Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / drivers / xen / events.c
blob7595581d032cc9d9c5a7f04ee12b861dc76051ee
1 /*
2 * Xen event channels
4 * Xen models interrupts with abstract event channels. Because each
5 * domain gets 1024 event channels, but NR_IRQ is not that large, we
6 * must dynamically map irqs<->event channels. The event channels
7 * interface with the rest of the kernel by defining a xen interrupt
8 * chip. When an event is received, it is mapped to an irq and sent
9 * through the normal interrupt processing path.
11 * There are four kinds of events which can be mapped to an event
12 * channel:
14 * 1. Inter-domain notifications. This includes all the virtual
15 * device events, since they're driven by front-ends in another domain
16 * (typically dom0).
17 * 2. VIRQs, typically used for timers. These are per-cpu events.
18 * 3. IPIs.
19 * 4. PIRQs - Hardware interrupts.
21 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
24 #include <linux/linkage.h>
25 #include <linux/interrupt.h>
26 #include <linux/irq.h>
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/bootmem.h>
30 #include <linux/slab.h>
31 #include <linux/irqnr.h>
32 #include <linux/pci.h>
34 #include <asm/desc.h>
35 #include <asm/ptrace.h>
36 #include <asm/irq.h>
37 #include <asm/idle.h>
38 #include <asm/io_apic.h>
39 #include <asm/sync_bitops.h>
40 #include <asm/xen/page.h>
41 #include <asm/xen/pci.h>
42 #include <asm/xen/hypercall.h>
43 #include <asm/xen/hypervisor.h>
45 #include <xen/xen.h>
46 #include <xen/hvm.h>
47 #include <xen/xen-ops.h>
48 #include <xen/events.h>
49 #include <xen/interface/xen.h>
50 #include <xen/interface/event_channel.h>
51 #include <xen/interface/hvm/hvm_op.h>
52 #include <xen/interface/hvm/params.h>
55 * This lock protects updates to the following mapping and reference-count
56 * arrays. The lock does not need to be acquired to read the mapping tables.
58 static DEFINE_MUTEX(irq_mapping_update_lock);
60 static LIST_HEAD(xen_irq_list_head);
62 /* IRQ <-> VIRQ mapping. */
63 static DEFINE_PER_CPU(int [NR_VIRQS], virq_to_irq) = {[0 ... NR_VIRQS-1] = -1};
65 /* IRQ <-> IPI mapping */
66 static DEFINE_PER_CPU(int [XEN_NR_IPIS], ipi_to_irq) = {[0 ... XEN_NR_IPIS-1] = -1};
68 /* Interrupt types. */
69 enum xen_irq_type {
70 IRQT_UNBOUND = 0,
71 IRQT_PIRQ,
72 IRQT_VIRQ,
73 IRQT_IPI,
74 IRQT_EVTCHN
78 * Packed IRQ information:
79 * type - enum xen_irq_type
80 * event channel - irq->event channel mapping
81 * cpu - cpu this event channel is bound to
82 * index - type-specific information:
83 * PIRQ - vector, with MSB being "needs EIO", or physical IRQ of the HVM
84 * guest, or GSI (real passthrough IRQ) of the device.
85 * VIRQ - virq number
86 * IPI - IPI vector
87 * EVTCHN -
89 struct irq_info {
90 struct list_head list;
91 int refcnt;
92 enum xen_irq_type type; /* type */
93 unsigned irq;
94 unsigned short evtchn; /* event channel */
95 unsigned short cpu; /* cpu bound */
97 union {
98 unsigned short virq;
99 enum ipi_vector ipi;
100 struct {
101 unsigned short pirq;
102 unsigned short gsi;
103 unsigned char vector;
104 unsigned char flags;
105 uint16_t domid;
106 } pirq;
107 } u;
109 #define PIRQ_NEEDS_EOI (1 << 0)
110 #define PIRQ_SHAREABLE (1 << 1)
112 static int *evtchn_to_irq;
113 static unsigned long *pirq_eoi_map;
114 static bool (*pirq_needs_eoi)(unsigned irq);
116 static DEFINE_PER_CPU(unsigned long [NR_EVENT_CHANNELS/BITS_PER_LONG],
117 cpu_evtchn_mask);
119 /* Xen will never allocate port zero for any purpose. */
120 #define VALID_EVTCHN(chn) ((chn) != 0)
122 static struct irq_chip xen_dynamic_chip;
123 static struct irq_chip xen_percpu_chip;
124 static struct irq_chip xen_pirq_chip;
125 static void enable_dynirq(struct irq_data *data);
126 static void disable_dynirq(struct irq_data *data);
128 /* Get info for IRQ */
129 static struct irq_info *info_for_irq(unsigned irq)
131 return irq_get_handler_data(irq);
134 /* Constructors for packed IRQ information. */
135 static void xen_irq_info_common_init(struct irq_info *info,
136 unsigned irq,
137 enum xen_irq_type type,
138 unsigned short evtchn,
139 unsigned short cpu)
142 BUG_ON(info->type != IRQT_UNBOUND && info->type != type);
144 info->type = type;
145 info->irq = irq;
146 info->evtchn = evtchn;
147 info->cpu = cpu;
149 evtchn_to_irq[evtchn] = irq;
152 static void xen_irq_info_evtchn_init(unsigned irq,
153 unsigned short evtchn)
155 struct irq_info *info = info_for_irq(irq);
157 xen_irq_info_common_init(info, irq, IRQT_EVTCHN, evtchn, 0);
160 static void xen_irq_info_ipi_init(unsigned cpu,
161 unsigned irq,
162 unsigned short evtchn,
163 enum ipi_vector ipi)
165 struct irq_info *info = info_for_irq(irq);
167 xen_irq_info_common_init(info, irq, IRQT_IPI, evtchn, 0);
169 info->u.ipi = ipi;
171 per_cpu(ipi_to_irq, cpu)[ipi] = irq;
174 static void xen_irq_info_virq_init(unsigned cpu,
175 unsigned irq,
176 unsigned short evtchn,
177 unsigned short virq)
179 struct irq_info *info = info_for_irq(irq);
181 xen_irq_info_common_init(info, irq, IRQT_VIRQ, evtchn, 0);
183 info->u.virq = virq;
185 per_cpu(virq_to_irq, cpu)[virq] = irq;
188 static void xen_irq_info_pirq_init(unsigned irq,
189 unsigned short evtchn,
190 unsigned short pirq,
191 unsigned short gsi,
192 unsigned short vector,
193 uint16_t domid,
194 unsigned char flags)
196 struct irq_info *info = info_for_irq(irq);
198 xen_irq_info_common_init(info, irq, IRQT_PIRQ, evtchn, 0);
200 info->u.pirq.pirq = pirq;
201 info->u.pirq.gsi = gsi;
202 info->u.pirq.vector = vector;
203 info->u.pirq.domid = domid;
204 info->u.pirq.flags = flags;
208 * Accessors for packed IRQ information.
210 static unsigned int evtchn_from_irq(unsigned irq)
212 if (unlikely(WARN(irq < 0 || irq >= nr_irqs, "Invalid irq %d!\n", irq)))
213 return 0;
215 return info_for_irq(irq)->evtchn;
218 unsigned irq_from_evtchn(unsigned int evtchn)
220 return evtchn_to_irq[evtchn];
222 EXPORT_SYMBOL_GPL(irq_from_evtchn);
224 static enum ipi_vector ipi_from_irq(unsigned irq)
226 struct irq_info *info = info_for_irq(irq);
228 BUG_ON(info == NULL);
229 BUG_ON(info->type != IRQT_IPI);
231 return info->u.ipi;
234 static unsigned virq_from_irq(unsigned irq)
236 struct irq_info *info = info_for_irq(irq);
238 BUG_ON(info == NULL);
239 BUG_ON(info->type != IRQT_VIRQ);
241 return info->u.virq;
244 static unsigned pirq_from_irq(unsigned irq)
246 struct irq_info *info = info_for_irq(irq);
248 BUG_ON(info == NULL);
249 BUG_ON(info->type != IRQT_PIRQ);
251 return info->u.pirq.pirq;
254 static enum xen_irq_type type_from_irq(unsigned irq)
256 return info_for_irq(irq)->type;
259 static unsigned cpu_from_irq(unsigned irq)
261 return info_for_irq(irq)->cpu;
264 static unsigned int cpu_from_evtchn(unsigned int evtchn)
266 int irq = evtchn_to_irq[evtchn];
267 unsigned ret = 0;
269 if (irq != -1)
270 ret = cpu_from_irq(irq);
272 return ret;
275 static bool pirq_check_eoi_map(unsigned irq)
277 return test_bit(pirq_from_irq(irq), pirq_eoi_map);
280 static bool pirq_needs_eoi_flag(unsigned irq)
282 struct irq_info *info = info_for_irq(irq);
283 BUG_ON(info->type != IRQT_PIRQ);
285 return info->u.pirq.flags & PIRQ_NEEDS_EOI;
288 static inline unsigned long active_evtchns(unsigned int cpu,
289 struct shared_info *sh,
290 unsigned int idx)
292 return sh->evtchn_pending[idx] &
293 per_cpu(cpu_evtchn_mask, cpu)[idx] &
294 ~sh->evtchn_mask[idx];
297 static void bind_evtchn_to_cpu(unsigned int chn, unsigned int cpu)
299 int irq = evtchn_to_irq[chn];
301 BUG_ON(irq == -1);
302 #ifdef CONFIG_SMP
303 cpumask_copy(irq_to_desc(irq)->irq_data.affinity, cpumask_of(cpu));
304 #endif
306 clear_bit(chn, per_cpu(cpu_evtchn_mask, cpu_from_irq(irq)));
307 set_bit(chn, per_cpu(cpu_evtchn_mask, cpu));
309 info_for_irq(irq)->cpu = cpu;
312 static void init_evtchn_cpu_bindings(void)
314 int i;
315 #ifdef CONFIG_SMP
316 struct irq_info *info;
318 /* By default all event channels notify CPU#0. */
319 list_for_each_entry(info, &xen_irq_list_head, list) {
320 struct irq_desc *desc = irq_to_desc(info->irq);
321 cpumask_copy(desc->irq_data.affinity, cpumask_of(0));
323 #endif
325 for_each_possible_cpu(i)
326 memset(per_cpu(cpu_evtchn_mask, i),
327 (i == 0) ? ~0 : 0, sizeof(*per_cpu(cpu_evtchn_mask, i)));
330 static inline void clear_evtchn(int port)
332 struct shared_info *s = HYPERVISOR_shared_info;
333 sync_clear_bit(port, &s->evtchn_pending[0]);
336 static inline void set_evtchn(int port)
338 struct shared_info *s = HYPERVISOR_shared_info;
339 sync_set_bit(port, &s->evtchn_pending[0]);
342 static inline int test_evtchn(int port)
344 struct shared_info *s = HYPERVISOR_shared_info;
345 return sync_test_bit(port, &s->evtchn_pending[0]);
350 * notify_remote_via_irq - send event to remote end of event channel via irq
351 * @irq: irq of event channel to send event to
353 * Unlike notify_remote_via_evtchn(), this is safe to use across
354 * save/restore. Notifications on a broken connection are silently
355 * dropped.
357 void notify_remote_via_irq(int irq)
359 int evtchn = evtchn_from_irq(irq);
361 if (VALID_EVTCHN(evtchn))
362 notify_remote_via_evtchn(evtchn);
364 EXPORT_SYMBOL_GPL(notify_remote_via_irq);
366 static void mask_evtchn(int port)
368 struct shared_info *s = HYPERVISOR_shared_info;
369 sync_set_bit(port, &s->evtchn_mask[0]);
372 static void unmask_evtchn(int port)
374 struct shared_info *s = HYPERVISOR_shared_info;
375 unsigned int cpu = get_cpu();
377 BUG_ON(!irqs_disabled());
379 /* Slow path (hypercall) if this is a non-local port. */
380 if (unlikely(cpu != cpu_from_evtchn(port))) {
381 struct evtchn_unmask unmask = { .port = port };
382 (void)HYPERVISOR_event_channel_op(EVTCHNOP_unmask, &unmask);
383 } else {
384 struct vcpu_info *vcpu_info = __this_cpu_read(xen_vcpu);
386 sync_clear_bit(port, &s->evtchn_mask[0]);
389 * The following is basically the equivalent of
390 * 'hw_resend_irq'. Just like a real IO-APIC we 'lose
391 * the interrupt edge' if the channel is masked.
393 if (sync_test_bit(port, &s->evtchn_pending[0]) &&
394 !sync_test_and_set_bit(port / BITS_PER_LONG,
395 &vcpu_info->evtchn_pending_sel))
396 vcpu_info->evtchn_upcall_pending = 1;
399 put_cpu();
402 static void xen_irq_init(unsigned irq)
404 struct irq_info *info;
405 #ifdef CONFIG_SMP
406 struct irq_desc *desc = irq_to_desc(irq);
408 /* By default all event channels notify CPU#0. */
409 cpumask_copy(desc->irq_data.affinity, cpumask_of(0));
410 #endif
412 info = kzalloc(sizeof(*info), GFP_KERNEL);
413 if (info == NULL)
414 panic("Unable to allocate metadata for IRQ%d\n", irq);
416 info->type = IRQT_UNBOUND;
417 info->refcnt = -1;
419 irq_set_handler_data(irq, info);
421 list_add_tail(&info->list, &xen_irq_list_head);
424 static int __must_check xen_allocate_irq_dynamic(void)
426 int first = 0;
427 int irq;
429 #ifdef CONFIG_X86_IO_APIC
431 * For an HVM guest or domain 0 which see "real" (emulated or
432 * actual respectively) GSIs we allocate dynamic IRQs
433 * e.g. those corresponding to event channels or MSIs
434 * etc. from the range above those "real" GSIs to avoid
435 * collisions.
437 if (xen_initial_domain() || xen_hvm_domain())
438 first = get_nr_irqs_gsi();
439 #endif
441 irq = irq_alloc_desc_from(first, -1);
443 if (irq >= 0)
444 xen_irq_init(irq);
446 return irq;
449 static int __must_check xen_allocate_irq_gsi(unsigned gsi)
451 int irq;
454 * A PV guest has no concept of a GSI (since it has no ACPI
455 * nor access to/knowledge of the physical APICs). Therefore
456 * all IRQs are dynamically allocated from the entire IRQ
457 * space.
459 if (xen_pv_domain() && !xen_initial_domain())
460 return xen_allocate_irq_dynamic();
462 /* Legacy IRQ descriptors are already allocated by the arch. */
463 if (gsi < NR_IRQS_LEGACY)
464 irq = gsi;
465 else
466 irq = irq_alloc_desc_at(gsi, -1);
468 xen_irq_init(irq);
470 return irq;
473 static void xen_free_irq(unsigned irq)
475 struct irq_info *info = irq_get_handler_data(irq);
477 list_del(&info->list);
479 irq_set_handler_data(irq, NULL);
481 WARN_ON(info->refcnt > 0);
483 kfree(info);
485 /* Legacy IRQ descriptors are managed by the arch. */
486 if (irq < NR_IRQS_LEGACY)
487 return;
489 irq_free_desc(irq);
492 static void pirq_query_unmask(int irq)
494 struct physdev_irq_status_query irq_status;
495 struct irq_info *info = info_for_irq(irq);
497 BUG_ON(info->type != IRQT_PIRQ);
499 irq_status.irq = pirq_from_irq(irq);
500 if (HYPERVISOR_physdev_op(PHYSDEVOP_irq_status_query, &irq_status))
501 irq_status.flags = 0;
503 info->u.pirq.flags &= ~PIRQ_NEEDS_EOI;
504 if (irq_status.flags & XENIRQSTAT_needs_eoi)
505 info->u.pirq.flags |= PIRQ_NEEDS_EOI;
508 static bool probing_irq(int irq)
510 struct irq_desc *desc = irq_to_desc(irq);
512 return desc && desc->action == NULL;
515 static void eoi_pirq(struct irq_data *data)
517 int evtchn = evtchn_from_irq(data->irq);
518 struct physdev_eoi eoi = { .irq = pirq_from_irq(data->irq) };
519 int rc = 0;
521 irq_move_irq(data);
523 if (VALID_EVTCHN(evtchn))
524 clear_evtchn(evtchn);
526 if (pirq_needs_eoi(data->irq)) {
527 rc = HYPERVISOR_physdev_op(PHYSDEVOP_eoi, &eoi);
528 WARN_ON(rc);
532 static void mask_ack_pirq(struct irq_data *data)
534 disable_dynirq(data);
535 eoi_pirq(data);
538 static unsigned int __startup_pirq(unsigned int irq)
540 struct evtchn_bind_pirq bind_pirq;
541 struct irq_info *info = info_for_irq(irq);
542 int evtchn = evtchn_from_irq(irq);
543 int rc;
545 BUG_ON(info->type != IRQT_PIRQ);
547 if (VALID_EVTCHN(evtchn))
548 goto out;
550 bind_pirq.pirq = pirq_from_irq(irq);
551 /* NB. We are happy to share unless we are probing. */
552 bind_pirq.flags = info->u.pirq.flags & PIRQ_SHAREABLE ?
553 BIND_PIRQ__WILL_SHARE : 0;
554 rc = HYPERVISOR_event_channel_op(EVTCHNOP_bind_pirq, &bind_pirq);
555 if (rc != 0) {
556 if (!probing_irq(irq))
557 printk(KERN_INFO "Failed to obtain physical IRQ %d\n",
558 irq);
559 return 0;
561 evtchn = bind_pirq.port;
563 pirq_query_unmask(irq);
565 evtchn_to_irq[evtchn] = irq;
566 bind_evtchn_to_cpu(evtchn, 0);
567 info->evtchn = evtchn;
569 out:
570 unmask_evtchn(evtchn);
571 eoi_pirq(irq_get_irq_data(irq));
573 return 0;
576 static unsigned int startup_pirq(struct irq_data *data)
578 return __startup_pirq(data->irq);
581 static void shutdown_pirq(struct irq_data *data)
583 struct evtchn_close close;
584 unsigned int irq = data->irq;
585 struct irq_info *info = info_for_irq(irq);
586 int evtchn = evtchn_from_irq(irq);
588 BUG_ON(info->type != IRQT_PIRQ);
590 if (!VALID_EVTCHN(evtchn))
591 return;
593 mask_evtchn(evtchn);
595 close.port = evtchn;
596 if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0)
597 BUG();
599 bind_evtchn_to_cpu(evtchn, 0);
600 evtchn_to_irq[evtchn] = -1;
601 info->evtchn = 0;
604 static void enable_pirq(struct irq_data *data)
606 startup_pirq(data);
609 static void disable_pirq(struct irq_data *data)
611 disable_dynirq(data);
614 int xen_irq_from_gsi(unsigned gsi)
616 struct irq_info *info;
618 list_for_each_entry(info, &xen_irq_list_head, list) {
619 if (info->type != IRQT_PIRQ)
620 continue;
622 if (info->u.pirq.gsi == gsi)
623 return info->irq;
626 return -1;
628 EXPORT_SYMBOL_GPL(xen_irq_from_gsi);
631 * Do not make any assumptions regarding the relationship between the
632 * IRQ number returned here and the Xen pirq argument.
634 * Note: We don't assign an event channel until the irq actually started
635 * up. Return an existing irq if we've already got one for the gsi.
637 * Shareable implies level triggered, not shareable implies edge
638 * triggered here.
640 int xen_bind_pirq_gsi_to_irq(unsigned gsi,
641 unsigned pirq, int shareable, char *name)
643 int irq = -1;
644 struct physdev_irq irq_op;
646 mutex_lock(&irq_mapping_update_lock);
648 irq = xen_irq_from_gsi(gsi);
649 if (irq != -1) {
650 printk(KERN_INFO "xen_map_pirq_gsi: returning irq %d for gsi %u\n",
651 irq, gsi);
652 goto out;
655 irq = xen_allocate_irq_gsi(gsi);
656 if (irq < 0)
657 goto out;
659 irq_op.irq = irq;
660 irq_op.vector = 0;
662 /* Only the privileged domain can do this. For non-priv, the pcifront
663 * driver provides a PCI bus that does the call to do exactly
664 * this in the priv domain. */
665 if (xen_initial_domain() &&
666 HYPERVISOR_physdev_op(PHYSDEVOP_alloc_irq_vector, &irq_op)) {
667 xen_free_irq(irq);
668 irq = -ENOSPC;
669 goto out;
672 xen_irq_info_pirq_init(irq, 0, pirq, gsi, irq_op.vector, DOMID_SELF,
673 shareable ? PIRQ_SHAREABLE : 0);
675 pirq_query_unmask(irq);
676 /* We try to use the handler with the appropriate semantic for the
677 * type of interrupt: if the interrupt is an edge triggered
678 * interrupt we use handle_edge_irq.
680 * On the other hand if the interrupt is level triggered we use
681 * handle_fasteoi_irq like the native code does for this kind of
682 * interrupts.
684 * Depending on the Xen version, pirq_needs_eoi might return true
685 * not only for level triggered interrupts but for edge triggered
686 * interrupts too. In any case Xen always honors the eoi mechanism,
687 * not injecting any more pirqs of the same kind if the first one
688 * hasn't received an eoi yet. Therefore using the fasteoi handler
689 * is the right choice either way.
691 if (shareable)
692 irq_set_chip_and_handler_name(irq, &xen_pirq_chip,
693 handle_fasteoi_irq, name);
694 else
695 irq_set_chip_and_handler_name(irq, &xen_pirq_chip,
696 handle_edge_irq, name);
698 out:
699 mutex_unlock(&irq_mapping_update_lock);
701 return irq;
704 #ifdef CONFIG_PCI_MSI
705 int xen_allocate_pirq_msi(struct pci_dev *dev, struct msi_desc *msidesc)
707 int rc;
708 struct physdev_get_free_pirq op_get_free_pirq;
710 op_get_free_pirq.type = MAP_PIRQ_TYPE_MSI;
711 rc = HYPERVISOR_physdev_op(PHYSDEVOP_get_free_pirq, &op_get_free_pirq);
713 WARN_ONCE(rc == -ENOSYS,
714 "hypervisor does not support the PHYSDEVOP_get_free_pirq interface\n");
716 return rc ? -1 : op_get_free_pirq.pirq;
719 int xen_bind_pirq_msi_to_irq(struct pci_dev *dev, struct msi_desc *msidesc,
720 int pirq, int vector, const char *name,
721 domid_t domid)
723 int irq, ret;
725 mutex_lock(&irq_mapping_update_lock);
727 irq = xen_allocate_irq_dynamic();
728 if (irq < 0)
729 goto out;
731 irq_set_chip_and_handler_name(irq, &xen_pirq_chip, handle_edge_irq,
732 name);
734 xen_irq_info_pirq_init(irq, 0, pirq, 0, vector, domid, 0);
735 ret = irq_set_msi_desc(irq, msidesc);
736 if (ret < 0)
737 goto error_irq;
738 out:
739 mutex_unlock(&irq_mapping_update_lock);
740 return irq;
741 error_irq:
742 mutex_unlock(&irq_mapping_update_lock);
743 xen_free_irq(irq);
744 return ret;
746 #endif
748 int xen_destroy_irq(int irq)
750 struct irq_desc *desc;
751 struct physdev_unmap_pirq unmap_irq;
752 struct irq_info *info = info_for_irq(irq);
753 int rc = -ENOENT;
755 mutex_lock(&irq_mapping_update_lock);
757 desc = irq_to_desc(irq);
758 if (!desc)
759 goto out;
761 if (xen_initial_domain()) {
762 unmap_irq.pirq = info->u.pirq.pirq;
763 unmap_irq.domid = info->u.pirq.domid;
764 rc = HYPERVISOR_physdev_op(PHYSDEVOP_unmap_pirq, &unmap_irq);
765 /* If another domain quits without making the pci_disable_msix
766 * call, the Xen hypervisor takes care of freeing the PIRQs
767 * (free_domain_pirqs).
769 if ((rc == -ESRCH && info->u.pirq.domid != DOMID_SELF))
770 printk(KERN_INFO "domain %d does not have %d anymore\n",
771 info->u.pirq.domid, info->u.pirq.pirq);
772 else if (rc) {
773 printk(KERN_WARNING "unmap irq failed %d\n", rc);
774 goto out;
778 xen_free_irq(irq);
780 out:
781 mutex_unlock(&irq_mapping_update_lock);
782 return rc;
785 int xen_irq_from_pirq(unsigned pirq)
787 int irq;
789 struct irq_info *info;
791 mutex_lock(&irq_mapping_update_lock);
793 list_for_each_entry(info, &xen_irq_list_head, list) {
794 if (info->type != IRQT_PIRQ)
795 continue;
796 irq = info->irq;
797 if (info->u.pirq.pirq == pirq)
798 goto out;
800 irq = -1;
801 out:
802 mutex_unlock(&irq_mapping_update_lock);
804 return irq;
808 int xen_pirq_from_irq(unsigned irq)
810 return pirq_from_irq(irq);
812 EXPORT_SYMBOL_GPL(xen_pirq_from_irq);
813 int bind_evtchn_to_irq(unsigned int evtchn)
815 int irq;
817 mutex_lock(&irq_mapping_update_lock);
819 irq = evtchn_to_irq[evtchn];
821 if (irq == -1) {
822 irq = xen_allocate_irq_dynamic();
823 if (irq == -1)
824 goto out;
826 irq_set_chip_and_handler_name(irq, &xen_dynamic_chip,
827 handle_edge_irq, "event");
829 xen_irq_info_evtchn_init(irq, evtchn);
830 } else {
831 struct irq_info *info = info_for_irq(irq);
832 WARN_ON(info == NULL || info->type != IRQT_EVTCHN);
835 out:
836 mutex_unlock(&irq_mapping_update_lock);
838 return irq;
840 EXPORT_SYMBOL_GPL(bind_evtchn_to_irq);
842 static int bind_ipi_to_irq(unsigned int ipi, unsigned int cpu)
844 struct evtchn_bind_ipi bind_ipi;
845 int evtchn, irq;
847 mutex_lock(&irq_mapping_update_lock);
849 irq = per_cpu(ipi_to_irq, cpu)[ipi];
851 if (irq == -1) {
852 irq = xen_allocate_irq_dynamic();
853 if (irq < 0)
854 goto out;
856 irq_set_chip_and_handler_name(irq, &xen_percpu_chip,
857 handle_percpu_irq, "ipi");
859 bind_ipi.vcpu = cpu;
860 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
861 &bind_ipi) != 0)
862 BUG();
863 evtchn = bind_ipi.port;
865 xen_irq_info_ipi_init(cpu, irq, evtchn, ipi);
867 bind_evtchn_to_cpu(evtchn, cpu);
868 } else {
869 struct irq_info *info = info_for_irq(irq);
870 WARN_ON(info == NULL || info->type != IRQT_IPI);
873 out:
874 mutex_unlock(&irq_mapping_update_lock);
875 return irq;
878 static int bind_interdomain_evtchn_to_irq(unsigned int remote_domain,
879 unsigned int remote_port)
881 struct evtchn_bind_interdomain bind_interdomain;
882 int err;
884 bind_interdomain.remote_dom = remote_domain;
885 bind_interdomain.remote_port = remote_port;
887 err = HYPERVISOR_event_channel_op(EVTCHNOP_bind_interdomain,
888 &bind_interdomain);
890 return err ? : bind_evtchn_to_irq(bind_interdomain.local_port);
893 static int find_virq(unsigned int virq, unsigned int cpu)
895 struct evtchn_status status;
896 int port, rc = -ENOENT;
898 memset(&status, 0, sizeof(status));
899 for (port = 0; port <= NR_EVENT_CHANNELS; port++) {
900 status.dom = DOMID_SELF;
901 status.port = port;
902 rc = HYPERVISOR_event_channel_op(EVTCHNOP_status, &status);
903 if (rc < 0)
904 continue;
905 if (status.status != EVTCHNSTAT_virq)
906 continue;
907 if (status.u.virq == virq && status.vcpu == cpu) {
908 rc = port;
909 break;
912 return rc;
915 int bind_virq_to_irq(unsigned int virq, unsigned int cpu)
917 struct evtchn_bind_virq bind_virq;
918 int evtchn, irq, ret;
920 mutex_lock(&irq_mapping_update_lock);
922 irq = per_cpu(virq_to_irq, cpu)[virq];
924 if (irq == -1) {
925 irq = xen_allocate_irq_dynamic();
926 if (irq == -1)
927 goto out;
929 irq_set_chip_and_handler_name(irq, &xen_percpu_chip,
930 handle_percpu_irq, "virq");
932 bind_virq.virq = virq;
933 bind_virq.vcpu = cpu;
934 ret = HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
935 &bind_virq);
936 if (ret == 0)
937 evtchn = bind_virq.port;
938 else {
939 if (ret == -EEXIST)
940 ret = find_virq(virq, cpu);
941 BUG_ON(ret < 0);
942 evtchn = ret;
945 xen_irq_info_virq_init(cpu, irq, evtchn, virq);
947 bind_evtchn_to_cpu(evtchn, cpu);
948 } else {
949 struct irq_info *info = info_for_irq(irq);
950 WARN_ON(info == NULL || info->type != IRQT_VIRQ);
953 out:
954 mutex_unlock(&irq_mapping_update_lock);
956 return irq;
959 static void unbind_from_irq(unsigned int irq)
961 struct evtchn_close close;
962 int evtchn = evtchn_from_irq(irq);
963 struct irq_info *info = irq_get_handler_data(irq);
965 mutex_lock(&irq_mapping_update_lock);
967 if (info->refcnt > 0) {
968 info->refcnt--;
969 if (info->refcnt != 0)
970 goto done;
973 if (VALID_EVTCHN(evtchn)) {
974 close.port = evtchn;
975 if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0)
976 BUG();
978 switch (type_from_irq(irq)) {
979 case IRQT_VIRQ:
980 per_cpu(virq_to_irq, cpu_from_evtchn(evtchn))
981 [virq_from_irq(irq)] = -1;
982 break;
983 case IRQT_IPI:
984 per_cpu(ipi_to_irq, cpu_from_evtchn(evtchn))
985 [ipi_from_irq(irq)] = -1;
986 break;
987 default:
988 break;
991 /* Closed ports are implicitly re-bound to VCPU0. */
992 bind_evtchn_to_cpu(evtchn, 0);
994 evtchn_to_irq[evtchn] = -1;
997 BUG_ON(info_for_irq(irq)->type == IRQT_UNBOUND);
999 xen_free_irq(irq);
1001 done:
1002 mutex_unlock(&irq_mapping_update_lock);
1005 int bind_evtchn_to_irqhandler(unsigned int evtchn,
1006 irq_handler_t handler,
1007 unsigned long irqflags,
1008 const char *devname, void *dev_id)
1010 int irq, retval;
1012 irq = bind_evtchn_to_irq(evtchn);
1013 if (irq < 0)
1014 return irq;
1015 retval = request_irq(irq, handler, irqflags, devname, dev_id);
1016 if (retval != 0) {
1017 unbind_from_irq(irq);
1018 return retval;
1021 return irq;
1023 EXPORT_SYMBOL_GPL(bind_evtchn_to_irqhandler);
1025 int bind_interdomain_evtchn_to_irqhandler(unsigned int remote_domain,
1026 unsigned int remote_port,
1027 irq_handler_t handler,
1028 unsigned long irqflags,
1029 const char *devname,
1030 void *dev_id)
1032 int irq, retval;
1034 irq = bind_interdomain_evtchn_to_irq(remote_domain, remote_port);
1035 if (irq < 0)
1036 return irq;
1038 retval = request_irq(irq, handler, irqflags, devname, dev_id);
1039 if (retval != 0) {
1040 unbind_from_irq(irq);
1041 return retval;
1044 return irq;
1046 EXPORT_SYMBOL_GPL(bind_interdomain_evtchn_to_irqhandler);
1048 int bind_virq_to_irqhandler(unsigned int virq, unsigned int cpu,
1049 irq_handler_t handler,
1050 unsigned long irqflags, const char *devname, void *dev_id)
1052 int irq, retval;
1054 irq = bind_virq_to_irq(virq, cpu);
1055 if (irq < 0)
1056 return irq;
1057 retval = request_irq(irq, handler, irqflags, devname, dev_id);
1058 if (retval != 0) {
1059 unbind_from_irq(irq);
1060 return retval;
1063 return irq;
1065 EXPORT_SYMBOL_GPL(bind_virq_to_irqhandler);
1067 int bind_ipi_to_irqhandler(enum ipi_vector ipi,
1068 unsigned int cpu,
1069 irq_handler_t handler,
1070 unsigned long irqflags,
1071 const char *devname,
1072 void *dev_id)
1074 int irq, retval;
1076 irq = bind_ipi_to_irq(ipi, cpu);
1077 if (irq < 0)
1078 return irq;
1080 irqflags |= IRQF_NO_SUSPEND | IRQF_FORCE_RESUME | IRQF_EARLY_RESUME;
1081 retval = request_irq(irq, handler, irqflags, devname, dev_id);
1082 if (retval != 0) {
1083 unbind_from_irq(irq);
1084 return retval;
1087 return irq;
1090 void unbind_from_irqhandler(unsigned int irq, void *dev_id)
1092 free_irq(irq, dev_id);
1093 unbind_from_irq(irq);
1095 EXPORT_SYMBOL_GPL(unbind_from_irqhandler);
1097 int evtchn_make_refcounted(unsigned int evtchn)
1099 int irq = evtchn_to_irq[evtchn];
1100 struct irq_info *info;
1102 if (irq == -1)
1103 return -ENOENT;
1105 info = irq_get_handler_data(irq);
1107 if (!info)
1108 return -ENOENT;
1110 WARN_ON(info->refcnt != -1);
1112 info->refcnt = 1;
1114 return 0;
1116 EXPORT_SYMBOL_GPL(evtchn_make_refcounted);
1118 int evtchn_get(unsigned int evtchn)
1120 int irq;
1121 struct irq_info *info;
1122 int err = -ENOENT;
1124 if (evtchn >= NR_EVENT_CHANNELS)
1125 return -EINVAL;
1127 mutex_lock(&irq_mapping_update_lock);
1129 irq = evtchn_to_irq[evtchn];
1130 if (irq == -1)
1131 goto done;
1133 info = irq_get_handler_data(irq);
1135 if (!info)
1136 goto done;
1138 err = -EINVAL;
1139 if (info->refcnt <= 0)
1140 goto done;
1142 info->refcnt++;
1143 err = 0;
1144 done:
1145 mutex_unlock(&irq_mapping_update_lock);
1147 return err;
1149 EXPORT_SYMBOL_GPL(evtchn_get);
1151 void evtchn_put(unsigned int evtchn)
1153 int irq = evtchn_to_irq[evtchn];
1154 if (WARN_ON(irq == -1))
1155 return;
1156 unbind_from_irq(irq);
1158 EXPORT_SYMBOL_GPL(evtchn_put);
1160 void xen_send_IPI_one(unsigned int cpu, enum ipi_vector vector)
1162 int irq = per_cpu(ipi_to_irq, cpu)[vector];
1163 BUG_ON(irq < 0);
1164 notify_remote_via_irq(irq);
1167 irqreturn_t xen_debug_interrupt(int irq, void *dev_id)
1169 struct shared_info *sh = HYPERVISOR_shared_info;
1170 int cpu = smp_processor_id();
1171 unsigned long *cpu_evtchn = per_cpu(cpu_evtchn_mask, cpu);
1172 int i;
1173 unsigned long flags;
1174 static DEFINE_SPINLOCK(debug_lock);
1175 struct vcpu_info *v;
1177 spin_lock_irqsave(&debug_lock, flags);
1179 printk("\nvcpu %d\n ", cpu);
1181 for_each_online_cpu(i) {
1182 int pending;
1183 v = per_cpu(xen_vcpu, i);
1184 pending = (get_irq_regs() && i == cpu)
1185 ? xen_irqs_disabled(get_irq_regs())
1186 : v->evtchn_upcall_mask;
1187 printk("%d: masked=%d pending=%d event_sel %0*lx\n ", i,
1188 pending, v->evtchn_upcall_pending,
1189 (int)(sizeof(v->evtchn_pending_sel)*2),
1190 v->evtchn_pending_sel);
1192 v = per_cpu(xen_vcpu, cpu);
1194 printk("\npending:\n ");
1195 for (i = ARRAY_SIZE(sh->evtchn_pending)-1; i >= 0; i--)
1196 printk("%0*lx%s", (int)sizeof(sh->evtchn_pending[0])*2,
1197 sh->evtchn_pending[i],
1198 i % 8 == 0 ? "\n " : " ");
1199 printk("\nglobal mask:\n ");
1200 for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
1201 printk("%0*lx%s",
1202 (int)(sizeof(sh->evtchn_mask[0])*2),
1203 sh->evtchn_mask[i],
1204 i % 8 == 0 ? "\n " : " ");
1206 printk("\nglobally unmasked:\n ");
1207 for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
1208 printk("%0*lx%s", (int)(sizeof(sh->evtchn_mask[0])*2),
1209 sh->evtchn_pending[i] & ~sh->evtchn_mask[i],
1210 i % 8 == 0 ? "\n " : " ");
1212 printk("\nlocal cpu%d mask:\n ", cpu);
1213 for (i = (NR_EVENT_CHANNELS/BITS_PER_LONG)-1; i >= 0; i--)
1214 printk("%0*lx%s", (int)(sizeof(cpu_evtchn[0])*2),
1215 cpu_evtchn[i],
1216 i % 8 == 0 ? "\n " : " ");
1218 printk("\nlocally unmasked:\n ");
1219 for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--) {
1220 unsigned long pending = sh->evtchn_pending[i]
1221 & ~sh->evtchn_mask[i]
1222 & cpu_evtchn[i];
1223 printk("%0*lx%s", (int)(sizeof(sh->evtchn_mask[0])*2),
1224 pending, i % 8 == 0 ? "\n " : " ");
1227 printk("\npending list:\n");
1228 for (i = 0; i < NR_EVENT_CHANNELS; i++) {
1229 if (sync_test_bit(i, sh->evtchn_pending)) {
1230 int word_idx = i / BITS_PER_LONG;
1231 printk(" %d: event %d -> irq %d%s%s%s\n",
1232 cpu_from_evtchn(i), i,
1233 evtchn_to_irq[i],
1234 sync_test_bit(word_idx, &v->evtchn_pending_sel)
1235 ? "" : " l2-clear",
1236 !sync_test_bit(i, sh->evtchn_mask)
1237 ? "" : " globally-masked",
1238 sync_test_bit(i, cpu_evtchn)
1239 ? "" : " locally-masked");
1243 spin_unlock_irqrestore(&debug_lock, flags);
1245 return IRQ_HANDLED;
1248 static DEFINE_PER_CPU(unsigned, xed_nesting_count);
1249 static DEFINE_PER_CPU(unsigned int, current_word_idx);
1250 static DEFINE_PER_CPU(unsigned int, current_bit_idx);
1253 * Mask out the i least significant bits of w
1255 #define MASK_LSBS(w, i) (w & ((~0UL) << i))
1258 * Search the CPUs pending events bitmasks. For each one found, map
1259 * the event number to an irq, and feed it into do_IRQ() for
1260 * handling.
1262 * Xen uses a two-level bitmap to speed searching. The first level is
1263 * a bitset of words which contain pending event bits. The second
1264 * level is a bitset of pending events themselves.
1266 static void __xen_evtchn_do_upcall(void)
1268 int start_word_idx, start_bit_idx;
1269 int word_idx, bit_idx;
1270 int i;
1271 int cpu = get_cpu();
1272 struct shared_info *s = HYPERVISOR_shared_info;
1273 struct vcpu_info *vcpu_info = __this_cpu_read(xen_vcpu);
1274 unsigned count;
1276 do {
1277 unsigned long pending_words;
1279 vcpu_info->evtchn_upcall_pending = 0;
1281 if (__this_cpu_inc_return(xed_nesting_count) - 1)
1282 goto out;
1284 #ifndef CONFIG_X86 /* No need for a barrier -- XCHG is a barrier on x86. */
1285 /* Clear master flag /before/ clearing selector flag. */
1286 wmb();
1287 #endif
1288 pending_words = xchg(&vcpu_info->evtchn_pending_sel, 0);
1290 start_word_idx = __this_cpu_read(current_word_idx);
1291 start_bit_idx = __this_cpu_read(current_bit_idx);
1293 word_idx = start_word_idx;
1295 for (i = 0; pending_words != 0; i++) {
1296 unsigned long pending_bits;
1297 unsigned long words;
1299 words = MASK_LSBS(pending_words, word_idx);
1302 * If we masked out all events, wrap to beginning.
1304 if (words == 0) {
1305 word_idx = 0;
1306 bit_idx = 0;
1307 continue;
1309 word_idx = __ffs(words);
1311 pending_bits = active_evtchns(cpu, s, word_idx);
1312 bit_idx = 0; /* usually scan entire word from start */
1313 if (word_idx == start_word_idx) {
1314 /* We scan the starting word in two parts */
1315 if (i == 0)
1316 /* 1st time: start in the middle */
1317 bit_idx = start_bit_idx;
1318 else
1319 /* 2nd time: mask bits done already */
1320 bit_idx &= (1UL << start_bit_idx) - 1;
1323 do {
1324 unsigned long bits;
1325 int port, irq;
1326 struct irq_desc *desc;
1328 bits = MASK_LSBS(pending_bits, bit_idx);
1330 /* If we masked out all events, move on. */
1331 if (bits == 0)
1332 break;
1334 bit_idx = __ffs(bits);
1336 /* Process port. */
1337 port = (word_idx * BITS_PER_LONG) + bit_idx;
1338 irq = evtchn_to_irq[port];
1340 if (irq != -1) {
1341 desc = irq_to_desc(irq);
1342 if (desc)
1343 generic_handle_irq_desc(irq, desc);
1346 bit_idx = (bit_idx + 1) % BITS_PER_LONG;
1348 /* Next caller starts at last processed + 1 */
1349 __this_cpu_write(current_word_idx,
1350 bit_idx ? word_idx :
1351 (word_idx+1) % BITS_PER_LONG);
1352 __this_cpu_write(current_bit_idx, bit_idx);
1353 } while (bit_idx != 0);
1355 /* Scan start_l1i twice; all others once. */
1356 if ((word_idx != start_word_idx) || (i != 0))
1357 pending_words &= ~(1UL << word_idx);
1359 word_idx = (word_idx + 1) % BITS_PER_LONG;
1362 BUG_ON(!irqs_disabled());
1364 count = __this_cpu_read(xed_nesting_count);
1365 __this_cpu_write(xed_nesting_count, 0);
1366 } while (count != 1 || vcpu_info->evtchn_upcall_pending);
1368 out:
1370 put_cpu();
1373 void xen_evtchn_do_upcall(struct pt_regs *regs)
1375 struct pt_regs *old_regs = set_irq_regs(regs);
1377 exit_idle();
1378 irq_enter();
1380 __xen_evtchn_do_upcall();
1382 irq_exit();
1383 set_irq_regs(old_regs);
1386 void xen_hvm_evtchn_do_upcall(void)
1388 __xen_evtchn_do_upcall();
1390 EXPORT_SYMBOL_GPL(xen_hvm_evtchn_do_upcall);
1392 /* Rebind a new event channel to an existing irq. */
1393 void rebind_evtchn_irq(int evtchn, int irq)
1395 struct irq_info *info = info_for_irq(irq);
1397 /* Make sure the irq is masked, since the new event channel
1398 will also be masked. */
1399 disable_irq(irq);
1401 mutex_lock(&irq_mapping_update_lock);
1403 /* After resume the irq<->evtchn mappings are all cleared out */
1404 BUG_ON(evtchn_to_irq[evtchn] != -1);
1405 /* Expect irq to have been bound before,
1406 so there should be a proper type */
1407 BUG_ON(info->type == IRQT_UNBOUND);
1409 xen_irq_info_evtchn_init(irq, evtchn);
1411 mutex_unlock(&irq_mapping_update_lock);
1413 /* new event channels are always bound to cpu 0 */
1414 irq_set_affinity(irq, cpumask_of(0));
1416 /* Unmask the event channel. */
1417 enable_irq(irq);
1420 /* Rebind an evtchn so that it gets delivered to a specific cpu */
1421 static int rebind_irq_to_cpu(unsigned irq, unsigned tcpu)
1423 struct evtchn_bind_vcpu bind_vcpu;
1424 int evtchn = evtchn_from_irq(irq);
1426 if (!VALID_EVTCHN(evtchn))
1427 return -1;
1430 * Events delivered via platform PCI interrupts are always
1431 * routed to vcpu 0 and hence cannot be rebound.
1433 if (xen_hvm_domain() && !xen_have_vector_callback)
1434 return -1;
1436 /* Send future instances of this interrupt to other vcpu. */
1437 bind_vcpu.port = evtchn;
1438 bind_vcpu.vcpu = tcpu;
1441 * If this fails, it usually just indicates that we're dealing with a
1442 * virq or IPI channel, which don't actually need to be rebound. Ignore
1443 * it, but don't do the xenlinux-level rebind in that case.
1445 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_vcpu, &bind_vcpu) >= 0)
1446 bind_evtchn_to_cpu(evtchn, tcpu);
1448 return 0;
1451 static int set_affinity_irq(struct irq_data *data, const struct cpumask *dest,
1452 bool force)
1454 unsigned tcpu = cpumask_first(dest);
1456 return rebind_irq_to_cpu(data->irq, tcpu);
1459 int resend_irq_on_evtchn(unsigned int irq)
1461 int masked, evtchn = evtchn_from_irq(irq);
1462 struct shared_info *s = HYPERVISOR_shared_info;
1464 if (!VALID_EVTCHN(evtchn))
1465 return 1;
1467 masked = sync_test_and_set_bit(evtchn, s->evtchn_mask);
1468 sync_set_bit(evtchn, s->evtchn_pending);
1469 if (!masked)
1470 unmask_evtchn(evtchn);
1472 return 1;
1475 static void enable_dynirq(struct irq_data *data)
1477 int evtchn = evtchn_from_irq(data->irq);
1479 if (VALID_EVTCHN(evtchn))
1480 unmask_evtchn(evtchn);
1483 static void disable_dynirq(struct irq_data *data)
1485 int evtchn = evtchn_from_irq(data->irq);
1487 if (VALID_EVTCHN(evtchn))
1488 mask_evtchn(evtchn);
1491 static void ack_dynirq(struct irq_data *data)
1493 int evtchn = evtchn_from_irq(data->irq);
1495 irq_move_irq(data);
1497 if (VALID_EVTCHN(evtchn))
1498 clear_evtchn(evtchn);
1501 static void mask_ack_dynirq(struct irq_data *data)
1503 disable_dynirq(data);
1504 ack_dynirq(data);
1507 static int retrigger_dynirq(struct irq_data *data)
1509 int evtchn = evtchn_from_irq(data->irq);
1510 struct shared_info *sh = HYPERVISOR_shared_info;
1511 int ret = 0;
1513 if (VALID_EVTCHN(evtchn)) {
1514 int masked;
1516 masked = sync_test_and_set_bit(evtchn, sh->evtchn_mask);
1517 sync_set_bit(evtchn, sh->evtchn_pending);
1518 if (!masked)
1519 unmask_evtchn(evtchn);
1520 ret = 1;
1523 return ret;
1526 static void restore_pirqs(void)
1528 int pirq, rc, irq, gsi;
1529 struct physdev_map_pirq map_irq;
1530 struct irq_info *info;
1532 list_for_each_entry(info, &xen_irq_list_head, list) {
1533 if (info->type != IRQT_PIRQ)
1534 continue;
1536 pirq = info->u.pirq.pirq;
1537 gsi = info->u.pirq.gsi;
1538 irq = info->irq;
1540 /* save/restore of PT devices doesn't work, so at this point the
1541 * only devices present are GSI based emulated devices */
1542 if (!gsi)
1543 continue;
1545 map_irq.domid = DOMID_SELF;
1546 map_irq.type = MAP_PIRQ_TYPE_GSI;
1547 map_irq.index = gsi;
1548 map_irq.pirq = pirq;
1550 rc = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq, &map_irq);
1551 if (rc) {
1552 printk(KERN_WARNING "xen map irq failed gsi=%d irq=%d pirq=%d rc=%d\n",
1553 gsi, irq, pirq, rc);
1554 xen_free_irq(irq);
1555 continue;
1558 printk(KERN_DEBUG "xen: --> irq=%d, pirq=%d\n", irq, map_irq.pirq);
1560 __startup_pirq(irq);
1564 static void restore_cpu_virqs(unsigned int cpu)
1566 struct evtchn_bind_virq bind_virq;
1567 int virq, irq, evtchn;
1569 for (virq = 0; virq < NR_VIRQS; virq++) {
1570 if ((irq = per_cpu(virq_to_irq, cpu)[virq]) == -1)
1571 continue;
1573 BUG_ON(virq_from_irq(irq) != virq);
1575 /* Get a new binding from Xen. */
1576 bind_virq.virq = virq;
1577 bind_virq.vcpu = cpu;
1578 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
1579 &bind_virq) != 0)
1580 BUG();
1581 evtchn = bind_virq.port;
1583 /* Record the new mapping. */
1584 xen_irq_info_virq_init(cpu, irq, evtchn, virq);
1585 bind_evtchn_to_cpu(evtchn, cpu);
1589 static void restore_cpu_ipis(unsigned int cpu)
1591 struct evtchn_bind_ipi bind_ipi;
1592 int ipi, irq, evtchn;
1594 for (ipi = 0; ipi < XEN_NR_IPIS; ipi++) {
1595 if ((irq = per_cpu(ipi_to_irq, cpu)[ipi]) == -1)
1596 continue;
1598 BUG_ON(ipi_from_irq(irq) != ipi);
1600 /* Get a new binding from Xen. */
1601 bind_ipi.vcpu = cpu;
1602 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
1603 &bind_ipi) != 0)
1604 BUG();
1605 evtchn = bind_ipi.port;
1607 /* Record the new mapping. */
1608 xen_irq_info_ipi_init(cpu, irq, evtchn, ipi);
1609 bind_evtchn_to_cpu(evtchn, cpu);
1613 /* Clear an irq's pending state, in preparation for polling on it */
1614 void xen_clear_irq_pending(int irq)
1616 int evtchn = evtchn_from_irq(irq);
1618 if (VALID_EVTCHN(evtchn))
1619 clear_evtchn(evtchn);
1621 EXPORT_SYMBOL(xen_clear_irq_pending);
1622 void xen_set_irq_pending(int irq)
1624 int evtchn = evtchn_from_irq(irq);
1626 if (VALID_EVTCHN(evtchn))
1627 set_evtchn(evtchn);
1630 bool xen_test_irq_pending(int irq)
1632 int evtchn = evtchn_from_irq(irq);
1633 bool ret = false;
1635 if (VALID_EVTCHN(evtchn))
1636 ret = test_evtchn(evtchn);
1638 return ret;
1641 /* Poll waiting for an irq to become pending with timeout. In the usual case,
1642 * the irq will be disabled so it won't deliver an interrupt. */
1643 void xen_poll_irq_timeout(int irq, u64 timeout)
1645 evtchn_port_t evtchn = evtchn_from_irq(irq);
1647 if (VALID_EVTCHN(evtchn)) {
1648 struct sched_poll poll;
1650 poll.nr_ports = 1;
1651 poll.timeout = timeout;
1652 set_xen_guest_handle(poll.ports, &evtchn);
1654 if (HYPERVISOR_sched_op(SCHEDOP_poll, &poll) != 0)
1655 BUG();
1658 EXPORT_SYMBOL(xen_poll_irq_timeout);
1659 /* Poll waiting for an irq to become pending. In the usual case, the
1660 * irq will be disabled so it won't deliver an interrupt. */
1661 void xen_poll_irq(int irq)
1663 xen_poll_irq_timeout(irq, 0 /* no timeout */);
1666 /* Check whether the IRQ line is shared with other guests. */
1667 int xen_test_irq_shared(int irq)
1669 struct irq_info *info = info_for_irq(irq);
1670 struct physdev_irq_status_query irq_status = { .irq = info->u.pirq.pirq };
1672 if (HYPERVISOR_physdev_op(PHYSDEVOP_irq_status_query, &irq_status))
1673 return 0;
1674 return !(irq_status.flags & XENIRQSTAT_shared);
1676 EXPORT_SYMBOL_GPL(xen_test_irq_shared);
1678 void xen_irq_resume(void)
1680 unsigned int cpu, evtchn;
1681 struct irq_info *info;
1683 init_evtchn_cpu_bindings();
1685 /* New event-channel space is not 'live' yet. */
1686 for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
1687 mask_evtchn(evtchn);
1689 /* No IRQ <-> event-channel mappings. */
1690 list_for_each_entry(info, &xen_irq_list_head, list)
1691 info->evtchn = 0; /* zap event-channel binding */
1693 for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
1694 evtchn_to_irq[evtchn] = -1;
1696 for_each_possible_cpu(cpu) {
1697 restore_cpu_virqs(cpu);
1698 restore_cpu_ipis(cpu);
1701 restore_pirqs();
1704 static struct irq_chip xen_dynamic_chip __read_mostly = {
1705 .name = "xen-dyn",
1707 .irq_disable = disable_dynirq,
1708 .irq_mask = disable_dynirq,
1709 .irq_unmask = enable_dynirq,
1711 .irq_ack = ack_dynirq,
1712 .irq_mask_ack = mask_ack_dynirq,
1714 .irq_set_affinity = set_affinity_irq,
1715 .irq_retrigger = retrigger_dynirq,
1718 static struct irq_chip xen_pirq_chip __read_mostly = {
1719 .name = "xen-pirq",
1721 .irq_startup = startup_pirq,
1722 .irq_shutdown = shutdown_pirq,
1723 .irq_enable = enable_pirq,
1724 .irq_disable = disable_pirq,
1726 .irq_mask = disable_dynirq,
1727 .irq_unmask = enable_dynirq,
1729 .irq_ack = eoi_pirq,
1730 .irq_eoi = eoi_pirq,
1731 .irq_mask_ack = mask_ack_pirq,
1733 .irq_set_affinity = set_affinity_irq,
1735 .irq_retrigger = retrigger_dynirq,
1738 static struct irq_chip xen_percpu_chip __read_mostly = {
1739 .name = "xen-percpu",
1741 .irq_disable = disable_dynirq,
1742 .irq_mask = disable_dynirq,
1743 .irq_unmask = enable_dynirq,
1745 .irq_ack = ack_dynirq,
1748 int xen_set_callback_via(uint64_t via)
1750 struct xen_hvm_param a;
1751 a.domid = DOMID_SELF;
1752 a.index = HVM_PARAM_CALLBACK_IRQ;
1753 a.value = via;
1754 return HYPERVISOR_hvm_op(HVMOP_set_param, &a);
1756 EXPORT_SYMBOL_GPL(xen_set_callback_via);
1758 #ifdef CONFIG_XEN_PVHVM
1759 /* Vector callbacks are better than PCI interrupts to receive event
1760 * channel notifications because we can receive vector callbacks on any
1761 * vcpu and we don't need PCI support or APIC interactions. */
1762 void xen_callback_vector(void)
1764 int rc;
1765 uint64_t callback_via;
1766 if (xen_have_vector_callback) {
1767 callback_via = HVM_CALLBACK_VECTOR(XEN_HVM_EVTCHN_CALLBACK);
1768 rc = xen_set_callback_via(callback_via);
1769 if (rc) {
1770 printk(KERN_ERR "Request for Xen HVM callback vector"
1771 " failed.\n");
1772 xen_have_vector_callback = 0;
1773 return;
1775 printk(KERN_INFO "Xen HVM callback vector for event delivery is "
1776 "enabled\n");
1777 /* in the restore case the vector has already been allocated */
1778 if (!test_bit(XEN_HVM_EVTCHN_CALLBACK, used_vectors))
1779 alloc_intr_gate(XEN_HVM_EVTCHN_CALLBACK, xen_hvm_callback_vector);
1782 #else
1783 void xen_callback_vector(void) {}
1784 #endif
1786 void __init xen_init_IRQ(void)
1788 int i, rc;
1790 evtchn_to_irq = kcalloc(NR_EVENT_CHANNELS, sizeof(*evtchn_to_irq),
1791 GFP_KERNEL);
1792 BUG_ON(!evtchn_to_irq);
1793 for (i = 0; i < NR_EVENT_CHANNELS; i++)
1794 evtchn_to_irq[i] = -1;
1796 init_evtchn_cpu_bindings();
1798 /* No event channels are 'live' right now. */
1799 for (i = 0; i < NR_EVENT_CHANNELS; i++)
1800 mask_evtchn(i);
1802 pirq_needs_eoi = pirq_needs_eoi_flag;
1804 if (xen_hvm_domain()) {
1805 xen_callback_vector();
1806 native_init_IRQ();
1807 /* pci_xen_hvm_init must be called after native_init_IRQ so that
1808 * __acpi_register_gsi can point at the right function */
1809 pci_xen_hvm_init();
1810 } else {
1811 struct physdev_pirq_eoi_gmfn eoi_gmfn;
1813 irq_ctx_init(smp_processor_id());
1814 if (xen_initial_domain())
1815 pci_xen_initial_domain();
1817 pirq_eoi_map = (void *)__get_free_page(GFP_KERNEL|__GFP_ZERO);
1818 eoi_gmfn.gmfn = virt_to_mfn(pirq_eoi_map);
1819 rc = HYPERVISOR_physdev_op(PHYSDEVOP_pirq_eoi_gmfn_v2, &eoi_gmfn);
1820 if (rc != 0) {
1821 free_page((unsigned long) pirq_eoi_map);
1822 pirq_eoi_map = NULL;
1823 } else
1824 pirq_needs_eoi = pirq_check_eoi_map;