);
3592 OPW( HREG_PARAM_0
, par_0
);
3593 OPW( HREG_CMD
, cmd_code
&~HCMD_BUSY
);
3594 ifbp
->IFB_Cmd
= cmd_code
;
3595 if ( (cmd_code
& HCMD_BUSY
) == 0 ) { //;?is this a hot idea, better MEASURE performance impact
3596 rc
= cmd_cmpl( ifbp
);
3599 HCFASSERT( rc
== HCF_SUCCESS
, MERGE_2( rc
, cmd_code
) );
3600 HCFLOGEXIT( HCF_TRACE_CMD_EXE
);
3605 /************************************************************************************************************
3607 *.SUBMODULE int download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp )
3608 *.PURPOSE downloads F/W image into NIC and initiates execution of the downloaded F/W.
3611 * ifbp address of the Interface Block
3612 * ltvp specifies the pseudo-RID (as defined by WCI)
3620 *1: First, Ack everything to unblock a (possibly) blocked cmd pipe line
3621 * Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is
3623 * Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an
3627 *.ENDDOC END DOCUMENTATION
3629 ************************************************************************************************************/
3631 download( IFBP ifbp
, CFG_PROG_STRCT FAR
*ltvp
) //Hermes-II download (volatile only)
3634 int rc
= HCF_SUCCESS
;
3636 hcf_io io_port
= ifbp
->IFB_IOBase
+ HREG_AUX_DATA
;
3638 HCFLOGENTRY( HCF_TRACE_DL
, ltvp
->typ
);
3639 #if (HCF_TYPE) & HCF_TYPE_PRELOADED
3640 HCFASSERT( DO_ASSERT
, ltvp
->mode
);
3642 //if initial "program" LTV
3643 if ( ifbp
->IFB_DLMode
== CFG_PROG_STOP
&& ltvp
->mode
== CFG_PROG_VOLATILE
) {
3644 //. switch Hermes to initial mode
3645 /*1*/ OPW( HREG_EV_ACK
, ~HREG_EV_SLEEP_REQ
);
3646 rc
= cmd_exe( ifbp
, HCMD_INI
, 0 ); /* HCMD_INI can not be part of init() because that is called on
3647 * other occasions as well */
3650 //if final "program" LTV
3651 if ( ltvp
->mode
== CFG_PROG_STOP
&& ifbp
->IFB_DLMode
== CFG_PROG_VOLATILE
) {
3652 //. start tertiary (or secondary)
3653 OPW( HREG_PARAM_1
, (hcf_16
)(ltvp
->nic_addr
>> 16) );
3654 rc
= cmd_exe( ifbp
, HCMD_EXECUTE
, (hcf_16
) ltvp
->nic_addr
);
3655 if (rc
== HCF_SUCCESS
) {
3656 rc
= init( ifbp
); /*;? do we really want to skip init if cmd_exe failed, i.e.
3657 * IFB_FW_Comp_Id is than possibly incorrect */
3661 //. if mode == Readback SEEPROM
3662 #if 0 //;? as long as the next if contains a hard coded 0, might as well leave it out even more obvious
3663 if ( 0 /*len is definitely not want we want;?*/ && ltvp
->mode
== CFG_PROG_SEEPROM_READBACK
) {
3664 OPW( HREG_PARAM_1
, (hcf_16
)(ltvp
->nic_addr
>> 16) );
3665 OPW( HREG_PARAM_2
, (hcf_16
)((ltvp
->len
- 4) << 1) );
3666 //. . perform Hermes prog cmd with appropriate mode bits
3667 rc
= cmd_exe( ifbp
, HCMD_PROGRAM
| ltvp
->mode
, (hcf_16
)ltvp
->nic_addr
);
3668 //. . set up NIC RAM addressability according Resp0-1
3669 OPW( HREG_AUX_PAGE
, IPW( HREG_RESP_1
) );
3670 OPW( HREG_AUX_OFFSET
, IPW( HREG_RESP_0
) );
3671 //. . set up L-field of LTV according Resp2
3672 i
= ( IPW( HREG_RESP_2
) + 1 ) / 2; // i contains max buffer size in words, a probably not very useful piece of information ;?
3673 /*Nico's code based on i is the "real amount of data available"
3674 if ( ltvp->len - 4 < i ) rc = HCF_ERR_LEN;
3675 else ltvp->len = i + 4;
3677 /* Rolands code based on the idea that a MSF should not ask for more than is available
3678 // check if number of bytes requested exceeds max buffer size
3679 if ( ltvp->len - 4 > i ) {
3684 //. . copy data from NIC via AUX port to LTV
3685 cp
= (wci_bufp
)ltvp
->host_addr
; /*IN_PORT_STRING_8_16 macro may modify its parameters*/
3687 IN_PORT_STRING_8_16( io_port
, cp
, i
); //!!!WORD length, cp MUST be a char pointer // $$ char
3688 //. else (non-final programming)
3690 #endif //;? as long as the above if contains a hard coded 0, might as well leave it out even more obvious
3691 { //. . get number of words to program
3692 HCFASSERT( ltvp
->segment_size
, *ltvp
->host_addr
);
3693 i
= ltvp
->segment_size
/2;
3694 //. . copy data (words) from LTV via AUX port to NIC
3695 cp
= (wci_bufp
)ltvp
->host_addr
; //OUT_PORT_STRING_8_16 macro may modify its parameters
3696 //. . if mode == volatile programming
3697 if ( ltvp
->mode
== CFG_PROG_VOLATILE
) {
3698 //. . . set up NIC RAM addressability via AUX port
3699 OPW( HREG_AUX_PAGE
, (hcf_16
)(ltvp
->nic_addr
>> 16 << 9 | (ltvp
->nic_addr
& 0xFFFF) >> 7 ) );
3700 OPW( HREG_AUX_OFFSET
, (hcf_16
)(ltvp
->nic_addr
& 0x007E) );
3701 OUT_PORT_STRING_8_16( io_port
, cp
, i
); //!!!WORD length, cp MUST be a char pointer
3705 ifbp
->IFB_DLMode
= ltvp
->mode
; //save state in IFB_DLMode
3706 #endif // HCF_TYPE_PRELOADED
3707 HCFASSERT( rc
== HCF_SUCCESS
, rc
);
3708 HCFLOGEXIT( HCF_TRACE_DL
);
3713 #if (HCF_ASSERT) & HCF_ASSERT_PRINTF
3714 /**************************************************
3715 * Certain Hermes-II firmware versions can generate
3716 * debug information. This debug information is
3717 * contained in a buffer in nic-RAM, and can be read
3719 **************************************************/
3721 fw_printf(IFBP ifbp
, CFG_FW_PRINTF_STRCT FAR
*ltvp
)
3723 int rc
= HCF_SUCCESS
;
3725 // hcf_32 DbMsgBuffer = 0x29D2, DbMsgCount= 0x000029D0;
3726 // hcf_16 DbMsgSize=0x00000080;
3728 CFG_FW_PRINTF_BUFFER_LOCATION_STRCT
*p
= &ifbp
->IFB_FwPfBuff
;
3730 if ( p
->DbMsgSize
!= 0 ) {
3731 // first, check the counter in nic-RAM and compare it to the latest counter value of the HCF
3732 OPW( HREG_AUX_PAGE
, (hcf_16
)(p
->DbMsgCount
>> 7) );
3733 OPW( HREG_AUX_OFFSET
, (hcf_16
)(p
->DbMsgCount
& 0x7E) );
3734 fw_cnt
= ((IPW( HREG_AUX_DATA
) >>1 ) & ((hcf_16
)p
->DbMsgSize
- 1));
3735 if ( fw_cnt
!= ifbp
->IFB_DbgPrintF_Cnt
) {
3736 // DbgPrint("fw_cnt=%d IFB_DbgPrintF_Cnt=%d\n", fw_cnt, ifbp->IFB_DbgPrintF_Cnt);
3737 DbMsgBuffer
= p
->DbMsgBuffer
+ ifbp
->IFB_DbgPrintF_Cnt
* 6; // each entry is 3 words
3738 OPW( HREG_AUX_PAGE
, (hcf_16
)(DbMsgBuffer
>> 7) );
3739 OPW( HREG_AUX_OFFSET
, (hcf_16
)(DbMsgBuffer
& 0x7E) );
3740 ltvp
->msg_id
= IPW(HREG_AUX_DATA
);
3741 ltvp
->msg_par
= IPW(HREG_AUX_DATA
);
3742 ltvp
->msg_tstamp
= IPW(HREG_AUX_DATA
);
3744 ifbp
->IFB_DbgPrintF_Cnt
++;
3745 ifbp
->IFB_DbgPrintF_Cnt
&= (p
->DbMsgSize
- 1);
3750 #endif // HCF_ASSERT_PRINTF
3753 /************************************************************************************************************
3755 *.SUBMODULE hcf_16 get_fid( IFBP ifbp )
3756 *.PURPOSE get allocated FID for either transmit or notify.
3759 * ifbp address of the Interface Block
3762 * 0 no FID available
3769 * The preference is to use a "pending" alloc. If no alloc is pending, then - if available - the "spare" FID
3771 * If the spare FID is used, IFB_RscInd (representing the spare FID) must be cleared
3772 * If the pending alloc is used, the alloc event must be acknowledged to the Hermes.
3773 * In case the spare FID was depleted and the IFB_RscInd has been "faked" as pseudo resource with a 0x0001
3774 * value by hcf_service_nic, IFB_RscInd has to be "corrected" again to its 0x0000 value.
3776 * Note that due to the Hermes-II H/W problems which are intended to be worked around by DAWA, the Alloc bit
3777 * in the Event register is no longer a reliable indication of the presence/absence of a FID. The "Clear FID"
3778 * part of the DAWA logic, together with the choice of the definition of the return information from get_fid,
3779 * handle this automatically, i.e. without additional code in get_fid.
3780 *.ENDDOC END DOCUMENTATION
3782 ************************************************************************************************************/
3784 get_fid( IFBP ifbp
)
3788 #if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
3790 #endif // HCF_TYPE_HII5
3792 IF_DMA( HCFASSERT(!(ifbp
->IFB_CntlOpt
& USE_DMA
), ifbp
->IFB_CntlOpt
) );
3794 if ( IPW( HREG_EV_STAT
) & HREG_EV_ALLOC
) {
3795 fid
= IPW( HREG_ALLOC_FID
);
3796 HCFASSERT( fid
, ifbp
->IFB_RscInd
);
3797 DAWA_ZERO_FID( HREG_ALLOC_FID
);
3798 #if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
3799 HCF_WAIT_WHILE( ( IPW( HREG_EV_STAT
) & HREG_EV_ACK_REG_READY
) == 0 );
3800 HCFASSERT( prot_cnt
, IPW( HREG_EV_STAT
) );
3801 #endif // HCF_TYPE_HII5
3802 DAWA_ACK( HREG_EV_ALLOC
); //!!note that HREG_EV_ALLOC is written only once
3803 // 180 degree error in logic ;? #if ALLOC_15
3804 if ( ifbp
->IFB_RscInd
== 1 ) {
3805 ifbp
->IFB_RscInd
= 0;
3807 //#endif // ALLOC_15
3809 // 180 degree error in logic ;? #if ALLOC_15
3810 fid
= ifbp
->IFB_RscInd
;
3811 //#endif // ALLOC_15
3812 ifbp
->IFB_RscInd
= 0;
3818 /************************************************************************************************************
3820 *.SUBMODULE void get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
3821 *.PURPOSE reads with 16/32 bit I/O via BAP1 port from NIC RAM to Host memory.
3824 * ifbp address of the Interface Block
3825 * bufp (byte) address of buffer
3826 * len length in bytes of buffer specified by bufp
3827 * word_len Big Endian only: number of leading bytes to swap in pairs
3832 * process the single byte (if applicable) read by the previous get_frag and copy len (or len-1) bytes from
3834 * On a Big Endian platform, the parameter word_len controls the number of leading bytes whose endianness is
3835 * converted (i.e. byte swapped)
3839 *10: The PCMCIA card can be removed in the middle of the transfer. By depositing a "magic number" in the
3840 * HREG_SW_0 register of the Hermes at initialization time and by verifying this register, it can be
3841 * determined whether the card is still present. The return status is set accordingly.
3842 * Clearing the buffer is a (relative) cheap way to prevent that failing I/O results in run-away behavior
3843 * because the garbage in the buffer is interpreted by the caller irrespective of the return status (e.g.
3844 * hcf_service_nic has this behavior).
3847 * It turns out DOS ODI uses zero length fragments. The HCF code can cope with it, but as a consequence, no
3848 * Assert on len is possible
3850 *.ENDDOC END DOCUMENTATION
3852 ************************************************************************************************************/
3854 get_frag( IFBP ifbp
, wci_bufp bufp
, int len
BE_PAR( int word_len
) )
3856 hcf_io io_port
= ifbp
->IFB_IOBase
+ HREG_DATA_1
; //BAP data register
3857 wci_bufp p
= bufp
; //working pointer
3858 int i
; //prevent side effects from macro
3861 HCFASSERT( ((hcf_32
)bufp
& (HCF_ALIGN
-1) ) == 0, (hcf_32
)bufp
);
3863 /*1: here recovery logic for intervening BAP access between hcf_service_nic and hcf_rcv_msg COULD be added
3864 * if current access is RxInitial
3865 * . persistent_offset += len
3869 //if buffer length > 0 and carry from previous get_frag
3870 if ( i
&& ifbp
->IFB_CarryIn
) {
3871 //. move carry to buffer
3872 //. adjust buffer length and pointer accordingly
3873 *p
++ = (hcf_8
)(ifbp
->IFB_CarryIn
>>8);
3875 //. clear carry flag
3876 ifbp
->IFB_CarryIn
= 0;
3878 #if (HCF_IO) & HCF_IO_32BITS
3879 //skip zero-length I/O, single byte I/O and I/O not worthwhile (i.e. less than 6 bytes)for DW logic
3880 //if buffer length >= 6 and 32 bits I/O support
3881 if ( !(ifbp
->IFB_CntlOpt
& USE_16BIT
) && i
>= 6 ) {
3882 hcf_32 FAR
*p4
; //prevent side effects from macro
3883 if ( ( (hcf_32
)p
& 0x1 ) == 0 ) { //. if buffer at least word aligned
3884 if ( (hcf_32
)p
& 0x2 ) { //. . if buffer not double word aligned
3885 //. . . read single word to get double word aligned
3886 *(wci_recordp
)p
= IN_PORT_WORD( io_port
);
3887 //. . . adjust buffer length and pointer accordingly
3891 //. . read as many double word as possible
3892 p4
= (hcf_32 FAR
*)p
;
3894 IN_PORT_STRING_32( io_port
, p4
, j
);
3895 //. . adjust buffer length and pointer accordingly
3900 #endif // HCF_IO_32BITS
3901 //if no 32-bit support OR byte aligned OR 1-3 bytes left
3903 //. read as many word as possible in "alignment safe" way
3905 IN_PORT_STRING_8_16( io_port
, p
, j
);
3909 ifbp
->IFB_CarryIn
= IN_PORT_WORD( io_port
);
3910 //. . store LSB in last char of buffer
3911 bufp
[len
-1] = (hcf_8
)ifbp
->IFB_CarryIn
;
3912 //. . save MSB in carry, set carry flag
3913 ifbp
->IFB_CarryIn
|= 0x1;
3917 HCFASSERT( word_len
== 0 || word_len
== 2 || word_len
== 4, word_len
);
3918 HCFASSERT( word_len
== 0 || ((hcf_32
)bufp
& 1 ) == 0, (hcf_32
)bufp
);
3919 HCFASSERT( word_len
<= len
, MERGE2( word_len
, len
) );
3920 //see put_frag for an alternative implementation, but be careful about what are int's and what are
3922 if ( word_len
) { //. if there is anything to convert
3924 c
= bufp
[1]; //. . convert the 1st hcf_16
3927 if ( word_len
> 1 ) { //. . if there is to convert more than 1 word ( i.e 2 )
3928 c
= bufp
[3]; //. . . convert the 2nd hcf_16
3933 #endif // HCF_BIG_ENDIAN
3936 /************************************************************************************************************
3938 *.SUBMODULE int init( IFBP ifbp )
3939 *.PURPOSE Handles common initialization aspects (H-I init, calibration, config.mngmt, allocation).
3942 * ifbp address of the Interface Block
3945 * HCF_ERR_INCOMP_PRI
3953 * init will successively:
3954 * - in case of a (non-preloaded) H-I, initialize the NIC
3955 * - calibrate the S/W protection timer against the Hermes Timer
3956 * - collect HSI, "active" F/W Configuration Management Information
3957 * - in case active F/W is Primary F/W: collect Primary F/W Configuration Management Information
3958 * - check HSI and Primary F/W compatibility with the HCF
3959 * - in case active F/W is Station or AP F/W: check Station or AP F/W compatibility with the HCF
3960 * - in case active F/W is not Primary F/W: allocate FIDs to be used in transmit/notify process
3964 *2: drop all error status bits in IFB_CardStat since they are expected to be re-evaluated.
3965 *4: Ack everything except HREG_EV_SLEEP_REQ. It is very likely that an Alloc event is pending and
3966 * very well possible that a Send Cmd event is pending. Acking HREG_EV_SLEEP_REQ is handled by hcf_action(
3967 * HCF_ACT_INT_ON ) !!!
3968 *10: Calibrate the S/W time-out protection mechanism by calling calibrate(). Note that possible errors
3969 * in the calibration process are nor reported by init but will show up via the defunct mechanism in
3970 * subsequent hcf-calls.
3971 *14: usb_check_comp() is called to have the minimal visual clutter for the legacy H-I USB dongle
3972 * compatibility check.
3973 *16: The following configuration management related information is retrieved from the NIC:
3980 * appropriate means on H-I: always
3981 * and on H-II if F/W supplier reflects a primary (i.e. only after an Hermes Reset or Init
3983 * QUESTION ;? !!!!!! should, For each of the above RIDs the Endianness is converted to native Endianness.
3984 * Only the return code of the first hcf_get_info is used. All hcf_get_info calls are made, regardless of
3985 * the success or failure of the 1st hcf_get_info. The assumptions are:
3986 * - if any call fails, they all fail, so remembering the result of the 1st call is adequate
3987 * - a failing call will overwrite the L-field with a 0x0000 value, which services both as an
3988 * error indication for the values cached in the IFB as making mmd_check_comp fail.
3989 * In case of H-I, when getting the F/W identity fails, the F/W is assumed to be H-I AP F/W pre-dating
3990 * version 9.0 and the F/W Identity and Supplier are faked accordingly.
3991 * In case of H-II, the Primary, Station and AP Identity are merged into a single F/W Identity.
3992 * The same applies to the Supplier information. As a consequence the PRI information can no longer be
3993 * retrieved when a Tertiary runs. To accommodate MSFs and Utilities who depend on PRI information being
3994 * available at any time, this information is cached in the IFB. In this cache the generic "F/W" value of
3995 * the typ-fields is overwritten with the specific (legacy) "PRI" values. To actually re-route the (legacy)
3996 * PRI request via hcf_get_info, the xxxx-table must be set. In case of H-I, this caching, modifying and
3997 * re-routing is not needed because PRI information is always available directly from the NIC. For
3998 * consistency the caching fields in the IFB are filled with the PRI information anyway.
3999 *18: mdd_check_comp() is called to check the Supplier Variant and Range of the Host-S/W I/F (HSI) and the
4000 * Primary Firmware Variant and Range against the Top and Bottom level supported by this HCF. If either of
4001 * these tests fails, the CARD_STAT_INCOMP_PRI bit of IFB_CardStat is set
4002 * Note: There should always be a primary except during production, so this makes the HCF in its current form
4003 * unsuitable for manufacturing test systems like the FTS. This can be remedied by an adding a test like
4004 * ifbp->IFB_PRISup.id == COMP_ID_PRI
4005 *20: In case there is Tertiary F/W and this F/W is Station F/W, the Supplier Variant and Range of the Station
4006 * Firmware function as retrieved from the Hermes is checked against the Top and Bottom level supported by
4008 * Note: ;? the tertiary F/W compatibility checks could be moved to the DHF, which already has checked the
4009 * CFI and MFI compatibility of the image with the NIC before the image was downloaded.
4010 *28: In case of non-Primary F/W: allocates and acknowledge a (TX or Notify) FID and allocates without
4011 * acknowledge another (TX or Notify) FID (the so-called 1.5 alloc scheme) with the following steps:
4012 * - execute the allocate command by calling cmd_exe
4013 * - wait till either the alloc event or a time-out occurs
4014 * - regardless whether the alloc event occurs, call get_fid to
4015 * - read the FID and save it in IFB_RscInd to be used as "spare FID"
4016 * - acknowledge the alloc event
4017 * - do another "half" allocate to complete the "1.5 Alloc scheme"
4018 * Note that above 3 steps do not harm and thus give the "cheapest" acceptable strategy.
4019 * If a time-out occurred, then report time out status (after all)
4021 *.ENDDOC END DOCUMENTATION
4023 ************************************************************************************************************/
4028 int rc
= HCF_SUCCESS
;
4030 HCFLOGENTRY( HCF_TRACE_INIT
, 0 );
4032 ifbp
->IFB_CardStat
= 0; /* 2*/
4033 OPW( HREG_EV_ACK
, ~HREG_EV_SLEEP_REQ
); /* 4*/
4034 IF_PROT_TIME( calibrate( ifbp
) ); /*10*/
4036 ifbp
->IFB_FWIdentity
.len
= 2; //misuse the IFB space for a put
4037 ifbp
->IFB_FWIdentity
.typ
= CFG_TICK_TIME
;
4038 ifbp
->IFB_FWIdentity
.comp_id
= (1000*1000)/1024 + 1; //roughly 1 second
4039 hcf_put_info( ifbp
, (LTVP
)&ifbp
->IFB_FWIdentity
.len
);
4041 ifbp
->IFB_FWIdentity
.len
= sizeof(CFG_FW_IDENTITY_STRCT
)/sizeof(hcf_16
) - 1;
4042 ifbp
->IFB_FWIdentity
.typ
= CFG_FW_IDENTITY
;
4043 rc
= hcf_get_info( ifbp
, (LTVP
)&ifbp
->IFB_FWIdentity
.len
);
4044 /* ;? conversion should not be needed for mmd_check_comp */
4046 ifbp
->IFB_FWIdentity
.comp_id
= CNV_LITTLE_TO_SHORT( ifbp
->IFB_FWIdentity
.comp_id
);
4047 ifbp
->IFB_FWIdentity
.variant
= CNV_LITTLE_TO_SHORT( ifbp
->IFB_FWIdentity
.variant
);
4048 ifbp
->IFB_FWIdentity
.version_major
= CNV_LITTLE_TO_SHORT( ifbp
->IFB_FWIdentity
.version_major
);
4049 ifbp
->IFB_FWIdentity
.version_minor
= CNV_LITTLE_TO_SHORT( ifbp
->IFB_FWIdentity
.version_minor
);
4050 #endif // HCF_BIG_ENDIAN
4051 #if defined MSF_COMPONENT_ID /*14*/
4052 if ( rc
== HCF_SUCCESS
) { /*16*/
4053 ifbp
->IFB_HSISup
.len
= sizeof(CFG_SUP_RANGE_STRCT
)/sizeof(hcf_16
) - 1;
4054 ifbp
->IFB_HSISup
.typ
= CFG_NIC_HSI_SUP_RANGE
;
4055 rc
= hcf_get_info( ifbp
, (LTVP
)&ifbp
->IFB_HSISup
.len
);
4056 /* ;? conversion should not be needed for mmd_check_comp , BUT according to a report of a BE-user it is
4057 * should be resolved in the WARP release
4058 * since some compilers make ugly but unnecessary code of these instructions even for LE,
4059 * it is conditionally compiled */
4061 ifbp
->IFB_HSISup
.role
= CNV_LITTLE_TO_SHORT( ifbp
->IFB_HSISup
.role
);
4062 ifbp
->IFB_HSISup
.id
= CNV_LITTLE_TO_SHORT( ifbp
->IFB_HSISup
.id
);
4063 ifbp
->IFB_HSISup
.variant
= CNV_LITTLE_TO_SHORT( ifbp
->IFB_HSISup
.variant
);
4064 ifbp
->IFB_HSISup
.bottom
= CNV_LITTLE_TO_SHORT( ifbp
->IFB_HSISup
.bottom
);
4065 ifbp
->IFB_HSISup
.top
= CNV_LITTLE_TO_SHORT( ifbp
->IFB_HSISup
.top
);
4066 #endif // HCF_BIG_ENDIAN
4067 ifbp
->IFB_FWSup
.len
= sizeof(CFG_SUP_RANGE_STRCT
)/sizeof(hcf_16
) - 1;
4068 ifbp
->IFB_FWSup
.typ
= CFG_FW_SUP_RANGE
;
4069 (void)hcf_get_info( ifbp
, (LTVP
)&ifbp
->IFB_FWSup
.len
);
4070 /* ;? conversion should not be needed for mmd_check_comp */
4072 ifbp
->IFB_FWSup
.role
= CNV_LITTLE_TO_SHORT( ifbp
->IFB_FWSup
.role
);
4073 ifbp
->IFB_FWSup
.id
= CNV_LITTLE_TO_SHORT( ifbp
->IFB_FWSup
.id
);
4074 ifbp
->IFB_FWSup
.variant
= CNV_LITTLE_TO_SHORT( ifbp
->IFB_FWSup
.variant
);
4075 ifbp
->IFB_FWSup
.bottom
= CNV_LITTLE_TO_SHORT( ifbp
->IFB_FWSup
.bottom
);
4076 ifbp
->IFB_FWSup
.top
= CNV_LITTLE_TO_SHORT( ifbp
->IFB_FWSup
.top
);
4077 #endif // HCF_BIG_ENDIAN
4079 if ( ifbp
->IFB_FWSup
.id
== COMP_ID_PRI
) { /* 20*/
4080 int i
= sizeof( CFG_FW_IDENTITY_STRCT
) + sizeof(CFG_SUP_RANGE_STRCT
);
4081 while ( i
-- ) ((hcf_8
*)(&ifbp
->IFB_PRIIdentity
))[i
] = ((hcf_8
*)(&ifbp
->IFB_FWIdentity
))[i
];
4082 ifbp
->IFB_PRIIdentity
.typ
= CFG_PRI_IDENTITY
;
4083 ifbp
->IFB_PRISup
.typ
= CFG_PRI_SUP_RANGE
;
4084 xxxx
[xxxx_PRI_IDENTITY_OFFSET
] = &ifbp
->IFB_PRIIdentity
.len
;
4085 xxxx
[xxxx_PRI_IDENTITY_OFFSET
+1] = &ifbp
->IFB_PRISup
.len
;
4087 if ( !mmd_check_comp( (void*)&cfg_drv_act_ranges_hsi
, &ifbp
->IFB_HSISup
) /* 22*/
4088 #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0
4089 //;? the PRI compatibility check is only relevant for DHF
4090 || !mmd_check_comp( (void*)&cfg_drv_act_ranges_pri
, &ifbp
->IFB_PRISup
)
4091 #endif // HCF_TYPE_PRELOADED
4093 ifbp
->IFB_CardStat
= CARD_STAT_INCOMP_PRI
;
4094 rc
= HCF_ERR_INCOMP_PRI
;
4096 if ( ( ifbp
->IFB_FWSup
.id
== COMP_ID_STA
&& !mmd_check_comp( (void*)&cfg_drv_act_ranges_sta
, &ifbp
->IFB_FWSup
) ) ||
4097 ( ifbp
->IFB_FWSup
.id
== COMP_ID_APF
&& !mmd_check_comp( (void*)&cfg_drv_act_ranges_apf
, &ifbp
->IFB_FWSup
) )
4099 ifbp
->IFB_CardStat
|= CARD_STAT_INCOMP_FW
;
4100 rc
= HCF_ERR_INCOMP_FW
;
4103 #endif // MSF_COMPONENT_ID
4105 if ( rc
== HCF_SUCCESS
&& ifbp
->IFB_FWIdentity
.comp_id
>= COMP_ID_FW_STA
) {
4107 /**************************************************************************************
4108 * rlav: the DMA engine needs the host to cause a 'hanging alloc event' for it to consume.
4109 * not sure if this is the right spot in the HCF, thinking about hcf_enable...
4110 **************************************************************************************/
4111 rc
= cmd_exe( ifbp
, HCMD_ALLOC
, 0 );
4112 // 180 degree error in logic ;? #if ALLOC_15
4113 // ifbp->IFB_RscInd = 1; //let's hope that by the time hcf_send_msg isa called, there will be a FID
4115 if ( rc
== HCF_SUCCESS
) {
4116 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT
) & HREG_EV_ALLOC
) == 0 );
4117 IF_PROT_TIME( HCFASSERT(prot_cnt
, IPW( HREG_EV_STAT
)) );
4119 if ( ! ( ifbp
->IFB_CntlOpt
& USE_DMA
) )
4122 ifbp
->IFB_RscInd
= get_fid( ifbp
);
4123 HCFASSERT( ifbp
->IFB_RscInd
, 0 );
4124 cmd_exe( ifbp
, HCMD_ALLOC
, 0 );
4125 IF_PROT_TIME( if ( prot_cnt
== 0 ) rc
= HCF_ERR_TIME_OUT
);
4128 //#endif // ALLOC_15
4131 HCFASSERT( rc
== HCF_SUCCESS
, rc
);
4132 HCFLOGEXIT( HCF_TRACE_INIT
);
4136 /************************************************************************************************************
4138 *.SUBMODULE void isr_info( IFBP ifbp )
4139 *.PURPOSE handles link events.
4142 * ifbp address of the Interface Block
4150 *1: First the FID number corresponding with the InfoEvent is determined.
4151 * Note the complication of the zero-FID protection sub-scheme in DAWA.
4152 * Next the L-field and the T-field are fetched into scratch buffer info.
4153 *2: In case of tallies, the 16 bits Hermes values are accumulated in the IFB into 32 bits values. Info[0]
4154 * is (expected to be) HCF_NIC_TAL_CNT + 1. The contraption "while ( info[0]-- >1 )" rather than
4155 * "while ( --info[0] )" is used because it is dangerous to determine the length of the Value field by
4156 * decrementing info[0]. As a result of a bug in some version of the F/W, info[0] may be 0, resulting
4157 * in a very long loop in the pre-decrement logic.
4158 *4: In case of a link status frame, the information is copied to the IFB field IFB_linkStat
4159 *6: All other than Tallies (including "unknown" ones) are checked against the selection set by the MSF
4160 * via CFG_RID_LOG. If a match is found or the selection set has the wild-card type (i.e non-NULL buffer
4161 * pointer at the terminating zero-type), the frame is copied to the (type-specific) log buffer.
4162 * Note that to accumulate tallies into IFB AND to log them or to log a frame when a specific match occures
4163 * AND based on the wild-card selection, you have to call setup_bap again after the 1st copy.
4165 *.ENDDOC END DOCUMENTATION
4167 ************************************************************************************************************/
4169 isr_info( IFBP ifbp
)
4171 hcf_16 info
[2], fid
;
4172 #if (HCF_EXT) & HCF_EXT_INFO_LOG
4173 RID_LOGP ridp
= ifbp
->IFB_RIDLogp
; //NULL or pointer to array of RID_LOG structures (terminated by zero typ)
4174 #endif // HCF_EXT_INFO_LOG
4176 HCFTRACE( ifbp
, HCF_TRACE_ISR_INFO
); /* 1 */
4177 fid
= IPW( HREG_INFO_FID
);
4178 DAWA_ZERO_FID( HREG_INFO_FID
);
4180 (void)setup_bap( ifbp
, fid
, 0, IO_IN
);
4181 get_frag( ifbp
, (wci_bufp
)info
, 4 BE_PAR(2) );
4182 HCFASSERT( info
[0] <= HCF_MAX_LTV
+ 1, MERGE_2( info
[1], info
[0] ) ); //;? a smaller value makes more sense
4183 #if (HCF_TALLIES) & HCF_TALLIES_NIC //Hermes tally support
4184 if ( info
[1] == CFG_TALLIES
) {
4186 /*2*/ if ( info
[0] > HCF_NIC_TAL_CNT
) {
4187 info
[0] = HCF_NIC_TAL_CNT
+ 1;
4189 p
= (hcf_32
*)&ifbp
->IFB_NIC_Tallies
;
4190 while ( info
[0]-- >1 ) *p
++ += IPW( HREG_DATA_1
); //request may return zero length
4193 #endif // HCF_TALLIES_NIC
4195 /*4*/ if ( info
[1] == CFG_LINK_STAT
) {
4196 ifbp
->IFB_LinkStat
= IPW( HREG_DATA_1
);
4198 #if (HCF_EXT) & HCF_EXT_INFO_LOG
4200 if ( ridp
->typ
== 0 || ridp
->typ
== info
[1] ) {
4202 HCFASSERT( ridp
->len
>= 2, ridp
->typ
);
4203 ridp
->bufp
[0] = min((hcf_16
)(ridp
->len
- 1), info
[0] ); //save L
4204 ridp
->bufp
[1] = info
[1]; //save T
4205 get_frag( ifbp
, (wci_bufp
)&ridp
->bufp
[2], (ridp
->bufp
[0] - 1)*2 BE_PAR(0) );
4211 #endif // HCF_EXT_INFO_LOG
4213 HCFTRACE( ifbp
, HCF_TRACE_ISR_INFO
| HCF_TRACE_EXIT
);
4220 // #endif // HCF_TALLIES_NIC
4221 // /*4*/ if ( info[1] == CFG_LINK_STAT ) {
4222 // ifbp->IFB_DSLinkStat = IPW( HREG_DATA_1 ) | CFG_LINK_STAT_CHANGE; //corrupts BAP !! ;?
4223 // ifbp->IFB_LinkStat = ifbp->IFB_DSLinkStat & CFG_LINK_STAT_FW; //;? to be obsoleted
4224 // printk(KERN_ERR "linkstatus: %04x\n", ifbp->IFB_DSLinkStat ); //;?remove me 1 day
4225 // #if (HCF_SLEEP) & HCF_DDS
4226 // if ( ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_CONNECTED ) == 0 ) { //even values are disconnected etc.
4227 // ifbp->IFB_TickCnt = 0; //start 2 second period (with 1 tick uncertanty)
4228 // printk(KERN_NOTICE "isr_info: AwaitConnection phase started, IFB_TickCnt = 0\n" ); //;?remove me 1 day
4230 // #endif // HCF_DDS
4232 // #if (HCF_EXT) & HCF_EXT_INFO_LOG
4233 // /*6*/ while ( 1 ) {
4234 // if ( ridp->typ == 0 || ridp->typ == info[1] ) {
4235 // if ( ridp->bufp ) {
4236 // HCFASSERT( ridp->len >= 2, ridp->typ );
4237 // (void)setup_bap( ifbp, fid, 2, IO_IN ); //restore BAP for tallies, linkstat and specific type followed by wild card
4238 // ridp->bufp[0] = min( ridp->len - 1, info[0] ); //save L
4239 // get_frag( ifbp, (wci_bufp)&ridp->bufp[1], ridp->bufp[0]*2 BE_PAR(0) );
4241 // break; //;?this break is no longer needed due to setup_bap but lets concentrate on DDS first
4245 // #endif // HCF_EXT_INFO_LOG
4247 // HCFTRACE( ifbp, HCF_TRACE_ISR_INFO | HCF_TRACE_EXIT );
4256 /************************************************************************************************************
4258 *.SUBMODULE void mdd_assert( IFBP ifbp, unsigned int line_number, hcf_32 q )
4259 *.PURPOSE filters assert on level and interfaces to the MSF supplied msf_assert routine.
4262 * ifbp address of the Interface Block
4263 * line_number line number of the line which caused the assert
4264 * q qualifier, additional information which may give a clue about the problem
4274 * mdd_assert has been through a turmoil, renaming hcf_assert to assert and hcf_assert again and supporting off
4275 * and on being called from the MSF level and other ( immature ) ModularDriverDevelopment modules like DHF and
4277 * !!!! The assert routine is not an hcf_..... routine in the sense that it may be called by the MSF,
4278 * however it is called from mmd.c and dhf.c, so it must be external.
4279 * To prevent namespace pollution it needs a prefix, to prevent that MSF programmers think that
4280 * they are allowed to call the assert logic, the prefix HCF can't be used, so MDD is selected!!!!
4282 * When called from the DHF module the line number is incremented by DHF_FILE_NAME_OFFSET and when called from
4283 * the MMD module by MMD_FILE_NAME_OFFSET.
4285 *.ENDDOC END DOCUMENTATION
4287 ************************************************************************************************************/
4290 mdd_assert( IFBP ifbp
, unsigned int line_number
, hcf_32 q
)
4292 hcf_16 run_time_flag
= ifbp
->IFB_AssertLvl
;
4294 if ( run_time_flag
/* > ;?????? */ ) { //prevent recursive behavior, later to be extended to level filtering
4295 ifbp
->IFB_AssertQualifier
= q
;
4296 ifbp
->IFB_AssertLine
= (hcf_16
)line_number
;
4297 #if (HCF_ASSERT) & ( HCF_ASSERT_LNK_MSF_RTN | HCF_ASSERT_RT_MSF_RTN )
4298 if ( ifbp
->IFB_AssertRtn
) {
4299 ifbp
->IFB_AssertRtn( line_number
, ifbp
->IFB_AssertTrace
, q
);
4301 #endif // HCF_ASSERT_LNK_MSF_RTN / HCF_ASSERT_RT_MSF_RTN
4302 #if (HCF_ASSERT) & HCF_ASSERT_SW_SUP
4303 OPW( HREG_SW_2
, line_number
);
4304 OPW( HREG_SW_2
, ifbp
->IFB_AssertTrace
);
4305 OPW( HREG_SW_2
, (hcf_16
)q
);
4306 OPW( HREG_SW_2
, (hcf_16
)(q
>> 16 ) );
4307 #endif // HCF_ASSERT_SW_SUP
4309 #if (HCF_ASSERT) & HCF_ASSERT_MB
4310 ifbp
->IFB_AssertLvl
= 0; // prevent recursive behavior
4311 hcf_put_info( ifbp
, (LTVP
)&ifbp
->IFB_AssertStrct
);
4312 ifbp
->IFB_AssertLvl
= run_time_flag
; // restore appropriate filter level
4313 #endif // HCF_ASSERT_MB
4316 #endif // HCF_ASSERT
4319 /************************************************************************************************************
4321 *.SUBMODULE void put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
4322 *.PURPOSE writes with 16/32 bit I/O via BAP1 port from Host memory to NIC RAM.
4325 * ifbp address of the Interface Block
4326 * bufp (byte) address of buffer
4327 * len length in bytes of buffer specified by bufp
4328 * word_len Big Endian only: number of leading bytes to swap in pairs
4333 * process the single byte (if applicable) not yet written by the previous put_frag and copy len
4334 * (or len-1) bytes from bufp to NIC.
4340 * It turns out DOS ODI uses zero length fragments. The HCF code can cope with it, but as a consequence, no
4341 * Assert on len is possible
4343 *.ENDDOC END DOCUMENTATION
4345 ************************************************************************************************************/
4347 put_frag( IFBP ifbp
, wci_bufp bufp
, int len
BE_PAR( int word_len
) )
4349 hcf_io io_port
= ifbp
->IFB_IOBase
+ HREG_DATA_1
; //BAP data register
4350 int i
; //prevent side effects from macro
4352 HCFASSERT( ((hcf_32
)bufp
& (HCF_ALIGN
-1) ) == 0, (hcf_32
)bufp
);
4354 HCFASSERT( word_len
== 0 || word_len
== 2 || word_len
== 4, word_len
);
4355 HCFASSERT( word_len
== 0 || ((hcf_32
)bufp
& 1 ) == 0, (hcf_32
)bufp
);
4356 HCFASSERT( word_len
<= len
, MERGE_2( word_len
, len
) );
4358 if ( word_len
) { //if there is anything to convert
4359 //. convert and write the 1st hcf_16
4360 j
= bufp
[1] | bufp
[0]<<8;
4361 OUT_PORT_WORD( io_port
, j
);
4362 //. update pointer and counter accordingly
4365 if ( word_len
> 1 ) { //. if there is to convert more than 1 word ( i.e 2 )
4366 //. . convert and write the 2nd hcf_16
4367 j
= bufp
[1] | bufp
[0]<<8; /*bufp is already incremented by 2*/
4368 OUT_PORT_WORD( io_port
, j
);
4369 //. . update pointer and counter accordingly
4374 #endif // HCF_BIG_ENDIAN
4376 if ( i
&& ifbp
->IFB_CarryOut
) { //skip zero-length
4377 j
= ((*bufp
)<<8) + ( ifbp
->IFB_CarryOut
& 0xFF );
4378 OUT_PORT_WORD( io_port
, j
);
4380 ifbp
->IFB_CarryOut
= 0;
4382 #if (HCF_IO) & HCF_IO_32BITS
4383 //skip zero-length I/O, single byte I/O and I/O not worthwhile (i.e. less than 6 bytes)for DW logic
4384 //if buffer length >= 6 and 32 bits I/O support
4385 if ( !(ifbp
->IFB_CntlOpt
& USE_16BIT
) && i
>= 6 ) {
4386 hcf_32 FAR
*p4
; //prevent side effects from macro
4387 if ( ( (hcf_32
)bufp
& 0x1 ) == 0 ) { //. if buffer at least word aligned
4388 if ( (hcf_32
)bufp
& 0x2 ) { //. . if buffer not double word aligned
4389 //. . . write a single word to get double word aligned
4390 j
= *(wci_recordp
)bufp
; //just to help ease writing macros with embedded assembly
4391 OUT_PORT_WORD( io_port
, j
);
4392 //. . . adjust buffer length and pointer accordingly
4395 //. . write as many double word as possible
4396 p4
= (hcf_32 FAR
*)bufp
;
4398 OUT_PORT_STRING_32( io_port
, p4
, j
);
4399 //. . adjust buffer length and pointer accordingly
4400 bufp
+= i
& ~0x0003;
4404 #endif // HCF_IO_32BITS
4405 //if no 32-bit support OR byte aligned OR 1 word left
4407 //. if odd number of bytes left
4409 //. . save left over byte (before bufp is corrupted) in carry, set carry flag
4410 ifbp
->IFB_CarryOut
= (hcf_16
)bufp
[i
-1] | 0x0100; //note that i and bufp are always simultaneously modified, &bufp[i-1] is invariant
4412 //. write as many word as possible in "alignment safe" way
4414 OUT_PORT_STRING_8_16( io_port
, bufp
, j
);
4419 /************************************************************************************************************
4421 *.SUBMODULE void put_frag_finalize( IFBP ifbp )
4422 *.PURPOSE cleanup after put_frag for trailing odd byte and MIC transfer to NIC.
4425 * ifbp address of the Interface Block
4430 * finalize the MIC calculation with the padding pattern, output the last byte (if applicable)
4431 * of the message and the MIC to the TxFS
4435 *2: 1 byte of the last put_frag may be still in IFB_CarryOut ( the put_frag carry holder ), so ........
4436 * 1 - 3 bytes of the last put_frag may be still in IFB_tx_32 ( the MIC engine carry holder ), so ........
4437 * The call to the MIC calculation routine feeds these remaining bytes (if any) of put_frag and the
4438 * just as many bytes of the padding as needed to the MIC calculation engine. Note that the "unneeded" pad
4439 * bytes simply end up in the MIC engine carry holder and are never used.
4440 *8: write the remainder of the MIC and possible some garbage to NIC RAM
4441 * Note: i is always 4 (a loop-invariant of the while in point 2)
4445 *.ENDDOC END DOCUMENTATION
4447 ************************************************************************************************************/
4449 put_frag_finalize( IFBP ifbp
)
4451 #if (HCF_TYPE) & HCF_TYPE_WPA
4452 if ( ifbp
->IFB_MICTxCarry
!= 0xFFFF) { //if MIC calculation active
4453 CALC_TX_MIC( mic_pad
, 8); //. feed (up to 8 bytes of) virtual padding to MIC engine
4454 //. write (possibly) trailing byte + (most of) MIC
4455 put_frag( ifbp
, (wci_bufp
)ifbp
->IFB_MICTx
, 8 BE_PAR(0) );
4457 #endif // HCF_TYPE_WPA
4458 put_frag( ifbp
, null_addr
, 1 BE_PAR(0) ); //write (possibly) trailing data or MIC byte
4459 } // put_frag_finalize
4462 /************************************************************************************************************
4464 *.SUBMODULE int put_info( IFBP ifbp, LTVP ltvp )
4465 *.PURPOSE support routine to handle the "basic" task of hcf_put_info to pass RIDs to the NIC.
4468 * ifbp address of the Interface Block
4469 * ltvp address in NIC RAM where LVT-records are located
4480 *20: do not write RIDs to NICs which have incompatible Firmware
4481 *24: If the RID does not exist, the L-field is set to zero.
4482 * Note that some RIDs can not be read, e.g. the pseudo RIDs for direct Hermes commands and CFG_DEFAULT_KEYS
4483 *28: If the RID is written successful, pass it to the NIC by means of an Access Write command
4486 * The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy:
4487 * - some codes (e.g. CFG_REG_MB) are explicitly handled by the HCF which implies that these codes
4488 * are valid. These codes are already consumed by hcf_put_info.
4489 * - all other codes are passed to the Hermes. Before the put action is executed, hcf_get_info is called
4490 * with an LTV record with a value of 1 in the L-field and the intended put action type in the Typ-code
4491 * field. If the put action type is valid, it is also valid as a get action type code - except
4492 * for CFG_DEFAULT_KEYS and CFG_ADD_TKIP_DEFAULT_KEY - so the HCF_ASSERT logic of hcf_get_info should
4495 *.ENDDOC END DOCUMENTATION
4497 ************************************************************************************************************/
4499 put_info( IFBP ifbp
, LTVP ltvp
)
4502 int rc
= HCF_SUCCESS
;
4504 HCFASSERT( ifbp
->IFB_CardStat
== 0, MERGE_2( ltvp
->typ
, ifbp
->IFB_CardStat
) );
4505 HCFASSERT( CFG_RID_CFG_MIN
<= ltvp
->typ
&& ltvp
->typ
<= CFG_RID_CFG_MAX
, ltvp
->typ
);
4507 if ( ifbp
->IFB_CardStat
== 0 && /* 20*/
4508 ( ( CFG_RID_CFG_MIN
<= ltvp
->typ
&& ltvp
->typ
<= CFG_RID_CFG_MAX
) ||
4509 ( CFG_RID_ENG_MIN
<= ltvp
->typ
/* && ltvp->typ <= 0xFFFF */ ) ) ) {
4510 #if HCF_ASSERT //FCC8, FCB0, FCB4, FCB6, FCB7, FCB8, FCC0, FCC4, FCBC, FCBD, FCBE, FCBF
4512 hcf_16 t
= ltvp
->typ
;
4513 LTV_STRCT x
= { 2, t
, {0} }; /*24*/
4514 hcf_get_info( ifbp
, (LTVP
)&x
);
4516 ( t
!= CFG_DEFAULT_KEYS
&& t
!= CFG_ADD_TKIP_DEFAULT_KEY
&& t
!= CFG_REMOVE_TKIP_DEFAULT_KEY
&&
4517 t
!= CFG_ADD_TKIP_MAPPED_KEY
&& t
!= CFG_REMOVE_TKIP_MAPPED_KEY
&&
4518 t
!= CFG_HANDOVER_ADDR
&& t
!= CFG_DISASSOCIATE_ADDR
&&
4519 t
!= CFG_FCBC
&& t
!= CFG_FCBD
&& t
!= CFG_FCBE
&& t
!= CFG_FCBF
&&
4520 t
!= CFG_DEAUTHENTICATE_ADDR
4523 HCFASSERT( DO_ASSERT
, ltvp
->typ
);
4526 #endif // HCF_ASSERT
4528 rc
= setup_bap( ifbp
, ltvp
->typ
, 0, IO_OUT
);
4529 put_frag( ifbp
, (wci_bufp
)ltvp
, 2*ltvp
->len
+ 2 BE_PAR(2) );
4530 /*28*/ if ( rc
== HCF_SUCCESS
) {
4531 rc
= cmd_exe( ifbp
, HCMD_ACCESS
+ HCMD_ACCESS_WRITE
, ltvp
->typ
);
4538 /************************************************************************************************************
4540 *.SUBMODULE int put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp )
4541 *.PURPOSE accumulates a ( series of) buffers into a single Info block into the MailBox.
4544 * ifbp address of the Interface Block
4545 * ltvp address of structure specifying the "type" and the fragments of the information to be synthesized
4546 * as an LTV into the MailBox
4551 * If the data does not fit (including no MailBox is available), the IFB_MBTally is incremented and an
4552 * error status is returned.
4553 * HCF_ASSERT does not catch.
4554 * Calling put_info_mb when their is no MailBox available, is considered a design error in the MSF.
4556 * Note that there is always at least 1 word of unused space in the mail box.
4558 * - no problem in pointer arithmetic (MB_RP == MB_WP means unambiguously mail box is completely empty
4559 * - There is always free space to write an L field with a value of zero after each MB_Info block. This
4560 * allows for an easy scan mechanism in the "get MB_Info block" logic.
4564 *1: Calculate L field of the MBIB, i.e. 1 for the T-field + the cumulative length of the fragments.
4565 *2: The free space in the MailBox is calculated (2a: free part from Write Ptr to Read Ptr, 2b: free part
4566 * turns out to wrap around) . If this space suffices to store the number of words reflected by len (T-field
4567 * + Value-field) plus the additional MailBox Info L-field + a trailing 0 to act as the L-field of a trailing
4568 * dummy or empty LTV record, then a MailBox Info block is build in the MailBox consisting of
4569 * - the value len in the first word
4570 * - type in the second word
4571 * - a copy of the contents of the fragments in the second and higher word
4573 *4: Since put_info_mb() can more or less directly be called from the MSF level, the I/F must be robust
4574 * against out-of-range variables. As failsafe coding, the MB update is skipped by changing tlen to 0 if
4575 * len == 0; This will indirectly cause an assert as result of the violation of the next if clause.
4576 *6: Check whether the free space in MailBox suffices (this covers the complete absence of the MailBox).
4577 * Note that len is unsigned, so even MSF I/F violation works out O.K.
4578 * The '2' in the expression "len+2" is used because 1 word is needed for L itself and 1 word is needed
4579 * for the zero-sentinel
4580 *8: update MailBox Info length report to MSF with "oldest" MB Info Block size. Be careful here, if you get
4581 * here before the MailBox is registered, you can't read from the buffer addressed by IFB_MBp (it is the
4582 * Null buffer) so don't move this code till the end of this routine but keep it where there is garuanteed
4586 * boundary testing depends on the fact that IFB_MBSize is guaranteed to be zero if no MailBox is present,
4587 * and to a lesser degree, that IFB_MBWp = IFB_MBRp = 0
4589 *.ENDDOC END DOCUMENTATION
4591 ************************************************************************************************************/
4594 put_info_mb( IFBP ifbp
, CFG_MB_INFO_STRCT FAR
* ltvp
)
4597 int rc
= HCF_SUCCESS
;
4598 hcf_16 i
; //work counter
4599 hcf_16
*dp
; //destination pointer (in MailBox)
4600 wci_recordp sp
; //source pointer
4601 hcf_16 len
; //total length to copy to MailBox
4602 hcf_16 tlen
; //free length/working length/offset in WMP frame
4604 if ( ifbp
->IFB_MBp
== NULL
) return rc
; //;?not sufficient
4605 HCFASSERT( ifbp
->IFB_MBp
!= NULL
, 0 ); //!!!be careful, don't get into an endless recursion
4606 HCFASSERT( ifbp
->IFB_MBSize
, 0 );
4609 for ( i
= 0; i
< ltvp
->frag_cnt
; i
++ ) {
4610 len
+= ltvp
->frag_buf
[i
].frag_len
;
4612 if ( ifbp
->IFB_MBRp
> ifbp
->IFB_MBWp
) {
4613 tlen
= ifbp
->IFB_MBRp
- ifbp
->IFB_MBWp
; /* 2a*/
4615 if ( ifbp
->IFB_MBRp
== ifbp
->IFB_MBWp
) {
4616 ifbp
->IFB_MBRp
= ifbp
->IFB_MBWp
= 0; // optimize Wrapping
4618 tlen
= ifbp
->IFB_MBSize
- ifbp
->IFB_MBWp
; /* 2b*/
4619 if ( ( tlen
<= len
+ 2 ) && ( len
+ 2 < ifbp
->IFB_MBRp
) ) { //if trailing space is too small but
4620 // leading space is sufficiently large
4621 ifbp
->IFB_MBp
[ifbp
->IFB_MBWp
] = 0xFFFF; //flag dummy LTV to fill the trailing space
4622 ifbp
->IFB_MBWp
= 0; //reset WritePointer to begin of MailBox
4623 tlen
= ifbp
->IFB_MBRp
; //get new available space size
4626 dp
= &ifbp
->IFB_MBp
[ifbp
->IFB_MBWp
];
4628 tlen
= 0; //;? what is this good for
4630 if ( len
+ 2 >= tlen
){ /* 6 */
4631 //Do Not ASSERT, this is a normal condition
4632 IF_TALLY( ifbp
->IFB_HCF_Tallies
.NoBufMB
++ );
4635 *dp
++ = len
; //write Len (= size of T+V in words to MB_Info block
4636 *dp
++ = ltvp
->base_typ
; //write Type to MB_Info block
4637 ifbp
->IFB_MBWp
+= len
+ 1; //update WritePointer of MailBox
4638 for ( i
= 0; i
< ltvp
->frag_cnt
; i
++ ) { // process each of the fragments
4639 sp
= ltvp
->frag_buf
[i
].frag_addr
;
4640 len
= ltvp
->frag_buf
[i
].frag_len
;
4641 while ( len
-- ) *dp
++ = *sp
++;
4643 ifbp
->IFB_MBp
[ifbp
->IFB_MBWp
] = 0; //to assure get_info for CFG_MB_INFO stops
4644 ifbp
->IFB_MBInfoLen
= ifbp
->IFB_MBp
[ifbp
->IFB_MBRp
]; /* 8 */
4650 /************************************************************************************************************
4652 *.SUBMODULE int setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type )
4653 *.PURPOSE set up data access to NIC RAM via BAP_1.
4656 * ifbp address of I/F Block
4658 * offset !!even!! offset in FID/RID
4659 * type IO_IN, IO_OUT
4663 * HCF_ERR_NO_NIC card is removed
4664 * HCF_ERR_DEFUNCT_TIME_OUT Fatal malfunction detected
4665 * HCF_ERR_DEFUNCT_..... if and only if IFB_DefunctStat <> 0
4669 * A non-zero return status indicates:
4670 * - the NIC is considered nonoperational, e.g. due to a time-out of some Hermes activity in the past
4671 * - BAP_1 could not properly be initialized
4672 * - the card is removed before completion of the data transfer
4673 * In all other cases, a zero is returned.
4674 * BAP Initialization failure indicates an H/W error which is very likely to signal complete H/W failure.
4675 * Once a BAP Initialization failure has occurred all subsequent interactions with the Hermes will return a
4676 * "defunct" status till the Hermes is re-initialized by means of an hcf_connect.
4678 * A BAP is a set of registers (Offset, Select and Data) offering read/write access to a particular FID or
4679 * RID. This access is based on a auto-increment feature.
4680 * There are two BAPs but these days the HCF uses only BAP_1 and leaves BAP_0 to the PCI Busmastering H/W.
4682 * The BAP-mechanism is based on the Busy bit in the Offset register (see the Hermes definition). The waiting
4683 * for Busy must occur between writing the Offset register and accessing the Data register. The
4684 * implementation to wait for the Busy bit drop after each write to the Offset register, implies that the
4685 * requirement that the Busy bit is low before the Select register is written, is automatically met.
4686 * BAP-setup may be time consuming (e.g. 380 usec for large offsets occurs frequently). The wait for Busy bit
4687 * drop is protected by a loop counter, which is initialized with IFB_TickIni, which is calibrated in init.
4689 * The NIC I/F is optimized for word transfer and can only handle word transfer at a word boundary in NIC
4690 * RAM. The intended solution for transfer of a single byte has multiple H/W flaws. There have been different
4691 * S/W Workaround strategies. RID access is hcf_16 based by "nature", so no byte access problems. For Tx/Rx
4692 * FID access, the byte logic became obsolete by absorbing it in the double word oriented nature of the MIC
4698 *2: the test on rc checks whether the HCF went into "defunct" mode ( e.g. BAP initialization or a call to
4699 * cmd_wait did ever fail).
4700 *4: the select register and offset register are set
4701 * the offset register is monitored till a successful condition (no busy bit) is detected or till the
4702 * (calibrated) protection counter expires
4703 * If the counter expires, this is reflected in IFB_DefunctStat, so all subsequent calls to setup_bap fail
4704 * immediately ( see 2)
4705 *6: initialization of the carry as used by pet/get_frag
4706 *8: HREG_OFFSET_ERR is ignored as error because:
4707 * a: the Hermes is robust against it
4708 * b: it is not known what causes it (probably a bug), hence no strategy can be specified which level is
4709 * to handle this error in which way. In the past, it could be induced by the MSF level, e.g. by calling
4710 * hcf_rcv_msg while there was no Rx-FID available. Since this is an MSF-error which is caught by ASSERT,
4711 * there is no run-time action required by the HCF.
4712 * Lumping the Offset error in with the Busy bit error, as has been done in the past turns out to be a
4713 * disaster or a life saver, just depending on what the cause of the error is. Since no prediction can be
4714 * done about the future, it is "felt" to be the best strategy to ignore this error. One day the code was
4715 * accompanied by the following comment:
4716 * // ignore HREG_OFFSET_ERR, someone, supposedly the MSF programmer ;) made a bug. Since we don't know
4717 * // what is going on, we might as well go on - under management pressure - by ignoring it
4719 *.ENDDOC END DOCUMENTATION
4721 ************************************************************************************************************/
4723 setup_bap( IFBP ifbp
, hcf_16 fid
, int offset
, int type
)
4728 HCFTRACE( ifbp
, HCF_TRACE_STRIO
);
4729 rc
= ifbp
->IFB_DefunctStat
;
4730 if (rc
== HCF_SUCCESS
) { /*2*/
4731 OPW( HREG_SELECT_1
, fid
); /*4*/
4732 OPW( HREG_OFFSET_1
, offset
);
4733 if ( type
== IO_IN
) {
4734 ifbp
->IFB_CarryIn
= 0;
4736 else ifbp
->IFB_CarryOut
= 0;
4737 HCF_WAIT_WHILE( IPW( HREG_OFFSET_1
) & HCMD_BUSY
);
4738 HCFASSERT( !( IPW( HREG_OFFSET_1
) & HREG_OFFSET_ERR
), MERGE_2( fid
, offset
) ); /*8*/
4739 if ( prot_cnt
== 0 ) {
4740 HCFASSERT( DO_ASSERT
, MERGE_2( fid
, offset
) );
4741 rc
= ifbp
->IFB_DefunctStat
= HCF_ERR_DEFUNCT_TIME_OUT
;
4742 ifbp
->IFB_CardStat
|= CARD_STAT_DEFUNCT
;
4745 HCFTRACE( ifbp
, HCF_TRACE_STRIO
| HCF_TRACE_EXIT
);