Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / tty / serial / amba-pl011.c
blob762f5fda22d4102276918c350c0d7afa64f40695
1 /*
2 * Driver for AMBA serial ports
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
32 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
33 #define SUPPORT_SYSRQ
34 #endif
36 #include <linux/module.h>
37 #include <linux/ioport.h>
38 #include <linux/init.h>
39 #include <linux/console.h>
40 #include <linux/sysrq.h>
41 #include <linux/device.h>
42 #include <linux/tty.h>
43 #include <linux/tty_flip.h>
44 #include <linux/serial_core.h>
45 #include <linux/serial.h>
46 #include <linux/amba/bus.h>
47 #include <linux/amba/serial.h>
48 #include <linux/clk.h>
49 #include <linux/slab.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/delay.h>
54 #include <linux/types.h>
55 #include <linux/pinctrl/consumer.h>
56 #include <linux/sizes.h>
58 #include <asm/io.h>
60 #define UART_NR 14
62 #define SERIAL_AMBA_MAJOR 204
63 #define SERIAL_AMBA_MINOR 64
64 #define SERIAL_AMBA_NR UART_NR
66 #define AMBA_ISR_PASS_LIMIT 256
68 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
69 #define UART_DUMMY_DR_RX (1 << 16)
71 /* There is by now at least one vendor with differing details, so handle it */
72 struct vendor_data {
73 unsigned int ifls;
74 unsigned int fifosize;
75 unsigned int lcrh_tx;
76 unsigned int lcrh_rx;
77 bool oversampling;
78 bool interrupt_may_hang; /* vendor-specific */
79 bool dma_threshold;
80 bool cts_event_workaround;
83 static struct vendor_data vendor_arm = {
84 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
85 .fifosize = 16,
86 .lcrh_tx = UART011_LCRH,
87 .lcrh_rx = UART011_LCRH,
88 .oversampling = false,
89 .dma_threshold = false,
90 .cts_event_workaround = false,
93 static struct vendor_data vendor_st = {
94 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
95 .fifosize = 64,
96 .lcrh_tx = ST_UART011_LCRH_TX,
97 .lcrh_rx = ST_UART011_LCRH_RX,
98 .oversampling = true,
99 .interrupt_may_hang = true,
100 .dma_threshold = true,
101 .cts_event_workaround = true,
104 static struct uart_amba_port *amba_ports[UART_NR];
106 /* Deals with DMA transactions */
108 struct pl011_sgbuf {
109 struct scatterlist sg;
110 char *buf;
113 struct pl011_dmarx_data {
114 struct dma_chan *chan;
115 struct completion complete;
116 bool use_buf_b;
117 struct pl011_sgbuf sgbuf_a;
118 struct pl011_sgbuf sgbuf_b;
119 dma_cookie_t cookie;
120 bool running;
123 struct pl011_dmatx_data {
124 struct dma_chan *chan;
125 struct scatterlist sg;
126 char *buf;
127 bool queued;
131 * We wrap our port structure around the generic uart_port.
133 struct uart_amba_port {
134 struct uart_port port;
135 struct clk *clk;
136 /* Two optional pin states - default & sleep */
137 struct pinctrl *pinctrl;
138 struct pinctrl_state *pins_default;
139 struct pinctrl_state *pins_sleep;
140 const struct vendor_data *vendor;
141 unsigned int dmacr; /* dma control reg */
142 unsigned int im; /* interrupt mask */
143 unsigned int old_status;
144 unsigned int fifosize; /* vendor-specific */
145 unsigned int lcrh_tx; /* vendor-specific */
146 unsigned int lcrh_rx; /* vendor-specific */
147 unsigned int old_cr; /* state during shutdown */
148 bool autorts;
149 char type[12];
150 bool interrupt_may_hang; /* vendor-specific */
151 #ifdef CONFIG_DMA_ENGINE
152 /* DMA stuff */
153 bool using_tx_dma;
154 bool using_rx_dma;
155 struct pl011_dmarx_data dmarx;
156 struct pl011_dmatx_data dmatx;
157 #endif
161 * Reads up to 256 characters from the FIFO or until it's empty and
162 * inserts them into the TTY layer. Returns the number of characters
163 * read from the FIFO.
165 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
167 u16 status, ch;
168 unsigned int flag, max_count = 256;
169 int fifotaken = 0;
171 while (max_count--) {
172 status = readw(uap->port.membase + UART01x_FR);
173 if (status & UART01x_FR_RXFE)
174 break;
176 /* Take chars from the FIFO and update status */
177 ch = readw(uap->port.membase + UART01x_DR) |
178 UART_DUMMY_DR_RX;
179 flag = TTY_NORMAL;
180 uap->port.icount.rx++;
181 fifotaken++;
183 if (unlikely(ch & UART_DR_ERROR)) {
184 if (ch & UART011_DR_BE) {
185 ch &= ~(UART011_DR_FE | UART011_DR_PE);
186 uap->port.icount.brk++;
187 if (uart_handle_break(&uap->port))
188 continue;
189 } else if (ch & UART011_DR_PE)
190 uap->port.icount.parity++;
191 else if (ch & UART011_DR_FE)
192 uap->port.icount.frame++;
193 if (ch & UART011_DR_OE)
194 uap->port.icount.overrun++;
196 ch &= uap->port.read_status_mask;
198 if (ch & UART011_DR_BE)
199 flag = TTY_BREAK;
200 else if (ch & UART011_DR_PE)
201 flag = TTY_PARITY;
202 else if (ch & UART011_DR_FE)
203 flag = TTY_FRAME;
206 if (uart_handle_sysrq_char(&uap->port, ch & 255))
207 continue;
209 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
212 return fifotaken;
217 * All the DMA operation mode stuff goes inside this ifdef.
218 * This assumes that you have a generic DMA device interface,
219 * no custom DMA interfaces are supported.
221 #ifdef CONFIG_DMA_ENGINE
223 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
225 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
226 enum dma_data_direction dir)
228 sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
229 if (!sg->buf)
230 return -ENOMEM;
232 sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
234 if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
235 kfree(sg->buf);
236 return -EINVAL;
238 return 0;
241 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
242 enum dma_data_direction dir)
244 if (sg->buf) {
245 dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
246 kfree(sg->buf);
250 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
252 /* DMA is the sole user of the platform data right now */
253 struct amba_pl011_data *plat = uap->port.dev->platform_data;
254 struct dma_slave_config tx_conf = {
255 .dst_addr = uap->port.mapbase + UART01x_DR,
256 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
257 .direction = DMA_MEM_TO_DEV,
258 .dst_maxburst = uap->fifosize >> 1,
259 .device_fc = false,
261 struct dma_chan *chan;
262 dma_cap_mask_t mask;
264 /* We need platform data */
265 if (!plat || !plat->dma_filter) {
266 dev_info(uap->port.dev, "no DMA platform data\n");
267 return;
270 /* Try to acquire a generic DMA engine slave TX channel */
271 dma_cap_zero(mask);
272 dma_cap_set(DMA_SLAVE, mask);
274 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
275 if (!chan) {
276 dev_err(uap->port.dev, "no TX DMA channel!\n");
277 return;
280 dmaengine_slave_config(chan, &tx_conf);
281 uap->dmatx.chan = chan;
283 dev_info(uap->port.dev, "DMA channel TX %s\n",
284 dma_chan_name(uap->dmatx.chan));
286 /* Optionally make use of an RX channel as well */
287 if (plat->dma_rx_param) {
288 struct dma_slave_config rx_conf = {
289 .src_addr = uap->port.mapbase + UART01x_DR,
290 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
291 .direction = DMA_DEV_TO_MEM,
292 .src_maxburst = uap->fifosize >> 1,
293 .device_fc = false,
296 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
297 if (!chan) {
298 dev_err(uap->port.dev, "no RX DMA channel!\n");
299 return;
302 dmaengine_slave_config(chan, &rx_conf);
303 uap->dmarx.chan = chan;
305 dev_info(uap->port.dev, "DMA channel RX %s\n",
306 dma_chan_name(uap->dmarx.chan));
310 #ifndef MODULE
312 * Stack up the UARTs and let the above initcall be done at device
313 * initcall time, because the serial driver is called as an arch
314 * initcall, and at this time the DMA subsystem is not yet registered.
315 * At this point the driver will switch over to using DMA where desired.
317 struct dma_uap {
318 struct list_head node;
319 struct uart_amba_port *uap;
322 static LIST_HEAD(pl011_dma_uarts);
324 static int __init pl011_dma_initcall(void)
326 struct list_head *node, *tmp;
328 list_for_each_safe(node, tmp, &pl011_dma_uarts) {
329 struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
330 pl011_dma_probe_initcall(dmau->uap);
331 list_del(node);
332 kfree(dmau);
334 return 0;
337 device_initcall(pl011_dma_initcall);
339 static void pl011_dma_probe(struct uart_amba_port *uap)
341 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
342 if (dmau) {
343 dmau->uap = uap;
344 list_add_tail(&dmau->node, &pl011_dma_uarts);
347 #else
348 static void pl011_dma_probe(struct uart_amba_port *uap)
350 pl011_dma_probe_initcall(uap);
352 #endif
354 static void pl011_dma_remove(struct uart_amba_port *uap)
356 /* TODO: remove the initcall if it has not yet executed */
357 if (uap->dmatx.chan)
358 dma_release_channel(uap->dmatx.chan);
359 if (uap->dmarx.chan)
360 dma_release_channel(uap->dmarx.chan);
363 /* Forward declare this for the refill routine */
364 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
367 * The current DMA TX buffer has been sent.
368 * Try to queue up another DMA buffer.
370 static void pl011_dma_tx_callback(void *data)
372 struct uart_amba_port *uap = data;
373 struct pl011_dmatx_data *dmatx = &uap->dmatx;
374 unsigned long flags;
375 u16 dmacr;
377 spin_lock_irqsave(&uap->port.lock, flags);
378 if (uap->dmatx.queued)
379 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
380 DMA_TO_DEVICE);
382 dmacr = uap->dmacr;
383 uap->dmacr = dmacr & ~UART011_TXDMAE;
384 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
387 * If TX DMA was disabled, it means that we've stopped the DMA for
388 * some reason (eg, XOFF received, or we want to send an X-char.)
390 * Note: we need to be careful here of a potential race between DMA
391 * and the rest of the driver - if the driver disables TX DMA while
392 * a TX buffer completing, we must update the tx queued status to
393 * get further refills (hence we check dmacr).
395 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
396 uart_circ_empty(&uap->port.state->xmit)) {
397 uap->dmatx.queued = false;
398 spin_unlock_irqrestore(&uap->port.lock, flags);
399 return;
402 if (pl011_dma_tx_refill(uap) <= 0) {
404 * We didn't queue a DMA buffer for some reason, but we
405 * have data pending to be sent. Re-enable the TX IRQ.
407 uap->im |= UART011_TXIM;
408 writew(uap->im, uap->port.membase + UART011_IMSC);
410 spin_unlock_irqrestore(&uap->port.lock, flags);
414 * Try to refill the TX DMA buffer.
415 * Locking: called with port lock held and IRQs disabled.
416 * Returns:
417 * 1 if we queued up a TX DMA buffer.
418 * 0 if we didn't want to handle this by DMA
419 * <0 on error
421 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
423 struct pl011_dmatx_data *dmatx = &uap->dmatx;
424 struct dma_chan *chan = dmatx->chan;
425 struct dma_device *dma_dev = chan->device;
426 struct dma_async_tx_descriptor *desc;
427 struct circ_buf *xmit = &uap->port.state->xmit;
428 unsigned int count;
431 * Try to avoid the overhead involved in using DMA if the
432 * transaction fits in the first half of the FIFO, by using
433 * the standard interrupt handling. This ensures that we
434 * issue a uart_write_wakeup() at the appropriate time.
436 count = uart_circ_chars_pending(xmit);
437 if (count < (uap->fifosize >> 1)) {
438 uap->dmatx.queued = false;
439 return 0;
443 * Bodge: don't send the last character by DMA, as this
444 * will prevent XON from notifying us to restart DMA.
446 count -= 1;
448 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
449 if (count > PL011_DMA_BUFFER_SIZE)
450 count = PL011_DMA_BUFFER_SIZE;
452 if (xmit->tail < xmit->head)
453 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
454 else {
455 size_t first = UART_XMIT_SIZE - xmit->tail;
456 size_t second = xmit->head;
458 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
459 if (second)
460 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
463 dmatx->sg.length = count;
465 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
466 uap->dmatx.queued = false;
467 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
468 return -EBUSY;
471 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
472 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
473 if (!desc) {
474 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
475 uap->dmatx.queued = false;
477 * If DMA cannot be used right now, we complete this
478 * transaction via IRQ and let the TTY layer retry.
480 dev_dbg(uap->port.dev, "TX DMA busy\n");
481 return -EBUSY;
484 /* Some data to go along to the callback */
485 desc->callback = pl011_dma_tx_callback;
486 desc->callback_param = uap;
488 /* All errors should happen at prepare time */
489 dmaengine_submit(desc);
491 /* Fire the DMA transaction */
492 dma_dev->device_issue_pending(chan);
494 uap->dmacr |= UART011_TXDMAE;
495 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
496 uap->dmatx.queued = true;
499 * Now we know that DMA will fire, so advance the ring buffer
500 * with the stuff we just dispatched.
502 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
503 uap->port.icount.tx += count;
505 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
506 uart_write_wakeup(&uap->port);
508 return 1;
512 * We received a transmit interrupt without a pending X-char but with
513 * pending characters.
514 * Locking: called with port lock held and IRQs disabled.
515 * Returns:
516 * false if we want to use PIO to transmit
517 * true if we queued a DMA buffer
519 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
521 if (!uap->using_tx_dma)
522 return false;
525 * If we already have a TX buffer queued, but received a
526 * TX interrupt, it will be because we've just sent an X-char.
527 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
529 if (uap->dmatx.queued) {
530 uap->dmacr |= UART011_TXDMAE;
531 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
532 uap->im &= ~UART011_TXIM;
533 writew(uap->im, uap->port.membase + UART011_IMSC);
534 return true;
538 * We don't have a TX buffer queued, so try to queue one.
539 * If we successfully queued a buffer, mask the TX IRQ.
541 if (pl011_dma_tx_refill(uap) > 0) {
542 uap->im &= ~UART011_TXIM;
543 writew(uap->im, uap->port.membase + UART011_IMSC);
544 return true;
546 return false;
550 * Stop the DMA transmit (eg, due to received XOFF).
551 * Locking: called with port lock held and IRQs disabled.
553 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
555 if (uap->dmatx.queued) {
556 uap->dmacr &= ~UART011_TXDMAE;
557 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
562 * Try to start a DMA transmit, or in the case of an XON/OFF
563 * character queued for send, try to get that character out ASAP.
564 * Locking: called with port lock held and IRQs disabled.
565 * Returns:
566 * false if we want the TX IRQ to be enabled
567 * true if we have a buffer queued
569 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
571 u16 dmacr;
573 if (!uap->using_tx_dma)
574 return false;
576 if (!uap->port.x_char) {
577 /* no X-char, try to push chars out in DMA mode */
578 bool ret = true;
580 if (!uap->dmatx.queued) {
581 if (pl011_dma_tx_refill(uap) > 0) {
582 uap->im &= ~UART011_TXIM;
583 ret = true;
584 } else {
585 uap->im |= UART011_TXIM;
586 ret = false;
588 writew(uap->im, uap->port.membase + UART011_IMSC);
589 } else if (!(uap->dmacr & UART011_TXDMAE)) {
590 uap->dmacr |= UART011_TXDMAE;
591 writew(uap->dmacr,
592 uap->port.membase + UART011_DMACR);
594 return ret;
598 * We have an X-char to send. Disable DMA to prevent it loading
599 * the TX fifo, and then see if we can stuff it into the FIFO.
601 dmacr = uap->dmacr;
602 uap->dmacr &= ~UART011_TXDMAE;
603 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
605 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
607 * No space in the FIFO, so enable the transmit interrupt
608 * so we know when there is space. Note that once we've
609 * loaded the character, we should just re-enable DMA.
611 return false;
614 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
615 uap->port.icount.tx++;
616 uap->port.x_char = 0;
618 /* Success - restore the DMA state */
619 uap->dmacr = dmacr;
620 writew(dmacr, uap->port.membase + UART011_DMACR);
622 return true;
626 * Flush the transmit buffer.
627 * Locking: called with port lock held and IRQs disabled.
629 static void pl011_dma_flush_buffer(struct uart_port *port)
631 struct uart_amba_port *uap = (struct uart_amba_port *)port;
633 if (!uap->using_tx_dma)
634 return;
636 /* Avoid deadlock with the DMA engine callback */
637 spin_unlock(&uap->port.lock);
638 dmaengine_terminate_all(uap->dmatx.chan);
639 spin_lock(&uap->port.lock);
640 if (uap->dmatx.queued) {
641 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
642 DMA_TO_DEVICE);
643 uap->dmatx.queued = false;
644 uap->dmacr &= ~UART011_TXDMAE;
645 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
649 static void pl011_dma_rx_callback(void *data);
651 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
653 struct dma_chan *rxchan = uap->dmarx.chan;
654 struct pl011_dmarx_data *dmarx = &uap->dmarx;
655 struct dma_async_tx_descriptor *desc;
656 struct pl011_sgbuf *sgbuf;
658 if (!rxchan)
659 return -EIO;
661 /* Start the RX DMA job */
662 sgbuf = uap->dmarx.use_buf_b ?
663 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
664 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
665 DMA_DEV_TO_MEM,
666 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
668 * If the DMA engine is busy and cannot prepare a
669 * channel, no big deal, the driver will fall back
670 * to interrupt mode as a result of this error code.
672 if (!desc) {
673 uap->dmarx.running = false;
674 dmaengine_terminate_all(rxchan);
675 return -EBUSY;
678 /* Some data to go along to the callback */
679 desc->callback = pl011_dma_rx_callback;
680 desc->callback_param = uap;
681 dmarx->cookie = dmaengine_submit(desc);
682 dma_async_issue_pending(rxchan);
684 uap->dmacr |= UART011_RXDMAE;
685 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
686 uap->dmarx.running = true;
688 uap->im &= ~UART011_RXIM;
689 writew(uap->im, uap->port.membase + UART011_IMSC);
691 return 0;
695 * This is called when either the DMA job is complete, or
696 * the FIFO timeout interrupt occurred. This must be called
697 * with the port spinlock uap->port.lock held.
699 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
700 u32 pending, bool use_buf_b,
701 bool readfifo)
703 struct tty_struct *tty = uap->port.state->port.tty;
704 struct pl011_sgbuf *sgbuf = use_buf_b ?
705 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
706 struct device *dev = uap->dmarx.chan->device->dev;
707 int dma_count = 0;
708 u32 fifotaken = 0; /* only used for vdbg() */
710 /* Pick everything from the DMA first */
711 if (pending) {
712 /* Sync in buffer */
713 dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
716 * First take all chars in the DMA pipe, then look in the FIFO.
717 * Note that tty_insert_flip_buf() tries to take as many chars
718 * as it can.
720 dma_count = tty_insert_flip_string(uap->port.state->port.tty,
721 sgbuf->buf, pending);
723 /* Return buffer to device */
724 dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
726 uap->port.icount.rx += dma_count;
727 if (dma_count < pending)
728 dev_warn(uap->port.dev,
729 "couldn't insert all characters (TTY is full?)\n");
733 * Only continue with trying to read the FIFO if all DMA chars have
734 * been taken first.
736 if (dma_count == pending && readfifo) {
737 /* Clear any error flags */
738 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
739 uap->port.membase + UART011_ICR);
742 * If we read all the DMA'd characters, and we had an
743 * incomplete buffer, that could be due to an rx error, or
744 * maybe we just timed out. Read any pending chars and check
745 * the error status.
747 * Error conditions will only occur in the FIFO, these will
748 * trigger an immediate interrupt and stop the DMA job, so we
749 * will always find the error in the FIFO, never in the DMA
750 * buffer.
752 fifotaken = pl011_fifo_to_tty(uap);
755 spin_unlock(&uap->port.lock);
756 dev_vdbg(uap->port.dev,
757 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
758 dma_count, fifotaken);
759 tty_flip_buffer_push(tty);
760 spin_lock(&uap->port.lock);
763 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
765 struct pl011_dmarx_data *dmarx = &uap->dmarx;
766 struct dma_chan *rxchan = dmarx->chan;
767 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
768 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
769 size_t pending;
770 struct dma_tx_state state;
771 enum dma_status dmastat;
774 * Pause the transfer so we can trust the current counter,
775 * do this before we pause the PL011 block, else we may
776 * overflow the FIFO.
778 if (dmaengine_pause(rxchan))
779 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
780 dmastat = rxchan->device->device_tx_status(rxchan,
781 dmarx->cookie, &state);
782 if (dmastat != DMA_PAUSED)
783 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
785 /* Disable RX DMA - incoming data will wait in the FIFO */
786 uap->dmacr &= ~UART011_RXDMAE;
787 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
788 uap->dmarx.running = false;
790 pending = sgbuf->sg.length - state.residue;
791 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
792 /* Then we terminate the transfer - we now know our residue */
793 dmaengine_terminate_all(rxchan);
796 * This will take the chars we have so far and insert
797 * into the framework.
799 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
801 /* Switch buffer & re-trigger DMA job */
802 dmarx->use_buf_b = !dmarx->use_buf_b;
803 if (pl011_dma_rx_trigger_dma(uap)) {
804 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
805 "fall back to interrupt mode\n");
806 uap->im |= UART011_RXIM;
807 writew(uap->im, uap->port.membase + UART011_IMSC);
811 static void pl011_dma_rx_callback(void *data)
813 struct uart_amba_port *uap = data;
814 struct pl011_dmarx_data *dmarx = &uap->dmarx;
815 struct dma_chan *rxchan = dmarx->chan;
816 bool lastbuf = dmarx->use_buf_b;
817 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
818 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
819 size_t pending;
820 struct dma_tx_state state;
821 int ret;
824 * This completion interrupt occurs typically when the
825 * RX buffer is totally stuffed but no timeout has yet
826 * occurred. When that happens, we just want the RX
827 * routine to flush out the secondary DMA buffer while
828 * we immediately trigger the next DMA job.
830 spin_lock_irq(&uap->port.lock);
832 * Rx data can be taken by the UART interrupts during
833 * the DMA irq handler. So we check the residue here.
835 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
836 pending = sgbuf->sg.length - state.residue;
837 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
838 /* Then we terminate the transfer - we now know our residue */
839 dmaengine_terminate_all(rxchan);
841 uap->dmarx.running = false;
842 dmarx->use_buf_b = !lastbuf;
843 ret = pl011_dma_rx_trigger_dma(uap);
845 pl011_dma_rx_chars(uap, pending, lastbuf, false);
846 spin_unlock_irq(&uap->port.lock);
848 * Do this check after we picked the DMA chars so we don't
849 * get some IRQ immediately from RX.
851 if (ret) {
852 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
853 "fall back to interrupt mode\n");
854 uap->im |= UART011_RXIM;
855 writew(uap->im, uap->port.membase + UART011_IMSC);
860 * Stop accepting received characters, when we're shutting down or
861 * suspending this port.
862 * Locking: called with port lock held and IRQs disabled.
864 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
866 /* FIXME. Just disable the DMA enable */
867 uap->dmacr &= ~UART011_RXDMAE;
868 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
871 static void pl011_dma_startup(struct uart_amba_port *uap)
873 int ret;
875 if (!uap->dmatx.chan)
876 return;
878 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
879 if (!uap->dmatx.buf) {
880 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
881 uap->port.fifosize = uap->fifosize;
882 return;
885 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
887 /* The DMA buffer is now the FIFO the TTY subsystem can use */
888 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
889 uap->using_tx_dma = true;
891 if (!uap->dmarx.chan)
892 goto skip_rx;
894 /* Allocate and map DMA RX buffers */
895 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
896 DMA_FROM_DEVICE);
897 if (ret) {
898 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
899 "RX buffer A", ret);
900 goto skip_rx;
903 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
904 DMA_FROM_DEVICE);
905 if (ret) {
906 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
907 "RX buffer B", ret);
908 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
909 DMA_FROM_DEVICE);
910 goto skip_rx;
913 uap->using_rx_dma = true;
915 skip_rx:
916 /* Turn on DMA error (RX/TX will be enabled on demand) */
917 uap->dmacr |= UART011_DMAONERR;
918 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
921 * ST Micro variants has some specific dma burst threshold
922 * compensation. Set this to 16 bytes, so burst will only
923 * be issued above/below 16 bytes.
925 if (uap->vendor->dma_threshold)
926 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
927 uap->port.membase + ST_UART011_DMAWM);
929 if (uap->using_rx_dma) {
930 if (pl011_dma_rx_trigger_dma(uap))
931 dev_dbg(uap->port.dev, "could not trigger initial "
932 "RX DMA job, fall back to interrupt mode\n");
936 static void pl011_dma_shutdown(struct uart_amba_port *uap)
938 if (!(uap->using_tx_dma || uap->using_rx_dma))
939 return;
941 /* Disable RX and TX DMA */
942 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
943 barrier();
945 spin_lock_irq(&uap->port.lock);
946 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
947 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
948 spin_unlock_irq(&uap->port.lock);
950 if (uap->using_tx_dma) {
951 /* In theory, this should already be done by pl011_dma_flush_buffer */
952 dmaengine_terminate_all(uap->dmatx.chan);
953 if (uap->dmatx.queued) {
954 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
955 DMA_TO_DEVICE);
956 uap->dmatx.queued = false;
959 kfree(uap->dmatx.buf);
960 uap->using_tx_dma = false;
963 if (uap->using_rx_dma) {
964 dmaengine_terminate_all(uap->dmarx.chan);
965 /* Clean up the RX DMA */
966 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
967 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
968 uap->using_rx_dma = false;
972 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
974 return uap->using_rx_dma;
977 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
979 return uap->using_rx_dma && uap->dmarx.running;
983 #else
984 /* Blank functions if the DMA engine is not available */
985 static inline void pl011_dma_probe(struct uart_amba_port *uap)
989 static inline void pl011_dma_remove(struct uart_amba_port *uap)
993 static inline void pl011_dma_startup(struct uart_amba_port *uap)
997 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1001 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1003 return false;
1006 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1010 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1012 return false;
1015 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1019 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1023 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1025 return -EIO;
1028 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1030 return false;
1033 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1035 return false;
1038 #define pl011_dma_flush_buffer NULL
1039 #endif
1041 static void pl011_stop_tx(struct uart_port *port)
1043 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1045 uap->im &= ~UART011_TXIM;
1046 writew(uap->im, uap->port.membase + UART011_IMSC);
1047 pl011_dma_tx_stop(uap);
1050 static void pl011_start_tx(struct uart_port *port)
1052 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1054 if (!pl011_dma_tx_start(uap)) {
1055 uap->im |= UART011_TXIM;
1056 writew(uap->im, uap->port.membase + UART011_IMSC);
1060 static void pl011_stop_rx(struct uart_port *port)
1062 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1064 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1065 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1066 writew(uap->im, uap->port.membase + UART011_IMSC);
1068 pl011_dma_rx_stop(uap);
1071 static void pl011_enable_ms(struct uart_port *port)
1073 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1075 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1076 writew(uap->im, uap->port.membase + UART011_IMSC);
1079 static void pl011_rx_chars(struct uart_amba_port *uap)
1081 struct tty_struct *tty = uap->port.state->port.tty;
1083 pl011_fifo_to_tty(uap);
1085 spin_unlock(&uap->port.lock);
1086 tty_flip_buffer_push(tty);
1088 * If we were temporarily out of DMA mode for a while,
1089 * attempt to switch back to DMA mode again.
1091 if (pl011_dma_rx_available(uap)) {
1092 if (pl011_dma_rx_trigger_dma(uap)) {
1093 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1094 "fall back to interrupt mode again\n");
1095 uap->im |= UART011_RXIM;
1096 } else
1097 uap->im &= ~UART011_RXIM;
1098 writew(uap->im, uap->port.membase + UART011_IMSC);
1100 spin_lock(&uap->port.lock);
1103 static void pl011_tx_chars(struct uart_amba_port *uap)
1105 struct circ_buf *xmit = &uap->port.state->xmit;
1106 int count;
1108 if (uap->port.x_char) {
1109 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1110 uap->port.icount.tx++;
1111 uap->port.x_char = 0;
1112 return;
1114 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1115 pl011_stop_tx(&uap->port);
1116 return;
1119 /* If we are using DMA mode, try to send some characters. */
1120 if (pl011_dma_tx_irq(uap))
1121 return;
1123 count = uap->fifosize >> 1;
1124 do {
1125 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1126 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1127 uap->port.icount.tx++;
1128 if (uart_circ_empty(xmit))
1129 break;
1130 } while (--count > 0);
1132 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1133 uart_write_wakeup(&uap->port);
1135 if (uart_circ_empty(xmit))
1136 pl011_stop_tx(&uap->port);
1139 static void pl011_modem_status(struct uart_amba_port *uap)
1141 unsigned int status, delta;
1143 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1145 delta = status ^ uap->old_status;
1146 uap->old_status = status;
1148 if (!delta)
1149 return;
1151 if (delta & UART01x_FR_DCD)
1152 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1154 if (delta & UART01x_FR_DSR)
1155 uap->port.icount.dsr++;
1157 if (delta & UART01x_FR_CTS)
1158 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1160 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1163 static irqreturn_t pl011_int(int irq, void *dev_id)
1165 struct uart_amba_port *uap = dev_id;
1166 unsigned long flags;
1167 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1168 int handled = 0;
1169 unsigned int dummy_read;
1171 spin_lock_irqsave(&uap->port.lock, flags);
1173 status = readw(uap->port.membase + UART011_MIS);
1174 if (status) {
1175 do {
1176 if (uap->vendor->cts_event_workaround) {
1177 /* workaround to make sure that all bits are unlocked.. */
1178 writew(0x00, uap->port.membase + UART011_ICR);
1181 * WA: introduce 26ns(1 uart clk) delay before W1C;
1182 * single apb access will incur 2 pclk(133.12Mhz) delay,
1183 * so add 2 dummy reads
1185 dummy_read = readw(uap->port.membase + UART011_ICR);
1186 dummy_read = readw(uap->port.membase + UART011_ICR);
1189 writew(status & ~(UART011_TXIS|UART011_RTIS|
1190 UART011_RXIS),
1191 uap->port.membase + UART011_ICR);
1193 if (status & (UART011_RTIS|UART011_RXIS)) {
1194 if (pl011_dma_rx_running(uap))
1195 pl011_dma_rx_irq(uap);
1196 else
1197 pl011_rx_chars(uap);
1199 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1200 UART011_CTSMIS|UART011_RIMIS))
1201 pl011_modem_status(uap);
1202 if (status & UART011_TXIS)
1203 pl011_tx_chars(uap);
1205 if (pass_counter-- == 0)
1206 break;
1208 status = readw(uap->port.membase + UART011_MIS);
1209 } while (status != 0);
1210 handled = 1;
1213 spin_unlock_irqrestore(&uap->port.lock, flags);
1215 return IRQ_RETVAL(handled);
1218 static unsigned int pl01x_tx_empty(struct uart_port *port)
1220 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1221 unsigned int status = readw(uap->port.membase + UART01x_FR);
1222 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1225 static unsigned int pl01x_get_mctrl(struct uart_port *port)
1227 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1228 unsigned int result = 0;
1229 unsigned int status = readw(uap->port.membase + UART01x_FR);
1231 #define TIOCMBIT(uartbit, tiocmbit) \
1232 if (status & uartbit) \
1233 result |= tiocmbit
1235 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1236 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1237 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1238 TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1239 #undef TIOCMBIT
1240 return result;
1243 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1245 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1246 unsigned int cr;
1248 cr = readw(uap->port.membase + UART011_CR);
1250 #define TIOCMBIT(tiocmbit, uartbit) \
1251 if (mctrl & tiocmbit) \
1252 cr |= uartbit; \
1253 else \
1254 cr &= ~uartbit
1256 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1257 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1258 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1259 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1260 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1262 if (uap->autorts) {
1263 /* We need to disable auto-RTS if we want to turn RTS off */
1264 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1266 #undef TIOCMBIT
1268 writew(cr, uap->port.membase + UART011_CR);
1271 static void pl011_break_ctl(struct uart_port *port, int break_state)
1273 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1274 unsigned long flags;
1275 unsigned int lcr_h;
1277 spin_lock_irqsave(&uap->port.lock, flags);
1278 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1279 if (break_state == -1)
1280 lcr_h |= UART01x_LCRH_BRK;
1281 else
1282 lcr_h &= ~UART01x_LCRH_BRK;
1283 writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1284 spin_unlock_irqrestore(&uap->port.lock, flags);
1287 #ifdef CONFIG_CONSOLE_POLL
1288 static int pl010_get_poll_char(struct uart_port *port)
1290 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1291 unsigned int status;
1293 status = readw(uap->port.membase + UART01x_FR);
1294 if (status & UART01x_FR_RXFE)
1295 return NO_POLL_CHAR;
1297 return readw(uap->port.membase + UART01x_DR);
1300 static void pl010_put_poll_char(struct uart_port *port,
1301 unsigned char ch)
1303 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1305 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1306 barrier();
1308 writew(ch, uap->port.membase + UART01x_DR);
1311 #endif /* CONFIG_CONSOLE_POLL */
1313 static int pl011_startup(struct uart_port *port)
1315 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1316 unsigned int cr;
1317 int retval;
1319 /* Optionaly enable pins to be muxed in and configured */
1320 if (!IS_ERR(uap->pins_default)) {
1321 retval = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1322 if (retval)
1323 dev_err(port->dev,
1324 "could not set default pins\n");
1327 retval = clk_prepare(uap->clk);
1328 if (retval)
1329 goto out;
1332 * Try to enable the clock producer.
1334 retval = clk_enable(uap->clk);
1335 if (retval)
1336 goto clk_unprep;
1338 uap->port.uartclk = clk_get_rate(uap->clk);
1340 /* Clear pending error and receive interrupts */
1341 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1342 UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1345 * Allocate the IRQ
1347 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1348 if (retval)
1349 goto clk_dis;
1351 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1354 * Provoke TX FIFO interrupt into asserting.
1356 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1357 writew(cr, uap->port.membase + UART011_CR);
1358 writew(0, uap->port.membase + UART011_FBRD);
1359 writew(1, uap->port.membase + UART011_IBRD);
1360 writew(0, uap->port.membase + uap->lcrh_rx);
1361 if (uap->lcrh_tx != uap->lcrh_rx) {
1362 int i;
1364 * Wait 10 PCLKs before writing LCRH_TX register,
1365 * to get this delay write read only register 10 times
1367 for (i = 0; i < 10; ++i)
1368 writew(0xff, uap->port.membase + UART011_MIS);
1369 writew(0, uap->port.membase + uap->lcrh_tx);
1371 writew(0, uap->port.membase + UART01x_DR);
1372 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1373 barrier();
1375 /* restore RTS and DTR */
1376 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1377 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1378 writew(cr, uap->port.membase + UART011_CR);
1381 * initialise the old status of the modem signals
1383 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1385 /* Startup DMA */
1386 pl011_dma_startup(uap);
1389 * Finally, enable interrupts, only timeouts when using DMA
1390 * if initial RX DMA job failed, start in interrupt mode
1391 * as well.
1393 spin_lock_irq(&uap->port.lock);
1394 /* Clear out any spuriously appearing RX interrupts */
1395 writew(UART011_RTIS | UART011_RXIS,
1396 uap->port.membase + UART011_ICR);
1397 uap->im = UART011_RTIM;
1398 if (!pl011_dma_rx_running(uap))
1399 uap->im |= UART011_RXIM;
1400 writew(uap->im, uap->port.membase + UART011_IMSC);
1401 spin_unlock_irq(&uap->port.lock);
1403 if (uap->port.dev->platform_data) {
1404 struct amba_pl011_data *plat;
1406 plat = uap->port.dev->platform_data;
1407 if (plat->init)
1408 plat->init();
1411 return 0;
1413 clk_dis:
1414 clk_disable(uap->clk);
1415 clk_unprep:
1416 clk_unprepare(uap->clk);
1417 out:
1418 return retval;
1421 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1422 unsigned int lcrh)
1424 unsigned long val;
1426 val = readw(uap->port.membase + lcrh);
1427 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1428 writew(val, uap->port.membase + lcrh);
1431 static void pl011_shutdown(struct uart_port *port)
1433 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1434 unsigned int cr;
1435 int retval;
1438 * disable all interrupts
1440 spin_lock_irq(&uap->port.lock);
1441 uap->im = 0;
1442 writew(uap->im, uap->port.membase + UART011_IMSC);
1443 writew(0xffff, uap->port.membase + UART011_ICR);
1444 spin_unlock_irq(&uap->port.lock);
1446 pl011_dma_shutdown(uap);
1449 * Free the interrupt
1451 free_irq(uap->port.irq, uap);
1454 * disable the port
1455 * disable the port. It should not disable RTS and DTR.
1456 * Also RTS and DTR state should be preserved to restore
1457 * it during startup().
1459 uap->autorts = false;
1460 cr = readw(uap->port.membase + UART011_CR);
1461 uap->old_cr = cr;
1462 cr &= UART011_CR_RTS | UART011_CR_DTR;
1463 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1464 writew(cr, uap->port.membase + UART011_CR);
1467 * disable break condition and fifos
1469 pl011_shutdown_channel(uap, uap->lcrh_rx);
1470 if (uap->lcrh_rx != uap->lcrh_tx)
1471 pl011_shutdown_channel(uap, uap->lcrh_tx);
1474 * Shut down the clock producer
1476 clk_disable(uap->clk);
1477 clk_unprepare(uap->clk);
1478 /* Optionally let pins go into sleep states */
1479 if (!IS_ERR(uap->pins_sleep)) {
1480 retval = pinctrl_select_state(uap->pinctrl, uap->pins_sleep);
1481 if (retval)
1482 dev_err(port->dev,
1483 "could not set pins to sleep state\n");
1487 if (uap->port.dev->platform_data) {
1488 struct amba_pl011_data *plat;
1490 plat = uap->port.dev->platform_data;
1491 if (plat->exit)
1492 plat->exit();
1497 static void
1498 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1499 struct ktermios *old)
1501 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1502 unsigned int lcr_h, old_cr;
1503 unsigned long flags;
1504 unsigned int baud, quot, clkdiv;
1506 if (uap->vendor->oversampling)
1507 clkdiv = 8;
1508 else
1509 clkdiv = 16;
1512 * Ask the core to calculate the divisor for us.
1514 baud = uart_get_baud_rate(port, termios, old, 0,
1515 port->uartclk / clkdiv);
1517 if (baud > port->uartclk/16)
1518 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1519 else
1520 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1522 switch (termios->c_cflag & CSIZE) {
1523 case CS5:
1524 lcr_h = UART01x_LCRH_WLEN_5;
1525 break;
1526 case CS6:
1527 lcr_h = UART01x_LCRH_WLEN_6;
1528 break;
1529 case CS7:
1530 lcr_h = UART01x_LCRH_WLEN_7;
1531 break;
1532 default: // CS8
1533 lcr_h = UART01x_LCRH_WLEN_8;
1534 break;
1536 if (termios->c_cflag & CSTOPB)
1537 lcr_h |= UART01x_LCRH_STP2;
1538 if (termios->c_cflag & PARENB) {
1539 lcr_h |= UART01x_LCRH_PEN;
1540 if (!(termios->c_cflag & PARODD))
1541 lcr_h |= UART01x_LCRH_EPS;
1543 if (uap->fifosize > 1)
1544 lcr_h |= UART01x_LCRH_FEN;
1546 spin_lock_irqsave(&port->lock, flags);
1549 * Update the per-port timeout.
1551 uart_update_timeout(port, termios->c_cflag, baud);
1553 port->read_status_mask = UART011_DR_OE | 255;
1554 if (termios->c_iflag & INPCK)
1555 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1556 if (termios->c_iflag & (BRKINT | PARMRK))
1557 port->read_status_mask |= UART011_DR_BE;
1560 * Characters to ignore
1562 port->ignore_status_mask = 0;
1563 if (termios->c_iflag & IGNPAR)
1564 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1565 if (termios->c_iflag & IGNBRK) {
1566 port->ignore_status_mask |= UART011_DR_BE;
1568 * If we're ignoring parity and break indicators,
1569 * ignore overruns too (for real raw support).
1571 if (termios->c_iflag & IGNPAR)
1572 port->ignore_status_mask |= UART011_DR_OE;
1576 * Ignore all characters if CREAD is not set.
1578 if ((termios->c_cflag & CREAD) == 0)
1579 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1581 if (UART_ENABLE_MS(port, termios->c_cflag))
1582 pl011_enable_ms(port);
1584 /* first, disable everything */
1585 old_cr = readw(port->membase + UART011_CR);
1586 writew(0, port->membase + UART011_CR);
1588 if (termios->c_cflag & CRTSCTS) {
1589 if (old_cr & UART011_CR_RTS)
1590 old_cr |= UART011_CR_RTSEN;
1592 old_cr |= UART011_CR_CTSEN;
1593 uap->autorts = true;
1594 } else {
1595 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1596 uap->autorts = false;
1599 if (uap->vendor->oversampling) {
1600 if (baud > port->uartclk / 16)
1601 old_cr |= ST_UART011_CR_OVSFACT;
1602 else
1603 old_cr &= ~ST_UART011_CR_OVSFACT;
1607 * Workaround for the ST Micro oversampling variants to
1608 * increase the bitrate slightly, by lowering the divisor,
1609 * to avoid delayed sampling of start bit at high speeds,
1610 * else we see data corruption.
1612 if (uap->vendor->oversampling) {
1613 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1614 quot -= 1;
1615 else if ((baud > 3250000) && (quot > 2))
1616 quot -= 2;
1618 /* Set baud rate */
1619 writew(quot & 0x3f, port->membase + UART011_FBRD);
1620 writew(quot >> 6, port->membase + UART011_IBRD);
1623 * ----------v----------v----------v----------v-----
1624 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1625 * UART011_FBRD & UART011_IBRD.
1626 * ----------^----------^----------^----------^-----
1628 writew(lcr_h, port->membase + uap->lcrh_rx);
1629 if (uap->lcrh_rx != uap->lcrh_tx) {
1630 int i;
1632 * Wait 10 PCLKs before writing LCRH_TX register,
1633 * to get this delay write read only register 10 times
1635 for (i = 0; i < 10; ++i)
1636 writew(0xff, uap->port.membase + UART011_MIS);
1637 writew(lcr_h, port->membase + uap->lcrh_tx);
1639 writew(old_cr, port->membase + UART011_CR);
1641 spin_unlock_irqrestore(&port->lock, flags);
1644 static const char *pl011_type(struct uart_port *port)
1646 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1647 return uap->port.type == PORT_AMBA ? uap->type : NULL;
1651 * Release the memory region(s) being used by 'port'
1653 static void pl010_release_port(struct uart_port *port)
1655 release_mem_region(port->mapbase, SZ_4K);
1659 * Request the memory region(s) being used by 'port'
1661 static int pl010_request_port(struct uart_port *port)
1663 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1664 != NULL ? 0 : -EBUSY;
1668 * Configure/autoconfigure the port.
1670 static void pl010_config_port(struct uart_port *port, int flags)
1672 if (flags & UART_CONFIG_TYPE) {
1673 port->type = PORT_AMBA;
1674 pl010_request_port(port);
1679 * verify the new serial_struct (for TIOCSSERIAL).
1681 static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1683 int ret = 0;
1684 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1685 ret = -EINVAL;
1686 if (ser->irq < 0 || ser->irq >= nr_irqs)
1687 ret = -EINVAL;
1688 if (ser->baud_base < 9600)
1689 ret = -EINVAL;
1690 return ret;
1693 static struct uart_ops amba_pl011_pops = {
1694 .tx_empty = pl01x_tx_empty,
1695 .set_mctrl = pl011_set_mctrl,
1696 .get_mctrl = pl01x_get_mctrl,
1697 .stop_tx = pl011_stop_tx,
1698 .start_tx = pl011_start_tx,
1699 .stop_rx = pl011_stop_rx,
1700 .enable_ms = pl011_enable_ms,
1701 .break_ctl = pl011_break_ctl,
1702 .startup = pl011_startup,
1703 .shutdown = pl011_shutdown,
1704 .flush_buffer = pl011_dma_flush_buffer,
1705 .set_termios = pl011_set_termios,
1706 .type = pl011_type,
1707 .release_port = pl010_release_port,
1708 .request_port = pl010_request_port,
1709 .config_port = pl010_config_port,
1710 .verify_port = pl010_verify_port,
1711 #ifdef CONFIG_CONSOLE_POLL
1712 .poll_get_char = pl010_get_poll_char,
1713 .poll_put_char = pl010_put_poll_char,
1714 #endif
1717 static struct uart_amba_port *amba_ports[UART_NR];
1719 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1721 static void pl011_console_putchar(struct uart_port *port, int ch)
1723 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1725 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1726 barrier();
1727 writew(ch, uap->port.membase + UART01x_DR);
1730 static void
1731 pl011_console_write(struct console *co, const char *s, unsigned int count)
1733 struct uart_amba_port *uap = amba_ports[co->index];
1734 unsigned int status, old_cr, new_cr;
1735 unsigned long flags;
1736 int locked = 1;
1738 clk_enable(uap->clk);
1740 local_irq_save(flags);
1741 if (uap->port.sysrq)
1742 locked = 0;
1743 else if (oops_in_progress)
1744 locked = spin_trylock(&uap->port.lock);
1745 else
1746 spin_lock(&uap->port.lock);
1749 * First save the CR then disable the interrupts
1751 old_cr = readw(uap->port.membase + UART011_CR);
1752 new_cr = old_cr & ~UART011_CR_CTSEN;
1753 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1754 writew(new_cr, uap->port.membase + UART011_CR);
1756 uart_console_write(&uap->port, s, count, pl011_console_putchar);
1759 * Finally, wait for transmitter to become empty
1760 * and restore the TCR
1762 do {
1763 status = readw(uap->port.membase + UART01x_FR);
1764 } while (status & UART01x_FR_BUSY);
1765 writew(old_cr, uap->port.membase + UART011_CR);
1767 if (locked)
1768 spin_unlock(&uap->port.lock);
1769 local_irq_restore(flags);
1771 clk_disable(uap->clk);
1774 static void __init
1775 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1776 int *parity, int *bits)
1778 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1779 unsigned int lcr_h, ibrd, fbrd;
1781 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1783 *parity = 'n';
1784 if (lcr_h & UART01x_LCRH_PEN) {
1785 if (lcr_h & UART01x_LCRH_EPS)
1786 *parity = 'e';
1787 else
1788 *parity = 'o';
1791 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1792 *bits = 7;
1793 else
1794 *bits = 8;
1796 ibrd = readw(uap->port.membase + UART011_IBRD);
1797 fbrd = readw(uap->port.membase + UART011_FBRD);
1799 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1801 if (uap->vendor->oversampling) {
1802 if (readw(uap->port.membase + UART011_CR)
1803 & ST_UART011_CR_OVSFACT)
1804 *baud *= 2;
1809 static int __init pl011_console_setup(struct console *co, char *options)
1811 struct uart_amba_port *uap;
1812 int baud = 38400;
1813 int bits = 8;
1814 int parity = 'n';
1815 int flow = 'n';
1816 int ret;
1819 * Check whether an invalid uart number has been specified, and
1820 * if so, search for the first available port that does have
1821 * console support.
1823 if (co->index >= UART_NR)
1824 co->index = 0;
1825 uap = amba_ports[co->index];
1826 if (!uap)
1827 return -ENODEV;
1829 /* Allow pins to be muxed in and configured */
1830 if (!IS_ERR(uap->pins_default)) {
1831 ret = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1832 if (ret)
1833 dev_err(uap->port.dev,
1834 "could not set default pins\n");
1837 ret = clk_prepare(uap->clk);
1838 if (ret)
1839 return ret;
1841 if (uap->port.dev->platform_data) {
1842 struct amba_pl011_data *plat;
1844 plat = uap->port.dev->platform_data;
1845 if (plat->init)
1846 plat->init();
1849 uap->port.uartclk = clk_get_rate(uap->clk);
1851 if (options)
1852 uart_parse_options(options, &baud, &parity, &bits, &flow);
1853 else
1854 pl011_console_get_options(uap, &baud, &parity, &bits);
1856 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1859 static struct uart_driver amba_reg;
1860 static struct console amba_console = {
1861 .name = "ttyAMA",
1862 .write = pl011_console_write,
1863 .device = uart_console_device,
1864 .setup = pl011_console_setup,
1865 .flags = CON_PRINTBUFFER,
1866 .index = -1,
1867 .data = &amba_reg,
1870 #define AMBA_CONSOLE (&amba_console)
1871 #else
1872 #define AMBA_CONSOLE NULL
1873 #endif
1875 static struct uart_driver amba_reg = {
1876 .owner = THIS_MODULE,
1877 .driver_name = "ttyAMA",
1878 .dev_name = "ttyAMA",
1879 .major = SERIAL_AMBA_MAJOR,
1880 .minor = SERIAL_AMBA_MINOR,
1881 .nr = UART_NR,
1882 .cons = AMBA_CONSOLE,
1885 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1887 struct uart_amba_port *uap;
1888 struct vendor_data *vendor = id->data;
1889 void __iomem *base;
1890 int i, ret;
1892 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1893 if (amba_ports[i] == NULL)
1894 break;
1896 if (i == ARRAY_SIZE(amba_ports)) {
1897 ret = -EBUSY;
1898 goto out;
1901 uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1902 if (uap == NULL) {
1903 ret = -ENOMEM;
1904 goto out;
1907 base = ioremap(dev->res.start, resource_size(&dev->res));
1908 if (!base) {
1909 ret = -ENOMEM;
1910 goto free;
1913 uap->pinctrl = devm_pinctrl_get(&dev->dev);
1914 if (IS_ERR(uap->pinctrl)) {
1915 ret = PTR_ERR(uap->pinctrl);
1916 goto unmap;
1918 uap->pins_default = pinctrl_lookup_state(uap->pinctrl,
1919 PINCTRL_STATE_DEFAULT);
1920 if (IS_ERR(uap->pins_default))
1921 dev_err(&dev->dev, "could not get default pinstate\n");
1923 uap->pins_sleep = pinctrl_lookup_state(uap->pinctrl,
1924 PINCTRL_STATE_SLEEP);
1925 if (IS_ERR(uap->pins_sleep))
1926 dev_dbg(&dev->dev, "could not get sleep pinstate\n");
1928 uap->clk = clk_get(&dev->dev, NULL);
1929 if (IS_ERR(uap->clk)) {
1930 ret = PTR_ERR(uap->clk);
1931 goto unmap;
1934 uap->vendor = vendor;
1935 uap->lcrh_rx = vendor->lcrh_rx;
1936 uap->lcrh_tx = vendor->lcrh_tx;
1937 uap->old_cr = 0;
1938 uap->fifosize = vendor->fifosize;
1939 uap->interrupt_may_hang = vendor->interrupt_may_hang;
1940 uap->port.dev = &dev->dev;
1941 uap->port.mapbase = dev->res.start;
1942 uap->port.membase = base;
1943 uap->port.iotype = UPIO_MEM;
1944 uap->port.irq = dev->irq[0];
1945 uap->port.fifosize = uap->fifosize;
1946 uap->port.ops = &amba_pl011_pops;
1947 uap->port.flags = UPF_BOOT_AUTOCONF;
1948 uap->port.line = i;
1949 pl011_dma_probe(uap);
1951 /* Ensure interrupts from this UART are masked and cleared */
1952 writew(0, uap->port.membase + UART011_IMSC);
1953 writew(0xffff, uap->port.membase + UART011_ICR);
1955 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1957 amba_ports[i] = uap;
1959 amba_set_drvdata(dev, uap);
1960 ret = uart_add_one_port(&amba_reg, &uap->port);
1961 if (ret) {
1962 amba_set_drvdata(dev, NULL);
1963 amba_ports[i] = NULL;
1964 pl011_dma_remove(uap);
1965 clk_put(uap->clk);
1966 unmap:
1967 iounmap(base);
1968 free:
1969 kfree(uap);
1971 out:
1972 return ret;
1975 static int pl011_remove(struct amba_device *dev)
1977 struct uart_amba_port *uap = amba_get_drvdata(dev);
1978 int i;
1980 amba_set_drvdata(dev, NULL);
1982 uart_remove_one_port(&amba_reg, &uap->port);
1984 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1985 if (amba_ports[i] == uap)
1986 amba_ports[i] = NULL;
1988 pl011_dma_remove(uap);
1989 iounmap(uap->port.membase);
1990 clk_put(uap->clk);
1991 kfree(uap);
1992 return 0;
1995 #ifdef CONFIG_PM
1996 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
1998 struct uart_amba_port *uap = amba_get_drvdata(dev);
2000 if (!uap)
2001 return -EINVAL;
2003 return uart_suspend_port(&amba_reg, &uap->port);
2006 static int pl011_resume(struct amba_device *dev)
2008 struct uart_amba_port *uap = amba_get_drvdata(dev);
2010 if (!uap)
2011 return -EINVAL;
2013 return uart_resume_port(&amba_reg, &uap->port);
2015 #endif
2017 static struct amba_id pl011_ids[] = {
2019 .id = 0x00041011,
2020 .mask = 0x000fffff,
2021 .data = &vendor_arm,
2024 .id = 0x00380802,
2025 .mask = 0x00ffffff,
2026 .data = &vendor_st,
2028 { 0, 0 },
2031 MODULE_DEVICE_TABLE(amba, pl011_ids);
2033 static struct amba_driver pl011_driver = {
2034 .drv = {
2035 .name = "uart-pl011",
2037 .id_table = pl011_ids,
2038 .probe = pl011_probe,
2039 .remove = pl011_remove,
2040 #ifdef CONFIG_PM
2041 .suspend = pl011_suspend,
2042 .resume = pl011_resume,
2043 #endif
2046 static int __init pl011_init(void)
2048 int ret;
2049 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2051 ret = uart_register_driver(&amba_reg);
2052 if (ret == 0) {
2053 ret = amba_driver_register(&pl011_driver);
2054 if (ret)
2055 uart_unregister_driver(&amba_reg);
2057 return ret;
2060 static void __exit pl011_exit(void)
2062 amba_driver_unregister(&pl011_driver);
2063 uart_unregister_driver(&amba_reg);
2067 * While this can be a module, if builtin it's most likely the console
2068 * So let's leave module_exit but move module_init to an earlier place
2070 arch_initcall(pl011_init);
2071 module_exit(pl011_exit);
2073 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2074 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2075 MODULE_LICENSE("GPL");