Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / usb / gadget / amd5536udc.c
blob187d21181cd5f85d6b23627bfbabb56af0301c2b
1 /*
2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
14 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
15 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
16 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
18 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
19 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
20 * by BIOS init).
22 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
23 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
24 * can be used with gadget ether.
27 /* debug control */
28 /* #define UDC_VERBOSE */
30 /* Driver strings */
31 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
32 #define UDC_DRIVER_VERSION_STRING "01.00.0206"
34 /* system */
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/errno.h>
43 #include <linux/init.h>
44 #include <linux/timer.h>
45 #include <linux/list.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioctl.h>
48 #include <linux/fs.h>
49 #include <linux/dmapool.h>
50 #include <linux/moduleparam.h>
51 #include <linux/device.h>
52 #include <linux/io.h>
53 #include <linux/irq.h>
54 #include <linux/prefetch.h>
56 #include <asm/byteorder.h>
57 #include <asm/unaligned.h>
59 /* gadget stack */
60 #include <linux/usb/ch9.h>
61 #include <linux/usb/gadget.h>
63 /* udc specific */
64 #include "amd5536udc.h"
67 static void udc_tasklet_disconnect(unsigned long);
68 static void empty_req_queue(struct udc_ep *);
69 static int udc_probe(struct udc *dev);
70 static void udc_basic_init(struct udc *dev);
71 static void udc_setup_endpoints(struct udc *dev);
72 static void udc_soft_reset(struct udc *dev);
73 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
74 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
75 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
76 static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
77 unsigned long buf_len, gfp_t gfp_flags);
78 static int udc_remote_wakeup(struct udc *dev);
79 static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
80 static void udc_pci_remove(struct pci_dev *pdev);
82 /* description */
83 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
84 static const char name[] = "amd5536udc";
86 /* structure to hold endpoint function pointers */
87 static const struct usb_ep_ops udc_ep_ops;
89 /* received setup data */
90 static union udc_setup_data setup_data;
92 /* pointer to device object */
93 static struct udc *udc;
95 /* irq spin lock for soft reset */
96 static DEFINE_SPINLOCK(udc_irq_spinlock);
97 /* stall spin lock */
98 static DEFINE_SPINLOCK(udc_stall_spinlock);
101 * slave mode: pending bytes in rx fifo after nyet,
102 * used if EPIN irq came but no req was available
104 static unsigned int udc_rxfifo_pending;
106 /* count soft resets after suspend to avoid loop */
107 static int soft_reset_occured;
108 static int soft_reset_after_usbreset_occured;
110 /* timer */
111 static struct timer_list udc_timer;
112 static int stop_timer;
114 /* set_rde -- Is used to control enabling of RX DMA. Problem is
115 * that UDC has only one bit (RDE) to enable/disable RX DMA for
116 * all OUT endpoints. So we have to handle race conditions like
117 * when OUT data reaches the fifo but no request was queued yet.
118 * This cannot be solved by letting the RX DMA disabled until a
119 * request gets queued because there may be other OUT packets
120 * in the FIFO (important for not blocking control traffic).
121 * The value of set_rde controls the correspondig timer.
123 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
124 * set_rde 0 == do not touch RDE, do no start the RDE timer
125 * set_rde 1 == timer function will look whether FIFO has data
126 * set_rde 2 == set by timer function to enable RX DMA on next call
128 static int set_rde = -1;
130 static DECLARE_COMPLETION(on_exit);
131 static struct timer_list udc_pollstall_timer;
132 static int stop_pollstall_timer;
133 static DECLARE_COMPLETION(on_pollstall_exit);
135 /* tasklet for usb disconnect */
136 static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
137 (unsigned long) &udc);
140 /* endpoint names used for print */
141 static const char ep0_string[] = "ep0in";
142 static const char *const ep_string[] = {
143 ep0_string,
144 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
145 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
146 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
147 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
148 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
149 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
150 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
153 /* DMA usage flag */
154 static bool use_dma = 1;
155 /* packet per buffer dma */
156 static bool use_dma_ppb = 1;
157 /* with per descr. update */
158 static bool use_dma_ppb_du;
159 /* buffer fill mode */
160 static int use_dma_bufferfill_mode;
161 /* full speed only mode */
162 static bool use_fullspeed;
163 /* tx buffer size for high speed */
164 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
166 /* module parameters */
167 module_param(use_dma, bool, S_IRUGO);
168 MODULE_PARM_DESC(use_dma, "true for DMA");
169 module_param(use_dma_ppb, bool, S_IRUGO);
170 MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
171 module_param(use_dma_ppb_du, bool, S_IRUGO);
172 MODULE_PARM_DESC(use_dma_ppb_du,
173 "true for DMA in packet per buffer mode with descriptor update");
174 module_param(use_fullspeed, bool, S_IRUGO);
175 MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
177 /*---------------------------------------------------------------------------*/
178 /* Prints UDC device registers and endpoint irq registers */
179 static void print_regs(struct udc *dev)
181 DBG(dev, "------- Device registers -------\n");
182 DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
183 DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
184 DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
185 DBG(dev, "\n");
186 DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
187 DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
188 DBG(dev, "\n");
189 DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
190 DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
191 DBG(dev, "\n");
192 DBG(dev, "USE DMA = %d\n", use_dma);
193 if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
194 DBG(dev, "DMA mode = PPBNDU (packet per buffer "
195 "WITHOUT desc. update)\n");
196 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
197 } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
198 DBG(dev, "DMA mode = PPBDU (packet per buffer "
199 "WITH desc. update)\n");
200 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
202 if (use_dma && use_dma_bufferfill_mode) {
203 DBG(dev, "DMA mode = BF (buffer fill mode)\n");
204 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
206 if (!use_dma)
207 dev_info(&dev->pdev->dev, "FIFO mode\n");
208 DBG(dev, "-------------------------------------------------------\n");
211 /* Masks unused interrupts */
212 static int udc_mask_unused_interrupts(struct udc *dev)
214 u32 tmp;
216 /* mask all dev interrupts */
217 tmp = AMD_BIT(UDC_DEVINT_SVC) |
218 AMD_BIT(UDC_DEVINT_ENUM) |
219 AMD_BIT(UDC_DEVINT_US) |
220 AMD_BIT(UDC_DEVINT_UR) |
221 AMD_BIT(UDC_DEVINT_ES) |
222 AMD_BIT(UDC_DEVINT_SI) |
223 AMD_BIT(UDC_DEVINT_SOF)|
224 AMD_BIT(UDC_DEVINT_SC);
225 writel(tmp, &dev->regs->irqmsk);
227 /* mask all ep interrupts */
228 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
230 return 0;
233 /* Enables endpoint 0 interrupts */
234 static int udc_enable_ep0_interrupts(struct udc *dev)
236 u32 tmp;
238 DBG(dev, "udc_enable_ep0_interrupts()\n");
240 /* read irq mask */
241 tmp = readl(&dev->regs->ep_irqmsk);
242 /* enable ep0 irq's */
243 tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
244 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
245 writel(tmp, &dev->regs->ep_irqmsk);
247 return 0;
250 /* Enables device interrupts for SET_INTF and SET_CONFIG */
251 static int udc_enable_dev_setup_interrupts(struct udc *dev)
253 u32 tmp;
255 DBG(dev, "enable device interrupts for setup data\n");
257 /* read irq mask */
258 tmp = readl(&dev->regs->irqmsk);
260 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
261 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
262 & AMD_UNMASK_BIT(UDC_DEVINT_SC)
263 & AMD_UNMASK_BIT(UDC_DEVINT_UR)
264 & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
265 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
266 writel(tmp, &dev->regs->irqmsk);
268 return 0;
271 /* Calculates fifo start of endpoint based on preceding endpoints */
272 static int udc_set_txfifo_addr(struct udc_ep *ep)
274 struct udc *dev;
275 u32 tmp;
276 int i;
278 if (!ep || !(ep->in))
279 return -EINVAL;
281 dev = ep->dev;
282 ep->txfifo = dev->txfifo;
284 /* traverse ep's */
285 for (i = 0; i < ep->num; i++) {
286 if (dev->ep[i].regs) {
287 /* read fifo size */
288 tmp = readl(&dev->ep[i].regs->bufin_framenum);
289 tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
290 ep->txfifo += tmp;
293 return 0;
296 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
297 static u32 cnak_pending;
299 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
301 if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
302 DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
303 cnak_pending |= 1 << (num);
304 ep->naking = 1;
305 } else
306 cnak_pending = cnak_pending & (~(1 << (num)));
310 /* Enables endpoint, is called by gadget driver */
311 static int
312 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
314 struct udc_ep *ep;
315 struct udc *dev;
316 u32 tmp;
317 unsigned long iflags;
318 u8 udc_csr_epix;
319 unsigned maxpacket;
321 if (!usbep
322 || usbep->name == ep0_string
323 || !desc
324 || desc->bDescriptorType != USB_DT_ENDPOINT)
325 return -EINVAL;
327 ep = container_of(usbep, struct udc_ep, ep);
328 dev = ep->dev;
330 DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
332 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
333 return -ESHUTDOWN;
335 spin_lock_irqsave(&dev->lock, iflags);
336 ep->ep.desc = desc;
338 ep->halted = 0;
340 /* set traffic type */
341 tmp = readl(&dev->ep[ep->num].regs->ctl);
342 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
343 writel(tmp, &dev->ep[ep->num].regs->ctl);
345 /* set max packet size */
346 maxpacket = usb_endpoint_maxp(desc);
347 tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
348 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
349 ep->ep.maxpacket = maxpacket;
350 writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
352 /* IN ep */
353 if (ep->in) {
355 /* ep ix in UDC CSR register space */
356 udc_csr_epix = ep->num;
358 /* set buffer size (tx fifo entries) */
359 tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
360 /* double buffering: fifo size = 2 x max packet size */
361 tmp = AMD_ADDBITS(
362 tmp,
363 maxpacket * UDC_EPIN_BUFF_SIZE_MULT
364 / UDC_DWORD_BYTES,
365 UDC_EPIN_BUFF_SIZE);
366 writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
368 /* calc. tx fifo base addr */
369 udc_set_txfifo_addr(ep);
371 /* flush fifo */
372 tmp = readl(&ep->regs->ctl);
373 tmp |= AMD_BIT(UDC_EPCTL_F);
374 writel(tmp, &ep->regs->ctl);
376 /* OUT ep */
377 } else {
378 /* ep ix in UDC CSR register space */
379 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
381 /* set max packet size UDC CSR */
382 tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
383 tmp = AMD_ADDBITS(tmp, maxpacket,
384 UDC_CSR_NE_MAX_PKT);
385 writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
387 if (use_dma && !ep->in) {
388 /* alloc and init BNA dummy request */
389 ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
390 ep->bna_occurred = 0;
393 if (ep->num != UDC_EP0OUT_IX)
394 dev->data_ep_enabled = 1;
397 /* set ep values */
398 tmp = readl(&dev->csr->ne[udc_csr_epix]);
399 /* max packet */
400 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
401 /* ep number */
402 tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
403 /* ep direction */
404 tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
405 /* ep type */
406 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
407 /* ep config */
408 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
409 /* ep interface */
410 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
411 /* ep alt */
412 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
413 /* write reg */
414 writel(tmp, &dev->csr->ne[udc_csr_epix]);
416 /* enable ep irq */
417 tmp = readl(&dev->regs->ep_irqmsk);
418 tmp &= AMD_UNMASK_BIT(ep->num);
419 writel(tmp, &dev->regs->ep_irqmsk);
422 * clear NAK by writing CNAK
423 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
425 if (!use_dma || ep->in) {
426 tmp = readl(&ep->regs->ctl);
427 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
428 writel(tmp, &ep->regs->ctl);
429 ep->naking = 0;
430 UDC_QUEUE_CNAK(ep, ep->num);
432 tmp = desc->bEndpointAddress;
433 DBG(dev, "%s enabled\n", usbep->name);
435 spin_unlock_irqrestore(&dev->lock, iflags);
436 return 0;
439 /* Resets endpoint */
440 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
442 u32 tmp;
444 VDBG(ep->dev, "ep-%d reset\n", ep->num);
445 ep->ep.desc = NULL;
446 ep->ep.ops = &udc_ep_ops;
447 INIT_LIST_HEAD(&ep->queue);
449 ep->ep.maxpacket = (u16) ~0;
450 /* set NAK */
451 tmp = readl(&ep->regs->ctl);
452 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
453 writel(tmp, &ep->regs->ctl);
454 ep->naking = 1;
456 /* disable interrupt */
457 tmp = readl(&regs->ep_irqmsk);
458 tmp |= AMD_BIT(ep->num);
459 writel(tmp, &regs->ep_irqmsk);
461 if (ep->in) {
462 /* unset P and IN bit of potential former DMA */
463 tmp = readl(&ep->regs->ctl);
464 tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
465 writel(tmp, &ep->regs->ctl);
467 tmp = readl(&ep->regs->sts);
468 tmp |= AMD_BIT(UDC_EPSTS_IN);
469 writel(tmp, &ep->regs->sts);
471 /* flush the fifo */
472 tmp = readl(&ep->regs->ctl);
473 tmp |= AMD_BIT(UDC_EPCTL_F);
474 writel(tmp, &ep->regs->ctl);
477 /* reset desc pointer */
478 writel(0, &ep->regs->desptr);
481 /* Disables endpoint, is called by gadget driver */
482 static int udc_ep_disable(struct usb_ep *usbep)
484 struct udc_ep *ep = NULL;
485 unsigned long iflags;
487 if (!usbep)
488 return -EINVAL;
490 ep = container_of(usbep, struct udc_ep, ep);
491 if (usbep->name == ep0_string || !ep->ep.desc)
492 return -EINVAL;
494 DBG(ep->dev, "Disable ep-%d\n", ep->num);
496 spin_lock_irqsave(&ep->dev->lock, iflags);
497 udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
498 empty_req_queue(ep);
499 ep_init(ep->dev->regs, ep);
500 spin_unlock_irqrestore(&ep->dev->lock, iflags);
502 return 0;
505 /* Allocates request packet, called by gadget driver */
506 static struct usb_request *
507 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
509 struct udc_request *req;
510 struct udc_data_dma *dma_desc;
511 struct udc_ep *ep;
513 if (!usbep)
514 return NULL;
516 ep = container_of(usbep, struct udc_ep, ep);
518 VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
519 req = kzalloc(sizeof(struct udc_request), gfp);
520 if (!req)
521 return NULL;
523 req->req.dma = DMA_DONT_USE;
524 INIT_LIST_HEAD(&req->queue);
526 if (ep->dma) {
527 /* ep0 in requests are allocated from data pool here */
528 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
529 &req->td_phys);
530 if (!dma_desc) {
531 kfree(req);
532 return NULL;
535 VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
536 "td_phys = %lx\n",
537 req, dma_desc,
538 (unsigned long)req->td_phys);
539 /* prevent from using desc. - set HOST BUSY */
540 dma_desc->status = AMD_ADDBITS(dma_desc->status,
541 UDC_DMA_STP_STS_BS_HOST_BUSY,
542 UDC_DMA_STP_STS_BS);
543 dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
544 req->td_data = dma_desc;
545 req->td_data_last = NULL;
546 req->chain_len = 1;
549 return &req->req;
552 /* Frees request packet, called by gadget driver */
553 static void
554 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
556 struct udc_ep *ep;
557 struct udc_request *req;
559 if (!usbep || !usbreq)
560 return;
562 ep = container_of(usbep, struct udc_ep, ep);
563 req = container_of(usbreq, struct udc_request, req);
564 VDBG(ep->dev, "free_req req=%p\n", req);
565 BUG_ON(!list_empty(&req->queue));
566 if (req->td_data) {
567 VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
569 /* free dma chain if created */
570 if (req->chain_len > 1)
571 udc_free_dma_chain(ep->dev, req);
573 pci_pool_free(ep->dev->data_requests, req->td_data,
574 req->td_phys);
576 kfree(req);
579 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
580 static void udc_init_bna_dummy(struct udc_request *req)
582 if (req) {
583 /* set last bit */
584 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
585 /* set next pointer to itself */
586 req->td_data->next = req->td_phys;
587 /* set HOST BUSY */
588 req->td_data->status
589 = AMD_ADDBITS(req->td_data->status,
590 UDC_DMA_STP_STS_BS_DMA_DONE,
591 UDC_DMA_STP_STS_BS);
592 #ifdef UDC_VERBOSE
593 pr_debug("bna desc = %p, sts = %08x\n",
594 req->td_data, req->td_data->status);
595 #endif
599 /* Allocate BNA dummy descriptor */
600 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
602 struct udc_request *req = NULL;
603 struct usb_request *_req = NULL;
605 /* alloc the dummy request */
606 _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
607 if (_req) {
608 req = container_of(_req, struct udc_request, req);
609 ep->bna_dummy_req = req;
610 udc_init_bna_dummy(req);
612 return req;
615 /* Write data to TX fifo for IN packets */
616 static void
617 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
619 u8 *req_buf;
620 u32 *buf;
621 int i, j;
622 unsigned bytes = 0;
623 unsigned remaining = 0;
625 if (!req || !ep)
626 return;
628 req_buf = req->buf + req->actual;
629 prefetch(req_buf);
630 remaining = req->length - req->actual;
632 buf = (u32 *) req_buf;
634 bytes = ep->ep.maxpacket;
635 if (bytes > remaining)
636 bytes = remaining;
638 /* dwords first */
639 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
640 writel(*(buf + i), ep->txfifo);
642 /* remaining bytes must be written by byte access */
643 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
644 writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
645 ep->txfifo);
648 /* dummy write confirm */
649 writel(0, &ep->regs->confirm);
652 /* Read dwords from RX fifo for OUT transfers */
653 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
655 int i;
657 VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
659 for (i = 0; i < dwords; i++)
660 *(buf + i) = readl(dev->rxfifo);
661 return 0;
664 /* Read bytes from RX fifo for OUT transfers */
665 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
667 int i, j;
668 u32 tmp;
670 VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
672 /* dwords first */
673 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
674 *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
676 /* remaining bytes must be read by byte access */
677 if (bytes % UDC_DWORD_BYTES) {
678 tmp = readl(dev->rxfifo);
679 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
680 *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
681 tmp = tmp >> UDC_BITS_PER_BYTE;
685 return 0;
688 /* Read data from RX fifo for OUT transfers */
689 static int
690 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
692 u8 *buf;
693 unsigned buf_space;
694 unsigned bytes = 0;
695 unsigned finished = 0;
697 /* received number bytes */
698 bytes = readl(&ep->regs->sts);
699 bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
701 buf_space = req->req.length - req->req.actual;
702 buf = req->req.buf + req->req.actual;
703 if (bytes > buf_space) {
704 if ((buf_space % ep->ep.maxpacket) != 0) {
705 DBG(ep->dev,
706 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
707 ep->ep.name, bytes, buf_space);
708 req->req.status = -EOVERFLOW;
710 bytes = buf_space;
712 req->req.actual += bytes;
714 /* last packet ? */
715 if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
716 || ((req->req.actual == req->req.length) && !req->req.zero))
717 finished = 1;
719 /* read rx fifo bytes */
720 VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
721 udc_rxfifo_read_bytes(ep->dev, buf, bytes);
723 return finished;
726 /* create/re-init a DMA descriptor or a DMA descriptor chain */
727 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
729 int retval = 0;
730 u32 tmp;
732 VDBG(ep->dev, "prep_dma\n");
733 VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
734 ep->num, req->td_data);
736 /* set buffer pointer */
737 req->td_data->bufptr = req->req.dma;
739 /* set last bit */
740 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
742 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
743 if (use_dma_ppb) {
745 retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
746 if (retval != 0) {
747 if (retval == -ENOMEM)
748 DBG(ep->dev, "Out of DMA memory\n");
749 return retval;
751 if (ep->in) {
752 if (req->req.length == ep->ep.maxpacket) {
753 /* write tx bytes */
754 req->td_data->status =
755 AMD_ADDBITS(req->td_data->status,
756 ep->ep.maxpacket,
757 UDC_DMA_IN_STS_TXBYTES);
764 if (ep->in) {
765 VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
766 "maxpacket=%d ep%d\n",
767 use_dma_ppb, req->req.length,
768 ep->ep.maxpacket, ep->num);
770 * if bytes < max packet then tx bytes must
771 * be written in packet per buffer mode
773 if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
774 || ep->num == UDC_EP0OUT_IX
775 || ep->num == UDC_EP0IN_IX) {
776 /* write tx bytes */
777 req->td_data->status =
778 AMD_ADDBITS(req->td_data->status,
779 req->req.length,
780 UDC_DMA_IN_STS_TXBYTES);
781 /* reset frame num */
782 req->td_data->status =
783 AMD_ADDBITS(req->td_data->status,
785 UDC_DMA_IN_STS_FRAMENUM);
787 /* set HOST BUSY */
788 req->td_data->status =
789 AMD_ADDBITS(req->td_data->status,
790 UDC_DMA_STP_STS_BS_HOST_BUSY,
791 UDC_DMA_STP_STS_BS);
792 } else {
793 VDBG(ep->dev, "OUT set host ready\n");
794 /* set HOST READY */
795 req->td_data->status =
796 AMD_ADDBITS(req->td_data->status,
797 UDC_DMA_STP_STS_BS_HOST_READY,
798 UDC_DMA_STP_STS_BS);
801 /* clear NAK by writing CNAK */
802 if (ep->naking) {
803 tmp = readl(&ep->regs->ctl);
804 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
805 writel(tmp, &ep->regs->ctl);
806 ep->naking = 0;
807 UDC_QUEUE_CNAK(ep, ep->num);
812 return retval;
815 /* Completes request packet ... caller MUST hold lock */
816 static void
817 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
818 __releases(ep->dev->lock)
819 __acquires(ep->dev->lock)
821 struct udc *dev;
822 unsigned halted;
824 VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
826 dev = ep->dev;
827 /* unmap DMA */
828 if (ep->dma)
829 usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
831 halted = ep->halted;
832 ep->halted = 1;
834 /* set new status if pending */
835 if (req->req.status == -EINPROGRESS)
836 req->req.status = sts;
838 /* remove from ep queue */
839 list_del_init(&req->queue);
841 VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
842 &req->req, req->req.length, ep->ep.name, sts);
844 spin_unlock(&dev->lock);
845 req->req.complete(&ep->ep, &req->req);
846 spin_lock(&dev->lock);
847 ep->halted = halted;
850 /* frees pci pool descriptors of a DMA chain */
851 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
854 int ret_val = 0;
855 struct udc_data_dma *td;
856 struct udc_data_dma *td_last = NULL;
857 unsigned int i;
859 DBG(dev, "free chain req = %p\n", req);
861 /* do not free first desc., will be done by free for request */
862 td_last = req->td_data;
863 td = phys_to_virt(td_last->next);
865 for (i = 1; i < req->chain_len; i++) {
867 pci_pool_free(dev->data_requests, td,
868 (dma_addr_t) td_last->next);
869 td_last = td;
870 td = phys_to_virt(td_last->next);
873 return ret_val;
876 /* Iterates to the end of a DMA chain and returns last descriptor */
877 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
879 struct udc_data_dma *td;
881 td = req->td_data;
882 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
883 td = phys_to_virt(td->next);
885 return td;
889 /* Iterates to the end of a DMA chain and counts bytes received */
890 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
892 struct udc_data_dma *td;
893 u32 count;
895 td = req->td_data;
896 /* received number bytes */
897 count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
899 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
900 td = phys_to_virt(td->next);
901 /* received number bytes */
902 if (td) {
903 count += AMD_GETBITS(td->status,
904 UDC_DMA_OUT_STS_RXBYTES);
908 return count;
912 /* Creates or re-inits a DMA chain */
913 static int udc_create_dma_chain(
914 struct udc_ep *ep,
915 struct udc_request *req,
916 unsigned long buf_len, gfp_t gfp_flags
919 unsigned long bytes = req->req.length;
920 unsigned int i;
921 dma_addr_t dma_addr;
922 struct udc_data_dma *td = NULL;
923 struct udc_data_dma *last = NULL;
924 unsigned long txbytes;
925 unsigned create_new_chain = 0;
926 unsigned len;
928 VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
929 bytes, buf_len);
930 dma_addr = DMA_DONT_USE;
932 /* unset L bit in first desc for OUT */
933 if (!ep->in)
934 req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
936 /* alloc only new desc's if not already available */
937 len = req->req.length / ep->ep.maxpacket;
938 if (req->req.length % ep->ep.maxpacket)
939 len++;
941 if (len > req->chain_len) {
942 /* shorter chain already allocated before */
943 if (req->chain_len > 1)
944 udc_free_dma_chain(ep->dev, req);
945 req->chain_len = len;
946 create_new_chain = 1;
949 td = req->td_data;
950 /* gen. required number of descriptors and buffers */
951 for (i = buf_len; i < bytes; i += buf_len) {
952 /* create or determine next desc. */
953 if (create_new_chain) {
955 td = pci_pool_alloc(ep->dev->data_requests,
956 gfp_flags, &dma_addr);
957 if (!td)
958 return -ENOMEM;
960 td->status = 0;
961 } else if (i == buf_len) {
962 /* first td */
963 td = (struct udc_data_dma *) phys_to_virt(
964 req->td_data->next);
965 td->status = 0;
966 } else {
967 td = (struct udc_data_dma *) phys_to_virt(last->next);
968 td->status = 0;
972 if (td)
973 td->bufptr = req->req.dma + i; /* assign buffer */
974 else
975 break;
977 /* short packet ? */
978 if ((bytes - i) >= buf_len) {
979 txbytes = buf_len;
980 } else {
981 /* short packet */
982 txbytes = bytes - i;
985 /* link td and assign tx bytes */
986 if (i == buf_len) {
987 if (create_new_chain)
988 req->td_data->next = dma_addr;
990 else
991 req->td_data->next = virt_to_phys(td);
993 /* write tx bytes */
994 if (ep->in) {
995 /* first desc */
996 req->td_data->status =
997 AMD_ADDBITS(req->td_data->status,
998 ep->ep.maxpacket,
999 UDC_DMA_IN_STS_TXBYTES);
1000 /* second desc */
1001 td->status = AMD_ADDBITS(td->status,
1002 txbytes,
1003 UDC_DMA_IN_STS_TXBYTES);
1005 } else {
1006 if (create_new_chain)
1007 last->next = dma_addr;
1009 else
1010 last->next = virt_to_phys(td);
1012 if (ep->in) {
1013 /* write tx bytes */
1014 td->status = AMD_ADDBITS(td->status,
1015 txbytes,
1016 UDC_DMA_IN_STS_TXBYTES);
1019 last = td;
1021 /* set last bit */
1022 if (td) {
1023 td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
1024 /* last desc. points to itself */
1025 req->td_data_last = td;
1028 return 0;
1031 /* Enabling RX DMA */
1032 static void udc_set_rde(struct udc *dev)
1034 u32 tmp;
1036 VDBG(dev, "udc_set_rde()\n");
1037 /* stop RDE timer */
1038 if (timer_pending(&udc_timer)) {
1039 set_rde = 0;
1040 mod_timer(&udc_timer, jiffies - 1);
1042 /* set RDE */
1043 tmp = readl(&dev->regs->ctl);
1044 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1045 writel(tmp, &dev->regs->ctl);
1048 /* Queues a request packet, called by gadget driver */
1049 static int
1050 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1052 int retval = 0;
1053 u8 open_rxfifo = 0;
1054 unsigned long iflags;
1055 struct udc_ep *ep;
1056 struct udc_request *req;
1057 struct udc *dev;
1058 u32 tmp;
1060 /* check the inputs */
1061 req = container_of(usbreq, struct udc_request, req);
1063 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1064 || !list_empty(&req->queue))
1065 return -EINVAL;
1067 ep = container_of(usbep, struct udc_ep, ep);
1068 if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1069 return -EINVAL;
1071 VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1072 dev = ep->dev;
1074 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1075 return -ESHUTDOWN;
1077 /* map dma (usually done before) */
1078 if (ep->dma) {
1079 VDBG(dev, "DMA map req %p\n", req);
1080 retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
1081 if (retval)
1082 return retval;
1085 VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1086 usbep->name, usbreq, usbreq->length,
1087 req->td_data, usbreq->buf);
1089 spin_lock_irqsave(&dev->lock, iflags);
1090 usbreq->actual = 0;
1091 usbreq->status = -EINPROGRESS;
1092 req->dma_done = 0;
1094 /* on empty queue just do first transfer */
1095 if (list_empty(&ep->queue)) {
1096 /* zlp */
1097 if (usbreq->length == 0) {
1098 /* IN zlp's are handled by hardware */
1099 complete_req(ep, req, 0);
1100 VDBG(dev, "%s: zlp\n", ep->ep.name);
1102 * if set_config or set_intf is waiting for ack by zlp
1103 * then set CSR_DONE
1105 if (dev->set_cfg_not_acked) {
1106 tmp = readl(&dev->regs->ctl);
1107 tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1108 writel(tmp, &dev->regs->ctl);
1109 dev->set_cfg_not_acked = 0;
1111 /* setup command is ACK'ed now by zlp */
1112 if (dev->waiting_zlp_ack_ep0in) {
1113 /* clear NAK by writing CNAK in EP0_IN */
1114 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1115 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1116 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1117 dev->ep[UDC_EP0IN_IX].naking = 0;
1118 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1119 UDC_EP0IN_IX);
1120 dev->waiting_zlp_ack_ep0in = 0;
1122 goto finished;
1124 if (ep->dma) {
1125 retval = prep_dma(ep, req, gfp);
1126 if (retval != 0)
1127 goto finished;
1128 /* write desc pointer to enable DMA */
1129 if (ep->in) {
1130 /* set HOST READY */
1131 req->td_data->status =
1132 AMD_ADDBITS(req->td_data->status,
1133 UDC_DMA_IN_STS_BS_HOST_READY,
1134 UDC_DMA_IN_STS_BS);
1137 /* disabled rx dma while descriptor update */
1138 if (!ep->in) {
1139 /* stop RDE timer */
1140 if (timer_pending(&udc_timer)) {
1141 set_rde = 0;
1142 mod_timer(&udc_timer, jiffies - 1);
1144 /* clear RDE */
1145 tmp = readl(&dev->regs->ctl);
1146 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1147 writel(tmp, &dev->regs->ctl);
1148 open_rxfifo = 1;
1151 * if BNA occurred then let BNA dummy desc.
1152 * point to current desc.
1154 if (ep->bna_occurred) {
1155 VDBG(dev, "copy to BNA dummy desc.\n");
1156 memcpy(ep->bna_dummy_req->td_data,
1157 req->td_data,
1158 sizeof(struct udc_data_dma));
1161 /* write desc pointer */
1162 writel(req->td_phys, &ep->regs->desptr);
1164 /* clear NAK by writing CNAK */
1165 if (ep->naking) {
1166 tmp = readl(&ep->regs->ctl);
1167 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1168 writel(tmp, &ep->regs->ctl);
1169 ep->naking = 0;
1170 UDC_QUEUE_CNAK(ep, ep->num);
1173 if (ep->in) {
1174 /* enable ep irq */
1175 tmp = readl(&dev->regs->ep_irqmsk);
1176 tmp &= AMD_UNMASK_BIT(ep->num);
1177 writel(tmp, &dev->regs->ep_irqmsk);
1179 } else if (ep->in) {
1180 /* enable ep irq */
1181 tmp = readl(&dev->regs->ep_irqmsk);
1182 tmp &= AMD_UNMASK_BIT(ep->num);
1183 writel(tmp, &dev->regs->ep_irqmsk);
1186 } else if (ep->dma) {
1189 * prep_dma not used for OUT ep's, this is not possible
1190 * for PPB modes, because of chain creation reasons
1192 if (ep->in) {
1193 retval = prep_dma(ep, req, gfp);
1194 if (retval != 0)
1195 goto finished;
1198 VDBG(dev, "list_add\n");
1199 /* add request to ep queue */
1200 if (req) {
1202 list_add_tail(&req->queue, &ep->queue);
1204 /* open rxfifo if out data queued */
1205 if (open_rxfifo) {
1206 /* enable DMA */
1207 req->dma_going = 1;
1208 udc_set_rde(dev);
1209 if (ep->num != UDC_EP0OUT_IX)
1210 dev->data_ep_queued = 1;
1212 /* stop OUT naking */
1213 if (!ep->in) {
1214 if (!use_dma && udc_rxfifo_pending) {
1215 DBG(dev, "udc_queue(): pending bytes in "
1216 "rxfifo after nyet\n");
1218 * read pending bytes afer nyet:
1219 * referring to isr
1221 if (udc_rxfifo_read(ep, req)) {
1222 /* finish */
1223 complete_req(ep, req, 0);
1225 udc_rxfifo_pending = 0;
1231 finished:
1232 spin_unlock_irqrestore(&dev->lock, iflags);
1233 return retval;
1236 /* Empty request queue of an endpoint; caller holds spinlock */
1237 static void empty_req_queue(struct udc_ep *ep)
1239 struct udc_request *req;
1241 ep->halted = 1;
1242 while (!list_empty(&ep->queue)) {
1243 req = list_entry(ep->queue.next,
1244 struct udc_request,
1245 queue);
1246 complete_req(ep, req, -ESHUTDOWN);
1250 /* Dequeues a request packet, called by gadget driver */
1251 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1253 struct udc_ep *ep;
1254 struct udc_request *req;
1255 unsigned halted;
1256 unsigned long iflags;
1258 ep = container_of(usbep, struct udc_ep, ep);
1259 if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
1260 && ep->num != UDC_EP0OUT_IX)))
1261 return -EINVAL;
1263 req = container_of(usbreq, struct udc_request, req);
1265 spin_lock_irqsave(&ep->dev->lock, iflags);
1266 halted = ep->halted;
1267 ep->halted = 1;
1268 /* request in processing or next one */
1269 if (ep->queue.next == &req->queue) {
1270 if (ep->dma && req->dma_going) {
1271 if (ep->in)
1272 ep->cancel_transfer = 1;
1273 else {
1274 u32 tmp;
1275 u32 dma_sts;
1276 /* stop potential receive DMA */
1277 tmp = readl(&udc->regs->ctl);
1278 writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1279 &udc->regs->ctl);
1281 * Cancel transfer later in ISR
1282 * if descriptor was touched.
1284 dma_sts = AMD_GETBITS(req->td_data->status,
1285 UDC_DMA_OUT_STS_BS);
1286 if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1287 ep->cancel_transfer = 1;
1288 else {
1289 udc_init_bna_dummy(ep->req);
1290 writel(ep->bna_dummy_req->td_phys,
1291 &ep->regs->desptr);
1293 writel(tmp, &udc->regs->ctl);
1297 complete_req(ep, req, -ECONNRESET);
1298 ep->halted = halted;
1300 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1301 return 0;
1304 /* Halt or clear halt of endpoint */
1305 static int
1306 udc_set_halt(struct usb_ep *usbep, int halt)
1308 struct udc_ep *ep;
1309 u32 tmp;
1310 unsigned long iflags;
1311 int retval = 0;
1313 if (!usbep)
1314 return -EINVAL;
1316 pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1318 ep = container_of(usbep, struct udc_ep, ep);
1319 if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1320 return -EINVAL;
1321 if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1322 return -ESHUTDOWN;
1324 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1325 /* halt or clear halt */
1326 if (halt) {
1327 if (ep->num == 0)
1328 ep->dev->stall_ep0in = 1;
1329 else {
1331 * set STALL
1332 * rxfifo empty not taken into acount
1334 tmp = readl(&ep->regs->ctl);
1335 tmp |= AMD_BIT(UDC_EPCTL_S);
1336 writel(tmp, &ep->regs->ctl);
1337 ep->halted = 1;
1339 /* setup poll timer */
1340 if (!timer_pending(&udc_pollstall_timer)) {
1341 udc_pollstall_timer.expires = jiffies +
1342 HZ * UDC_POLLSTALL_TIMER_USECONDS
1343 / (1000 * 1000);
1344 if (!stop_pollstall_timer) {
1345 DBG(ep->dev, "start polltimer\n");
1346 add_timer(&udc_pollstall_timer);
1350 } else {
1351 /* ep is halted by set_halt() before */
1352 if (ep->halted) {
1353 tmp = readl(&ep->regs->ctl);
1354 /* clear stall bit */
1355 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1356 /* clear NAK by writing CNAK */
1357 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1358 writel(tmp, &ep->regs->ctl);
1359 ep->halted = 0;
1360 UDC_QUEUE_CNAK(ep, ep->num);
1363 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1364 return retval;
1367 /* gadget interface */
1368 static const struct usb_ep_ops udc_ep_ops = {
1369 .enable = udc_ep_enable,
1370 .disable = udc_ep_disable,
1372 .alloc_request = udc_alloc_request,
1373 .free_request = udc_free_request,
1375 .queue = udc_queue,
1376 .dequeue = udc_dequeue,
1378 .set_halt = udc_set_halt,
1379 /* fifo ops not implemented */
1382 /*-------------------------------------------------------------------------*/
1384 /* Get frame counter (not implemented) */
1385 static int udc_get_frame(struct usb_gadget *gadget)
1387 return -EOPNOTSUPP;
1390 /* Remote wakeup gadget interface */
1391 static int udc_wakeup(struct usb_gadget *gadget)
1393 struct udc *dev;
1395 if (!gadget)
1396 return -EINVAL;
1397 dev = container_of(gadget, struct udc, gadget);
1398 udc_remote_wakeup(dev);
1400 return 0;
1403 static int amd5536_start(struct usb_gadget_driver *driver,
1404 int (*bind)(struct usb_gadget *));
1405 static int amd5536_stop(struct usb_gadget_driver *driver);
1406 /* gadget operations */
1407 static const struct usb_gadget_ops udc_ops = {
1408 .wakeup = udc_wakeup,
1409 .get_frame = udc_get_frame,
1410 .start = amd5536_start,
1411 .stop = amd5536_stop,
1414 /* Setups endpoint parameters, adds endpoints to linked list */
1415 static void make_ep_lists(struct udc *dev)
1417 /* make gadget ep lists */
1418 INIT_LIST_HEAD(&dev->gadget.ep_list);
1419 list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1420 &dev->gadget.ep_list);
1421 list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1422 &dev->gadget.ep_list);
1423 list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1424 &dev->gadget.ep_list);
1426 /* fifo config */
1427 dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1428 if (dev->gadget.speed == USB_SPEED_FULL)
1429 dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1430 else if (dev->gadget.speed == USB_SPEED_HIGH)
1431 dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1432 dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1435 /* init registers at driver load time */
1436 static int startup_registers(struct udc *dev)
1438 u32 tmp;
1440 /* init controller by soft reset */
1441 udc_soft_reset(dev);
1443 /* mask not needed interrupts */
1444 udc_mask_unused_interrupts(dev);
1446 /* put into initial config */
1447 udc_basic_init(dev);
1448 /* link up all endpoints */
1449 udc_setup_endpoints(dev);
1451 /* program speed */
1452 tmp = readl(&dev->regs->cfg);
1453 if (use_fullspeed)
1454 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1455 else
1456 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1457 writel(tmp, &dev->regs->cfg);
1459 return 0;
1462 /* Inits UDC context */
1463 static void udc_basic_init(struct udc *dev)
1465 u32 tmp;
1467 DBG(dev, "udc_basic_init()\n");
1469 dev->gadget.speed = USB_SPEED_UNKNOWN;
1471 /* stop RDE timer */
1472 if (timer_pending(&udc_timer)) {
1473 set_rde = 0;
1474 mod_timer(&udc_timer, jiffies - 1);
1476 /* stop poll stall timer */
1477 if (timer_pending(&udc_pollstall_timer))
1478 mod_timer(&udc_pollstall_timer, jiffies - 1);
1479 /* disable DMA */
1480 tmp = readl(&dev->regs->ctl);
1481 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1482 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1483 writel(tmp, &dev->regs->ctl);
1485 /* enable dynamic CSR programming */
1486 tmp = readl(&dev->regs->cfg);
1487 tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1488 /* set self powered */
1489 tmp |= AMD_BIT(UDC_DEVCFG_SP);
1490 /* set remote wakeupable */
1491 tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1492 writel(tmp, &dev->regs->cfg);
1494 make_ep_lists(dev);
1496 dev->data_ep_enabled = 0;
1497 dev->data_ep_queued = 0;
1500 /* Sets initial endpoint parameters */
1501 static void udc_setup_endpoints(struct udc *dev)
1503 struct udc_ep *ep;
1504 u32 tmp;
1505 u32 reg;
1507 DBG(dev, "udc_setup_endpoints()\n");
1509 /* read enum speed */
1510 tmp = readl(&dev->regs->sts);
1511 tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1512 if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
1513 dev->gadget.speed = USB_SPEED_HIGH;
1514 else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
1515 dev->gadget.speed = USB_SPEED_FULL;
1517 /* set basic ep parameters */
1518 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1519 ep = &dev->ep[tmp];
1520 ep->dev = dev;
1521 ep->ep.name = ep_string[tmp];
1522 ep->num = tmp;
1523 /* txfifo size is calculated at enable time */
1524 ep->txfifo = dev->txfifo;
1526 /* fifo size */
1527 if (tmp < UDC_EPIN_NUM) {
1528 ep->fifo_depth = UDC_TXFIFO_SIZE;
1529 ep->in = 1;
1530 } else {
1531 ep->fifo_depth = UDC_RXFIFO_SIZE;
1532 ep->in = 0;
1535 ep->regs = &dev->ep_regs[tmp];
1537 * ep will be reset only if ep was not enabled before to avoid
1538 * disabling ep interrupts when ENUM interrupt occurs but ep is
1539 * not enabled by gadget driver
1541 if (!ep->ep.desc)
1542 ep_init(dev->regs, ep);
1544 if (use_dma) {
1546 * ep->dma is not really used, just to indicate that
1547 * DMA is active: remove this
1548 * dma regs = dev control regs
1550 ep->dma = &dev->regs->ctl;
1552 /* nak OUT endpoints until enable - not for ep0 */
1553 if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1554 && tmp > UDC_EPIN_NUM) {
1555 /* set NAK */
1556 reg = readl(&dev->ep[tmp].regs->ctl);
1557 reg |= AMD_BIT(UDC_EPCTL_SNAK);
1558 writel(reg, &dev->ep[tmp].regs->ctl);
1559 dev->ep[tmp].naking = 1;
1564 /* EP0 max packet */
1565 if (dev->gadget.speed == USB_SPEED_FULL) {
1566 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
1567 dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
1568 UDC_FS_EP0OUT_MAX_PKT_SIZE;
1569 } else if (dev->gadget.speed == USB_SPEED_HIGH) {
1570 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
1571 dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
1575 * with suspend bug workaround, ep0 params for gadget driver
1576 * are set at gadget driver bind() call
1578 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1579 dev->ep[UDC_EP0IN_IX].halted = 0;
1580 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1582 /* init cfg/alt/int */
1583 dev->cur_config = 0;
1584 dev->cur_intf = 0;
1585 dev->cur_alt = 0;
1588 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1589 static void usb_connect(struct udc *dev)
1592 dev_info(&dev->pdev->dev, "USB Connect\n");
1594 dev->connected = 1;
1596 /* put into initial config */
1597 udc_basic_init(dev);
1599 /* enable device setup interrupts */
1600 udc_enable_dev_setup_interrupts(dev);
1604 * Calls gadget with disconnect event and resets the UDC and makes
1605 * initial bringup to be ready for ep0 events
1607 static void usb_disconnect(struct udc *dev)
1610 dev_info(&dev->pdev->dev, "USB Disconnect\n");
1612 dev->connected = 0;
1614 /* mask interrupts */
1615 udc_mask_unused_interrupts(dev);
1617 /* REVISIT there doesn't seem to be a point to having this
1618 * talk to a tasklet ... do it directly, we already hold
1619 * the spinlock needed to process the disconnect.
1622 tasklet_schedule(&disconnect_tasklet);
1625 /* Tasklet for disconnect to be outside of interrupt context */
1626 static void udc_tasklet_disconnect(unsigned long par)
1628 struct udc *dev = (struct udc *)(*((struct udc **) par));
1629 u32 tmp;
1631 DBG(dev, "Tasklet disconnect\n");
1632 spin_lock_irq(&dev->lock);
1634 if (dev->driver) {
1635 spin_unlock(&dev->lock);
1636 dev->driver->disconnect(&dev->gadget);
1637 spin_lock(&dev->lock);
1639 /* empty queues */
1640 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1641 empty_req_queue(&dev->ep[tmp]);
1645 /* disable ep0 */
1646 ep_init(dev->regs,
1647 &dev->ep[UDC_EP0IN_IX]);
1650 if (!soft_reset_occured) {
1651 /* init controller by soft reset */
1652 udc_soft_reset(dev);
1653 soft_reset_occured++;
1656 /* re-enable dev interrupts */
1657 udc_enable_dev_setup_interrupts(dev);
1658 /* back to full speed ? */
1659 if (use_fullspeed) {
1660 tmp = readl(&dev->regs->cfg);
1661 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1662 writel(tmp, &dev->regs->cfg);
1665 spin_unlock_irq(&dev->lock);
1668 /* Reset the UDC core */
1669 static void udc_soft_reset(struct udc *dev)
1671 unsigned long flags;
1673 DBG(dev, "Soft reset\n");
1675 * reset possible waiting interrupts, because int.
1676 * status is lost after soft reset,
1677 * ep int. status reset
1679 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1680 /* device int. status reset */
1681 writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1683 spin_lock_irqsave(&udc_irq_spinlock, flags);
1684 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1685 readl(&dev->regs->cfg);
1686 spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1690 /* RDE timer callback to set RDE bit */
1691 static void udc_timer_function(unsigned long v)
1693 u32 tmp;
1695 spin_lock_irq(&udc_irq_spinlock);
1697 if (set_rde > 0) {
1699 * open the fifo if fifo was filled on last timer call
1700 * conditionally
1702 if (set_rde > 1) {
1703 /* set RDE to receive setup data */
1704 tmp = readl(&udc->regs->ctl);
1705 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1706 writel(tmp, &udc->regs->ctl);
1707 set_rde = -1;
1708 } else if (readl(&udc->regs->sts)
1709 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1711 * if fifo empty setup polling, do not just
1712 * open the fifo
1714 udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1715 if (!stop_timer)
1716 add_timer(&udc_timer);
1717 } else {
1719 * fifo contains data now, setup timer for opening
1720 * the fifo when timer expires to be able to receive
1721 * setup packets, when data packets gets queued by
1722 * gadget layer then timer will forced to expire with
1723 * set_rde=0 (RDE is set in udc_queue())
1725 set_rde++;
1726 /* debug: lhadmot_timer_start = 221070 */
1727 udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1728 if (!stop_timer)
1729 add_timer(&udc_timer);
1732 } else
1733 set_rde = -1; /* RDE was set by udc_queue() */
1734 spin_unlock_irq(&udc_irq_spinlock);
1735 if (stop_timer)
1736 complete(&on_exit);
1740 /* Handle halt state, used in stall poll timer */
1741 static void udc_handle_halt_state(struct udc_ep *ep)
1743 u32 tmp;
1744 /* set stall as long not halted */
1745 if (ep->halted == 1) {
1746 tmp = readl(&ep->regs->ctl);
1747 /* STALL cleared ? */
1748 if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1750 * FIXME: MSC spec requires that stall remains
1751 * even on receivng of CLEAR_FEATURE HALT. So
1752 * we would set STALL again here to be compliant.
1753 * But with current mass storage drivers this does
1754 * not work (would produce endless host retries).
1755 * So we clear halt on CLEAR_FEATURE.
1757 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1758 tmp |= AMD_BIT(UDC_EPCTL_S);
1759 writel(tmp, &ep->regs->ctl);*/
1761 /* clear NAK by writing CNAK */
1762 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1763 writel(tmp, &ep->regs->ctl);
1764 ep->halted = 0;
1765 UDC_QUEUE_CNAK(ep, ep->num);
1770 /* Stall timer callback to poll S bit and set it again after */
1771 static void udc_pollstall_timer_function(unsigned long v)
1773 struct udc_ep *ep;
1774 int halted = 0;
1776 spin_lock_irq(&udc_stall_spinlock);
1778 * only one IN and OUT endpoints are handled
1779 * IN poll stall
1781 ep = &udc->ep[UDC_EPIN_IX];
1782 udc_handle_halt_state(ep);
1783 if (ep->halted)
1784 halted = 1;
1785 /* OUT poll stall */
1786 ep = &udc->ep[UDC_EPOUT_IX];
1787 udc_handle_halt_state(ep);
1788 if (ep->halted)
1789 halted = 1;
1791 /* setup timer again when still halted */
1792 if (!stop_pollstall_timer && halted) {
1793 udc_pollstall_timer.expires = jiffies +
1794 HZ * UDC_POLLSTALL_TIMER_USECONDS
1795 / (1000 * 1000);
1796 add_timer(&udc_pollstall_timer);
1798 spin_unlock_irq(&udc_stall_spinlock);
1800 if (stop_pollstall_timer)
1801 complete(&on_pollstall_exit);
1804 /* Inits endpoint 0 so that SETUP packets are processed */
1805 static void activate_control_endpoints(struct udc *dev)
1807 u32 tmp;
1809 DBG(dev, "activate_control_endpoints\n");
1811 /* flush fifo */
1812 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1813 tmp |= AMD_BIT(UDC_EPCTL_F);
1814 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1816 /* set ep0 directions */
1817 dev->ep[UDC_EP0IN_IX].in = 1;
1818 dev->ep[UDC_EP0OUT_IX].in = 0;
1820 /* set buffer size (tx fifo entries) of EP0_IN */
1821 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1822 if (dev->gadget.speed == USB_SPEED_FULL)
1823 tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1824 UDC_EPIN_BUFF_SIZE);
1825 else if (dev->gadget.speed == USB_SPEED_HIGH)
1826 tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1827 UDC_EPIN_BUFF_SIZE);
1828 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1830 /* set max packet size of EP0_IN */
1831 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1832 if (dev->gadget.speed == USB_SPEED_FULL)
1833 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1834 UDC_EP_MAX_PKT_SIZE);
1835 else if (dev->gadget.speed == USB_SPEED_HIGH)
1836 tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1837 UDC_EP_MAX_PKT_SIZE);
1838 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1840 /* set max packet size of EP0_OUT */
1841 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1842 if (dev->gadget.speed == USB_SPEED_FULL)
1843 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1844 UDC_EP_MAX_PKT_SIZE);
1845 else if (dev->gadget.speed == USB_SPEED_HIGH)
1846 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1847 UDC_EP_MAX_PKT_SIZE);
1848 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1850 /* set max packet size of EP0 in UDC CSR */
1851 tmp = readl(&dev->csr->ne[0]);
1852 if (dev->gadget.speed == USB_SPEED_FULL)
1853 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1854 UDC_CSR_NE_MAX_PKT);
1855 else if (dev->gadget.speed == USB_SPEED_HIGH)
1856 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1857 UDC_CSR_NE_MAX_PKT);
1858 writel(tmp, &dev->csr->ne[0]);
1860 if (use_dma) {
1861 dev->ep[UDC_EP0OUT_IX].td->status |=
1862 AMD_BIT(UDC_DMA_OUT_STS_L);
1863 /* write dma desc address */
1864 writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1865 &dev->ep[UDC_EP0OUT_IX].regs->subptr);
1866 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1867 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
1868 /* stop RDE timer */
1869 if (timer_pending(&udc_timer)) {
1870 set_rde = 0;
1871 mod_timer(&udc_timer, jiffies - 1);
1873 /* stop pollstall timer */
1874 if (timer_pending(&udc_pollstall_timer))
1875 mod_timer(&udc_pollstall_timer, jiffies - 1);
1876 /* enable DMA */
1877 tmp = readl(&dev->regs->ctl);
1878 tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1879 | AMD_BIT(UDC_DEVCTL_RDE)
1880 | AMD_BIT(UDC_DEVCTL_TDE);
1881 if (use_dma_bufferfill_mode)
1882 tmp |= AMD_BIT(UDC_DEVCTL_BF);
1883 else if (use_dma_ppb_du)
1884 tmp |= AMD_BIT(UDC_DEVCTL_DU);
1885 writel(tmp, &dev->regs->ctl);
1888 /* clear NAK by writing CNAK for EP0IN */
1889 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1890 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1891 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1892 dev->ep[UDC_EP0IN_IX].naking = 0;
1893 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1895 /* clear NAK by writing CNAK for EP0OUT */
1896 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1897 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1898 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1899 dev->ep[UDC_EP0OUT_IX].naking = 0;
1900 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1903 /* Make endpoint 0 ready for control traffic */
1904 static int setup_ep0(struct udc *dev)
1906 activate_control_endpoints(dev);
1907 /* enable ep0 interrupts */
1908 udc_enable_ep0_interrupts(dev);
1909 /* enable device setup interrupts */
1910 udc_enable_dev_setup_interrupts(dev);
1912 return 0;
1915 /* Called by gadget driver to register itself */
1916 static int amd5536_start(struct usb_gadget_driver *driver,
1917 int (*bind)(struct usb_gadget *))
1919 struct udc *dev = udc;
1920 int retval;
1921 u32 tmp;
1923 if (!driver || !bind || !driver->setup
1924 || driver->max_speed < USB_SPEED_HIGH)
1925 return -EINVAL;
1926 if (!dev)
1927 return -ENODEV;
1928 if (dev->driver)
1929 return -EBUSY;
1931 driver->driver.bus = NULL;
1932 dev->driver = driver;
1933 dev->gadget.dev.driver = &driver->driver;
1935 retval = bind(&dev->gadget);
1937 /* Some gadget drivers use both ep0 directions.
1938 * NOTE: to gadget driver, ep0 is just one endpoint...
1940 dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1941 dev->ep[UDC_EP0IN_IX].ep.driver_data;
1943 if (retval) {
1944 DBG(dev, "binding to %s returning %d\n",
1945 driver->driver.name, retval);
1946 dev->driver = NULL;
1947 dev->gadget.dev.driver = NULL;
1948 return retval;
1951 /* get ready for ep0 traffic */
1952 setup_ep0(dev);
1954 /* clear SD */
1955 tmp = readl(&dev->regs->ctl);
1956 tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1957 writel(tmp, &dev->regs->ctl);
1959 usb_connect(dev);
1961 return 0;
1964 /* shutdown requests and disconnect from gadget */
1965 static void
1966 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
1967 __releases(dev->lock)
1968 __acquires(dev->lock)
1970 int tmp;
1972 if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
1973 spin_unlock(&dev->lock);
1974 driver->disconnect(&dev->gadget);
1975 spin_lock(&dev->lock);
1978 /* empty queues and init hardware */
1979 udc_basic_init(dev);
1980 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1981 empty_req_queue(&dev->ep[tmp]);
1983 udc_setup_endpoints(dev);
1986 /* Called by gadget driver to unregister itself */
1987 static int amd5536_stop(struct usb_gadget_driver *driver)
1989 struct udc *dev = udc;
1990 unsigned long flags;
1991 u32 tmp;
1993 if (!dev)
1994 return -ENODEV;
1995 if (!driver || driver != dev->driver || !driver->unbind)
1996 return -EINVAL;
1998 spin_lock_irqsave(&dev->lock, flags);
1999 udc_mask_unused_interrupts(dev);
2000 shutdown(dev, driver);
2001 spin_unlock_irqrestore(&dev->lock, flags);
2003 driver->unbind(&dev->gadget);
2004 dev->gadget.dev.driver = NULL;
2005 dev->driver = NULL;
2007 /* set SD */
2008 tmp = readl(&dev->regs->ctl);
2009 tmp |= AMD_BIT(UDC_DEVCTL_SD);
2010 writel(tmp, &dev->regs->ctl);
2013 DBG(dev, "%s: unregistered\n", driver->driver.name);
2015 return 0;
2018 /* Clear pending NAK bits */
2019 static void udc_process_cnak_queue(struct udc *dev)
2021 u32 tmp;
2022 u32 reg;
2024 /* check epin's */
2025 DBG(dev, "CNAK pending queue processing\n");
2026 for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2027 if (cnak_pending & (1 << tmp)) {
2028 DBG(dev, "CNAK pending for ep%d\n", tmp);
2029 /* clear NAK by writing CNAK */
2030 reg = readl(&dev->ep[tmp].regs->ctl);
2031 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2032 writel(reg, &dev->ep[tmp].regs->ctl);
2033 dev->ep[tmp].naking = 0;
2034 UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2037 /* ... and ep0out */
2038 if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2039 DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2040 /* clear NAK by writing CNAK */
2041 reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2042 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2043 writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2044 dev->ep[UDC_EP0OUT_IX].naking = 0;
2045 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2046 dev->ep[UDC_EP0OUT_IX].num);
2050 /* Enabling RX DMA after setup packet */
2051 static void udc_ep0_set_rde(struct udc *dev)
2053 if (use_dma) {
2055 * only enable RXDMA when no data endpoint enabled
2056 * or data is queued
2058 if (!dev->data_ep_enabled || dev->data_ep_queued) {
2059 udc_set_rde(dev);
2060 } else {
2062 * setup timer for enabling RDE (to not enable
2063 * RXFIFO DMA for data endpoints to early)
2065 if (set_rde != 0 && !timer_pending(&udc_timer)) {
2066 udc_timer.expires =
2067 jiffies + HZ/UDC_RDE_TIMER_DIV;
2068 set_rde = 1;
2069 if (!stop_timer)
2070 add_timer(&udc_timer);
2077 /* Interrupt handler for data OUT traffic */
2078 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2080 irqreturn_t ret_val = IRQ_NONE;
2081 u32 tmp;
2082 struct udc_ep *ep;
2083 struct udc_request *req;
2084 unsigned int count;
2085 struct udc_data_dma *td = NULL;
2086 unsigned dma_done;
2088 VDBG(dev, "ep%d irq\n", ep_ix);
2089 ep = &dev->ep[ep_ix];
2091 tmp = readl(&ep->regs->sts);
2092 if (use_dma) {
2093 /* BNA event ? */
2094 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2095 DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
2096 ep->num, readl(&ep->regs->desptr));
2097 /* clear BNA */
2098 writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2099 if (!ep->cancel_transfer)
2100 ep->bna_occurred = 1;
2101 else
2102 ep->cancel_transfer = 0;
2103 ret_val = IRQ_HANDLED;
2104 goto finished;
2107 /* HE event ? */
2108 if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2109 dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
2111 /* clear HE */
2112 writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2113 ret_val = IRQ_HANDLED;
2114 goto finished;
2117 if (!list_empty(&ep->queue)) {
2119 /* next request */
2120 req = list_entry(ep->queue.next,
2121 struct udc_request, queue);
2122 } else {
2123 req = NULL;
2124 udc_rxfifo_pending = 1;
2126 VDBG(dev, "req = %p\n", req);
2127 /* fifo mode */
2128 if (!use_dma) {
2130 /* read fifo */
2131 if (req && udc_rxfifo_read(ep, req)) {
2132 ret_val = IRQ_HANDLED;
2134 /* finish */
2135 complete_req(ep, req, 0);
2136 /* next request */
2137 if (!list_empty(&ep->queue) && !ep->halted) {
2138 req = list_entry(ep->queue.next,
2139 struct udc_request, queue);
2140 } else
2141 req = NULL;
2144 /* DMA */
2145 } else if (!ep->cancel_transfer && req != NULL) {
2146 ret_val = IRQ_HANDLED;
2148 /* check for DMA done */
2149 if (!use_dma_ppb) {
2150 dma_done = AMD_GETBITS(req->td_data->status,
2151 UDC_DMA_OUT_STS_BS);
2152 /* packet per buffer mode - rx bytes */
2153 } else {
2155 * if BNA occurred then recover desc. from
2156 * BNA dummy desc.
2158 if (ep->bna_occurred) {
2159 VDBG(dev, "Recover desc. from BNA dummy\n");
2160 memcpy(req->td_data, ep->bna_dummy_req->td_data,
2161 sizeof(struct udc_data_dma));
2162 ep->bna_occurred = 0;
2163 udc_init_bna_dummy(ep->req);
2165 td = udc_get_last_dma_desc(req);
2166 dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2168 if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2169 /* buffer fill mode - rx bytes */
2170 if (!use_dma_ppb) {
2171 /* received number bytes */
2172 count = AMD_GETBITS(req->td_data->status,
2173 UDC_DMA_OUT_STS_RXBYTES);
2174 VDBG(dev, "rx bytes=%u\n", count);
2175 /* packet per buffer mode - rx bytes */
2176 } else {
2177 VDBG(dev, "req->td_data=%p\n", req->td_data);
2178 VDBG(dev, "last desc = %p\n", td);
2179 /* received number bytes */
2180 if (use_dma_ppb_du) {
2181 /* every desc. counts bytes */
2182 count = udc_get_ppbdu_rxbytes(req);
2183 } else {
2184 /* last desc. counts bytes */
2185 count = AMD_GETBITS(td->status,
2186 UDC_DMA_OUT_STS_RXBYTES);
2187 if (!count && req->req.length
2188 == UDC_DMA_MAXPACKET) {
2190 * on 64k packets the RXBYTES
2191 * field is zero
2193 count = UDC_DMA_MAXPACKET;
2196 VDBG(dev, "last desc rx bytes=%u\n", count);
2199 tmp = req->req.length - req->req.actual;
2200 if (count > tmp) {
2201 if ((tmp % ep->ep.maxpacket) != 0) {
2202 DBG(dev, "%s: rx %db, space=%db\n",
2203 ep->ep.name, count, tmp);
2204 req->req.status = -EOVERFLOW;
2206 count = tmp;
2208 req->req.actual += count;
2209 req->dma_going = 0;
2210 /* complete request */
2211 complete_req(ep, req, 0);
2213 /* next request */
2214 if (!list_empty(&ep->queue) && !ep->halted) {
2215 req = list_entry(ep->queue.next,
2216 struct udc_request,
2217 queue);
2219 * DMA may be already started by udc_queue()
2220 * called by gadget drivers completion
2221 * routine. This happens when queue
2222 * holds one request only.
2224 if (req->dma_going == 0) {
2225 /* next dma */
2226 if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2227 goto finished;
2228 /* write desc pointer */
2229 writel(req->td_phys,
2230 &ep->regs->desptr);
2231 req->dma_going = 1;
2232 /* enable DMA */
2233 udc_set_rde(dev);
2235 } else {
2237 * implant BNA dummy descriptor to allow
2238 * RXFIFO opening by RDE
2240 if (ep->bna_dummy_req) {
2241 /* write desc pointer */
2242 writel(ep->bna_dummy_req->td_phys,
2243 &ep->regs->desptr);
2244 ep->bna_occurred = 0;
2248 * schedule timer for setting RDE if queue
2249 * remains empty to allow ep0 packets pass
2250 * through
2252 if (set_rde != 0
2253 && !timer_pending(&udc_timer)) {
2254 udc_timer.expires =
2255 jiffies
2256 + HZ*UDC_RDE_TIMER_SECONDS;
2257 set_rde = 1;
2258 if (!stop_timer)
2259 add_timer(&udc_timer);
2261 if (ep->num != UDC_EP0OUT_IX)
2262 dev->data_ep_queued = 0;
2265 } else {
2267 * RX DMA must be reenabled for each desc in PPBDU mode
2268 * and must be enabled for PPBNDU mode in case of BNA
2270 udc_set_rde(dev);
2273 } else if (ep->cancel_transfer) {
2274 ret_val = IRQ_HANDLED;
2275 ep->cancel_transfer = 0;
2278 /* check pending CNAKS */
2279 if (cnak_pending) {
2280 /* CNAk processing when rxfifo empty only */
2281 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2282 udc_process_cnak_queue(dev);
2285 /* clear OUT bits in ep status */
2286 writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2287 finished:
2288 return ret_val;
2291 /* Interrupt handler for data IN traffic */
2292 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2294 irqreturn_t ret_val = IRQ_NONE;
2295 u32 tmp;
2296 u32 epsts;
2297 struct udc_ep *ep;
2298 struct udc_request *req;
2299 struct udc_data_dma *td;
2300 unsigned dma_done;
2301 unsigned len;
2303 ep = &dev->ep[ep_ix];
2305 epsts = readl(&ep->regs->sts);
2306 if (use_dma) {
2307 /* BNA ? */
2308 if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2309 dev_err(&dev->pdev->dev,
2310 "BNA ep%din occurred - DESPTR = %08lx\n",
2311 ep->num,
2312 (unsigned long) readl(&ep->regs->desptr));
2314 /* clear BNA */
2315 writel(epsts, &ep->regs->sts);
2316 ret_val = IRQ_HANDLED;
2317 goto finished;
2320 /* HE event ? */
2321 if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2322 dev_err(&dev->pdev->dev,
2323 "HE ep%dn occurred - DESPTR = %08lx\n",
2324 ep->num, (unsigned long) readl(&ep->regs->desptr));
2326 /* clear HE */
2327 writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2328 ret_val = IRQ_HANDLED;
2329 goto finished;
2332 /* DMA completion */
2333 if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2334 VDBG(dev, "TDC set- completion\n");
2335 ret_val = IRQ_HANDLED;
2336 if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2337 req = list_entry(ep->queue.next,
2338 struct udc_request, queue);
2340 * length bytes transferred
2341 * check dma done of last desc. in PPBDU mode
2343 if (use_dma_ppb_du) {
2344 td = udc_get_last_dma_desc(req);
2345 if (td) {
2346 dma_done =
2347 AMD_GETBITS(td->status,
2348 UDC_DMA_IN_STS_BS);
2349 /* don't care DMA done */
2350 req->req.actual = req->req.length;
2352 } else {
2353 /* assume all bytes transferred */
2354 req->req.actual = req->req.length;
2357 if (req->req.actual == req->req.length) {
2358 /* complete req */
2359 complete_req(ep, req, 0);
2360 req->dma_going = 0;
2361 /* further request available ? */
2362 if (list_empty(&ep->queue)) {
2363 /* disable interrupt */
2364 tmp = readl(&dev->regs->ep_irqmsk);
2365 tmp |= AMD_BIT(ep->num);
2366 writel(tmp, &dev->regs->ep_irqmsk);
2370 ep->cancel_transfer = 0;
2374 * status reg has IN bit set and TDC not set (if TDC was handled,
2375 * IN must not be handled (UDC defect) ?
2377 if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2378 && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2379 ret_val = IRQ_HANDLED;
2380 if (!list_empty(&ep->queue)) {
2381 /* next request */
2382 req = list_entry(ep->queue.next,
2383 struct udc_request, queue);
2384 /* FIFO mode */
2385 if (!use_dma) {
2386 /* write fifo */
2387 udc_txfifo_write(ep, &req->req);
2388 len = req->req.length - req->req.actual;
2389 if (len > ep->ep.maxpacket)
2390 len = ep->ep.maxpacket;
2391 req->req.actual += len;
2392 if (req->req.actual == req->req.length
2393 || (len != ep->ep.maxpacket)) {
2394 /* complete req */
2395 complete_req(ep, req, 0);
2397 /* DMA */
2398 } else if (req && !req->dma_going) {
2399 VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2400 req, req->td_data);
2401 if (req->td_data) {
2403 req->dma_going = 1;
2406 * unset L bit of first desc.
2407 * for chain
2409 if (use_dma_ppb && req->req.length >
2410 ep->ep.maxpacket) {
2411 req->td_data->status &=
2412 AMD_CLEAR_BIT(
2413 UDC_DMA_IN_STS_L);
2416 /* write desc pointer */
2417 writel(req->td_phys, &ep->regs->desptr);
2419 /* set HOST READY */
2420 req->td_data->status =
2421 AMD_ADDBITS(
2422 req->td_data->status,
2423 UDC_DMA_IN_STS_BS_HOST_READY,
2424 UDC_DMA_IN_STS_BS);
2426 /* set poll demand bit */
2427 tmp = readl(&ep->regs->ctl);
2428 tmp |= AMD_BIT(UDC_EPCTL_P);
2429 writel(tmp, &ep->regs->ctl);
2433 } else if (!use_dma && ep->in) {
2434 /* disable interrupt */
2435 tmp = readl(
2436 &dev->regs->ep_irqmsk);
2437 tmp |= AMD_BIT(ep->num);
2438 writel(tmp,
2439 &dev->regs->ep_irqmsk);
2442 /* clear status bits */
2443 writel(epsts, &ep->regs->sts);
2445 finished:
2446 return ret_val;
2450 /* Interrupt handler for Control OUT traffic */
2451 static irqreturn_t udc_control_out_isr(struct udc *dev)
2452 __releases(dev->lock)
2453 __acquires(dev->lock)
2455 irqreturn_t ret_val = IRQ_NONE;
2456 u32 tmp;
2457 int setup_supported;
2458 u32 count;
2459 int set = 0;
2460 struct udc_ep *ep;
2461 struct udc_ep *ep_tmp;
2463 ep = &dev->ep[UDC_EP0OUT_IX];
2465 /* clear irq */
2466 writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2468 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2469 /* check BNA and clear if set */
2470 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2471 VDBG(dev, "ep0: BNA set\n");
2472 writel(AMD_BIT(UDC_EPSTS_BNA),
2473 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2474 ep->bna_occurred = 1;
2475 ret_val = IRQ_HANDLED;
2476 goto finished;
2479 /* type of data: SETUP or DATA 0 bytes */
2480 tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2481 VDBG(dev, "data_typ = %x\n", tmp);
2483 /* setup data */
2484 if (tmp == UDC_EPSTS_OUT_SETUP) {
2485 ret_val = IRQ_HANDLED;
2487 ep->dev->stall_ep0in = 0;
2488 dev->waiting_zlp_ack_ep0in = 0;
2490 /* set NAK for EP0_IN */
2491 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2492 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2493 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2494 dev->ep[UDC_EP0IN_IX].naking = 1;
2495 /* get setup data */
2496 if (use_dma) {
2498 /* clear OUT bits in ep status */
2499 writel(UDC_EPSTS_OUT_CLEAR,
2500 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2502 setup_data.data[0] =
2503 dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2504 setup_data.data[1] =
2505 dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2506 /* set HOST READY */
2507 dev->ep[UDC_EP0OUT_IX].td_stp->status =
2508 UDC_DMA_STP_STS_BS_HOST_READY;
2509 } else {
2510 /* read fifo */
2511 udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2514 /* determine direction of control data */
2515 if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2516 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2517 /* enable RDE */
2518 udc_ep0_set_rde(dev);
2519 set = 0;
2520 } else {
2521 dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2523 * implant BNA dummy descriptor to allow RXFIFO opening
2524 * by RDE
2526 if (ep->bna_dummy_req) {
2527 /* write desc pointer */
2528 writel(ep->bna_dummy_req->td_phys,
2529 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2530 ep->bna_occurred = 0;
2533 set = 1;
2534 dev->ep[UDC_EP0OUT_IX].naking = 1;
2536 * setup timer for enabling RDE (to not enable
2537 * RXFIFO DMA for data to early)
2539 set_rde = 1;
2540 if (!timer_pending(&udc_timer)) {
2541 udc_timer.expires = jiffies +
2542 HZ/UDC_RDE_TIMER_DIV;
2543 if (!stop_timer)
2544 add_timer(&udc_timer);
2549 * mass storage reset must be processed here because
2550 * next packet may be a CLEAR_FEATURE HALT which would not
2551 * clear the stall bit when no STALL handshake was received
2552 * before (autostall can cause this)
2554 if (setup_data.data[0] == UDC_MSCRES_DWORD0
2555 && setup_data.data[1] == UDC_MSCRES_DWORD1) {
2556 DBG(dev, "MSC Reset\n");
2558 * clear stall bits
2559 * only one IN and OUT endpoints are handled
2561 ep_tmp = &udc->ep[UDC_EPIN_IX];
2562 udc_set_halt(&ep_tmp->ep, 0);
2563 ep_tmp = &udc->ep[UDC_EPOUT_IX];
2564 udc_set_halt(&ep_tmp->ep, 0);
2567 /* call gadget with setup data received */
2568 spin_unlock(&dev->lock);
2569 setup_supported = dev->driver->setup(&dev->gadget,
2570 &setup_data.request);
2571 spin_lock(&dev->lock);
2573 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2574 /* ep0 in returns data (not zlp) on IN phase */
2575 if (setup_supported >= 0 && setup_supported <
2576 UDC_EP0IN_MAXPACKET) {
2577 /* clear NAK by writing CNAK in EP0_IN */
2578 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2579 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2580 dev->ep[UDC_EP0IN_IX].naking = 0;
2581 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2583 /* if unsupported request then stall */
2584 } else if (setup_supported < 0) {
2585 tmp |= AMD_BIT(UDC_EPCTL_S);
2586 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2587 } else
2588 dev->waiting_zlp_ack_ep0in = 1;
2591 /* clear NAK by writing CNAK in EP0_OUT */
2592 if (!set) {
2593 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2594 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2595 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2596 dev->ep[UDC_EP0OUT_IX].naking = 0;
2597 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2600 if (!use_dma) {
2601 /* clear OUT bits in ep status */
2602 writel(UDC_EPSTS_OUT_CLEAR,
2603 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2606 /* data packet 0 bytes */
2607 } else if (tmp == UDC_EPSTS_OUT_DATA) {
2608 /* clear OUT bits in ep status */
2609 writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2611 /* get setup data: only 0 packet */
2612 if (use_dma) {
2613 /* no req if 0 packet, just reactivate */
2614 if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2615 VDBG(dev, "ZLP\n");
2617 /* set HOST READY */
2618 dev->ep[UDC_EP0OUT_IX].td->status =
2619 AMD_ADDBITS(
2620 dev->ep[UDC_EP0OUT_IX].td->status,
2621 UDC_DMA_OUT_STS_BS_HOST_READY,
2622 UDC_DMA_OUT_STS_BS);
2623 /* enable RDE */
2624 udc_ep0_set_rde(dev);
2625 ret_val = IRQ_HANDLED;
2627 } else {
2628 /* control write */
2629 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2630 /* re-program desc. pointer for possible ZLPs */
2631 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2632 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2633 /* enable RDE */
2634 udc_ep0_set_rde(dev);
2636 } else {
2638 /* received number bytes */
2639 count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2640 count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2641 /* out data for fifo mode not working */
2642 count = 0;
2644 /* 0 packet or real data ? */
2645 if (count != 0) {
2646 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2647 } else {
2648 /* dummy read confirm */
2649 readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2650 ret_val = IRQ_HANDLED;
2655 /* check pending CNAKS */
2656 if (cnak_pending) {
2657 /* CNAk processing when rxfifo empty only */
2658 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2659 udc_process_cnak_queue(dev);
2662 finished:
2663 return ret_val;
2666 /* Interrupt handler for Control IN traffic */
2667 static irqreturn_t udc_control_in_isr(struct udc *dev)
2669 irqreturn_t ret_val = IRQ_NONE;
2670 u32 tmp;
2671 struct udc_ep *ep;
2672 struct udc_request *req;
2673 unsigned len;
2675 ep = &dev->ep[UDC_EP0IN_IX];
2677 /* clear irq */
2678 writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2680 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2681 /* DMA completion */
2682 if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2683 VDBG(dev, "isr: TDC clear\n");
2684 ret_val = IRQ_HANDLED;
2686 /* clear TDC bit */
2687 writel(AMD_BIT(UDC_EPSTS_TDC),
2688 &dev->ep[UDC_EP0IN_IX].regs->sts);
2690 /* status reg has IN bit set ? */
2691 } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2692 ret_val = IRQ_HANDLED;
2694 if (ep->dma) {
2695 /* clear IN bit */
2696 writel(AMD_BIT(UDC_EPSTS_IN),
2697 &dev->ep[UDC_EP0IN_IX].regs->sts);
2699 if (dev->stall_ep0in) {
2700 DBG(dev, "stall ep0in\n");
2701 /* halt ep0in */
2702 tmp = readl(&ep->regs->ctl);
2703 tmp |= AMD_BIT(UDC_EPCTL_S);
2704 writel(tmp, &ep->regs->ctl);
2705 } else {
2706 if (!list_empty(&ep->queue)) {
2707 /* next request */
2708 req = list_entry(ep->queue.next,
2709 struct udc_request, queue);
2711 if (ep->dma) {
2712 /* write desc pointer */
2713 writel(req->td_phys, &ep->regs->desptr);
2714 /* set HOST READY */
2715 req->td_data->status =
2716 AMD_ADDBITS(
2717 req->td_data->status,
2718 UDC_DMA_STP_STS_BS_HOST_READY,
2719 UDC_DMA_STP_STS_BS);
2721 /* set poll demand bit */
2722 tmp =
2723 readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2724 tmp |= AMD_BIT(UDC_EPCTL_P);
2725 writel(tmp,
2726 &dev->ep[UDC_EP0IN_IX].regs->ctl);
2728 /* all bytes will be transferred */
2729 req->req.actual = req->req.length;
2731 /* complete req */
2732 complete_req(ep, req, 0);
2734 } else {
2735 /* write fifo */
2736 udc_txfifo_write(ep, &req->req);
2738 /* lengh bytes transferred */
2739 len = req->req.length - req->req.actual;
2740 if (len > ep->ep.maxpacket)
2741 len = ep->ep.maxpacket;
2743 req->req.actual += len;
2744 if (req->req.actual == req->req.length
2745 || (len != ep->ep.maxpacket)) {
2746 /* complete req */
2747 complete_req(ep, req, 0);
2753 ep->halted = 0;
2754 dev->stall_ep0in = 0;
2755 if (!ep->dma) {
2756 /* clear IN bit */
2757 writel(AMD_BIT(UDC_EPSTS_IN),
2758 &dev->ep[UDC_EP0IN_IX].regs->sts);
2762 return ret_val;
2766 /* Interrupt handler for global device events */
2767 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2768 __releases(dev->lock)
2769 __acquires(dev->lock)
2771 irqreturn_t ret_val = IRQ_NONE;
2772 u32 tmp;
2773 u32 cfg;
2774 struct udc_ep *ep;
2775 u16 i;
2776 u8 udc_csr_epix;
2778 /* SET_CONFIG irq ? */
2779 if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2780 ret_val = IRQ_HANDLED;
2782 /* read config value */
2783 tmp = readl(&dev->regs->sts);
2784 cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2785 DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2786 dev->cur_config = cfg;
2787 dev->set_cfg_not_acked = 1;
2789 /* make usb request for gadget driver */
2790 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2791 setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2792 setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2794 /* programm the NE registers */
2795 for (i = 0; i < UDC_EP_NUM; i++) {
2796 ep = &dev->ep[i];
2797 if (ep->in) {
2799 /* ep ix in UDC CSR register space */
2800 udc_csr_epix = ep->num;
2803 /* OUT ep */
2804 } else {
2805 /* ep ix in UDC CSR register space */
2806 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2809 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2810 /* ep cfg */
2811 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2812 UDC_CSR_NE_CFG);
2813 /* write reg */
2814 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2816 /* clear stall bits */
2817 ep->halted = 0;
2818 tmp = readl(&ep->regs->ctl);
2819 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2820 writel(tmp, &ep->regs->ctl);
2822 /* call gadget zero with setup data received */
2823 spin_unlock(&dev->lock);
2824 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2825 spin_lock(&dev->lock);
2827 } /* SET_INTERFACE ? */
2828 if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2829 ret_val = IRQ_HANDLED;
2831 dev->set_cfg_not_acked = 1;
2832 /* read interface and alt setting values */
2833 tmp = readl(&dev->regs->sts);
2834 dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2835 dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2837 /* make usb request for gadget driver */
2838 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2839 setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2840 setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2841 setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2842 setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2844 DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2845 dev->cur_alt, dev->cur_intf);
2847 /* programm the NE registers */
2848 for (i = 0; i < UDC_EP_NUM; i++) {
2849 ep = &dev->ep[i];
2850 if (ep->in) {
2852 /* ep ix in UDC CSR register space */
2853 udc_csr_epix = ep->num;
2856 /* OUT ep */
2857 } else {
2858 /* ep ix in UDC CSR register space */
2859 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2862 /* UDC CSR reg */
2863 /* set ep values */
2864 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2865 /* ep interface */
2866 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2867 UDC_CSR_NE_INTF);
2868 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2869 /* ep alt */
2870 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2871 UDC_CSR_NE_ALT);
2872 /* write reg */
2873 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2875 /* clear stall bits */
2876 ep->halted = 0;
2877 tmp = readl(&ep->regs->ctl);
2878 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2879 writel(tmp, &ep->regs->ctl);
2882 /* call gadget zero with setup data received */
2883 spin_unlock(&dev->lock);
2884 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2885 spin_lock(&dev->lock);
2887 } /* USB reset */
2888 if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2889 DBG(dev, "USB Reset interrupt\n");
2890 ret_val = IRQ_HANDLED;
2892 /* allow soft reset when suspend occurs */
2893 soft_reset_occured = 0;
2895 dev->waiting_zlp_ack_ep0in = 0;
2896 dev->set_cfg_not_acked = 0;
2898 /* mask not needed interrupts */
2899 udc_mask_unused_interrupts(dev);
2901 /* call gadget to resume and reset configs etc. */
2902 spin_unlock(&dev->lock);
2903 if (dev->sys_suspended && dev->driver->resume) {
2904 dev->driver->resume(&dev->gadget);
2905 dev->sys_suspended = 0;
2907 dev->driver->disconnect(&dev->gadget);
2908 spin_lock(&dev->lock);
2910 /* disable ep0 to empty req queue */
2911 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2912 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2914 /* soft reset when rxfifo not empty */
2915 tmp = readl(&dev->regs->sts);
2916 if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2917 && !soft_reset_after_usbreset_occured) {
2918 udc_soft_reset(dev);
2919 soft_reset_after_usbreset_occured++;
2923 * DMA reset to kill potential old DMA hw hang,
2924 * POLL bit is already reset by ep_init() through
2925 * disconnect()
2927 DBG(dev, "DMA machine reset\n");
2928 tmp = readl(&dev->regs->cfg);
2929 writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2930 writel(tmp, &dev->regs->cfg);
2932 /* put into initial config */
2933 udc_basic_init(dev);
2935 /* enable device setup interrupts */
2936 udc_enable_dev_setup_interrupts(dev);
2938 /* enable suspend interrupt */
2939 tmp = readl(&dev->regs->irqmsk);
2940 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2941 writel(tmp, &dev->regs->irqmsk);
2943 } /* USB suspend */
2944 if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2945 DBG(dev, "USB Suspend interrupt\n");
2946 ret_val = IRQ_HANDLED;
2947 if (dev->driver->suspend) {
2948 spin_unlock(&dev->lock);
2949 dev->sys_suspended = 1;
2950 dev->driver->suspend(&dev->gadget);
2951 spin_lock(&dev->lock);
2953 } /* new speed ? */
2954 if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2955 DBG(dev, "ENUM interrupt\n");
2956 ret_val = IRQ_HANDLED;
2957 soft_reset_after_usbreset_occured = 0;
2959 /* disable ep0 to empty req queue */
2960 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2961 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2963 /* link up all endpoints */
2964 udc_setup_endpoints(dev);
2965 dev_info(&dev->pdev->dev, "Connect: %s\n",
2966 usb_speed_string(dev->gadget.speed));
2968 /* init ep 0 */
2969 activate_control_endpoints(dev);
2971 /* enable ep0 interrupts */
2972 udc_enable_ep0_interrupts(dev);
2974 /* session valid change interrupt */
2975 if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
2976 DBG(dev, "USB SVC interrupt\n");
2977 ret_val = IRQ_HANDLED;
2979 /* check that session is not valid to detect disconnect */
2980 tmp = readl(&dev->regs->sts);
2981 if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
2982 /* disable suspend interrupt */
2983 tmp = readl(&dev->regs->irqmsk);
2984 tmp |= AMD_BIT(UDC_DEVINT_US);
2985 writel(tmp, &dev->regs->irqmsk);
2986 DBG(dev, "USB Disconnect (session valid low)\n");
2987 /* cleanup on disconnect */
2988 usb_disconnect(udc);
2993 return ret_val;
2996 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
2997 static irqreturn_t udc_irq(int irq, void *pdev)
2999 struct udc *dev = pdev;
3000 u32 reg;
3001 u16 i;
3002 u32 ep_irq;
3003 irqreturn_t ret_val = IRQ_NONE;
3005 spin_lock(&dev->lock);
3007 /* check for ep irq */
3008 reg = readl(&dev->regs->ep_irqsts);
3009 if (reg) {
3010 if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
3011 ret_val |= udc_control_out_isr(dev);
3012 if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
3013 ret_val |= udc_control_in_isr(dev);
3016 * data endpoint
3017 * iterate ep's
3019 for (i = 1; i < UDC_EP_NUM; i++) {
3020 ep_irq = 1 << i;
3021 if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
3022 continue;
3024 /* clear irq status */
3025 writel(ep_irq, &dev->regs->ep_irqsts);
3027 /* irq for out ep ? */
3028 if (i > UDC_EPIN_NUM)
3029 ret_val |= udc_data_out_isr(dev, i);
3030 else
3031 ret_val |= udc_data_in_isr(dev, i);
3037 /* check for dev irq */
3038 reg = readl(&dev->regs->irqsts);
3039 if (reg) {
3040 /* clear irq */
3041 writel(reg, &dev->regs->irqsts);
3042 ret_val |= udc_dev_isr(dev, reg);
3046 spin_unlock(&dev->lock);
3047 return ret_val;
3050 /* Tears down device */
3051 static void gadget_release(struct device *pdev)
3053 struct amd5536udc *dev = dev_get_drvdata(pdev);
3054 kfree(dev);
3057 /* Cleanup on device remove */
3058 static void udc_remove(struct udc *dev)
3060 /* remove timer */
3061 stop_timer++;
3062 if (timer_pending(&udc_timer))
3063 wait_for_completion(&on_exit);
3064 if (udc_timer.data)
3065 del_timer_sync(&udc_timer);
3066 /* remove pollstall timer */
3067 stop_pollstall_timer++;
3068 if (timer_pending(&udc_pollstall_timer))
3069 wait_for_completion(&on_pollstall_exit);
3070 if (udc_pollstall_timer.data)
3071 del_timer_sync(&udc_pollstall_timer);
3072 udc = NULL;
3075 /* Reset all pci context */
3076 static void udc_pci_remove(struct pci_dev *pdev)
3078 struct udc *dev;
3080 dev = pci_get_drvdata(pdev);
3082 usb_del_gadget_udc(&udc->gadget);
3083 /* gadget driver must not be registered */
3084 BUG_ON(dev->driver != NULL);
3086 /* dma pool cleanup */
3087 if (dev->data_requests)
3088 pci_pool_destroy(dev->data_requests);
3090 if (dev->stp_requests) {
3091 /* cleanup DMA desc's for ep0in */
3092 pci_pool_free(dev->stp_requests,
3093 dev->ep[UDC_EP0OUT_IX].td_stp,
3094 dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3095 pci_pool_free(dev->stp_requests,
3096 dev->ep[UDC_EP0OUT_IX].td,
3097 dev->ep[UDC_EP0OUT_IX].td_phys);
3099 pci_pool_destroy(dev->stp_requests);
3102 /* reset controller */
3103 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
3104 if (dev->irq_registered)
3105 free_irq(pdev->irq, dev);
3106 if (dev->regs)
3107 iounmap(dev->regs);
3108 if (dev->mem_region)
3109 release_mem_region(pci_resource_start(pdev, 0),
3110 pci_resource_len(pdev, 0));
3111 if (dev->active)
3112 pci_disable_device(pdev);
3114 device_unregister(&dev->gadget.dev);
3115 pci_set_drvdata(pdev, NULL);
3117 udc_remove(dev);
3120 /* create dma pools on init */
3121 static int init_dma_pools(struct udc *dev)
3123 struct udc_stp_dma *td_stp;
3124 struct udc_data_dma *td_data;
3125 int retval;
3127 /* consistent DMA mode setting ? */
3128 if (use_dma_ppb) {
3129 use_dma_bufferfill_mode = 0;
3130 } else {
3131 use_dma_ppb_du = 0;
3132 use_dma_bufferfill_mode = 1;
3135 /* DMA setup */
3136 dev->data_requests = dma_pool_create("data_requests", NULL,
3137 sizeof(struct udc_data_dma), 0, 0);
3138 if (!dev->data_requests) {
3139 DBG(dev, "can't get request data pool\n");
3140 retval = -ENOMEM;
3141 goto finished;
3144 /* EP0 in dma regs = dev control regs */
3145 dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3147 /* dma desc for setup data */
3148 dev->stp_requests = dma_pool_create("setup requests", NULL,
3149 sizeof(struct udc_stp_dma), 0, 0);
3150 if (!dev->stp_requests) {
3151 DBG(dev, "can't get stp request pool\n");
3152 retval = -ENOMEM;
3153 goto finished;
3155 /* setup */
3156 td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3157 &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3158 if (td_stp == NULL) {
3159 retval = -ENOMEM;
3160 goto finished;
3162 dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3164 /* data: 0 packets !? */
3165 td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3166 &dev->ep[UDC_EP0OUT_IX].td_phys);
3167 if (td_data == NULL) {
3168 retval = -ENOMEM;
3169 goto finished;
3171 dev->ep[UDC_EP0OUT_IX].td = td_data;
3172 return 0;
3174 finished:
3175 return retval;
3178 /* Called by pci bus driver to init pci context */
3179 static int udc_pci_probe(
3180 struct pci_dev *pdev,
3181 const struct pci_device_id *id
3184 struct udc *dev;
3185 unsigned long resource;
3186 unsigned long len;
3187 int retval = 0;
3189 /* one udc only */
3190 if (udc) {
3191 dev_dbg(&pdev->dev, "already probed\n");
3192 return -EBUSY;
3195 /* init */
3196 dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
3197 if (!dev) {
3198 retval = -ENOMEM;
3199 goto finished;
3202 /* pci setup */
3203 if (pci_enable_device(pdev) < 0) {
3204 kfree(dev);
3205 dev = NULL;
3206 retval = -ENODEV;
3207 goto finished;
3209 dev->active = 1;
3211 /* PCI resource allocation */
3212 resource = pci_resource_start(pdev, 0);
3213 len = pci_resource_len(pdev, 0);
3215 if (!request_mem_region(resource, len, name)) {
3216 dev_dbg(&pdev->dev, "pci device used already\n");
3217 kfree(dev);
3218 dev = NULL;
3219 retval = -EBUSY;
3220 goto finished;
3222 dev->mem_region = 1;
3224 dev->virt_addr = ioremap_nocache(resource, len);
3225 if (dev->virt_addr == NULL) {
3226 dev_dbg(&pdev->dev, "start address cannot be mapped\n");
3227 kfree(dev);
3228 dev = NULL;
3229 retval = -EFAULT;
3230 goto finished;
3233 if (!pdev->irq) {
3234 dev_err(&dev->pdev->dev, "irq not set\n");
3235 kfree(dev);
3236 dev = NULL;
3237 retval = -ENODEV;
3238 goto finished;
3241 spin_lock_init(&dev->lock);
3242 /* udc csr registers base */
3243 dev->csr = dev->virt_addr + UDC_CSR_ADDR;
3244 /* dev registers base */
3245 dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
3246 /* ep registers base */
3247 dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
3248 /* fifo's base */
3249 dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
3250 dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
3252 if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
3253 dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
3254 kfree(dev);
3255 dev = NULL;
3256 retval = -EBUSY;
3257 goto finished;
3259 dev->irq_registered = 1;
3261 pci_set_drvdata(pdev, dev);
3263 /* chip revision for Hs AMD5536 */
3264 dev->chiprev = pdev->revision;
3266 pci_set_master(pdev);
3267 pci_try_set_mwi(pdev);
3269 /* init dma pools */
3270 if (use_dma) {
3271 retval = init_dma_pools(dev);
3272 if (retval != 0)
3273 goto finished;
3276 dev->phys_addr = resource;
3277 dev->irq = pdev->irq;
3278 dev->pdev = pdev;
3279 dev->gadget.dev.parent = &pdev->dev;
3280 dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
3282 /* general probing */
3283 if (udc_probe(dev) == 0)
3284 return 0;
3286 finished:
3287 if (dev)
3288 udc_pci_remove(pdev);
3289 return retval;
3292 /* general probe */
3293 static int udc_probe(struct udc *dev)
3295 char tmp[128];
3296 u32 reg;
3297 int retval;
3299 /* mark timer as not initialized */
3300 udc_timer.data = 0;
3301 udc_pollstall_timer.data = 0;
3303 /* device struct setup */
3304 dev->gadget.ops = &udc_ops;
3306 dev_set_name(&dev->gadget.dev, "gadget");
3307 dev->gadget.dev.release = gadget_release;
3308 dev->gadget.name = name;
3309 dev->gadget.max_speed = USB_SPEED_HIGH;
3311 /* init registers, interrupts, ... */
3312 startup_registers(dev);
3314 dev_info(&dev->pdev->dev, "%s\n", mod_desc);
3316 snprintf(tmp, sizeof tmp, "%d", dev->irq);
3317 dev_info(&dev->pdev->dev,
3318 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3319 tmp, dev->phys_addr, dev->chiprev,
3320 (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
3321 strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3322 if (dev->chiprev == UDC_HSA0_REV) {
3323 dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
3324 retval = -ENODEV;
3325 goto finished;
3327 dev_info(&dev->pdev->dev,
3328 "driver version: %s(for Geode5536 B1)\n", tmp);
3329 udc = dev;
3331 retval = usb_add_gadget_udc(&udc->pdev->dev, &dev->gadget);
3332 if (retval)
3333 goto finished;
3335 retval = device_register(&dev->gadget.dev);
3336 if (retval) {
3337 usb_del_gadget_udc(&dev->gadget);
3338 put_device(&dev->gadget.dev);
3339 goto finished;
3342 /* timer init */
3343 init_timer(&udc_timer);
3344 udc_timer.function = udc_timer_function;
3345 udc_timer.data = 1;
3346 /* timer pollstall init */
3347 init_timer(&udc_pollstall_timer);
3348 udc_pollstall_timer.function = udc_pollstall_timer_function;
3349 udc_pollstall_timer.data = 1;
3351 /* set SD */
3352 reg = readl(&dev->regs->ctl);
3353 reg |= AMD_BIT(UDC_DEVCTL_SD);
3354 writel(reg, &dev->regs->ctl);
3356 /* print dev register info */
3357 print_regs(dev);
3359 return 0;
3361 finished:
3362 return retval;
3365 /* Initiates a remote wakeup */
3366 static int udc_remote_wakeup(struct udc *dev)
3368 unsigned long flags;
3369 u32 tmp;
3371 DBG(dev, "UDC initiates remote wakeup\n");
3373 spin_lock_irqsave(&dev->lock, flags);
3375 tmp = readl(&dev->regs->ctl);
3376 tmp |= AMD_BIT(UDC_DEVCTL_RES);
3377 writel(tmp, &dev->regs->ctl);
3378 tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
3379 writel(tmp, &dev->regs->ctl);
3381 spin_unlock_irqrestore(&dev->lock, flags);
3382 return 0;
3385 /* PCI device parameters */
3386 static DEFINE_PCI_DEVICE_TABLE(pci_id) = {
3388 PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
3389 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3390 .class_mask = 0xffffffff,
3394 MODULE_DEVICE_TABLE(pci, pci_id);
3396 /* PCI functions */
3397 static struct pci_driver udc_pci_driver = {
3398 .name = (char *) name,
3399 .id_table = pci_id,
3400 .probe = udc_pci_probe,
3401 .remove = udc_pci_remove,
3404 module_pci_driver(udc_pci_driver);
3406 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3407 MODULE_AUTHOR("Thomas Dahlmann");
3408 MODULE_LICENSE("GPL");