Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / staging / zcache / zcache-main.c
blob52b43b7b83d7b3c9d7e3acfc853912afc64c2b61
1 /*
2 * zcache.c
4 * Copyright (c) 2010,2011, Dan Magenheimer, Oracle Corp.
5 * Copyright (c) 2010,2011, Nitin Gupta
7 * Zcache provides an in-kernel "host implementation" for transcendent memory
8 * and, thus indirectly, for cleancache and frontswap. Zcache includes two
9 * page-accessible memory [1] interfaces, both utilizing the crypto compression
10 * API:
11 * 1) "compression buddies" ("zbud") is used for ephemeral pages
12 * 2) zsmalloc is used for persistent pages.
13 * Xvmalloc (based on the TLSF allocator) has very low fragmentation
14 * so maximizes space efficiency, while zbud allows pairs (and potentially,
15 * in the future, more than a pair of) compressed pages to be closely linked
16 * so that reclaiming can be done via the kernel's physical-page-oriented
17 * "shrinker" interface.
19 * [1] For a definition of page-accessible memory (aka PAM), see:
20 * http://marc.info/?l=linux-mm&m=127811271605009
23 #include <linux/module.h>
24 #include <linux/cpu.h>
25 #include <linux/highmem.h>
26 #include <linux/list.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/math64.h>
32 #include <linux/crypto.h>
33 #include <linux/string.h>
34 #include <linux/idr.h>
35 #include "tmem.h"
37 #include "../zsmalloc/zsmalloc.h"
39 #ifdef CONFIG_CLEANCACHE
40 #include <linux/cleancache.h>
41 #endif
42 #ifdef CONFIG_FRONTSWAP
43 #include <linux/frontswap.h>
44 #endif
46 #if 0
47 /* this is more aggressive but may cause other problems? */
48 #define ZCACHE_GFP_MASK (GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN)
49 #else
50 #define ZCACHE_GFP_MASK \
51 (__GFP_FS | __GFP_NORETRY | __GFP_NOWARN | __GFP_NOMEMALLOC)
52 #endif
54 #define MAX_CLIENTS 16
55 #define LOCAL_CLIENT ((uint16_t)-1)
57 MODULE_LICENSE("GPL");
59 struct zcache_client {
60 struct idr tmem_pools;
61 struct zs_pool *zspool;
62 bool allocated;
63 atomic_t refcount;
66 static struct zcache_client zcache_host;
67 static struct zcache_client zcache_clients[MAX_CLIENTS];
69 static inline uint16_t get_client_id_from_client(struct zcache_client *cli)
71 BUG_ON(cli == NULL);
72 if (cli == &zcache_host)
73 return LOCAL_CLIENT;
74 return cli - &zcache_clients[0];
77 static struct zcache_client *get_zcache_client(uint16_t cli_id)
79 if (cli_id == LOCAL_CLIENT)
80 return &zcache_host;
82 if ((unsigned int)cli_id < MAX_CLIENTS)
83 return &zcache_clients[cli_id];
85 return NULL;
88 static inline bool is_local_client(struct zcache_client *cli)
90 return cli == &zcache_host;
93 /* crypto API for zcache */
94 #define ZCACHE_COMP_NAME_SZ CRYPTO_MAX_ALG_NAME
95 static char zcache_comp_name[ZCACHE_COMP_NAME_SZ];
96 static struct crypto_comp * __percpu *zcache_comp_pcpu_tfms;
98 enum comp_op {
99 ZCACHE_COMPOP_COMPRESS,
100 ZCACHE_COMPOP_DECOMPRESS
103 static inline int zcache_comp_op(enum comp_op op,
104 const u8 *src, unsigned int slen,
105 u8 *dst, unsigned int *dlen)
107 struct crypto_comp *tfm;
108 int ret;
110 BUG_ON(!zcache_comp_pcpu_tfms);
111 tfm = *per_cpu_ptr(zcache_comp_pcpu_tfms, get_cpu());
112 BUG_ON(!tfm);
113 switch (op) {
114 case ZCACHE_COMPOP_COMPRESS:
115 ret = crypto_comp_compress(tfm, src, slen, dst, dlen);
116 break;
117 case ZCACHE_COMPOP_DECOMPRESS:
118 ret = crypto_comp_decompress(tfm, src, slen, dst, dlen);
119 break;
120 default:
121 ret = -EINVAL;
123 put_cpu();
124 return ret;
127 /**********
128 * Compression buddies ("zbud") provides for packing two (or, possibly
129 * in the future, more) compressed ephemeral pages into a single "raw"
130 * (physical) page and tracking them with data structures so that
131 * the raw pages can be easily reclaimed.
133 * A zbud page ("zbpg") is an aligned page containing a list_head,
134 * a lock, and two "zbud headers". The remainder of the physical
135 * page is divided up into aligned 64-byte "chunks" which contain
136 * the compressed data for zero, one, or two zbuds. Each zbpg
137 * resides on: (1) an "unused list" if it has no zbuds; (2) a
138 * "buddied" list if it is fully populated with two zbuds; or
139 * (3) one of PAGE_SIZE/64 "unbuddied" lists indexed by how many chunks
140 * the one unbuddied zbud uses. The data inside a zbpg cannot be
141 * read or written unless the zbpg's lock is held.
144 #define ZBH_SENTINEL 0x43214321
145 #define ZBPG_SENTINEL 0xdeadbeef
147 #define ZBUD_MAX_BUDS 2
149 struct zbud_hdr {
150 uint16_t client_id;
151 uint16_t pool_id;
152 struct tmem_oid oid;
153 uint32_t index;
154 uint16_t size; /* compressed size in bytes, zero means unused */
155 DECL_SENTINEL
158 struct zbud_page {
159 struct list_head bud_list;
160 spinlock_t lock;
161 struct zbud_hdr buddy[ZBUD_MAX_BUDS];
162 DECL_SENTINEL
163 /* followed by NUM_CHUNK aligned CHUNK_SIZE-byte chunks */
166 #define CHUNK_SHIFT 6
167 #define CHUNK_SIZE (1 << CHUNK_SHIFT)
168 #define CHUNK_MASK (~(CHUNK_SIZE-1))
169 #define NCHUNKS (((PAGE_SIZE - sizeof(struct zbud_page)) & \
170 CHUNK_MASK) >> CHUNK_SHIFT)
171 #define MAX_CHUNK (NCHUNKS-1)
173 static struct {
174 struct list_head list;
175 unsigned count;
176 } zbud_unbuddied[NCHUNKS];
177 /* list N contains pages with N chunks USED and NCHUNKS-N unused */
178 /* element 0 is never used but optimizing that isn't worth it */
179 static unsigned long zbud_cumul_chunk_counts[NCHUNKS];
181 struct list_head zbud_buddied_list;
182 static unsigned long zcache_zbud_buddied_count;
184 /* protects the buddied list and all unbuddied lists */
185 static DEFINE_SPINLOCK(zbud_budlists_spinlock);
187 static LIST_HEAD(zbpg_unused_list);
188 static unsigned long zcache_zbpg_unused_list_count;
190 /* protects the unused page list */
191 static DEFINE_SPINLOCK(zbpg_unused_list_spinlock);
193 static atomic_t zcache_zbud_curr_raw_pages;
194 static atomic_t zcache_zbud_curr_zpages;
195 static unsigned long zcache_zbud_curr_zbytes;
196 static unsigned long zcache_zbud_cumul_zpages;
197 static unsigned long zcache_zbud_cumul_zbytes;
198 static unsigned long zcache_compress_poor;
199 static unsigned long zcache_mean_compress_poor;
201 /* forward references */
202 static void *zcache_get_free_page(void);
203 static void zcache_free_page(void *p);
206 * zbud helper functions
209 static inline unsigned zbud_max_buddy_size(void)
211 return MAX_CHUNK << CHUNK_SHIFT;
214 static inline unsigned zbud_size_to_chunks(unsigned size)
216 BUG_ON(size == 0 || size > zbud_max_buddy_size());
217 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
220 static inline int zbud_budnum(struct zbud_hdr *zh)
222 unsigned offset = (unsigned long)zh & (PAGE_SIZE - 1);
223 struct zbud_page *zbpg = NULL;
224 unsigned budnum = -1U;
225 int i;
227 for (i = 0; i < ZBUD_MAX_BUDS; i++)
228 if (offset == offsetof(typeof(*zbpg), buddy[i])) {
229 budnum = i;
230 break;
232 BUG_ON(budnum == -1U);
233 return budnum;
236 static char *zbud_data(struct zbud_hdr *zh, unsigned size)
238 struct zbud_page *zbpg;
239 char *p;
240 unsigned budnum;
242 ASSERT_SENTINEL(zh, ZBH);
243 budnum = zbud_budnum(zh);
244 BUG_ON(size == 0 || size > zbud_max_buddy_size());
245 zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
246 ASSERT_SPINLOCK(&zbpg->lock);
247 p = (char *)zbpg;
248 if (budnum == 0)
249 p += ((sizeof(struct zbud_page) + CHUNK_SIZE - 1) &
250 CHUNK_MASK);
251 else if (budnum == 1)
252 p += PAGE_SIZE - ((size + CHUNK_SIZE - 1) & CHUNK_MASK);
253 return p;
257 * zbud raw page management
260 static struct zbud_page *zbud_alloc_raw_page(void)
262 struct zbud_page *zbpg = NULL;
263 struct zbud_hdr *zh0, *zh1;
264 bool recycled = 0;
266 /* if any pages on the zbpg list, use one */
267 spin_lock(&zbpg_unused_list_spinlock);
268 if (!list_empty(&zbpg_unused_list)) {
269 zbpg = list_first_entry(&zbpg_unused_list,
270 struct zbud_page, bud_list);
271 list_del_init(&zbpg->bud_list);
272 zcache_zbpg_unused_list_count--;
273 recycled = 1;
275 spin_unlock(&zbpg_unused_list_spinlock);
276 if (zbpg == NULL)
277 /* none on zbpg list, try to get a kernel page */
278 zbpg = zcache_get_free_page();
279 if (likely(zbpg != NULL)) {
280 INIT_LIST_HEAD(&zbpg->bud_list);
281 zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
282 spin_lock_init(&zbpg->lock);
283 if (recycled) {
284 ASSERT_INVERTED_SENTINEL(zbpg, ZBPG);
285 SET_SENTINEL(zbpg, ZBPG);
286 BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
287 BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
288 } else {
289 atomic_inc(&zcache_zbud_curr_raw_pages);
290 INIT_LIST_HEAD(&zbpg->bud_list);
291 SET_SENTINEL(zbpg, ZBPG);
292 zh0->size = 0; zh1->size = 0;
293 tmem_oid_set_invalid(&zh0->oid);
294 tmem_oid_set_invalid(&zh1->oid);
297 return zbpg;
300 static void zbud_free_raw_page(struct zbud_page *zbpg)
302 struct zbud_hdr *zh0 = &zbpg->buddy[0], *zh1 = &zbpg->buddy[1];
304 ASSERT_SENTINEL(zbpg, ZBPG);
305 BUG_ON(!list_empty(&zbpg->bud_list));
306 ASSERT_SPINLOCK(&zbpg->lock);
307 BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
308 BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
309 INVERT_SENTINEL(zbpg, ZBPG);
310 spin_unlock(&zbpg->lock);
311 spin_lock(&zbpg_unused_list_spinlock);
312 list_add(&zbpg->bud_list, &zbpg_unused_list);
313 zcache_zbpg_unused_list_count++;
314 spin_unlock(&zbpg_unused_list_spinlock);
318 * core zbud handling routines
321 static unsigned zbud_free(struct zbud_hdr *zh)
323 unsigned size;
325 ASSERT_SENTINEL(zh, ZBH);
326 BUG_ON(!tmem_oid_valid(&zh->oid));
327 size = zh->size;
328 BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
329 zh->size = 0;
330 tmem_oid_set_invalid(&zh->oid);
331 INVERT_SENTINEL(zh, ZBH);
332 zcache_zbud_curr_zbytes -= size;
333 atomic_dec(&zcache_zbud_curr_zpages);
334 return size;
337 static void zbud_free_and_delist(struct zbud_hdr *zh)
339 unsigned chunks;
340 struct zbud_hdr *zh_other;
341 unsigned budnum = zbud_budnum(zh), size;
342 struct zbud_page *zbpg =
343 container_of(zh, struct zbud_page, buddy[budnum]);
345 spin_lock(&zbud_budlists_spinlock);
346 spin_lock(&zbpg->lock);
347 if (list_empty(&zbpg->bud_list)) {
348 /* ignore zombie page... see zbud_evict_pages() */
349 spin_unlock(&zbpg->lock);
350 spin_unlock(&zbud_budlists_spinlock);
351 return;
353 size = zbud_free(zh);
354 ASSERT_SPINLOCK(&zbpg->lock);
355 zh_other = &zbpg->buddy[(budnum == 0) ? 1 : 0];
356 if (zh_other->size == 0) { /* was unbuddied: unlist and free */
357 chunks = zbud_size_to_chunks(size) ;
358 BUG_ON(list_empty(&zbud_unbuddied[chunks].list));
359 list_del_init(&zbpg->bud_list);
360 zbud_unbuddied[chunks].count--;
361 spin_unlock(&zbud_budlists_spinlock);
362 zbud_free_raw_page(zbpg);
363 } else { /* was buddied: move remaining buddy to unbuddied list */
364 chunks = zbud_size_to_chunks(zh_other->size) ;
365 list_del_init(&zbpg->bud_list);
366 zcache_zbud_buddied_count--;
367 list_add_tail(&zbpg->bud_list, &zbud_unbuddied[chunks].list);
368 zbud_unbuddied[chunks].count++;
369 spin_unlock(&zbud_budlists_spinlock);
370 spin_unlock(&zbpg->lock);
374 static struct zbud_hdr *zbud_create(uint16_t client_id, uint16_t pool_id,
375 struct tmem_oid *oid,
376 uint32_t index, struct page *page,
377 void *cdata, unsigned size)
379 struct zbud_hdr *zh0, *zh1, *zh = NULL;
380 struct zbud_page *zbpg = NULL, *ztmp;
381 unsigned nchunks;
382 char *to;
383 int i, found_good_buddy = 0;
385 nchunks = zbud_size_to_chunks(size) ;
386 for (i = MAX_CHUNK - nchunks + 1; i > 0; i--) {
387 spin_lock(&zbud_budlists_spinlock);
388 if (!list_empty(&zbud_unbuddied[i].list)) {
389 list_for_each_entry_safe(zbpg, ztmp,
390 &zbud_unbuddied[i].list, bud_list) {
391 if (spin_trylock(&zbpg->lock)) {
392 found_good_buddy = i;
393 goto found_unbuddied;
397 spin_unlock(&zbud_budlists_spinlock);
399 /* didn't find a good buddy, try allocating a new page */
400 zbpg = zbud_alloc_raw_page();
401 if (unlikely(zbpg == NULL))
402 goto out;
403 /* ok, have a page, now compress the data before taking locks */
404 spin_lock(&zbud_budlists_spinlock);
405 spin_lock(&zbpg->lock);
406 list_add_tail(&zbpg->bud_list, &zbud_unbuddied[nchunks].list);
407 zbud_unbuddied[nchunks].count++;
408 zh = &zbpg->buddy[0];
409 goto init_zh;
411 found_unbuddied:
412 ASSERT_SPINLOCK(&zbpg->lock);
413 zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
414 BUG_ON(!((zh0->size == 0) ^ (zh1->size == 0)));
415 if (zh0->size != 0) { /* buddy0 in use, buddy1 is vacant */
416 ASSERT_SENTINEL(zh0, ZBH);
417 zh = zh1;
418 } else if (zh1->size != 0) { /* buddy1 in use, buddy0 is vacant */
419 ASSERT_SENTINEL(zh1, ZBH);
420 zh = zh0;
421 } else
422 BUG();
423 list_del_init(&zbpg->bud_list);
424 zbud_unbuddied[found_good_buddy].count--;
425 list_add_tail(&zbpg->bud_list, &zbud_buddied_list);
426 zcache_zbud_buddied_count++;
428 init_zh:
429 SET_SENTINEL(zh, ZBH);
430 zh->size = size;
431 zh->index = index;
432 zh->oid = *oid;
433 zh->pool_id = pool_id;
434 zh->client_id = client_id;
435 to = zbud_data(zh, size);
436 memcpy(to, cdata, size);
437 spin_unlock(&zbpg->lock);
438 spin_unlock(&zbud_budlists_spinlock);
440 zbud_cumul_chunk_counts[nchunks]++;
441 atomic_inc(&zcache_zbud_curr_zpages);
442 zcache_zbud_cumul_zpages++;
443 zcache_zbud_curr_zbytes += size;
444 zcache_zbud_cumul_zbytes += size;
445 out:
446 return zh;
449 static int zbud_decompress(struct page *page, struct zbud_hdr *zh)
451 struct zbud_page *zbpg;
452 unsigned budnum = zbud_budnum(zh);
453 unsigned int out_len = PAGE_SIZE;
454 char *to_va, *from_va;
455 unsigned size;
456 int ret = 0;
458 zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
459 spin_lock(&zbpg->lock);
460 if (list_empty(&zbpg->bud_list)) {
461 /* ignore zombie page... see zbud_evict_pages() */
462 ret = -EINVAL;
463 goto out;
465 ASSERT_SENTINEL(zh, ZBH);
466 BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
467 to_va = kmap_atomic(page);
468 size = zh->size;
469 from_va = zbud_data(zh, size);
470 ret = zcache_comp_op(ZCACHE_COMPOP_DECOMPRESS, from_va, size,
471 to_va, &out_len);
472 BUG_ON(ret);
473 BUG_ON(out_len != PAGE_SIZE);
474 kunmap_atomic(to_va);
475 out:
476 spin_unlock(&zbpg->lock);
477 return ret;
481 * The following routines handle shrinking of ephemeral pages by evicting
482 * pages "least valuable" first.
485 static unsigned long zcache_evicted_raw_pages;
486 static unsigned long zcache_evicted_buddied_pages;
487 static unsigned long zcache_evicted_unbuddied_pages;
489 static struct tmem_pool *zcache_get_pool_by_id(uint16_t cli_id,
490 uint16_t poolid);
491 static void zcache_put_pool(struct tmem_pool *pool);
494 * Flush and free all zbuds in a zbpg, then free the pageframe
496 static void zbud_evict_zbpg(struct zbud_page *zbpg)
498 struct zbud_hdr *zh;
499 int i, j;
500 uint32_t pool_id[ZBUD_MAX_BUDS], client_id[ZBUD_MAX_BUDS];
501 uint32_t index[ZBUD_MAX_BUDS];
502 struct tmem_oid oid[ZBUD_MAX_BUDS];
503 struct tmem_pool *pool;
505 ASSERT_SPINLOCK(&zbpg->lock);
506 BUG_ON(!list_empty(&zbpg->bud_list));
507 for (i = 0, j = 0; i < ZBUD_MAX_BUDS; i++) {
508 zh = &zbpg->buddy[i];
509 if (zh->size) {
510 client_id[j] = zh->client_id;
511 pool_id[j] = zh->pool_id;
512 oid[j] = zh->oid;
513 index[j] = zh->index;
514 j++;
515 zbud_free(zh);
518 spin_unlock(&zbpg->lock);
519 for (i = 0; i < j; i++) {
520 pool = zcache_get_pool_by_id(client_id[i], pool_id[i]);
521 if (pool != NULL) {
522 tmem_flush_page(pool, &oid[i], index[i]);
523 zcache_put_pool(pool);
526 ASSERT_SENTINEL(zbpg, ZBPG);
527 spin_lock(&zbpg->lock);
528 zbud_free_raw_page(zbpg);
532 * Free nr pages. This code is funky because we want to hold the locks
533 * protecting various lists for as short a time as possible, and in some
534 * circumstances the list may change asynchronously when the list lock is
535 * not held. In some cases we also trylock not only to avoid waiting on a
536 * page in use by another cpu, but also to avoid potential deadlock due to
537 * lock inversion.
539 static void zbud_evict_pages(int nr)
541 struct zbud_page *zbpg;
542 int i;
544 /* first try freeing any pages on unused list */
545 retry_unused_list:
546 spin_lock_bh(&zbpg_unused_list_spinlock);
547 if (!list_empty(&zbpg_unused_list)) {
548 /* can't walk list here, since it may change when unlocked */
549 zbpg = list_first_entry(&zbpg_unused_list,
550 struct zbud_page, bud_list);
551 list_del_init(&zbpg->bud_list);
552 zcache_zbpg_unused_list_count--;
553 atomic_dec(&zcache_zbud_curr_raw_pages);
554 spin_unlock_bh(&zbpg_unused_list_spinlock);
555 zcache_free_page(zbpg);
556 zcache_evicted_raw_pages++;
557 if (--nr <= 0)
558 goto out;
559 goto retry_unused_list;
561 spin_unlock_bh(&zbpg_unused_list_spinlock);
563 /* now try freeing unbuddied pages, starting with least space avail */
564 for (i = 0; i < MAX_CHUNK; i++) {
565 retry_unbud_list_i:
566 spin_lock_bh(&zbud_budlists_spinlock);
567 if (list_empty(&zbud_unbuddied[i].list)) {
568 spin_unlock_bh(&zbud_budlists_spinlock);
569 continue;
571 list_for_each_entry(zbpg, &zbud_unbuddied[i].list, bud_list) {
572 if (unlikely(!spin_trylock(&zbpg->lock)))
573 continue;
574 list_del_init(&zbpg->bud_list);
575 zbud_unbuddied[i].count--;
576 spin_unlock(&zbud_budlists_spinlock);
577 zcache_evicted_unbuddied_pages++;
578 /* want budlists unlocked when doing zbpg eviction */
579 zbud_evict_zbpg(zbpg);
580 local_bh_enable();
581 if (--nr <= 0)
582 goto out;
583 goto retry_unbud_list_i;
585 spin_unlock_bh(&zbud_budlists_spinlock);
588 /* as a last resort, free buddied pages */
589 retry_bud_list:
590 spin_lock_bh(&zbud_budlists_spinlock);
591 if (list_empty(&zbud_buddied_list)) {
592 spin_unlock_bh(&zbud_budlists_spinlock);
593 goto out;
595 list_for_each_entry(zbpg, &zbud_buddied_list, bud_list) {
596 if (unlikely(!spin_trylock(&zbpg->lock)))
597 continue;
598 list_del_init(&zbpg->bud_list);
599 zcache_zbud_buddied_count--;
600 spin_unlock(&zbud_budlists_spinlock);
601 zcache_evicted_buddied_pages++;
602 /* want budlists unlocked when doing zbpg eviction */
603 zbud_evict_zbpg(zbpg);
604 local_bh_enable();
605 if (--nr <= 0)
606 goto out;
607 goto retry_bud_list;
609 spin_unlock_bh(&zbud_budlists_spinlock);
610 out:
611 return;
614 static void __init zbud_init(void)
616 int i;
618 INIT_LIST_HEAD(&zbud_buddied_list);
620 for (i = 0; i < NCHUNKS; i++)
621 INIT_LIST_HEAD(&zbud_unbuddied[i].list);
624 #ifdef CONFIG_SYSFS
626 * These sysfs routines show a nice distribution of how many zbpg's are
627 * currently (and have ever been placed) in each unbuddied list. It's fun
628 * to watch but can probably go away before final merge.
630 static int zbud_show_unbuddied_list_counts(char *buf)
632 int i;
633 char *p = buf;
635 for (i = 0; i < NCHUNKS; i++)
636 p += sprintf(p, "%u ", zbud_unbuddied[i].count);
637 return p - buf;
640 static int zbud_show_cumul_chunk_counts(char *buf)
642 unsigned long i, chunks = 0, total_chunks = 0, sum_total_chunks = 0;
643 unsigned long total_chunks_lte_21 = 0, total_chunks_lte_32 = 0;
644 unsigned long total_chunks_lte_42 = 0;
645 char *p = buf;
647 for (i = 0; i < NCHUNKS; i++) {
648 p += sprintf(p, "%lu ", zbud_cumul_chunk_counts[i]);
649 chunks += zbud_cumul_chunk_counts[i];
650 total_chunks += zbud_cumul_chunk_counts[i];
651 sum_total_chunks += i * zbud_cumul_chunk_counts[i];
652 if (i == 21)
653 total_chunks_lte_21 = total_chunks;
654 if (i == 32)
655 total_chunks_lte_32 = total_chunks;
656 if (i == 42)
657 total_chunks_lte_42 = total_chunks;
659 p += sprintf(p, "<=21:%lu <=32:%lu <=42:%lu, mean:%lu\n",
660 total_chunks_lte_21, total_chunks_lte_32, total_chunks_lte_42,
661 chunks == 0 ? 0 : sum_total_chunks / chunks);
662 return p - buf;
664 #endif
666 /**********
667 * This "zv" PAM implementation combines the slab-based zsmalloc
668 * with the crypto compression API to maximize the amount of data that can
669 * be packed into a physical page.
671 * Zv represents a PAM page with the index and object (plus a "size" value
672 * necessary for decompression) immediately preceding the compressed data.
675 #define ZVH_SENTINEL 0x43214321
677 struct zv_hdr {
678 uint32_t pool_id;
679 struct tmem_oid oid;
680 uint32_t index;
681 size_t size;
682 DECL_SENTINEL
685 /* rudimentary policy limits */
686 /* total number of persistent pages may not exceed this percentage */
687 static unsigned int zv_page_count_policy_percent = 75;
689 * byte count defining poor compression; pages with greater zsize will be
690 * rejected
692 static unsigned int zv_max_zsize = (PAGE_SIZE / 8) * 7;
694 * byte count defining poor *mean* compression; pages with greater zsize
695 * will be rejected until sufficient better-compressed pages are accepted
696 * driving the mean below this threshold
698 static unsigned int zv_max_mean_zsize = (PAGE_SIZE / 8) * 5;
700 static atomic_t zv_curr_dist_counts[NCHUNKS];
701 static atomic_t zv_cumul_dist_counts[NCHUNKS];
703 static unsigned long zv_create(struct zs_pool *pool, uint32_t pool_id,
704 struct tmem_oid *oid, uint32_t index,
705 void *cdata, unsigned clen)
707 struct zv_hdr *zv;
708 u32 size = clen + sizeof(struct zv_hdr);
709 int chunks = (size + (CHUNK_SIZE - 1)) >> CHUNK_SHIFT;
710 unsigned long handle = 0;
712 BUG_ON(!irqs_disabled());
713 BUG_ON(chunks >= NCHUNKS);
714 handle = zs_malloc(pool, size);
715 if (!handle)
716 goto out;
717 atomic_inc(&zv_curr_dist_counts[chunks]);
718 atomic_inc(&zv_cumul_dist_counts[chunks]);
719 zv = zs_map_object(pool, handle, ZS_MM_WO);
720 zv->index = index;
721 zv->oid = *oid;
722 zv->pool_id = pool_id;
723 zv->size = clen;
724 SET_SENTINEL(zv, ZVH);
725 memcpy((char *)zv + sizeof(struct zv_hdr), cdata, clen);
726 zs_unmap_object(pool, handle);
727 out:
728 return handle;
731 static void zv_free(struct zs_pool *pool, unsigned long handle)
733 unsigned long flags;
734 struct zv_hdr *zv;
735 uint16_t size;
736 int chunks;
738 zv = zs_map_object(pool, handle, ZS_MM_RW);
739 ASSERT_SENTINEL(zv, ZVH);
740 size = zv->size + sizeof(struct zv_hdr);
741 INVERT_SENTINEL(zv, ZVH);
742 zs_unmap_object(pool, handle);
744 chunks = (size + (CHUNK_SIZE - 1)) >> CHUNK_SHIFT;
745 BUG_ON(chunks >= NCHUNKS);
746 atomic_dec(&zv_curr_dist_counts[chunks]);
748 local_irq_save(flags);
749 zs_free(pool, handle);
750 local_irq_restore(flags);
753 static void zv_decompress(struct page *page, unsigned long handle)
755 unsigned int clen = PAGE_SIZE;
756 char *to_va;
757 int ret;
758 struct zv_hdr *zv;
760 zv = zs_map_object(zcache_host.zspool, handle, ZS_MM_RO);
761 BUG_ON(zv->size == 0);
762 ASSERT_SENTINEL(zv, ZVH);
763 to_va = kmap_atomic(page);
764 ret = zcache_comp_op(ZCACHE_COMPOP_DECOMPRESS, (char *)zv + sizeof(*zv),
765 zv->size, to_va, &clen);
766 kunmap_atomic(to_va);
767 zs_unmap_object(zcache_host.zspool, handle);
768 BUG_ON(ret);
769 BUG_ON(clen != PAGE_SIZE);
772 #ifdef CONFIG_SYSFS
774 * show a distribution of compression stats for zv pages.
777 static int zv_curr_dist_counts_show(char *buf)
779 unsigned long i, n, chunks = 0, sum_total_chunks = 0;
780 char *p = buf;
782 for (i = 0; i < NCHUNKS; i++) {
783 n = atomic_read(&zv_curr_dist_counts[i]);
784 p += sprintf(p, "%lu ", n);
785 chunks += n;
786 sum_total_chunks += i * n;
788 p += sprintf(p, "mean:%lu\n",
789 chunks == 0 ? 0 : sum_total_chunks / chunks);
790 return p - buf;
793 static int zv_cumul_dist_counts_show(char *buf)
795 unsigned long i, n, chunks = 0, sum_total_chunks = 0;
796 char *p = buf;
798 for (i = 0; i < NCHUNKS; i++) {
799 n = atomic_read(&zv_cumul_dist_counts[i]);
800 p += sprintf(p, "%lu ", n);
801 chunks += n;
802 sum_total_chunks += i * n;
804 p += sprintf(p, "mean:%lu\n",
805 chunks == 0 ? 0 : sum_total_chunks / chunks);
806 return p - buf;
810 * setting zv_max_zsize via sysfs causes all persistent (e.g. swap)
811 * pages that don't compress to less than this value (including metadata
812 * overhead) to be rejected. We don't allow the value to get too close
813 * to PAGE_SIZE.
815 static ssize_t zv_max_zsize_show(struct kobject *kobj,
816 struct kobj_attribute *attr,
817 char *buf)
819 return sprintf(buf, "%u\n", zv_max_zsize);
822 static ssize_t zv_max_zsize_store(struct kobject *kobj,
823 struct kobj_attribute *attr,
824 const char *buf, size_t count)
826 unsigned long val;
827 int err;
829 if (!capable(CAP_SYS_ADMIN))
830 return -EPERM;
832 err = kstrtoul(buf, 10, &val);
833 if (err || (val == 0) || (val > (PAGE_SIZE / 8) * 7))
834 return -EINVAL;
835 zv_max_zsize = val;
836 return count;
840 * setting zv_max_mean_zsize via sysfs causes all persistent (e.g. swap)
841 * pages that don't compress to less than this value (including metadata
842 * overhead) to be rejected UNLESS the mean compression is also smaller
843 * than this value. In other words, we are load-balancing-by-zsize the
844 * accepted pages. Again, we don't allow the value to get too close
845 * to PAGE_SIZE.
847 static ssize_t zv_max_mean_zsize_show(struct kobject *kobj,
848 struct kobj_attribute *attr,
849 char *buf)
851 return sprintf(buf, "%u\n", zv_max_mean_zsize);
854 static ssize_t zv_max_mean_zsize_store(struct kobject *kobj,
855 struct kobj_attribute *attr,
856 const char *buf, size_t count)
858 unsigned long val;
859 int err;
861 if (!capable(CAP_SYS_ADMIN))
862 return -EPERM;
864 err = kstrtoul(buf, 10, &val);
865 if (err || (val == 0) || (val > (PAGE_SIZE / 8) * 7))
866 return -EINVAL;
867 zv_max_mean_zsize = val;
868 return count;
872 * setting zv_page_count_policy_percent via sysfs sets an upper bound of
873 * persistent (e.g. swap) pages that will be retained according to:
874 * (zv_page_count_policy_percent * totalram_pages) / 100)
875 * when that limit is reached, further puts will be rejected (until
876 * some pages have been flushed). Note that, due to compression,
877 * this number may exceed 100; it defaults to 75 and we set an
878 * arbitary limit of 150. A poor choice will almost certainly result
879 * in OOM's, so this value should only be changed prudently.
881 static ssize_t zv_page_count_policy_percent_show(struct kobject *kobj,
882 struct kobj_attribute *attr,
883 char *buf)
885 return sprintf(buf, "%u\n", zv_page_count_policy_percent);
888 static ssize_t zv_page_count_policy_percent_store(struct kobject *kobj,
889 struct kobj_attribute *attr,
890 const char *buf, size_t count)
892 unsigned long val;
893 int err;
895 if (!capable(CAP_SYS_ADMIN))
896 return -EPERM;
898 err = kstrtoul(buf, 10, &val);
899 if (err || (val == 0) || (val > 150))
900 return -EINVAL;
901 zv_page_count_policy_percent = val;
902 return count;
905 static struct kobj_attribute zcache_zv_max_zsize_attr = {
906 .attr = { .name = "zv_max_zsize", .mode = 0644 },
907 .show = zv_max_zsize_show,
908 .store = zv_max_zsize_store,
911 static struct kobj_attribute zcache_zv_max_mean_zsize_attr = {
912 .attr = { .name = "zv_max_mean_zsize", .mode = 0644 },
913 .show = zv_max_mean_zsize_show,
914 .store = zv_max_mean_zsize_store,
917 static struct kobj_attribute zcache_zv_page_count_policy_percent_attr = {
918 .attr = { .name = "zv_page_count_policy_percent",
919 .mode = 0644 },
920 .show = zv_page_count_policy_percent_show,
921 .store = zv_page_count_policy_percent_store,
923 #endif
926 * zcache core code starts here
929 /* useful stats not collected by cleancache or frontswap */
930 static unsigned long zcache_flush_total;
931 static unsigned long zcache_flush_found;
932 static unsigned long zcache_flobj_total;
933 static unsigned long zcache_flobj_found;
934 static unsigned long zcache_failed_eph_puts;
935 static unsigned long zcache_failed_pers_puts;
938 * Tmem operations assume the poolid implies the invoking client.
939 * Zcache only has one client (the kernel itself): LOCAL_CLIENT.
940 * RAMster has each client numbered by cluster node, and a KVM version
941 * of zcache would have one client per guest and each client might
942 * have a poolid==N.
944 static struct tmem_pool *zcache_get_pool_by_id(uint16_t cli_id, uint16_t poolid)
946 struct tmem_pool *pool = NULL;
947 struct zcache_client *cli = NULL;
949 cli = get_zcache_client(cli_id);
950 if (!cli)
951 goto out;
953 atomic_inc(&cli->refcount);
954 pool = idr_find(&cli->tmem_pools, poolid);
955 if (pool != NULL)
956 atomic_inc(&pool->refcount);
957 out:
958 return pool;
961 static void zcache_put_pool(struct tmem_pool *pool)
963 struct zcache_client *cli = NULL;
965 if (pool == NULL)
966 BUG();
967 cli = pool->client;
968 atomic_dec(&pool->refcount);
969 atomic_dec(&cli->refcount);
972 int zcache_new_client(uint16_t cli_id)
974 struct zcache_client *cli;
975 int ret = -1;
977 cli = get_zcache_client(cli_id);
979 if (cli == NULL)
980 goto out;
981 if (cli->allocated)
982 goto out;
983 cli->allocated = 1;
984 #ifdef CONFIG_FRONTSWAP
985 cli->zspool = zs_create_pool("zcache", ZCACHE_GFP_MASK);
986 if (cli->zspool == NULL)
987 goto out;
988 idr_init(&cli->tmem_pools);
989 #endif
990 ret = 0;
991 out:
992 return ret;
995 /* counters for debugging */
996 static unsigned long zcache_failed_get_free_pages;
997 static unsigned long zcache_failed_alloc;
998 static unsigned long zcache_put_to_flush;
1001 * for now, used named slabs so can easily track usage; later can
1002 * either just use kmalloc, or perhaps add a slab-like allocator
1003 * to more carefully manage total memory utilization
1005 static struct kmem_cache *zcache_objnode_cache;
1006 static struct kmem_cache *zcache_obj_cache;
1007 static atomic_t zcache_curr_obj_count = ATOMIC_INIT(0);
1008 static unsigned long zcache_curr_obj_count_max;
1009 static atomic_t zcache_curr_objnode_count = ATOMIC_INIT(0);
1010 static unsigned long zcache_curr_objnode_count_max;
1013 * to avoid memory allocation recursion (e.g. due to direct reclaim), we
1014 * preload all necessary data structures so the hostops callbacks never
1015 * actually do a malloc
1017 struct zcache_preload {
1018 void *page;
1019 struct tmem_obj *obj;
1020 int nr;
1021 struct tmem_objnode *objnodes[OBJNODE_TREE_MAX_PATH];
1023 static DEFINE_PER_CPU(struct zcache_preload, zcache_preloads) = { 0, };
1025 static int zcache_do_preload(struct tmem_pool *pool)
1027 struct zcache_preload *kp;
1028 struct tmem_objnode *objnode;
1029 struct tmem_obj *obj;
1030 void *page;
1031 int ret = -ENOMEM;
1033 if (unlikely(zcache_objnode_cache == NULL))
1034 goto out;
1035 if (unlikely(zcache_obj_cache == NULL))
1036 goto out;
1038 /* IRQ has already been disabled. */
1039 kp = &__get_cpu_var(zcache_preloads);
1040 while (kp->nr < ARRAY_SIZE(kp->objnodes)) {
1041 objnode = kmem_cache_alloc(zcache_objnode_cache,
1042 ZCACHE_GFP_MASK);
1043 if (unlikely(objnode == NULL)) {
1044 zcache_failed_alloc++;
1045 goto out;
1048 kp->objnodes[kp->nr++] = objnode;
1051 if (!kp->obj) {
1052 obj = kmem_cache_alloc(zcache_obj_cache, ZCACHE_GFP_MASK);
1053 if (unlikely(obj == NULL)) {
1054 zcache_failed_alloc++;
1055 goto out;
1057 kp->obj = obj;
1060 if (!kp->page) {
1061 page = (void *)__get_free_page(ZCACHE_GFP_MASK);
1062 if (unlikely(page == NULL)) {
1063 zcache_failed_get_free_pages++;
1064 goto out;
1066 kp->page = page;
1069 ret = 0;
1070 out:
1071 return ret;
1074 static void *zcache_get_free_page(void)
1076 struct zcache_preload *kp;
1077 void *page;
1079 kp = &__get_cpu_var(zcache_preloads);
1080 page = kp->page;
1081 BUG_ON(page == NULL);
1082 kp->page = NULL;
1083 return page;
1086 static void zcache_free_page(void *p)
1088 free_page((unsigned long)p);
1092 * zcache implementation for tmem host ops
1095 static struct tmem_objnode *zcache_objnode_alloc(struct tmem_pool *pool)
1097 struct tmem_objnode *objnode = NULL;
1098 unsigned long count;
1099 struct zcache_preload *kp;
1101 kp = &__get_cpu_var(zcache_preloads);
1102 if (kp->nr <= 0)
1103 goto out;
1104 objnode = kp->objnodes[kp->nr - 1];
1105 BUG_ON(objnode == NULL);
1106 kp->objnodes[kp->nr - 1] = NULL;
1107 kp->nr--;
1108 count = atomic_inc_return(&zcache_curr_objnode_count);
1109 if (count > zcache_curr_objnode_count_max)
1110 zcache_curr_objnode_count_max = count;
1111 out:
1112 return objnode;
1115 static void zcache_objnode_free(struct tmem_objnode *objnode,
1116 struct tmem_pool *pool)
1118 atomic_dec(&zcache_curr_objnode_count);
1119 BUG_ON(atomic_read(&zcache_curr_objnode_count) < 0);
1120 kmem_cache_free(zcache_objnode_cache, objnode);
1123 static struct tmem_obj *zcache_obj_alloc(struct tmem_pool *pool)
1125 struct tmem_obj *obj = NULL;
1126 unsigned long count;
1127 struct zcache_preload *kp;
1129 kp = &__get_cpu_var(zcache_preloads);
1130 obj = kp->obj;
1131 BUG_ON(obj == NULL);
1132 kp->obj = NULL;
1133 count = atomic_inc_return(&zcache_curr_obj_count);
1134 if (count > zcache_curr_obj_count_max)
1135 zcache_curr_obj_count_max = count;
1136 return obj;
1139 static void zcache_obj_free(struct tmem_obj *obj, struct tmem_pool *pool)
1141 atomic_dec(&zcache_curr_obj_count);
1142 BUG_ON(atomic_read(&zcache_curr_obj_count) < 0);
1143 kmem_cache_free(zcache_obj_cache, obj);
1146 static struct tmem_hostops zcache_hostops = {
1147 .obj_alloc = zcache_obj_alloc,
1148 .obj_free = zcache_obj_free,
1149 .objnode_alloc = zcache_objnode_alloc,
1150 .objnode_free = zcache_objnode_free,
1154 * zcache implementations for PAM page descriptor ops
1157 static atomic_t zcache_curr_eph_pampd_count = ATOMIC_INIT(0);
1158 static unsigned long zcache_curr_eph_pampd_count_max;
1159 static atomic_t zcache_curr_pers_pampd_count = ATOMIC_INIT(0);
1160 static unsigned long zcache_curr_pers_pampd_count_max;
1162 /* forward reference */
1163 static int zcache_compress(struct page *from, void **out_va, unsigned *out_len);
1165 static void *zcache_pampd_create(char *data, size_t size, bool raw, int eph,
1166 struct tmem_pool *pool, struct tmem_oid *oid,
1167 uint32_t index)
1169 void *pampd = NULL, *cdata;
1170 unsigned clen;
1171 int ret;
1172 unsigned long count;
1173 struct page *page = (struct page *)(data);
1174 struct zcache_client *cli = pool->client;
1175 uint16_t client_id = get_client_id_from_client(cli);
1176 unsigned long zv_mean_zsize;
1177 unsigned long curr_pers_pampd_count;
1178 u64 total_zsize;
1180 if (eph) {
1181 ret = zcache_compress(page, &cdata, &clen);
1182 if (ret == 0)
1183 goto out;
1184 if (clen == 0 || clen > zbud_max_buddy_size()) {
1185 zcache_compress_poor++;
1186 goto out;
1188 pampd = (void *)zbud_create(client_id, pool->pool_id, oid,
1189 index, page, cdata, clen);
1190 if (pampd != NULL) {
1191 count = atomic_inc_return(&zcache_curr_eph_pampd_count);
1192 if (count > zcache_curr_eph_pampd_count_max)
1193 zcache_curr_eph_pampd_count_max = count;
1195 } else {
1196 curr_pers_pampd_count =
1197 atomic_read(&zcache_curr_pers_pampd_count);
1198 if (curr_pers_pampd_count >
1199 (zv_page_count_policy_percent * totalram_pages) / 100)
1200 goto out;
1201 ret = zcache_compress(page, &cdata, &clen);
1202 if (ret == 0)
1203 goto out;
1204 /* reject if compression is too poor */
1205 if (clen > zv_max_zsize) {
1206 zcache_compress_poor++;
1207 goto out;
1209 /* reject if mean compression is too poor */
1210 if ((clen > zv_max_mean_zsize) && (curr_pers_pampd_count > 0)) {
1211 total_zsize = zs_get_total_size_bytes(cli->zspool);
1212 zv_mean_zsize = div_u64(total_zsize,
1213 curr_pers_pampd_count);
1214 if (zv_mean_zsize > zv_max_mean_zsize) {
1215 zcache_mean_compress_poor++;
1216 goto out;
1219 pampd = (void *)zv_create(cli->zspool, pool->pool_id,
1220 oid, index, cdata, clen);
1221 if (pampd == NULL)
1222 goto out;
1223 count = atomic_inc_return(&zcache_curr_pers_pampd_count);
1224 if (count > zcache_curr_pers_pampd_count_max)
1225 zcache_curr_pers_pampd_count_max = count;
1227 out:
1228 return pampd;
1232 * fill the pageframe corresponding to the struct page with the data
1233 * from the passed pampd
1235 static int zcache_pampd_get_data(char *data, size_t *bufsize, bool raw,
1236 void *pampd, struct tmem_pool *pool,
1237 struct tmem_oid *oid, uint32_t index)
1239 int ret = 0;
1241 BUG_ON(is_ephemeral(pool));
1242 zv_decompress((struct page *)(data), (unsigned long)pampd);
1243 return ret;
1247 * fill the pageframe corresponding to the struct page with the data
1248 * from the passed pampd
1250 static int zcache_pampd_get_data_and_free(char *data, size_t *bufsize, bool raw,
1251 void *pampd, struct tmem_pool *pool,
1252 struct tmem_oid *oid, uint32_t index)
1254 BUG_ON(!is_ephemeral(pool));
1255 if (zbud_decompress((struct page *)(data), pampd) < 0)
1256 return -EINVAL;
1257 zbud_free_and_delist((struct zbud_hdr *)pampd);
1258 atomic_dec(&zcache_curr_eph_pampd_count);
1259 return 0;
1263 * free the pampd and remove it from any zcache lists
1264 * pampd must no longer be pointed to from any tmem data structures!
1266 static void zcache_pampd_free(void *pampd, struct tmem_pool *pool,
1267 struct tmem_oid *oid, uint32_t index)
1269 struct zcache_client *cli = pool->client;
1271 if (is_ephemeral(pool)) {
1272 zbud_free_and_delist((struct zbud_hdr *)pampd);
1273 atomic_dec(&zcache_curr_eph_pampd_count);
1274 BUG_ON(atomic_read(&zcache_curr_eph_pampd_count) < 0);
1275 } else {
1276 zv_free(cli->zspool, (unsigned long)pampd);
1277 atomic_dec(&zcache_curr_pers_pampd_count);
1278 BUG_ON(atomic_read(&zcache_curr_pers_pampd_count) < 0);
1282 static void zcache_pampd_free_obj(struct tmem_pool *pool, struct tmem_obj *obj)
1286 static void zcache_pampd_new_obj(struct tmem_obj *obj)
1290 static int zcache_pampd_replace_in_obj(void *pampd, struct tmem_obj *obj)
1292 return -1;
1295 static bool zcache_pampd_is_remote(void *pampd)
1297 return 0;
1300 static struct tmem_pamops zcache_pamops = {
1301 .create = zcache_pampd_create,
1302 .get_data = zcache_pampd_get_data,
1303 .get_data_and_free = zcache_pampd_get_data_and_free,
1304 .free = zcache_pampd_free,
1305 .free_obj = zcache_pampd_free_obj,
1306 .new_obj = zcache_pampd_new_obj,
1307 .replace_in_obj = zcache_pampd_replace_in_obj,
1308 .is_remote = zcache_pampd_is_remote,
1312 * zcache compression/decompression and related per-cpu stuff
1315 static DEFINE_PER_CPU(unsigned char *, zcache_dstmem);
1316 #define ZCACHE_DSTMEM_ORDER 1
1318 static int zcache_compress(struct page *from, void **out_va, unsigned *out_len)
1320 int ret = 0;
1321 unsigned char *dmem = __get_cpu_var(zcache_dstmem);
1322 char *from_va;
1324 BUG_ON(!irqs_disabled());
1325 if (unlikely(dmem == NULL))
1326 goto out; /* no buffer or no compressor so can't compress */
1327 *out_len = PAGE_SIZE << ZCACHE_DSTMEM_ORDER;
1328 from_va = kmap_atomic(from);
1329 mb();
1330 ret = zcache_comp_op(ZCACHE_COMPOP_COMPRESS, from_va, PAGE_SIZE, dmem,
1331 out_len);
1332 BUG_ON(ret);
1333 *out_va = dmem;
1334 kunmap_atomic(from_va);
1335 ret = 1;
1336 out:
1337 return ret;
1340 static int zcache_comp_cpu_up(int cpu)
1342 struct crypto_comp *tfm;
1344 tfm = crypto_alloc_comp(zcache_comp_name, 0, 0);
1345 if (IS_ERR(tfm))
1346 return NOTIFY_BAD;
1347 *per_cpu_ptr(zcache_comp_pcpu_tfms, cpu) = tfm;
1348 return NOTIFY_OK;
1351 static void zcache_comp_cpu_down(int cpu)
1353 struct crypto_comp *tfm;
1355 tfm = *per_cpu_ptr(zcache_comp_pcpu_tfms, cpu);
1356 crypto_free_comp(tfm);
1357 *per_cpu_ptr(zcache_comp_pcpu_tfms, cpu) = NULL;
1360 static int zcache_cpu_notifier(struct notifier_block *nb,
1361 unsigned long action, void *pcpu)
1363 int ret, cpu = (long)pcpu;
1364 struct zcache_preload *kp;
1366 switch (action) {
1367 case CPU_UP_PREPARE:
1368 ret = zcache_comp_cpu_up(cpu);
1369 if (ret != NOTIFY_OK) {
1370 pr_err("zcache: can't allocate compressor transform\n");
1371 return ret;
1373 per_cpu(zcache_dstmem, cpu) = (void *)__get_free_pages(
1374 GFP_KERNEL | __GFP_REPEAT, ZCACHE_DSTMEM_ORDER);
1375 break;
1376 case CPU_DEAD:
1377 case CPU_UP_CANCELED:
1378 zcache_comp_cpu_down(cpu);
1379 free_pages((unsigned long)per_cpu(zcache_dstmem, cpu),
1380 ZCACHE_DSTMEM_ORDER);
1381 per_cpu(zcache_dstmem, cpu) = NULL;
1382 kp = &per_cpu(zcache_preloads, cpu);
1383 while (kp->nr) {
1384 kmem_cache_free(zcache_objnode_cache,
1385 kp->objnodes[kp->nr - 1]);
1386 kp->objnodes[kp->nr - 1] = NULL;
1387 kp->nr--;
1389 if (kp->obj) {
1390 kmem_cache_free(zcache_obj_cache, kp->obj);
1391 kp->obj = NULL;
1393 if (kp->page) {
1394 free_page((unsigned long)kp->page);
1395 kp->page = NULL;
1397 break;
1398 default:
1399 break;
1401 return NOTIFY_OK;
1404 static struct notifier_block zcache_cpu_notifier_block = {
1405 .notifier_call = zcache_cpu_notifier
1408 #ifdef CONFIG_SYSFS
1409 #define ZCACHE_SYSFS_RO(_name) \
1410 static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1411 struct kobj_attribute *attr, char *buf) \
1413 return sprintf(buf, "%lu\n", zcache_##_name); \
1415 static struct kobj_attribute zcache_##_name##_attr = { \
1416 .attr = { .name = __stringify(_name), .mode = 0444 }, \
1417 .show = zcache_##_name##_show, \
1420 #define ZCACHE_SYSFS_RO_ATOMIC(_name) \
1421 static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1422 struct kobj_attribute *attr, char *buf) \
1424 return sprintf(buf, "%d\n", atomic_read(&zcache_##_name)); \
1426 static struct kobj_attribute zcache_##_name##_attr = { \
1427 .attr = { .name = __stringify(_name), .mode = 0444 }, \
1428 .show = zcache_##_name##_show, \
1431 #define ZCACHE_SYSFS_RO_CUSTOM(_name, _func) \
1432 static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1433 struct kobj_attribute *attr, char *buf) \
1435 return _func(buf); \
1437 static struct kobj_attribute zcache_##_name##_attr = { \
1438 .attr = { .name = __stringify(_name), .mode = 0444 }, \
1439 .show = zcache_##_name##_show, \
1442 ZCACHE_SYSFS_RO(curr_obj_count_max);
1443 ZCACHE_SYSFS_RO(curr_objnode_count_max);
1444 ZCACHE_SYSFS_RO(flush_total);
1445 ZCACHE_SYSFS_RO(flush_found);
1446 ZCACHE_SYSFS_RO(flobj_total);
1447 ZCACHE_SYSFS_RO(flobj_found);
1448 ZCACHE_SYSFS_RO(failed_eph_puts);
1449 ZCACHE_SYSFS_RO(failed_pers_puts);
1450 ZCACHE_SYSFS_RO(zbud_curr_zbytes);
1451 ZCACHE_SYSFS_RO(zbud_cumul_zpages);
1452 ZCACHE_SYSFS_RO(zbud_cumul_zbytes);
1453 ZCACHE_SYSFS_RO(zbud_buddied_count);
1454 ZCACHE_SYSFS_RO(zbpg_unused_list_count);
1455 ZCACHE_SYSFS_RO(evicted_raw_pages);
1456 ZCACHE_SYSFS_RO(evicted_unbuddied_pages);
1457 ZCACHE_SYSFS_RO(evicted_buddied_pages);
1458 ZCACHE_SYSFS_RO(failed_get_free_pages);
1459 ZCACHE_SYSFS_RO(failed_alloc);
1460 ZCACHE_SYSFS_RO(put_to_flush);
1461 ZCACHE_SYSFS_RO(compress_poor);
1462 ZCACHE_SYSFS_RO(mean_compress_poor);
1463 ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_raw_pages);
1464 ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_zpages);
1465 ZCACHE_SYSFS_RO_ATOMIC(curr_obj_count);
1466 ZCACHE_SYSFS_RO_ATOMIC(curr_objnode_count);
1467 ZCACHE_SYSFS_RO_CUSTOM(zbud_unbuddied_list_counts,
1468 zbud_show_unbuddied_list_counts);
1469 ZCACHE_SYSFS_RO_CUSTOM(zbud_cumul_chunk_counts,
1470 zbud_show_cumul_chunk_counts);
1471 ZCACHE_SYSFS_RO_CUSTOM(zv_curr_dist_counts,
1472 zv_curr_dist_counts_show);
1473 ZCACHE_SYSFS_RO_CUSTOM(zv_cumul_dist_counts,
1474 zv_cumul_dist_counts_show);
1476 static struct attribute *zcache_attrs[] = {
1477 &zcache_curr_obj_count_attr.attr,
1478 &zcache_curr_obj_count_max_attr.attr,
1479 &zcache_curr_objnode_count_attr.attr,
1480 &zcache_curr_objnode_count_max_attr.attr,
1481 &zcache_flush_total_attr.attr,
1482 &zcache_flobj_total_attr.attr,
1483 &zcache_flush_found_attr.attr,
1484 &zcache_flobj_found_attr.attr,
1485 &zcache_failed_eph_puts_attr.attr,
1486 &zcache_failed_pers_puts_attr.attr,
1487 &zcache_compress_poor_attr.attr,
1488 &zcache_mean_compress_poor_attr.attr,
1489 &zcache_zbud_curr_raw_pages_attr.attr,
1490 &zcache_zbud_curr_zpages_attr.attr,
1491 &zcache_zbud_curr_zbytes_attr.attr,
1492 &zcache_zbud_cumul_zpages_attr.attr,
1493 &zcache_zbud_cumul_zbytes_attr.attr,
1494 &zcache_zbud_buddied_count_attr.attr,
1495 &zcache_zbpg_unused_list_count_attr.attr,
1496 &zcache_evicted_raw_pages_attr.attr,
1497 &zcache_evicted_unbuddied_pages_attr.attr,
1498 &zcache_evicted_buddied_pages_attr.attr,
1499 &zcache_failed_get_free_pages_attr.attr,
1500 &zcache_failed_alloc_attr.attr,
1501 &zcache_put_to_flush_attr.attr,
1502 &zcache_zbud_unbuddied_list_counts_attr.attr,
1503 &zcache_zbud_cumul_chunk_counts_attr.attr,
1504 &zcache_zv_curr_dist_counts_attr.attr,
1505 &zcache_zv_cumul_dist_counts_attr.attr,
1506 &zcache_zv_max_zsize_attr.attr,
1507 &zcache_zv_max_mean_zsize_attr.attr,
1508 &zcache_zv_page_count_policy_percent_attr.attr,
1509 NULL,
1512 static struct attribute_group zcache_attr_group = {
1513 .attrs = zcache_attrs,
1514 .name = "zcache",
1517 #endif /* CONFIG_SYSFS */
1519 * When zcache is disabled ("frozen"), pools can be created and destroyed,
1520 * but all puts (and thus all other operations that require memory allocation)
1521 * must fail. If zcache is unfrozen, accepts puts, then frozen again,
1522 * data consistency requires all puts while frozen to be converted into
1523 * flushes.
1525 static bool zcache_freeze;
1528 * zcache shrinker interface (only useful for ephemeral pages, so zbud only)
1530 static int shrink_zcache_memory(struct shrinker *shrink,
1531 struct shrink_control *sc)
1533 int ret = -1;
1534 int nr = sc->nr_to_scan;
1535 gfp_t gfp_mask = sc->gfp_mask;
1537 if (nr >= 0) {
1538 if (!(gfp_mask & __GFP_FS))
1539 /* does this case really need to be skipped? */
1540 goto out;
1541 zbud_evict_pages(nr);
1543 ret = (int)atomic_read(&zcache_zbud_curr_raw_pages);
1544 out:
1545 return ret;
1548 static struct shrinker zcache_shrinker = {
1549 .shrink = shrink_zcache_memory,
1550 .seeks = DEFAULT_SEEKS,
1554 * zcache shims between cleancache/frontswap ops and tmem
1557 static int zcache_put_page(int cli_id, int pool_id, struct tmem_oid *oidp,
1558 uint32_t index, struct page *page)
1560 struct tmem_pool *pool;
1561 int ret = -1;
1563 BUG_ON(!irqs_disabled());
1564 pool = zcache_get_pool_by_id(cli_id, pool_id);
1565 if (unlikely(pool == NULL))
1566 goto out;
1567 if (!zcache_freeze && zcache_do_preload(pool) == 0) {
1568 /* preload does preempt_disable on success */
1569 ret = tmem_put(pool, oidp, index, (char *)(page),
1570 PAGE_SIZE, 0, is_ephemeral(pool));
1571 if (ret < 0) {
1572 if (is_ephemeral(pool))
1573 zcache_failed_eph_puts++;
1574 else
1575 zcache_failed_pers_puts++;
1577 } else {
1578 zcache_put_to_flush++;
1579 if (atomic_read(&pool->obj_count) > 0)
1580 /* the put fails whether the flush succeeds or not */
1581 (void)tmem_flush_page(pool, oidp, index);
1584 zcache_put_pool(pool);
1585 out:
1586 return ret;
1589 static int zcache_get_page(int cli_id, int pool_id, struct tmem_oid *oidp,
1590 uint32_t index, struct page *page)
1592 struct tmem_pool *pool;
1593 int ret = -1;
1594 unsigned long flags;
1595 size_t size = PAGE_SIZE;
1597 local_irq_save(flags);
1598 pool = zcache_get_pool_by_id(cli_id, pool_id);
1599 if (likely(pool != NULL)) {
1600 if (atomic_read(&pool->obj_count) > 0)
1601 ret = tmem_get(pool, oidp, index, (char *)(page),
1602 &size, 0, is_ephemeral(pool));
1603 zcache_put_pool(pool);
1605 local_irq_restore(flags);
1606 return ret;
1609 static int zcache_flush_page(int cli_id, int pool_id,
1610 struct tmem_oid *oidp, uint32_t index)
1612 struct tmem_pool *pool;
1613 int ret = -1;
1614 unsigned long flags;
1616 local_irq_save(flags);
1617 zcache_flush_total++;
1618 pool = zcache_get_pool_by_id(cli_id, pool_id);
1619 if (likely(pool != NULL)) {
1620 if (atomic_read(&pool->obj_count) > 0)
1621 ret = tmem_flush_page(pool, oidp, index);
1622 zcache_put_pool(pool);
1624 if (ret >= 0)
1625 zcache_flush_found++;
1626 local_irq_restore(flags);
1627 return ret;
1630 static int zcache_flush_object(int cli_id, int pool_id,
1631 struct tmem_oid *oidp)
1633 struct tmem_pool *pool;
1634 int ret = -1;
1635 unsigned long flags;
1637 local_irq_save(flags);
1638 zcache_flobj_total++;
1639 pool = zcache_get_pool_by_id(cli_id, pool_id);
1640 if (likely(pool != NULL)) {
1641 if (atomic_read(&pool->obj_count) > 0)
1642 ret = tmem_flush_object(pool, oidp);
1643 zcache_put_pool(pool);
1645 if (ret >= 0)
1646 zcache_flobj_found++;
1647 local_irq_restore(flags);
1648 return ret;
1651 static int zcache_destroy_pool(int cli_id, int pool_id)
1653 struct tmem_pool *pool = NULL;
1654 struct zcache_client *cli;
1655 int ret = -1;
1657 if (pool_id < 0)
1658 goto out;
1660 cli = get_zcache_client(cli_id);
1661 if (cli == NULL)
1662 goto out;
1664 atomic_inc(&cli->refcount);
1665 pool = idr_find(&cli->tmem_pools, pool_id);
1666 if (pool == NULL)
1667 goto out;
1668 idr_remove(&cli->tmem_pools, pool_id);
1669 /* wait for pool activity on other cpus to quiesce */
1670 while (atomic_read(&pool->refcount) != 0)
1672 atomic_dec(&cli->refcount);
1673 local_bh_disable();
1674 ret = tmem_destroy_pool(pool);
1675 local_bh_enable();
1676 kfree(pool);
1677 pr_info("zcache: destroyed pool id=%d, cli_id=%d\n",
1678 pool_id, cli_id);
1679 out:
1680 return ret;
1683 static int zcache_new_pool(uint16_t cli_id, uint32_t flags)
1685 int poolid = -1;
1686 struct tmem_pool *pool;
1687 struct zcache_client *cli = NULL;
1688 int r;
1690 cli = get_zcache_client(cli_id);
1691 if (cli == NULL)
1692 goto out;
1694 atomic_inc(&cli->refcount);
1695 pool = kmalloc(sizeof(struct tmem_pool), GFP_ATOMIC);
1696 if (pool == NULL) {
1697 pr_info("zcache: pool creation failed: out of memory\n");
1698 goto out;
1701 do {
1702 r = idr_pre_get(&cli->tmem_pools, GFP_ATOMIC);
1703 if (r != 1) {
1704 kfree(pool);
1705 pr_info("zcache: pool creation failed: out of memory\n");
1706 goto out;
1708 r = idr_get_new(&cli->tmem_pools, pool, &poolid);
1709 } while (r == -EAGAIN);
1710 if (r) {
1711 pr_info("zcache: pool creation failed: error %d\n", r);
1712 kfree(pool);
1713 goto out;
1716 atomic_set(&pool->refcount, 0);
1717 pool->client = cli;
1718 pool->pool_id = poolid;
1719 tmem_new_pool(pool, flags);
1720 pr_info("zcache: created %s tmem pool, id=%d, client=%d\n",
1721 flags & TMEM_POOL_PERSIST ? "persistent" : "ephemeral",
1722 poolid, cli_id);
1723 out:
1724 if (cli != NULL)
1725 atomic_dec(&cli->refcount);
1726 return poolid;
1729 /**********
1730 * Two kernel functionalities currently can be layered on top of tmem.
1731 * These are "cleancache" which is used as a second-chance cache for clean
1732 * page cache pages; and "frontswap" which is used for swap pages
1733 * to avoid writes to disk. A generic "shim" is provided here for each
1734 * to translate in-kernel semantics to zcache semantics.
1737 #ifdef CONFIG_CLEANCACHE
1738 static void zcache_cleancache_put_page(int pool_id,
1739 struct cleancache_filekey key,
1740 pgoff_t index, struct page *page)
1742 u32 ind = (u32) index;
1743 struct tmem_oid oid = *(struct tmem_oid *)&key;
1745 if (likely(ind == index))
1746 (void)zcache_put_page(LOCAL_CLIENT, pool_id, &oid, index, page);
1749 static int zcache_cleancache_get_page(int pool_id,
1750 struct cleancache_filekey key,
1751 pgoff_t index, struct page *page)
1753 u32 ind = (u32) index;
1754 struct tmem_oid oid = *(struct tmem_oid *)&key;
1755 int ret = -1;
1757 if (likely(ind == index))
1758 ret = zcache_get_page(LOCAL_CLIENT, pool_id, &oid, index, page);
1759 return ret;
1762 static void zcache_cleancache_flush_page(int pool_id,
1763 struct cleancache_filekey key,
1764 pgoff_t index)
1766 u32 ind = (u32) index;
1767 struct tmem_oid oid = *(struct tmem_oid *)&key;
1769 if (likely(ind == index))
1770 (void)zcache_flush_page(LOCAL_CLIENT, pool_id, &oid, ind);
1773 static void zcache_cleancache_flush_inode(int pool_id,
1774 struct cleancache_filekey key)
1776 struct tmem_oid oid = *(struct tmem_oid *)&key;
1778 (void)zcache_flush_object(LOCAL_CLIENT, pool_id, &oid);
1781 static void zcache_cleancache_flush_fs(int pool_id)
1783 if (pool_id >= 0)
1784 (void)zcache_destroy_pool(LOCAL_CLIENT, pool_id);
1787 static int zcache_cleancache_init_fs(size_t pagesize)
1789 BUG_ON(sizeof(struct cleancache_filekey) !=
1790 sizeof(struct tmem_oid));
1791 BUG_ON(pagesize != PAGE_SIZE);
1792 return zcache_new_pool(LOCAL_CLIENT, 0);
1795 static int zcache_cleancache_init_shared_fs(char *uuid, size_t pagesize)
1797 /* shared pools are unsupported and map to private */
1798 BUG_ON(sizeof(struct cleancache_filekey) !=
1799 sizeof(struct tmem_oid));
1800 BUG_ON(pagesize != PAGE_SIZE);
1801 return zcache_new_pool(LOCAL_CLIENT, 0);
1804 static struct cleancache_ops zcache_cleancache_ops = {
1805 .put_page = zcache_cleancache_put_page,
1806 .get_page = zcache_cleancache_get_page,
1807 .invalidate_page = zcache_cleancache_flush_page,
1808 .invalidate_inode = zcache_cleancache_flush_inode,
1809 .invalidate_fs = zcache_cleancache_flush_fs,
1810 .init_shared_fs = zcache_cleancache_init_shared_fs,
1811 .init_fs = zcache_cleancache_init_fs
1814 struct cleancache_ops zcache_cleancache_register_ops(void)
1816 struct cleancache_ops old_ops =
1817 cleancache_register_ops(&zcache_cleancache_ops);
1819 return old_ops;
1821 #endif
1823 #ifdef CONFIG_FRONTSWAP
1824 /* a single tmem poolid is used for all frontswap "types" (swapfiles) */
1825 static int zcache_frontswap_poolid = -1;
1828 * Swizzling increases objects per swaptype, increasing tmem concurrency
1829 * for heavy swaploads. Later, larger nr_cpus -> larger SWIZ_BITS
1830 * Setting SWIZ_BITS to 27 basically reconstructs the swap entry from
1831 * frontswap_load(), but has side-effects. Hence using 8.
1833 #define SWIZ_BITS 8
1834 #define SWIZ_MASK ((1 << SWIZ_BITS) - 1)
1835 #define _oswiz(_type, _ind) ((_type << SWIZ_BITS) | (_ind & SWIZ_MASK))
1836 #define iswiz(_ind) (_ind >> SWIZ_BITS)
1838 static inline struct tmem_oid oswiz(unsigned type, u32 ind)
1840 struct tmem_oid oid = { .oid = { 0 } };
1841 oid.oid[0] = _oswiz(type, ind);
1842 return oid;
1845 static int zcache_frontswap_store(unsigned type, pgoff_t offset,
1846 struct page *page)
1848 u64 ind64 = (u64)offset;
1849 u32 ind = (u32)offset;
1850 struct tmem_oid oid = oswiz(type, ind);
1851 int ret = -1;
1852 unsigned long flags;
1854 BUG_ON(!PageLocked(page));
1855 if (likely(ind64 == ind)) {
1856 local_irq_save(flags);
1857 ret = zcache_put_page(LOCAL_CLIENT, zcache_frontswap_poolid,
1858 &oid, iswiz(ind), page);
1859 local_irq_restore(flags);
1861 return ret;
1864 /* returns 0 if the page was successfully gotten from frontswap, -1 if
1865 * was not present (should never happen!) */
1866 static int zcache_frontswap_load(unsigned type, pgoff_t offset,
1867 struct page *page)
1869 u64 ind64 = (u64)offset;
1870 u32 ind = (u32)offset;
1871 struct tmem_oid oid = oswiz(type, ind);
1872 int ret = -1;
1874 BUG_ON(!PageLocked(page));
1875 if (likely(ind64 == ind))
1876 ret = zcache_get_page(LOCAL_CLIENT, zcache_frontswap_poolid,
1877 &oid, iswiz(ind), page);
1878 return ret;
1881 /* flush a single page from frontswap */
1882 static void zcache_frontswap_flush_page(unsigned type, pgoff_t offset)
1884 u64 ind64 = (u64)offset;
1885 u32 ind = (u32)offset;
1886 struct tmem_oid oid = oswiz(type, ind);
1888 if (likely(ind64 == ind))
1889 (void)zcache_flush_page(LOCAL_CLIENT, zcache_frontswap_poolid,
1890 &oid, iswiz(ind));
1893 /* flush all pages from the passed swaptype */
1894 static void zcache_frontswap_flush_area(unsigned type)
1896 struct tmem_oid oid;
1897 int ind;
1899 for (ind = SWIZ_MASK; ind >= 0; ind--) {
1900 oid = oswiz(type, ind);
1901 (void)zcache_flush_object(LOCAL_CLIENT,
1902 zcache_frontswap_poolid, &oid);
1906 static void zcache_frontswap_init(unsigned ignored)
1908 /* a single tmem poolid is used for all frontswap "types" (swapfiles) */
1909 if (zcache_frontswap_poolid < 0)
1910 zcache_frontswap_poolid =
1911 zcache_new_pool(LOCAL_CLIENT, TMEM_POOL_PERSIST);
1914 static struct frontswap_ops zcache_frontswap_ops = {
1915 .store = zcache_frontswap_store,
1916 .load = zcache_frontswap_load,
1917 .invalidate_page = zcache_frontswap_flush_page,
1918 .invalidate_area = zcache_frontswap_flush_area,
1919 .init = zcache_frontswap_init
1922 struct frontswap_ops zcache_frontswap_register_ops(void)
1924 struct frontswap_ops old_ops =
1925 frontswap_register_ops(&zcache_frontswap_ops);
1927 return old_ops;
1929 #endif
1932 * zcache initialization
1933 * NOTE FOR NOW zcache MUST BE PROVIDED AS A KERNEL BOOT PARAMETER OR
1934 * NOTHING HAPPENS!
1937 static int zcache_enabled;
1939 static int __init enable_zcache(char *s)
1941 zcache_enabled = 1;
1942 return 1;
1944 __setup("zcache", enable_zcache);
1946 /* allow independent dynamic disabling of cleancache and frontswap */
1948 static int use_cleancache = 1;
1950 static int __init no_cleancache(char *s)
1952 use_cleancache = 0;
1953 return 1;
1956 __setup("nocleancache", no_cleancache);
1958 static int use_frontswap = 1;
1960 static int __init no_frontswap(char *s)
1962 use_frontswap = 0;
1963 return 1;
1966 __setup("nofrontswap", no_frontswap);
1968 static int __init enable_zcache_compressor(char *s)
1970 strncpy(zcache_comp_name, s, ZCACHE_COMP_NAME_SZ);
1971 zcache_enabled = 1;
1972 return 1;
1974 __setup("zcache=", enable_zcache_compressor);
1977 static int __init zcache_comp_init(void)
1979 int ret = 0;
1981 /* check crypto algorithm */
1982 if (*zcache_comp_name != '\0') {
1983 ret = crypto_has_comp(zcache_comp_name, 0, 0);
1984 if (!ret)
1985 pr_info("zcache: %s not supported\n",
1986 zcache_comp_name);
1988 if (!ret)
1989 strcpy(zcache_comp_name, "lzo");
1990 ret = crypto_has_comp(zcache_comp_name, 0, 0);
1991 if (!ret) {
1992 ret = 1;
1993 goto out;
1995 pr_info("zcache: using %s compressor\n", zcache_comp_name);
1997 /* alloc percpu transforms */
1998 ret = 0;
1999 zcache_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *);
2000 if (!zcache_comp_pcpu_tfms)
2001 ret = 1;
2002 out:
2003 return ret;
2006 static int __init zcache_init(void)
2008 int ret = 0;
2010 #ifdef CONFIG_SYSFS
2011 ret = sysfs_create_group(mm_kobj, &zcache_attr_group);
2012 if (ret) {
2013 pr_err("zcache: can't create sysfs\n");
2014 goto out;
2016 #endif /* CONFIG_SYSFS */
2018 if (zcache_enabled) {
2019 unsigned int cpu;
2021 tmem_register_hostops(&zcache_hostops);
2022 tmem_register_pamops(&zcache_pamops);
2023 ret = register_cpu_notifier(&zcache_cpu_notifier_block);
2024 if (ret) {
2025 pr_err("zcache: can't register cpu notifier\n");
2026 goto out;
2028 ret = zcache_comp_init();
2029 if (ret) {
2030 pr_err("zcache: compressor initialization failed\n");
2031 goto out;
2033 for_each_online_cpu(cpu) {
2034 void *pcpu = (void *)(long)cpu;
2035 zcache_cpu_notifier(&zcache_cpu_notifier_block,
2036 CPU_UP_PREPARE, pcpu);
2039 zcache_objnode_cache = kmem_cache_create("zcache_objnode",
2040 sizeof(struct tmem_objnode), 0, 0, NULL);
2041 zcache_obj_cache = kmem_cache_create("zcache_obj",
2042 sizeof(struct tmem_obj), 0, 0, NULL);
2043 ret = zcache_new_client(LOCAL_CLIENT);
2044 if (ret) {
2045 pr_err("zcache: can't create client\n");
2046 goto out;
2049 #ifdef CONFIG_CLEANCACHE
2050 if (zcache_enabled && use_cleancache) {
2051 struct cleancache_ops old_ops;
2053 zbud_init();
2054 register_shrinker(&zcache_shrinker);
2055 old_ops = zcache_cleancache_register_ops();
2056 pr_info("zcache: cleancache enabled using kernel "
2057 "transcendent memory and compression buddies\n");
2058 if (old_ops.init_fs != NULL)
2059 pr_warning("zcache: cleancache_ops overridden");
2061 #endif
2062 #ifdef CONFIG_FRONTSWAP
2063 if (zcache_enabled && use_frontswap) {
2064 struct frontswap_ops old_ops;
2066 old_ops = zcache_frontswap_register_ops();
2067 pr_info("zcache: frontswap enabled using kernel "
2068 "transcendent memory and zsmalloc\n");
2069 if (old_ops.init != NULL)
2070 pr_warning("zcache: frontswap_ops overridden");
2072 #endif
2073 out:
2074 return ret;
2077 module_init(zcache_init)