Adding support for MOXA ART SoC. Testing port of linux-2.6.32.60-moxart.
[linux-3.6.7-moxart.git] / kernel / sched / core.c
blob1a48cdbc86314624696d9c9f554f588a938e65b8
1 /*
2 * kernel/sched/core.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86 #include "../smpboot.h"
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/sched.h>
91 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 unsigned long delta;
94 ktime_t soft, hard, now;
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
111 DEFINE_MUTEX(sched_domains_mutex);
112 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 void update_rq_clock(struct rq *rq)
118 s64 delta;
120 if (rq->skip_clock_update > 0)
121 return;
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
129 * Debugging: various feature bits
132 #define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
135 const_debug unsigned int sysctl_sched_features =
136 #include "features.h"
139 #undef SCHED_FEAT
141 #ifdef CONFIG_SCHED_DEBUG
142 #define SCHED_FEAT(name, enabled) \
143 #name ,
145 static const char * const sched_feat_names[] = {
146 #include "features.h"
149 #undef SCHED_FEAT
151 static int sched_feat_show(struct seq_file *m, void *v)
153 int i;
155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
160 seq_puts(m, "\n");
162 return 0;
165 #ifdef HAVE_JUMP_LABEL
167 #define jump_label_key__true STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 #define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
177 #undef SCHED_FEAT
179 static void sched_feat_disable(int i)
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
185 static void sched_feat_enable(int i)
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
199 char buf[64];
200 char *cmp;
201 int neg = 0;
202 int i;
204 if (cnt > 63)
205 cnt = 63;
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
210 buf[cnt] = 0;
211 cmp = strstrip(buf);
213 if (strncmp(cmp, "NO_", 3) == 0) {
214 neg = 1;
215 cmp += 3;
218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 if (neg) {
221 sysctl_sched_features &= ~(1UL << i);
222 sched_feat_disable(i);
223 } else {
224 sysctl_sched_features |= (1UL << i);
225 sched_feat_enable(i);
227 break;
231 if (i == __SCHED_FEAT_NR)
232 return -EINVAL;
234 *ppos += cnt;
236 return cnt;
239 static int sched_feat_open(struct inode *inode, struct file *filp)
241 return single_open(filp, sched_feat_show, NULL);
244 static const struct file_operations sched_feat_fops = {
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
252 static __init int sched_init_debug(void)
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
257 return 0;
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
269 * period over which we average the RT time consumption, measured
270 * in ms.
272 * default: 1s
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
280 unsigned int sysctl_sched_rt_period = 1000000;
282 __read_mostly int scheduler_running;
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
288 int sysctl_sched_rt_runtime = 950000;
293 * __task_rq_lock - lock the rq @p resides on.
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 __acquires(rq->lock)
298 struct rq *rq;
300 lockdep_assert_held(&p->pi_lock);
302 for (;;) {
303 rq = task_rq(p);
304 raw_spin_lock(&rq->lock);
305 if (likely(rq == task_rq(p)))
306 return rq;
307 raw_spin_unlock(&rq->lock);
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 __acquires(p->pi_lock)
316 __acquires(rq->lock)
318 struct rq *rq;
320 for (;;) {
321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 rq = task_rq(p);
323 raw_spin_lock(&rq->lock);
324 if (likely(rq == task_rq(p)))
325 return rq;
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
331 static void __task_rq_unlock(struct rq *rq)
332 __releases(rq->lock)
334 raw_spin_unlock(&rq->lock);
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 __releases(rq->lock)
340 __releases(p->pi_lock)
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
347 * this_rq_lock - lock this runqueue and disable interrupts.
349 static struct rq *this_rq_lock(void)
350 __acquires(rq->lock)
352 struct rq *rq;
354 local_irq_disable();
355 rq = this_rq();
356 raw_spin_lock(&rq->lock);
358 return rq;
361 #ifdef CONFIG_SCHED_HRTICK
363 * Use HR-timers to deliver accurate preemption points.
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
373 static void hrtick_clear(struct rq *rq)
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389 raw_spin_lock(&rq->lock);
390 update_rq_clock(rq);
391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 raw_spin_unlock(&rq->lock);
394 return HRTIMER_NORESTART;
397 #ifdef CONFIG_SMP
399 * called from hardirq (IPI) context
401 static void __hrtick_start(void *arg)
403 struct rq *rq = arg;
405 raw_spin_lock(&rq->lock);
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
408 raw_spin_unlock(&rq->lock);
412 * Called to set the hrtick timer state.
414 * called with rq->lock held and irqs disabled
416 void hrtick_start(struct rq *rq, u64 delay)
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
421 hrtimer_set_expires(timer, time);
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 rq->hrtick_csd_pending = 1;
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
434 int cpu = (int)(long)hcpu;
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
443 hrtick_clear(cpu_rq(cpu));
444 return NOTIFY_OK;
447 return NOTIFY_DONE;
450 static __init void init_hrtick(void)
452 hotcpu_notifier(hotplug_hrtick, 0);
454 #else
456 * Called to set the hrtick timer state.
458 * called with rq->lock held and irqs disabled
460 void hrtick_start(struct rq *rq, u64 delay)
462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 HRTIMER_MODE_REL_PINNED, 0);
466 static inline void init_hrtick(void)
469 #endif /* CONFIG_SMP */
471 static void init_rq_hrtick(struct rq *rq)
473 #ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479 #endif
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
484 #else /* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
489 static inline void init_rq_hrtick(struct rq *rq)
493 static inline void init_hrtick(void)
496 #endif /* CONFIG_SCHED_HRTICK */
499 * resched_task - mark a task 'to be rescheduled now'.
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
505 #ifdef CONFIG_SMP
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 #endif
511 void resched_task(struct task_struct *p)
513 int cpu;
515 assert_raw_spin_locked(&task_rq(p)->lock);
517 if (test_tsk_need_resched(p))
518 return;
520 set_tsk_need_resched(p);
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
532 void resched_cpu(int cpu)
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 return;
539 resched_task(cpu_curr(cpu));
540 raw_spin_unlock_irqrestore(&rq->lock, flags);
543 #ifdef CONFIG_NO_HZ
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
552 int get_nohz_timer_target(void)
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
558 rcu_read_lock();
559 for_each_domain(cpu, sd) {
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
567 unlock:
568 rcu_read_unlock();
569 return cpu;
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
581 void wake_up_idle_cpu(int cpu)
583 struct rq *rq = cpu_rq(cpu);
585 if (cpu == smp_processor_id())
586 return;
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
595 if (rq->curr != rq->idle)
596 return;
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
603 set_tsk_need_resched(rq->idle);
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
611 static inline bool got_nohz_idle_kick(void)
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
617 #else /* CONFIG_NO_HZ */
619 static inline bool got_nohz_idle_kick(void)
621 return false;
624 #endif /* CONFIG_NO_HZ */
626 void sched_avg_update(struct rq *rq)
628 s64 period = sched_avg_period();
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
636 asm("" : "+rm" (rq->age_stamp));
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
645 assert_raw_spin_locked(&task_rq(p)->lock);
646 set_tsk_need_resched(p);
648 #endif /* CONFIG_SMP */
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
656 * Caller must hold rcu_lock or sufficient equivalent.
658 int walk_tg_tree_from(struct task_group *from,
659 tg_visitor down, tg_visitor up, void *data)
661 struct task_group *parent, *child;
662 int ret;
664 parent = from;
666 down:
667 ret = (*down)(parent, data);
668 if (ret)
669 goto out;
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
675 continue;
677 ret = (*up)(parent, data);
678 if (ret || parent == from)
679 goto out;
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
685 out:
686 return ret;
689 int tg_nop(struct task_group *tg, void *data)
691 return 0;
693 #endif
695 static void set_load_weight(struct task_struct *p)
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
701 * SCHED_IDLE tasks get minimal weight:
703 if (p->policy == SCHED_IDLE) {
704 load->weight = scale_load(WEIGHT_IDLEPRIO);
705 load->inv_weight = WMULT_IDLEPRIO;
706 return;
709 load->weight = scale_load(prio_to_weight[prio]);
710 load->inv_weight = prio_to_wmult[prio];
713 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
715 update_rq_clock(rq);
716 sched_info_queued(p);
717 p->sched_class->enqueue_task(rq, p, flags);
720 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
722 update_rq_clock(rq);
723 sched_info_dequeued(p);
724 p->sched_class->dequeue_task(rq, p, flags);
727 void activate_task(struct rq *rq, struct task_struct *p, int flags)
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
732 enqueue_task(rq, p, flags);
735 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
740 dequeue_task(rq, p, flags);
743 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
756 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757 static DEFINE_PER_CPU(u64, cpu_softirq_time);
759 static DEFINE_PER_CPU(u64, irq_start_time);
760 static int sched_clock_irqtime;
762 void enable_sched_clock_irqtime(void)
764 sched_clock_irqtime = 1;
767 void disable_sched_clock_irqtime(void)
769 sched_clock_irqtime = 0;
772 #ifndef CONFIG_64BIT
773 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
775 static inline void irq_time_write_begin(void)
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
781 static inline void irq_time_write_end(void)
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
787 static inline u64 irq_time_read(int cpu)
789 u64 irq_time;
790 unsigned seq;
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
798 return irq_time;
800 #else /* CONFIG_64BIT */
801 static inline void irq_time_write_begin(void)
805 static inline void irq_time_write_end(void)
809 static inline u64 irq_time_read(int cpu)
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
813 #endif /* CONFIG_64BIT */
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
819 void account_system_vtime(struct task_struct *curr)
821 unsigned long flags;
822 s64 delta;
823 int cpu;
825 if (!sched_clock_irqtime)
826 return;
828 local_irq_save(flags);
830 cpu = smp_processor_id();
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
834 irq_time_write_begin();
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
841 if (hardirq_count())
842 __this_cpu_add(cpu_hardirq_time, delta);
843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844 __this_cpu_add(cpu_softirq_time, delta);
846 irq_time_write_end();
847 local_irq_restore(flags);
849 EXPORT_SYMBOL_GPL(account_system_vtime);
851 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
853 #ifdef CONFIG_PARAVIRT
854 static inline u64 steal_ticks(u64 steal)
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
861 #endif
863 static void update_rq_clock_task(struct rq *rq, s64 delta)
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
869 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871 #endif
872 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
890 if (irq_delta > delta)
891 irq_delta = delta;
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
895 #endif
896 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897 if (static_key_false((&paravirt_steal_rq_enabled))) {
898 u64 st;
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
903 if (unlikely(steal > delta))
904 steal = delta;
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
909 rq->prev_steal_time_rq += steal;
911 delta -= steal;
913 #endif
915 rq->clock_task += delta;
917 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920 #endif
923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
924 static int irqtime_account_hi_update(void)
926 u64 *cpustat = kcpustat_this_cpu->cpustat;
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
939 static int irqtime_account_si_update(void)
941 u64 *cpustat = kcpustat_this_cpu->cpustat;
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
954 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
956 #define sched_clock_irqtime (0)
958 #endif
960 void sched_set_stop_task(int cpu, struct task_struct *stop)
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
965 if (stop) {
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
976 stop->sched_class = &stop_sched_class;
979 cpu_rq(cpu)->stop = stop;
981 if (old_stop) {
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
986 old_stop->sched_class = &rt_sched_class;
991 * __normal_prio - return the priority that is based on the static prio
993 static inline int __normal_prio(struct task_struct *p)
995 return p->static_prio;
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1005 static inline int normal_prio(struct task_struct *p)
1007 int prio;
1009 if (task_has_rt_policy(p))
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1023 static int effective_prio(struct task_struct *p)
1025 p->normal_prio = normal_prio(p);
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1040 inline int task_curr(const struct task_struct *p)
1042 return cpu_curr(task_cpu(p)) == p;
1045 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
1047 int oldprio)
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
1057 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1059 const struct sched_class *class;
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079 rq->skip_clock_update = 1;
1082 #ifdef CONFIG_SMP
1083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1085 #ifdef CONFIG_SCHED_DEBUG
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1093 #ifdef CONFIG_LOCKDEP
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see task_group().
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106 #endif
1107 #endif
1109 trace_sched_migrate_task(p, new_cpu);
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1116 __set_task_cpu(p, new_cpu);
1119 struct migration_arg {
1120 struct task_struct *task;
1121 int dest_cpu;
1124 static int migration_cpu_stop(void *data);
1127 * wait_task_inactive - wait for a thread to unschedule.
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1142 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1144 unsigned long flags;
1145 int running, on_rq;
1146 unsigned long ncsw;
1147 struct rq *rq;
1149 for (;;) {
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1156 rq = task_rq(p);
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
1172 cpu_relax();
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1180 rq = task_rq_lock(p, &flags);
1181 trace_sched_wait_task(p);
1182 running = task_running(rq, p);
1183 on_rq = p->on_rq;
1184 ncsw = 0;
1185 if (!match_state || p->state == match_state)
1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187 task_rq_unlock(rq, p, &flags);
1190 * If it changed from the expected state, bail out now.
1192 if (unlikely(!ncsw))
1193 break;
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1199 * Oops. Go back and try again..
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1211 * So if it was still runnable (but just not actively
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1215 if (unlikely(on_rq)) {
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220 continue;
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1228 break;
1231 return ncsw;
1234 /***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1247 void kick_process(struct task_struct *p)
1249 int cpu;
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1257 EXPORT_SYMBOL_GPL(kick_process);
1258 #endif /* CONFIG_SMP */
1260 #ifdef CONFIG_SMP
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1264 static int select_fallback_rq(int cpu, struct task_struct *p)
1266 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
1270 /* Look for allowed, online CPU in same node. */
1271 for_each_cpu(dest_cpu, nodemask) {
1272 if (!cpu_online(dest_cpu))
1273 continue;
1274 if (!cpu_active(dest_cpu))
1275 continue;
1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277 return dest_cpu;
1280 for (;;) {
1281 /* Any allowed, online CPU? */
1282 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1283 if (!cpu_online(dest_cpu))
1284 continue;
1285 if (!cpu_active(dest_cpu))
1286 continue;
1287 goto out;
1290 switch (state) {
1291 case cpuset:
1292 /* No more Mr. Nice Guy. */
1293 cpuset_cpus_allowed_fallback(p);
1294 state = possible;
1295 break;
1297 case possible:
1298 do_set_cpus_allowed(p, cpu_possible_mask);
1299 state = fail;
1300 break;
1302 case fail:
1303 BUG();
1304 break;
1308 out:
1309 if (state != cpuset) {
1311 * Don't tell them about moving exiting tasks or
1312 * kernel threads (both mm NULL), since they never
1313 * leave kernel.
1315 if (p->mm && printk_ratelimit()) {
1316 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 task_pid_nr(p), p->comm, cpu);
1321 return dest_cpu;
1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1327 static inline
1328 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1330 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1333 * In order not to call set_task_cpu() on a blocking task we need
1334 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335 * cpu.
1337 * Since this is common to all placement strategies, this lives here.
1339 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 * not worry about this generic constraint ]
1342 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1343 !cpu_online(cpu)))
1344 cpu = select_fallback_rq(task_cpu(p), p);
1346 return cpu;
1349 static void update_avg(u64 *avg, u64 sample)
1351 s64 diff = sample - *avg;
1352 *avg += diff >> 3;
1354 #endif
1356 static void
1357 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1359 #ifdef CONFIG_SCHEDSTATS
1360 struct rq *rq = this_rq();
1362 #ifdef CONFIG_SMP
1363 int this_cpu = smp_processor_id();
1365 if (cpu == this_cpu) {
1366 schedstat_inc(rq, ttwu_local);
1367 schedstat_inc(p, se.statistics.nr_wakeups_local);
1368 } else {
1369 struct sched_domain *sd;
1371 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372 rcu_read_lock();
1373 for_each_domain(this_cpu, sd) {
1374 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375 schedstat_inc(sd, ttwu_wake_remote);
1376 break;
1379 rcu_read_unlock();
1382 if (wake_flags & WF_MIGRATED)
1383 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1385 #endif /* CONFIG_SMP */
1387 schedstat_inc(rq, ttwu_count);
1388 schedstat_inc(p, se.statistics.nr_wakeups);
1390 if (wake_flags & WF_SYNC)
1391 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1393 #endif /* CONFIG_SCHEDSTATS */
1396 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1398 activate_task(rq, p, en_flags);
1399 p->on_rq = 1;
1401 /* if a worker is waking up, notify workqueue */
1402 if (p->flags & PF_WQ_WORKER)
1403 wq_worker_waking_up(p, cpu_of(rq));
1407 * Mark the task runnable and perform wakeup-preemption.
1409 static void
1410 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1412 trace_sched_wakeup(p, true);
1413 check_preempt_curr(rq, p, wake_flags);
1415 p->state = TASK_RUNNING;
1416 #ifdef CONFIG_SMP
1417 if (p->sched_class->task_woken)
1418 p->sched_class->task_woken(rq, p);
1420 if (rq->idle_stamp) {
1421 u64 delta = rq->clock - rq->idle_stamp;
1422 u64 max = 2*sysctl_sched_migration_cost;
1424 if (delta > max)
1425 rq->avg_idle = max;
1426 else
1427 update_avg(&rq->avg_idle, delta);
1428 rq->idle_stamp = 0;
1430 #endif
1433 static void
1434 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1436 #ifdef CONFIG_SMP
1437 if (p->sched_contributes_to_load)
1438 rq->nr_uninterruptible--;
1439 #endif
1441 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442 ttwu_do_wakeup(rq, p, wake_flags);
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1451 static int ttwu_remote(struct task_struct *p, int wake_flags)
1453 struct rq *rq;
1454 int ret = 0;
1456 rq = __task_rq_lock(p);
1457 if (p->on_rq) {
1458 ttwu_do_wakeup(rq, p, wake_flags);
1459 ret = 1;
1461 __task_rq_unlock(rq);
1463 return ret;
1466 #ifdef CONFIG_SMP
1467 static void sched_ttwu_pending(void)
1469 struct rq *rq = this_rq();
1470 struct llist_node *llist = llist_del_all(&rq->wake_list);
1471 struct task_struct *p;
1473 raw_spin_lock(&rq->lock);
1475 while (llist) {
1476 p = llist_entry(llist, struct task_struct, wake_entry);
1477 llist = llist_next(llist);
1478 ttwu_do_activate(rq, p, 0);
1481 raw_spin_unlock(&rq->lock);
1484 void scheduler_ipi(void)
1486 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487 return;
1490 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 * traditionally all their work was done from the interrupt return
1492 * path. Now that we actually do some work, we need to make sure
1493 * we do call them.
1495 * Some archs already do call them, luckily irq_enter/exit nest
1496 * properly.
1498 * Arguably we should visit all archs and update all handlers,
1499 * however a fair share of IPIs are still resched only so this would
1500 * somewhat pessimize the simple resched case.
1502 irq_enter();
1503 sched_ttwu_pending();
1506 * Check if someone kicked us for doing the nohz idle load balance.
1508 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 this_rq()->idle_balance = 1;
1510 raise_softirq_irqoff(SCHED_SOFTIRQ);
1512 irq_exit();
1515 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1517 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518 smp_send_reschedule(cpu);
1521 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1524 struct rq *rq;
1525 int ret = 0;
1527 rq = __task_rq_lock(p);
1528 if (p->on_cpu) {
1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530 ttwu_do_wakeup(rq, p, wake_flags);
1531 ret = 1;
1533 __task_rq_unlock(rq);
1535 return ret;
1538 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1540 bool cpus_share_cache(int this_cpu, int that_cpu)
1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544 #endif /* CONFIG_SMP */
1546 static void ttwu_queue(struct task_struct *p, int cpu)
1548 struct rq *rq = cpu_rq(cpu);
1550 #if defined(CONFIG_SMP)
1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553 ttwu_queue_remote(p, cpu);
1554 return;
1556 #endif
1558 raw_spin_lock(&rq->lock);
1559 ttwu_do_activate(rq, p, 0);
1560 raw_spin_unlock(&rq->lock);
1564 * try_to_wake_up - wake up a thread
1565 * @p: the thread to be awakened
1566 * @state: the mask of task states that can be woken
1567 * @wake_flags: wake modifier flags (WF_*)
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1578 static int
1579 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581 unsigned long flags;
1582 int cpu, success = 0;
1584 smp_wmb();
1585 raw_spin_lock_irqsave(&p->pi_lock, flags);
1586 if (!(p->state & state))
1587 goto out;
1589 success = 1; /* we're going to change ->state */
1590 cpu = task_cpu(p);
1592 if (p->on_rq && ttwu_remote(p, wake_flags))
1593 goto stat;
1595 #ifdef CONFIG_SMP
1597 * If the owning (remote) cpu is still in the middle of schedule() with
1598 * this task as prev, wait until its done referencing the task.
1600 while (p->on_cpu) {
1601 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1603 * In case the architecture enables interrupts in
1604 * context_switch(), we cannot busy wait, since that
1605 * would lead to deadlocks when an interrupt hits and
1606 * tries to wake up @prev. So bail and do a complete
1607 * remote wakeup.
1609 if (ttwu_activate_remote(p, wake_flags))
1610 goto stat;
1611 #else
1612 cpu_relax();
1613 #endif
1616 * Pairs with the smp_wmb() in finish_lock_switch().
1618 smp_rmb();
1620 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1621 p->state = TASK_WAKING;
1623 if (p->sched_class->task_waking)
1624 p->sched_class->task_waking(p);
1626 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627 if (task_cpu(p) != cpu) {
1628 wake_flags |= WF_MIGRATED;
1629 set_task_cpu(p, cpu);
1631 #endif /* CONFIG_SMP */
1633 ttwu_queue(p, cpu);
1634 stat:
1635 ttwu_stat(p, cpu, wake_flags);
1636 out:
1637 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1639 return success;
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1646 * Put @p on the run-queue if it's not already there. The caller must
1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648 * the current task.
1650 static void try_to_wake_up_local(struct task_struct *p)
1652 struct rq *rq = task_rq(p);
1654 BUG_ON(rq != this_rq());
1655 BUG_ON(p == current);
1656 lockdep_assert_held(&rq->lock);
1658 if (!raw_spin_trylock(&p->pi_lock)) {
1659 raw_spin_unlock(&rq->lock);
1660 raw_spin_lock(&p->pi_lock);
1661 raw_spin_lock(&rq->lock);
1664 if (!(p->state & TASK_NORMAL))
1665 goto out;
1667 if (!p->on_rq)
1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1670 ttwu_do_wakeup(rq, p, 0);
1671 ttwu_stat(p, smp_processor_id(), 0);
1672 out:
1673 raw_spin_unlock(&p->pi_lock);
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes. Returns 1 if the process was woken up, 0 if it was already
1682 * running.
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1687 int wake_up_process(struct task_struct *p)
1689 return try_to_wake_up(p, TASK_ALL, 0);
1691 EXPORT_SYMBOL(wake_up_process);
1693 int wake_up_state(struct task_struct *p, unsigned int state)
1695 return try_to_wake_up(p, state, 0);
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1702 * __sched_fork() is basic setup used by init_idle() too:
1704 static void __sched_fork(struct task_struct *p)
1706 p->on_rq = 0;
1708 p->se.on_rq = 0;
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
1711 p->se.prev_sum_exec_runtime = 0;
1712 p->se.nr_migrations = 0;
1713 p->se.vruntime = 0;
1714 INIT_LIST_HEAD(&p->se.group_node);
1716 #ifdef CONFIG_SCHEDSTATS
1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718 #endif
1720 INIT_LIST_HEAD(&p->rt.run_list);
1722 #ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p->preempt_notifiers);
1724 #endif
1728 * fork()/clone()-time setup:
1730 void sched_fork(struct task_struct *p)
1732 unsigned long flags;
1733 int cpu = get_cpu();
1735 __sched_fork(p);
1737 * We mark the process as running here. This guarantees that
1738 * nobody will actually run it, and a signal or other external
1739 * event cannot wake it up and insert it on the runqueue either.
1741 p->state = TASK_RUNNING;
1744 * Make sure we do not leak PI boosting priority to the child.
1746 p->prio = current->normal_prio;
1749 * Revert to default priority/policy on fork if requested.
1751 if (unlikely(p->sched_reset_on_fork)) {
1752 if (task_has_rt_policy(p)) {
1753 p->policy = SCHED_NORMAL;
1754 p->static_prio = NICE_TO_PRIO(0);
1755 p->rt_priority = 0;
1756 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1757 p->static_prio = NICE_TO_PRIO(0);
1759 p->prio = p->normal_prio = __normal_prio(p);
1760 set_load_weight(p);
1763 * We don't need the reset flag anymore after the fork. It has
1764 * fulfilled its duty:
1766 p->sched_reset_on_fork = 0;
1769 if (!rt_prio(p->prio))
1770 p->sched_class = &fair_sched_class;
1772 if (p->sched_class->task_fork)
1773 p->sched_class->task_fork(p);
1776 * The child is not yet in the pid-hash so no cgroup attach races,
1777 * and the cgroup is pinned to this child due to cgroup_fork()
1778 * is ran before sched_fork().
1780 * Silence PROVE_RCU.
1782 raw_spin_lock_irqsave(&p->pi_lock, flags);
1783 set_task_cpu(p, cpu);
1784 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1786 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1787 if (likely(sched_info_on()))
1788 memset(&p->sched_info, 0, sizeof(p->sched_info));
1789 #endif
1790 #if defined(CONFIG_SMP)
1791 p->on_cpu = 0;
1792 #endif
1793 #ifdef CONFIG_PREEMPT_COUNT
1794 /* Want to start with kernel preemption disabled. */
1795 task_thread_info(p)->preempt_count = 1;
1796 #endif
1797 #ifdef CONFIG_SMP
1798 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1799 #endif
1801 put_cpu();
1805 * wake_up_new_task - wake up a newly created task for the first time.
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1811 void wake_up_new_task(struct task_struct *p)
1813 unsigned long flags;
1814 struct rq *rq;
1816 raw_spin_lock_irqsave(&p->pi_lock, flags);
1817 #ifdef CONFIG_SMP
1819 * Fork balancing, do it here and not earlier because:
1820 * - cpus_allowed can change in the fork path
1821 * - any previously selected cpu might disappear through hotplug
1823 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1824 #endif
1826 rq = __task_rq_lock(p);
1827 activate_task(rq, p, 0);
1828 p->on_rq = 1;
1829 trace_sched_wakeup_new(p, true);
1830 check_preempt_curr(rq, p, WF_FORK);
1831 #ifdef CONFIG_SMP
1832 if (p->sched_class->task_woken)
1833 p->sched_class->task_woken(rq, p);
1834 #endif
1835 task_rq_unlock(rq, p, &flags);
1838 #ifdef CONFIG_PREEMPT_NOTIFIERS
1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1842 * @notifier: notifier struct to register
1844 void preempt_notifier_register(struct preempt_notifier *notifier)
1846 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1848 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
1852 * @notifier: notifier struct to unregister
1854 * This is safe to call from within a preemption notifier.
1856 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1858 hlist_del(&notifier->link);
1860 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1862 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1864 struct preempt_notifier *notifier;
1865 struct hlist_node *node;
1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1871 static void
1872 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 struct task_struct *next)
1875 struct preempt_notifier *notifier;
1876 struct hlist_node *node;
1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 notifier->ops->sched_out(notifier, next);
1882 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1884 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1888 static void
1889 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 struct task_struct *next)
1894 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
1899 * @prev: the current task that is being switched out
1900 * @next: the task we are going to switch to.
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1909 static inline void
1910 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 struct task_struct *next)
1913 trace_sched_switch(prev, next);
1914 sched_info_switch(prev, next);
1915 perf_event_task_sched_out(prev, next);
1916 fire_sched_out_preempt_notifiers(prev, next);
1917 prepare_lock_switch(rq, next);
1918 prepare_arch_switch(next);
1922 * finish_task_switch - clean up after a task-switch
1923 * @rq: runqueue associated with task-switch
1924 * @prev: the thread we just switched away from.
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1931 * Note that we may have delayed dropping an mm in context_switch(). If
1932 * so, we finish that here outside of the runqueue lock. (Doing it
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
1936 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1937 __releases(rq->lock)
1939 struct mm_struct *mm = rq->prev_mm;
1940 long prev_state;
1942 rq->prev_mm = NULL;
1945 * A task struct has one reference for the use as "current".
1946 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1947 * schedule one last time. The schedule call will never return, and
1948 * the scheduled task must drop that reference.
1949 * The test for TASK_DEAD must occur while the runqueue locks are
1950 * still held, otherwise prev could be scheduled on another cpu, die
1951 * there before we look at prev->state, and then the reference would
1952 * be dropped twice.
1953 * Manfred Spraul <manfred@colorfullife.com>
1955 prev_state = prev->state;
1956 finish_arch_switch(prev);
1957 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 local_irq_disable();
1959 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960 perf_event_task_sched_in(prev, current);
1961 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962 local_irq_enable();
1963 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964 finish_lock_switch(rq, prev);
1965 finish_arch_post_lock_switch();
1967 fire_sched_in_preempt_notifiers(current);
1968 if (mm)
1969 mmdrop(mm);
1970 if (unlikely(prev_state == TASK_DEAD)) {
1972 * Remove function-return probe instances associated with this
1973 * task and put them back on the free list.
1975 kprobe_flush_task(prev);
1976 put_task_struct(prev);
1980 #ifdef CONFIG_SMP
1982 /* assumes rq->lock is held */
1983 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1985 if (prev->sched_class->pre_schedule)
1986 prev->sched_class->pre_schedule(rq, prev);
1989 /* rq->lock is NOT held, but preemption is disabled */
1990 static inline void post_schedule(struct rq *rq)
1992 if (rq->post_schedule) {
1993 unsigned long flags;
1995 raw_spin_lock_irqsave(&rq->lock, flags);
1996 if (rq->curr->sched_class->post_schedule)
1997 rq->curr->sched_class->post_schedule(rq);
1998 raw_spin_unlock_irqrestore(&rq->lock, flags);
2000 rq->post_schedule = 0;
2004 #else
2006 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2010 static inline void post_schedule(struct rq *rq)
2014 #endif
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2020 asmlinkage void schedule_tail(struct task_struct *prev)
2021 __releases(rq->lock)
2023 struct rq *rq = this_rq();
2025 finish_task_switch(rq, prev);
2028 * FIXME: do we need to worry about rq being invalidated by the
2029 * task_switch?
2031 post_schedule(rq);
2033 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034 /* In this case, finish_task_switch does not reenable preemption */
2035 preempt_enable();
2036 #endif
2037 if (current->set_child_tid)
2038 put_user(task_pid_vnr(current), current->set_child_tid);
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2045 static inline void
2046 context_switch(struct rq *rq, struct task_struct *prev,
2047 struct task_struct *next)
2049 struct mm_struct *mm, *oldmm;
2051 prepare_task_switch(rq, prev, next);
2053 mm = next->mm;
2054 oldmm = prev->active_mm;
2056 * For paravirt, this is coupled with an exit in switch_to to
2057 * combine the page table reload and the switch backend into
2058 * one hypercall.
2060 arch_start_context_switch(prev);
2062 if (!mm) {
2063 next->active_mm = oldmm;
2064 atomic_inc(&oldmm->mm_count);
2065 enter_lazy_tlb(oldmm, next);
2066 } else
2067 switch_mm(oldmm, mm, next);
2069 if (!prev->mm) {
2070 prev->active_mm = NULL;
2071 rq->prev_mm = oldmm;
2074 * Since the runqueue lock will be released by the next
2075 * task (which is an invalid locking op but in the case
2076 * of the scheduler it's an obvious special-case), so we
2077 * do an early lockdep release here:
2079 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081 #endif
2083 /* Here we just switch the register state and the stack. */
2084 switch_to(prev, next, prev);
2086 barrier();
2088 * this_rq must be evaluated again because prev may have moved
2089 * CPUs since it called schedule(), thus the 'rq' on its stack
2090 * frame will be invalid.
2092 finish_task_switch(this_rq(), prev);
2096 * nr_running, nr_uninterruptible and nr_context_switches:
2098 * externally visible scheduler statistics: current number of runnable
2099 * threads, current number of uninterruptible-sleeping threads, total
2100 * number of context switches performed since bootup.
2102 unsigned long nr_running(void)
2104 unsigned long i, sum = 0;
2106 for_each_online_cpu(i)
2107 sum += cpu_rq(i)->nr_running;
2109 return sum;
2112 unsigned long nr_uninterruptible(void)
2114 unsigned long i, sum = 0;
2116 for_each_possible_cpu(i)
2117 sum += cpu_rq(i)->nr_uninterruptible;
2120 * Since we read the counters lockless, it might be slightly
2121 * inaccurate. Do not allow it to go below zero though:
2123 if (unlikely((long)sum < 0))
2124 sum = 0;
2126 return sum;
2129 unsigned long long nr_context_switches(void)
2131 int i;
2132 unsigned long long sum = 0;
2134 for_each_possible_cpu(i)
2135 sum += cpu_rq(i)->nr_switches;
2137 return sum;
2140 unsigned long nr_iowait(void)
2142 unsigned long i, sum = 0;
2144 for_each_possible_cpu(i)
2145 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2147 return sum;
2150 unsigned long nr_iowait_cpu(int cpu)
2152 struct rq *this = cpu_rq(cpu);
2153 return atomic_read(&this->nr_iowait);
2156 unsigned long this_cpu_load(void)
2158 struct rq *this = this_rq();
2159 return this->cpu_load[0];
2164 * Global load-average calculations
2166 * We take a distributed and async approach to calculating the global load-avg
2167 * in order to minimize overhead.
2169 * The global load average is an exponentially decaying average of nr_running +
2170 * nr_uninterruptible.
2172 * Once every LOAD_FREQ:
2174 * nr_active = 0;
2175 * for_each_possible_cpu(cpu)
2176 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2178 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2180 * Due to a number of reasons the above turns in the mess below:
2182 * - for_each_possible_cpu() is prohibitively expensive on machines with
2183 * serious number of cpus, therefore we need to take a distributed approach
2184 * to calculating nr_active.
2186 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2187 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2189 * So assuming nr_active := 0 when we start out -- true per definition, we
2190 * can simply take per-cpu deltas and fold those into a global accumulate
2191 * to obtain the same result. See calc_load_fold_active().
2193 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2194 * across the machine, we assume 10 ticks is sufficient time for every
2195 * cpu to have completed this task.
2197 * This places an upper-bound on the IRQ-off latency of the machine. Then
2198 * again, being late doesn't loose the delta, just wrecks the sample.
2200 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2201 * this would add another cross-cpu cacheline miss and atomic operation
2202 * to the wakeup path. Instead we increment on whatever cpu the task ran
2203 * when it went into uninterruptible state and decrement on whatever cpu
2204 * did the wakeup. This means that only the sum of nr_uninterruptible over
2205 * all cpus yields the correct result.
2207 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2210 /* Variables and functions for calc_load */
2211 static atomic_long_t calc_load_tasks;
2212 static unsigned long calc_load_update;
2213 unsigned long avenrun[3];
2214 EXPORT_SYMBOL(avenrun); /* should be removed */
2217 * get_avenrun - get the load average array
2218 * @loads: pointer to dest load array
2219 * @offset: offset to add
2220 * @shift: shift count to shift the result left
2222 * These values are estimates at best, so no need for locking.
2224 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2226 loads[0] = (avenrun[0] + offset) << shift;
2227 loads[1] = (avenrun[1] + offset) << shift;
2228 loads[2] = (avenrun[2] + offset) << shift;
2231 static long calc_load_fold_active(struct rq *this_rq)
2233 long nr_active, delta = 0;
2235 nr_active = this_rq->nr_running;
2236 nr_active += (long) this_rq->nr_uninterruptible;
2238 if (nr_active != this_rq->calc_load_active) {
2239 delta = nr_active - this_rq->calc_load_active;
2240 this_rq->calc_load_active = nr_active;
2243 return delta;
2247 * a1 = a0 * e + a * (1 - e)
2249 static unsigned long
2250 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2252 load *= exp;
2253 load += active * (FIXED_1 - exp);
2254 load += 1UL << (FSHIFT - 1);
2255 return load >> FSHIFT;
2258 #ifdef CONFIG_NO_HZ
2260 * Handle NO_HZ for the global load-average.
2262 * Since the above described distributed algorithm to compute the global
2263 * load-average relies on per-cpu sampling from the tick, it is affected by
2264 * NO_HZ.
2266 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2267 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2268 * when we read the global state.
2270 * Obviously reality has to ruin such a delightfully simple scheme:
2272 * - When we go NO_HZ idle during the window, we can negate our sample
2273 * contribution, causing under-accounting.
2275 * We avoid this by keeping two idle-delta counters and flipping them
2276 * when the window starts, thus separating old and new NO_HZ load.
2278 * The only trick is the slight shift in index flip for read vs write.
2280 * 0s 5s 10s 15s
2281 * +10 +10 +10 +10
2282 * |-|-----------|-|-----------|-|-----------|-|
2283 * r:0 0 1 1 0 0 1 1 0
2284 * w:0 1 1 0 0 1 1 0 0
2286 * This ensures we'll fold the old idle contribution in this window while
2287 * accumlating the new one.
2289 * - When we wake up from NO_HZ idle during the window, we push up our
2290 * contribution, since we effectively move our sample point to a known
2291 * busy state.
2293 * This is solved by pushing the window forward, and thus skipping the
2294 * sample, for this cpu (effectively using the idle-delta for this cpu which
2295 * was in effect at the time the window opened). This also solves the issue
2296 * of having to deal with a cpu having been in NOHZ idle for multiple
2297 * LOAD_FREQ intervals.
2299 * When making the ILB scale, we should try to pull this in as well.
2301 static atomic_long_t calc_load_idle[2];
2302 static int calc_load_idx;
2304 static inline int calc_load_write_idx(void)
2306 int idx = calc_load_idx;
2309 * See calc_global_nohz(), if we observe the new index, we also
2310 * need to observe the new update time.
2312 smp_rmb();
2315 * If the folding window started, make sure we start writing in the
2316 * next idle-delta.
2318 if (!time_before(jiffies, calc_load_update))
2319 idx++;
2321 return idx & 1;
2324 static inline int calc_load_read_idx(void)
2326 return calc_load_idx & 1;
2329 void calc_load_enter_idle(void)
2331 struct rq *this_rq = this_rq();
2332 long delta;
2335 * We're going into NOHZ mode, if there's any pending delta, fold it
2336 * into the pending idle delta.
2338 delta = calc_load_fold_active(this_rq);
2339 if (delta) {
2340 int idx = calc_load_write_idx();
2341 atomic_long_add(delta, &calc_load_idle[idx]);
2345 void calc_load_exit_idle(void)
2347 struct rq *this_rq = this_rq();
2350 * If we're still before the sample window, we're done.
2352 if (time_before(jiffies, this_rq->calc_load_update))
2353 return;
2356 * We woke inside or after the sample window, this means we're already
2357 * accounted through the nohz accounting, so skip the entire deal and
2358 * sync up for the next window.
2360 this_rq->calc_load_update = calc_load_update;
2361 if (time_before(jiffies, this_rq->calc_load_update + 10))
2362 this_rq->calc_load_update += LOAD_FREQ;
2365 static long calc_load_fold_idle(void)
2367 int idx = calc_load_read_idx();
2368 long delta = 0;
2370 if (atomic_long_read(&calc_load_idle[idx]))
2371 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2373 return delta;
2377 * fixed_power_int - compute: x^n, in O(log n) time
2379 * @x: base of the power
2380 * @frac_bits: fractional bits of @x
2381 * @n: power to raise @x to.
2383 * By exploiting the relation between the definition of the natural power
2384 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2385 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2386 * (where: n_i \elem {0, 1}, the binary vector representing n),
2387 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2388 * of course trivially computable in O(log_2 n), the length of our binary
2389 * vector.
2391 static unsigned long
2392 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2394 unsigned long result = 1UL << frac_bits;
2396 if (n) for (;;) {
2397 if (n & 1) {
2398 result *= x;
2399 result += 1UL << (frac_bits - 1);
2400 result >>= frac_bits;
2402 n >>= 1;
2403 if (!n)
2404 break;
2405 x *= x;
2406 x += 1UL << (frac_bits - 1);
2407 x >>= frac_bits;
2410 return result;
2414 * a1 = a0 * e + a * (1 - e)
2416 * a2 = a1 * e + a * (1 - e)
2417 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2418 * = a0 * e^2 + a * (1 - e) * (1 + e)
2420 * a3 = a2 * e + a * (1 - e)
2421 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2422 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2424 * ...
2426 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2427 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2428 * = a0 * e^n + a * (1 - e^n)
2430 * [1] application of the geometric series:
2432 * n 1 - x^(n+1)
2433 * S_n := \Sum x^i = -------------
2434 * i=0 1 - x
2436 static unsigned long
2437 calc_load_n(unsigned long load, unsigned long exp,
2438 unsigned long active, unsigned int n)
2441 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2445 * NO_HZ can leave us missing all per-cpu ticks calling
2446 * calc_load_account_active(), but since an idle CPU folds its delta into
2447 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2448 * in the pending idle delta if our idle period crossed a load cycle boundary.
2450 * Once we've updated the global active value, we need to apply the exponential
2451 * weights adjusted to the number of cycles missed.
2453 static void calc_global_nohz(void)
2455 long delta, active, n;
2457 if (!time_before(jiffies, calc_load_update + 10)) {
2459 * Catch-up, fold however many we are behind still
2461 delta = jiffies - calc_load_update - 10;
2462 n = 1 + (delta / LOAD_FREQ);
2464 active = atomic_long_read(&calc_load_tasks);
2465 active = active > 0 ? active * FIXED_1 : 0;
2467 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2468 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2469 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2471 calc_load_update += n * LOAD_FREQ;
2475 * Flip the idle index...
2477 * Make sure we first write the new time then flip the index, so that
2478 * calc_load_write_idx() will see the new time when it reads the new
2479 * index, this avoids a double flip messing things up.
2481 smp_wmb();
2482 calc_load_idx++;
2484 #else /* !CONFIG_NO_HZ */
2486 static inline long calc_load_fold_idle(void) { return 0; }
2487 static inline void calc_global_nohz(void) { }
2489 #endif /* CONFIG_NO_HZ */
2492 * calc_load - update the avenrun load estimates 10 ticks after the
2493 * CPUs have updated calc_load_tasks.
2495 void calc_global_load(unsigned long ticks)
2497 long active, delta;
2499 if (time_before(jiffies, calc_load_update + 10))
2500 return;
2503 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2505 delta = calc_load_fold_idle();
2506 if (delta)
2507 atomic_long_add(delta, &calc_load_tasks);
2509 active = atomic_long_read(&calc_load_tasks);
2510 active = active > 0 ? active * FIXED_1 : 0;
2512 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2513 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2514 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2516 calc_load_update += LOAD_FREQ;
2519 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2521 calc_global_nohz();
2525 * Called from update_cpu_load() to periodically update this CPU's
2526 * active count.
2528 static void calc_load_account_active(struct rq *this_rq)
2530 long delta;
2532 if (time_before(jiffies, this_rq->calc_load_update))
2533 return;
2535 delta = calc_load_fold_active(this_rq);
2536 if (delta)
2537 atomic_long_add(delta, &calc_load_tasks);
2539 this_rq->calc_load_update += LOAD_FREQ;
2543 * End of global load-average stuff
2547 * The exact cpuload at various idx values, calculated at every tick would be
2548 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2550 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2551 * on nth tick when cpu may be busy, then we have:
2552 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2553 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2555 * decay_load_missed() below does efficient calculation of
2556 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2557 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2559 * The calculation is approximated on a 128 point scale.
2560 * degrade_zero_ticks is the number of ticks after which load at any
2561 * particular idx is approximated to be zero.
2562 * degrade_factor is a precomputed table, a row for each load idx.
2563 * Each column corresponds to degradation factor for a power of two ticks,
2564 * based on 128 point scale.
2565 * Example:
2566 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2567 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2569 * With this power of 2 load factors, we can degrade the load n times
2570 * by looking at 1 bits in n and doing as many mult/shift instead of
2571 * n mult/shifts needed by the exact degradation.
2573 #define DEGRADE_SHIFT 7
2574 static const unsigned char
2575 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2576 static const unsigned char
2577 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2578 {0, 0, 0, 0, 0, 0, 0, 0},
2579 {64, 32, 8, 0, 0, 0, 0, 0},
2580 {96, 72, 40, 12, 1, 0, 0},
2581 {112, 98, 75, 43, 15, 1, 0},
2582 {120, 112, 98, 76, 45, 16, 2} };
2585 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2586 * would be when CPU is idle and so we just decay the old load without
2587 * adding any new load.
2589 static unsigned long
2590 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2592 int j = 0;
2594 if (!missed_updates)
2595 return load;
2597 if (missed_updates >= degrade_zero_ticks[idx])
2598 return 0;
2600 if (idx == 1)
2601 return load >> missed_updates;
2603 while (missed_updates) {
2604 if (missed_updates % 2)
2605 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2607 missed_updates >>= 1;
2608 j++;
2610 return load;
2614 * Update rq->cpu_load[] statistics. This function is usually called every
2615 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2616 * every tick. We fix it up based on jiffies.
2618 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2619 unsigned long pending_updates)
2621 int i, scale;
2623 this_rq->nr_load_updates++;
2625 /* Update our load: */
2626 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2627 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2628 unsigned long old_load, new_load;
2630 /* scale is effectively 1 << i now, and >> i divides by scale */
2632 old_load = this_rq->cpu_load[i];
2633 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2634 new_load = this_load;
2636 * Round up the averaging division if load is increasing. This
2637 * prevents us from getting stuck on 9 if the load is 10, for
2638 * example.
2640 if (new_load > old_load)
2641 new_load += scale - 1;
2643 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2646 sched_avg_update(this_rq);
2649 #ifdef CONFIG_NO_HZ
2651 * There is no sane way to deal with nohz on smp when using jiffies because the
2652 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2653 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2655 * Therefore we cannot use the delta approach from the regular tick since that
2656 * would seriously skew the load calculation. However we'll make do for those
2657 * updates happening while idle (nohz_idle_balance) or coming out of idle
2658 * (tick_nohz_idle_exit).
2660 * This means we might still be one tick off for nohz periods.
2664 * Called from nohz_idle_balance() to update the load ratings before doing the
2665 * idle balance.
2667 void update_idle_cpu_load(struct rq *this_rq)
2669 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2670 unsigned long load = this_rq->load.weight;
2671 unsigned long pending_updates;
2674 * bail if there's load or we're actually up-to-date.
2676 if (load || curr_jiffies == this_rq->last_load_update_tick)
2677 return;
2679 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2680 this_rq->last_load_update_tick = curr_jiffies;
2682 __update_cpu_load(this_rq, load, pending_updates);
2686 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2688 void update_cpu_load_nohz(void)
2690 struct rq *this_rq = this_rq();
2691 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2692 unsigned long pending_updates;
2694 if (curr_jiffies == this_rq->last_load_update_tick)
2695 return;
2697 raw_spin_lock(&this_rq->lock);
2698 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2699 if (pending_updates) {
2700 this_rq->last_load_update_tick = curr_jiffies;
2702 * We were idle, this means load 0, the current load might be
2703 * !0 due to remote wakeups and the sort.
2705 __update_cpu_load(this_rq, 0, pending_updates);
2707 raw_spin_unlock(&this_rq->lock);
2709 #endif /* CONFIG_NO_HZ */
2712 * Called from scheduler_tick()
2714 static void update_cpu_load_active(struct rq *this_rq)
2717 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2719 this_rq->last_load_update_tick = jiffies;
2720 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2722 calc_load_account_active(this_rq);
2725 #ifdef CONFIG_SMP
2728 * sched_exec - execve() is a valuable balancing opportunity, because at
2729 * this point the task has the smallest effective memory and cache footprint.
2731 void sched_exec(void)
2733 struct task_struct *p = current;
2734 unsigned long flags;
2735 int dest_cpu;
2737 raw_spin_lock_irqsave(&p->pi_lock, flags);
2738 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2739 if (dest_cpu == smp_processor_id())
2740 goto unlock;
2742 if (likely(cpu_active(dest_cpu))) {
2743 struct migration_arg arg = { p, dest_cpu };
2745 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2746 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2747 return;
2749 unlock:
2750 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2753 #endif
2755 DEFINE_PER_CPU(struct kernel_stat, kstat);
2756 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2758 EXPORT_PER_CPU_SYMBOL(kstat);
2759 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2762 * Return any ns on the sched_clock that have not yet been accounted in
2763 * @p in case that task is currently running.
2765 * Called with task_rq_lock() held on @rq.
2767 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2769 u64 ns = 0;
2771 if (task_current(rq, p)) {
2772 update_rq_clock(rq);
2773 ns = rq->clock_task - p->se.exec_start;
2774 if ((s64)ns < 0)
2775 ns = 0;
2778 return ns;
2781 unsigned long long task_delta_exec(struct task_struct *p)
2783 unsigned long flags;
2784 struct rq *rq;
2785 u64 ns = 0;
2787 rq = task_rq_lock(p, &flags);
2788 ns = do_task_delta_exec(p, rq);
2789 task_rq_unlock(rq, p, &flags);
2791 return ns;
2795 * Return accounted runtime for the task.
2796 * In case the task is currently running, return the runtime plus current's
2797 * pending runtime that have not been accounted yet.
2799 unsigned long long task_sched_runtime(struct task_struct *p)
2801 unsigned long flags;
2802 struct rq *rq;
2803 u64 ns = 0;
2805 rq = task_rq_lock(p, &flags);
2806 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2807 task_rq_unlock(rq, p, &flags);
2809 return ns;
2812 #ifdef CONFIG_CGROUP_CPUACCT
2813 struct cgroup_subsys cpuacct_subsys;
2814 struct cpuacct root_cpuacct;
2815 #endif
2817 static inline void task_group_account_field(struct task_struct *p, int index,
2818 u64 tmp)
2820 #ifdef CONFIG_CGROUP_CPUACCT
2821 struct kernel_cpustat *kcpustat;
2822 struct cpuacct *ca;
2823 #endif
2825 * Since all updates are sure to touch the root cgroup, we
2826 * get ourselves ahead and touch it first. If the root cgroup
2827 * is the only cgroup, then nothing else should be necessary.
2830 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2832 #ifdef CONFIG_CGROUP_CPUACCT
2833 if (unlikely(!cpuacct_subsys.active))
2834 return;
2836 rcu_read_lock();
2837 ca = task_ca(p);
2838 while (ca && (ca != &root_cpuacct)) {
2839 kcpustat = this_cpu_ptr(ca->cpustat);
2840 kcpustat->cpustat[index] += tmp;
2841 ca = parent_ca(ca);
2843 rcu_read_unlock();
2844 #endif
2849 * Account user cpu time to a process.
2850 * @p: the process that the cpu time gets accounted to
2851 * @cputime: the cpu time spent in user space since the last update
2852 * @cputime_scaled: cputime scaled by cpu frequency
2854 void account_user_time(struct task_struct *p, cputime_t cputime,
2855 cputime_t cputime_scaled)
2857 int index;
2859 /* Add user time to process. */
2860 p->utime += cputime;
2861 p->utimescaled += cputime_scaled;
2862 account_group_user_time(p, cputime);
2864 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2866 /* Add user time to cpustat. */
2867 task_group_account_field(p, index, (__force u64) cputime);
2869 /* Account for user time used */
2870 acct_update_integrals(p);
2874 * Account guest cpu time to a process.
2875 * @p: the process that the cpu time gets accounted to
2876 * @cputime: the cpu time spent in virtual machine since the last update
2877 * @cputime_scaled: cputime scaled by cpu frequency
2879 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2880 cputime_t cputime_scaled)
2882 u64 *cpustat = kcpustat_this_cpu->cpustat;
2884 /* Add guest time to process. */
2885 p->utime += cputime;
2886 p->utimescaled += cputime_scaled;
2887 account_group_user_time(p, cputime);
2888 p->gtime += cputime;
2890 /* Add guest time to cpustat. */
2891 if (TASK_NICE(p) > 0) {
2892 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2893 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2894 } else {
2895 cpustat[CPUTIME_USER] += (__force u64) cputime;
2896 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2901 * Account system cpu time to a process and desired cpustat field
2902 * @p: the process that the cpu time gets accounted to
2903 * @cputime: the cpu time spent in kernel space since the last update
2904 * @cputime_scaled: cputime scaled by cpu frequency
2905 * @target_cputime64: pointer to cpustat field that has to be updated
2907 static inline
2908 void __account_system_time(struct task_struct *p, cputime_t cputime,
2909 cputime_t cputime_scaled, int index)
2911 /* Add system time to process. */
2912 p->stime += cputime;
2913 p->stimescaled += cputime_scaled;
2914 account_group_system_time(p, cputime);
2916 /* Add system time to cpustat. */
2917 task_group_account_field(p, index, (__force u64) cputime);
2919 /* Account for system time used */
2920 acct_update_integrals(p);
2924 * Account system cpu time to a process.
2925 * @p: the process that the cpu time gets accounted to
2926 * @hardirq_offset: the offset to subtract from hardirq_count()
2927 * @cputime: the cpu time spent in kernel space since the last update
2928 * @cputime_scaled: cputime scaled by cpu frequency
2930 void account_system_time(struct task_struct *p, int hardirq_offset,
2931 cputime_t cputime, cputime_t cputime_scaled)
2933 int index;
2935 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2936 account_guest_time(p, cputime, cputime_scaled);
2937 return;
2940 if (hardirq_count() - hardirq_offset)
2941 index = CPUTIME_IRQ;
2942 else if (in_serving_softirq())
2943 index = CPUTIME_SOFTIRQ;
2944 else
2945 index = CPUTIME_SYSTEM;
2947 __account_system_time(p, cputime, cputime_scaled, index);
2951 * Account for involuntary wait time.
2952 * @cputime: the cpu time spent in involuntary wait
2954 void account_steal_time(cputime_t cputime)
2956 u64 *cpustat = kcpustat_this_cpu->cpustat;
2958 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2962 * Account for idle time.
2963 * @cputime: the cpu time spent in idle wait
2965 void account_idle_time(cputime_t cputime)
2967 u64 *cpustat = kcpustat_this_cpu->cpustat;
2968 struct rq *rq = this_rq();
2970 if (atomic_read(&rq->nr_iowait) > 0)
2971 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2972 else
2973 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2976 static __always_inline bool steal_account_process_tick(void)
2978 #ifdef CONFIG_PARAVIRT
2979 if (static_key_false(&paravirt_steal_enabled)) {
2980 u64 steal, st = 0;
2982 steal = paravirt_steal_clock(smp_processor_id());
2983 steal -= this_rq()->prev_steal_time;
2985 st = steal_ticks(steal);
2986 this_rq()->prev_steal_time += st * TICK_NSEC;
2988 account_steal_time(st);
2989 return st;
2991 #endif
2992 return false;
2995 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2997 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2999 * Account a tick to a process and cpustat
3000 * @p: the process that the cpu time gets accounted to
3001 * @user_tick: is the tick from userspace
3002 * @rq: the pointer to rq
3004 * Tick demultiplexing follows the order
3005 * - pending hardirq update
3006 * - pending softirq update
3007 * - user_time
3008 * - idle_time
3009 * - system time
3010 * - check for guest_time
3011 * - else account as system_time
3013 * Check for hardirq is done both for system and user time as there is
3014 * no timer going off while we are on hardirq and hence we may never get an
3015 * opportunity to update it solely in system time.
3016 * p->stime and friends are only updated on system time and not on irq
3017 * softirq as those do not count in task exec_runtime any more.
3019 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3020 struct rq *rq)
3022 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3023 u64 *cpustat = kcpustat_this_cpu->cpustat;
3025 if (steal_account_process_tick())
3026 return;
3028 if (irqtime_account_hi_update()) {
3029 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
3030 } else if (irqtime_account_si_update()) {
3031 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
3032 } else if (this_cpu_ksoftirqd() == p) {
3034 * ksoftirqd time do not get accounted in cpu_softirq_time.
3035 * So, we have to handle it separately here.
3036 * Also, p->stime needs to be updated for ksoftirqd.
3038 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3039 CPUTIME_SOFTIRQ);
3040 } else if (user_tick) {
3041 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3042 } else if (p == rq->idle) {
3043 account_idle_time(cputime_one_jiffy);
3044 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3045 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3046 } else {
3047 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3048 CPUTIME_SYSTEM);
3052 static void irqtime_account_idle_ticks(int ticks)
3054 int i;
3055 struct rq *rq = this_rq();
3057 for (i = 0; i < ticks; i++)
3058 irqtime_account_process_tick(current, 0, rq);
3060 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3061 static void irqtime_account_idle_ticks(int ticks) {}
3062 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3063 struct rq *rq) {}
3064 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3067 * Account a single tick of cpu time.
3068 * @p: the process that the cpu time gets accounted to
3069 * @user_tick: indicates if the tick is a user or a system tick
3071 void account_process_tick(struct task_struct *p, int user_tick)
3073 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3074 struct rq *rq = this_rq();
3076 if (sched_clock_irqtime) {
3077 irqtime_account_process_tick(p, user_tick, rq);
3078 return;
3081 if (steal_account_process_tick())
3082 return;
3084 if (user_tick)
3085 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3086 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3087 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3088 one_jiffy_scaled);
3089 else
3090 account_idle_time(cputime_one_jiffy);
3094 * Account multiple ticks of steal time.
3095 * @p: the process from which the cpu time has been stolen
3096 * @ticks: number of stolen ticks
3098 void account_steal_ticks(unsigned long ticks)
3100 account_steal_time(jiffies_to_cputime(ticks));
3104 * Account multiple ticks of idle time.
3105 * @ticks: number of stolen ticks
3107 void account_idle_ticks(unsigned long ticks)
3110 if (sched_clock_irqtime) {
3111 irqtime_account_idle_ticks(ticks);
3112 return;
3115 account_idle_time(jiffies_to_cputime(ticks));
3118 #endif
3121 * Use precise platform statistics if available:
3123 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3124 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3126 *ut = p->utime;
3127 *st = p->stime;
3130 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3132 struct task_cputime cputime;
3134 thread_group_cputime(p, &cputime);
3136 *ut = cputime.utime;
3137 *st = cputime.stime;
3139 #else
3141 #ifndef nsecs_to_cputime
3142 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3143 #endif
3145 static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
3147 u64 temp = (__force u64) rtime;
3149 temp *= (__force u64) utime;
3151 if (sizeof(cputime_t) == 4)
3152 temp = div_u64(temp, (__force u32) total);
3153 else
3154 temp = div64_u64(temp, (__force u64) total);
3156 return (__force cputime_t) temp;
3159 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3161 cputime_t rtime, utime = p->utime, total = utime + p->stime;
3164 * Use CFS's precise accounting:
3166 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3168 if (total)
3169 utime = scale_utime(utime, rtime, total);
3170 else
3171 utime = rtime;
3174 * Compare with previous values, to keep monotonicity:
3176 p->prev_utime = max(p->prev_utime, utime);
3177 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3179 *ut = p->prev_utime;
3180 *st = p->prev_stime;
3184 * Must be called with siglock held.
3186 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3188 struct signal_struct *sig = p->signal;
3189 struct task_cputime cputime;
3190 cputime_t rtime, utime, total;
3192 thread_group_cputime(p, &cputime);
3194 total = cputime.utime + cputime.stime;
3195 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3197 if (total)
3198 utime = scale_utime(cputime.utime, rtime, total);
3199 else
3200 utime = rtime;
3202 sig->prev_utime = max(sig->prev_utime, utime);
3203 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3205 *ut = sig->prev_utime;
3206 *st = sig->prev_stime;
3208 #endif
3211 * This function gets called by the timer code, with HZ frequency.
3212 * We call it with interrupts disabled.
3214 void scheduler_tick(void)
3216 int cpu = smp_processor_id();
3217 struct rq *rq = cpu_rq(cpu);
3218 struct task_struct *curr = rq->curr;
3220 sched_clock_tick();
3222 raw_spin_lock(&rq->lock);
3223 update_rq_clock(rq);
3224 update_cpu_load_active(rq);
3225 curr->sched_class->task_tick(rq, curr, 0);
3226 raw_spin_unlock(&rq->lock);
3228 perf_event_task_tick();
3230 #ifdef CONFIG_SMP
3231 rq->idle_balance = idle_cpu(cpu);
3232 trigger_load_balance(rq, cpu);
3233 #endif
3236 notrace unsigned long get_parent_ip(unsigned long addr)
3238 if (in_lock_functions(addr)) {
3239 addr = CALLER_ADDR2;
3240 if (in_lock_functions(addr))
3241 addr = CALLER_ADDR3;
3243 return addr;
3246 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3247 defined(CONFIG_PREEMPT_TRACER))
3249 void __kprobes add_preempt_count(int val)
3251 #ifdef CONFIG_DEBUG_PREEMPT
3253 * Underflow?
3255 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3256 return;
3257 #endif
3258 preempt_count() += val;
3259 #ifdef CONFIG_DEBUG_PREEMPT
3261 * Spinlock count overflowing soon?
3263 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3264 PREEMPT_MASK - 10);
3265 #endif
3266 if (preempt_count() == val)
3267 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3269 EXPORT_SYMBOL(add_preempt_count);
3271 void __kprobes sub_preempt_count(int val)
3273 #ifdef CONFIG_DEBUG_PREEMPT
3275 * Underflow?
3277 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3278 return;
3280 * Is the spinlock portion underflowing?
3282 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3283 !(preempt_count() & PREEMPT_MASK)))
3284 return;
3285 #endif
3287 if (preempt_count() == val)
3288 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3289 preempt_count() -= val;
3291 EXPORT_SYMBOL(sub_preempt_count);
3293 #endif
3296 * Print scheduling while atomic bug:
3298 static noinline void __schedule_bug(struct task_struct *prev)
3300 if (oops_in_progress)
3301 return;
3303 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3304 prev->comm, prev->pid, preempt_count());
3306 debug_show_held_locks(prev);
3307 print_modules();
3308 if (irqs_disabled())
3309 print_irqtrace_events(prev);
3310 dump_stack();
3311 add_taint(TAINT_WARN);
3315 * Various schedule()-time debugging checks and statistics:
3317 static inline void schedule_debug(struct task_struct *prev)
3320 * Test if we are atomic. Since do_exit() needs to call into
3321 * schedule() atomically, we ignore that path for now.
3322 * Otherwise, whine if we are scheduling when we should not be.
3324 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3325 __schedule_bug(prev);
3326 rcu_sleep_check();
3328 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3330 schedstat_inc(this_rq(), sched_count);
3333 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3335 if (prev->on_rq || rq->skip_clock_update < 0)
3336 update_rq_clock(rq);
3337 prev->sched_class->put_prev_task(rq, prev);
3341 * Pick up the highest-prio task:
3343 static inline struct task_struct *
3344 pick_next_task(struct rq *rq)
3346 const struct sched_class *class;
3347 struct task_struct *p;
3350 * Optimization: we know that if all tasks are in
3351 * the fair class we can call that function directly:
3353 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3354 p = fair_sched_class.pick_next_task(rq);
3355 if (likely(p))
3356 return p;
3359 for_each_class(class) {
3360 p = class->pick_next_task(rq);
3361 if (p)
3362 return p;
3365 BUG(); /* the idle class will always have a runnable task */
3369 * __schedule() is the main scheduler function.
3371 static void __sched __schedule(void)
3373 struct task_struct *prev, *next;
3374 unsigned long *switch_count;
3375 struct rq *rq;
3376 int cpu;
3378 need_resched:
3379 preempt_disable();
3380 cpu = smp_processor_id();
3381 rq = cpu_rq(cpu);
3382 rcu_note_context_switch(cpu);
3383 prev = rq->curr;
3385 schedule_debug(prev);
3387 if (sched_feat(HRTICK))
3388 hrtick_clear(rq);
3390 raw_spin_lock_irq(&rq->lock);
3392 switch_count = &prev->nivcsw;
3393 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3394 if (unlikely(signal_pending_state(prev->state, prev))) {
3395 prev->state = TASK_RUNNING;
3396 } else {
3397 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3398 prev->on_rq = 0;
3401 * If a worker went to sleep, notify and ask workqueue
3402 * whether it wants to wake up a task to maintain
3403 * concurrency.
3405 if (prev->flags & PF_WQ_WORKER) {
3406 struct task_struct *to_wakeup;
3408 to_wakeup = wq_worker_sleeping(prev, cpu);
3409 if (to_wakeup)
3410 try_to_wake_up_local(to_wakeup);
3413 switch_count = &prev->nvcsw;
3416 pre_schedule(rq, prev);
3418 if (unlikely(!rq->nr_running))
3419 idle_balance(cpu, rq);
3421 put_prev_task(rq, prev);
3422 next = pick_next_task(rq);
3423 clear_tsk_need_resched(prev);
3424 rq->skip_clock_update = 0;
3426 if (likely(prev != next)) {
3427 rq->nr_switches++;
3428 rq->curr = next;
3429 ++*switch_count;
3431 context_switch(rq, prev, next); /* unlocks the rq */
3433 * The context switch have flipped the stack from under us
3434 * and restored the local variables which were saved when
3435 * this task called schedule() in the past. prev == current
3436 * is still correct, but it can be moved to another cpu/rq.
3438 cpu = smp_processor_id();
3439 rq = cpu_rq(cpu);
3440 } else
3441 raw_spin_unlock_irq(&rq->lock);
3443 post_schedule(rq);
3445 sched_preempt_enable_no_resched();
3446 if (need_resched())
3447 goto need_resched;
3450 static inline void sched_submit_work(struct task_struct *tsk)
3452 if (!tsk->state || tsk_is_pi_blocked(tsk))
3453 return;
3455 * If we are going to sleep and we have plugged IO queued,
3456 * make sure to submit it to avoid deadlocks.
3458 if (blk_needs_flush_plug(tsk))
3459 blk_schedule_flush_plug(tsk);
3462 asmlinkage void __sched schedule(void)
3464 struct task_struct *tsk = current;
3466 sched_submit_work(tsk);
3467 __schedule();
3469 EXPORT_SYMBOL(schedule);
3472 * schedule_preempt_disabled - called with preemption disabled
3474 * Returns with preemption disabled. Note: preempt_count must be 1
3476 void __sched schedule_preempt_disabled(void)
3478 sched_preempt_enable_no_resched();
3479 schedule();
3480 preempt_disable();
3483 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3485 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3487 if (lock->owner != owner)
3488 return false;
3491 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3492 * lock->owner still matches owner, if that fails, owner might
3493 * point to free()d memory, if it still matches, the rcu_read_lock()
3494 * ensures the memory stays valid.
3496 barrier();
3498 return owner->on_cpu;
3502 * Look out! "owner" is an entirely speculative pointer
3503 * access and not reliable.
3505 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3507 if (!sched_feat(OWNER_SPIN))
3508 return 0;
3510 rcu_read_lock();
3511 while (owner_running(lock, owner)) {
3512 if (need_resched())
3513 break;
3515 arch_mutex_cpu_relax();
3517 rcu_read_unlock();
3520 * We break out the loop above on need_resched() and when the
3521 * owner changed, which is a sign for heavy contention. Return
3522 * success only when lock->owner is NULL.
3524 return lock->owner == NULL;
3526 #endif
3528 #ifdef CONFIG_PREEMPT
3530 * this is the entry point to schedule() from in-kernel preemption
3531 * off of preempt_enable. Kernel preemptions off return from interrupt
3532 * occur there and call schedule directly.
3534 asmlinkage void __sched notrace preempt_schedule(void)
3536 struct thread_info *ti = current_thread_info();
3539 * If there is a non-zero preempt_count or interrupts are disabled,
3540 * we do not want to preempt the current task. Just return..
3542 if (likely(ti->preempt_count || irqs_disabled()))
3543 return;
3545 do {
3546 add_preempt_count_notrace(PREEMPT_ACTIVE);
3547 __schedule();
3548 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3551 * Check again in case we missed a preemption opportunity
3552 * between schedule and now.
3554 barrier();
3555 } while (need_resched());
3557 EXPORT_SYMBOL(preempt_schedule);
3560 * this is the entry point to schedule() from kernel preemption
3561 * off of irq context.
3562 * Note, that this is called and return with irqs disabled. This will
3563 * protect us against recursive calling from irq.
3565 asmlinkage void __sched preempt_schedule_irq(void)
3567 struct thread_info *ti = current_thread_info();
3569 /* Catch callers which need to be fixed */
3570 BUG_ON(ti->preempt_count || !irqs_disabled());
3572 do {
3573 add_preempt_count(PREEMPT_ACTIVE);
3574 local_irq_enable();
3575 __schedule();
3576 local_irq_disable();
3577 sub_preempt_count(PREEMPT_ACTIVE);
3580 * Check again in case we missed a preemption opportunity
3581 * between schedule and now.
3583 barrier();
3584 } while (need_resched());
3587 #endif /* CONFIG_PREEMPT */
3589 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3590 void *key)
3592 return try_to_wake_up(curr->private, mode, wake_flags);
3594 EXPORT_SYMBOL(default_wake_function);
3597 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3598 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3599 * number) then we wake all the non-exclusive tasks and one exclusive task.
3601 * There are circumstances in which we can try to wake a task which has already
3602 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3603 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3605 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3606 int nr_exclusive, int wake_flags, void *key)
3608 wait_queue_t *curr, *next;
3610 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3611 unsigned flags = curr->flags;
3613 if (curr->func(curr, mode, wake_flags, key) &&
3614 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3615 break;
3620 * __wake_up - wake up threads blocked on a waitqueue.
3621 * @q: the waitqueue
3622 * @mode: which threads
3623 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3624 * @key: is directly passed to the wakeup function
3626 * It may be assumed that this function implies a write memory barrier before
3627 * changing the task state if and only if any tasks are woken up.
3629 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3630 int nr_exclusive, void *key)
3632 unsigned long flags;
3634 spin_lock_irqsave(&q->lock, flags);
3635 __wake_up_common(q, mode, nr_exclusive, 0, key);
3636 spin_unlock_irqrestore(&q->lock, flags);
3638 EXPORT_SYMBOL(__wake_up);
3641 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3643 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3645 __wake_up_common(q, mode, nr, 0, NULL);
3647 EXPORT_SYMBOL_GPL(__wake_up_locked);
3649 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3651 __wake_up_common(q, mode, 1, 0, key);
3653 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3656 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3657 * @q: the waitqueue
3658 * @mode: which threads
3659 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3660 * @key: opaque value to be passed to wakeup targets
3662 * The sync wakeup differs that the waker knows that it will schedule
3663 * away soon, so while the target thread will be woken up, it will not
3664 * be migrated to another CPU - ie. the two threads are 'synchronized'
3665 * with each other. This can prevent needless bouncing between CPUs.
3667 * On UP it can prevent extra preemption.
3669 * It may be assumed that this function implies a write memory barrier before
3670 * changing the task state if and only if any tasks are woken up.
3672 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3673 int nr_exclusive, void *key)
3675 unsigned long flags;
3676 int wake_flags = WF_SYNC;
3678 if (unlikely(!q))
3679 return;
3681 if (unlikely(!nr_exclusive))
3682 wake_flags = 0;
3684 spin_lock_irqsave(&q->lock, flags);
3685 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3686 spin_unlock_irqrestore(&q->lock, flags);
3688 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3691 * __wake_up_sync - see __wake_up_sync_key()
3693 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3695 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3697 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3700 * complete: - signals a single thread waiting on this completion
3701 * @x: holds the state of this particular completion
3703 * This will wake up a single thread waiting on this completion. Threads will be
3704 * awakened in the same order in which they were queued.
3706 * See also complete_all(), wait_for_completion() and related routines.
3708 * It may be assumed that this function implies a write memory barrier before
3709 * changing the task state if and only if any tasks are woken up.
3711 void complete(struct completion *x)
3713 unsigned long flags;
3715 spin_lock_irqsave(&x->wait.lock, flags);
3716 x->done++;
3717 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3718 spin_unlock_irqrestore(&x->wait.lock, flags);
3720 EXPORT_SYMBOL(complete);
3723 * complete_all: - signals all threads waiting on this completion
3724 * @x: holds the state of this particular completion
3726 * This will wake up all threads waiting on this particular completion event.
3728 * It may be assumed that this function implies a write memory barrier before
3729 * changing the task state if and only if any tasks are woken up.
3731 void complete_all(struct completion *x)
3733 unsigned long flags;
3735 spin_lock_irqsave(&x->wait.lock, flags);
3736 x->done += UINT_MAX/2;
3737 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3738 spin_unlock_irqrestore(&x->wait.lock, flags);
3740 EXPORT_SYMBOL(complete_all);
3742 static inline long __sched
3743 do_wait_for_common(struct completion *x, long timeout, int state)
3745 if (!x->done) {
3746 DECLARE_WAITQUEUE(wait, current);
3748 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3749 do {
3750 if (signal_pending_state(state, current)) {
3751 timeout = -ERESTARTSYS;
3752 break;
3754 __set_current_state(state);
3755 spin_unlock_irq(&x->wait.lock);
3756 timeout = schedule_timeout(timeout);
3757 spin_lock_irq(&x->wait.lock);
3758 } while (!x->done && timeout);
3759 __remove_wait_queue(&x->wait, &wait);
3760 if (!x->done)
3761 return timeout;
3763 x->done--;
3764 return timeout ?: 1;
3767 static long __sched
3768 wait_for_common(struct completion *x, long timeout, int state)
3770 might_sleep();
3772 spin_lock_irq(&x->wait.lock);
3773 timeout = do_wait_for_common(x, timeout, state);
3774 spin_unlock_irq(&x->wait.lock);
3775 return timeout;
3779 * wait_for_completion: - waits for completion of a task
3780 * @x: holds the state of this particular completion
3782 * This waits to be signaled for completion of a specific task. It is NOT
3783 * interruptible and there is no timeout.
3785 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3786 * and interrupt capability. Also see complete().
3788 void __sched wait_for_completion(struct completion *x)
3790 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3792 EXPORT_SYMBOL(wait_for_completion);
3795 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3796 * @x: holds the state of this particular completion
3797 * @timeout: timeout value in jiffies
3799 * This waits for either a completion of a specific task to be signaled or for a
3800 * specified timeout to expire. The timeout is in jiffies. It is not
3801 * interruptible.
3803 * The return value is 0 if timed out, and positive (at least 1, or number of
3804 * jiffies left till timeout) if completed.
3806 unsigned long __sched
3807 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3809 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3811 EXPORT_SYMBOL(wait_for_completion_timeout);
3814 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3815 * @x: holds the state of this particular completion
3817 * This waits for completion of a specific task to be signaled. It is
3818 * interruptible.
3820 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3822 int __sched wait_for_completion_interruptible(struct completion *x)
3824 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3825 if (t == -ERESTARTSYS)
3826 return t;
3827 return 0;
3829 EXPORT_SYMBOL(wait_for_completion_interruptible);
3832 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3833 * @x: holds the state of this particular completion
3834 * @timeout: timeout value in jiffies
3836 * This waits for either a completion of a specific task to be signaled or for a
3837 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3839 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3840 * positive (at least 1, or number of jiffies left till timeout) if completed.
3842 long __sched
3843 wait_for_completion_interruptible_timeout(struct completion *x,
3844 unsigned long timeout)
3846 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3848 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3851 * wait_for_completion_killable: - waits for completion of a task (killable)
3852 * @x: holds the state of this particular completion
3854 * This waits to be signaled for completion of a specific task. It can be
3855 * interrupted by a kill signal.
3857 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3859 int __sched wait_for_completion_killable(struct completion *x)
3861 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3862 if (t == -ERESTARTSYS)
3863 return t;
3864 return 0;
3866 EXPORT_SYMBOL(wait_for_completion_killable);
3869 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3870 * @x: holds the state of this particular completion
3871 * @timeout: timeout value in jiffies
3873 * This waits for either a completion of a specific task to be
3874 * signaled or for a specified timeout to expire. It can be
3875 * interrupted by a kill signal. The timeout is in jiffies.
3877 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3878 * positive (at least 1, or number of jiffies left till timeout) if completed.
3880 long __sched
3881 wait_for_completion_killable_timeout(struct completion *x,
3882 unsigned long timeout)
3884 return wait_for_common(x, timeout, TASK_KILLABLE);
3886 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3889 * try_wait_for_completion - try to decrement a completion without blocking
3890 * @x: completion structure
3892 * Returns: 0 if a decrement cannot be done without blocking
3893 * 1 if a decrement succeeded.
3895 * If a completion is being used as a counting completion,
3896 * attempt to decrement the counter without blocking. This
3897 * enables us to avoid waiting if the resource the completion
3898 * is protecting is not available.
3900 bool try_wait_for_completion(struct completion *x)
3902 unsigned long flags;
3903 int ret = 1;
3905 spin_lock_irqsave(&x->wait.lock, flags);
3906 if (!x->done)
3907 ret = 0;
3908 else
3909 x->done--;
3910 spin_unlock_irqrestore(&x->wait.lock, flags);
3911 return ret;
3913 EXPORT_SYMBOL(try_wait_for_completion);
3916 * completion_done - Test to see if a completion has any waiters
3917 * @x: completion structure
3919 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3920 * 1 if there are no waiters.
3923 bool completion_done(struct completion *x)
3925 unsigned long flags;
3926 int ret = 1;
3928 spin_lock_irqsave(&x->wait.lock, flags);
3929 if (!x->done)
3930 ret = 0;
3931 spin_unlock_irqrestore(&x->wait.lock, flags);
3932 return ret;
3934 EXPORT_SYMBOL(completion_done);
3936 static long __sched
3937 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3939 unsigned long flags;
3940 wait_queue_t wait;
3942 init_waitqueue_entry(&wait, current);
3944 __set_current_state(state);
3946 spin_lock_irqsave(&q->lock, flags);
3947 __add_wait_queue(q, &wait);
3948 spin_unlock(&q->lock);
3949 timeout = schedule_timeout(timeout);
3950 spin_lock_irq(&q->lock);
3951 __remove_wait_queue(q, &wait);
3952 spin_unlock_irqrestore(&q->lock, flags);
3954 return timeout;
3957 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3959 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3961 EXPORT_SYMBOL(interruptible_sleep_on);
3963 long __sched
3964 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3966 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3968 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3970 void __sched sleep_on(wait_queue_head_t *q)
3972 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3974 EXPORT_SYMBOL(sleep_on);
3976 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3978 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3980 EXPORT_SYMBOL(sleep_on_timeout);
3982 #ifdef CONFIG_RT_MUTEXES
3985 * rt_mutex_setprio - set the current priority of a task
3986 * @p: task
3987 * @prio: prio value (kernel-internal form)
3989 * This function changes the 'effective' priority of a task. It does
3990 * not touch ->normal_prio like __setscheduler().
3992 * Used by the rt_mutex code to implement priority inheritance logic.
3994 void rt_mutex_setprio(struct task_struct *p, int prio)
3996 int oldprio, on_rq, running;
3997 struct rq *rq;
3998 const struct sched_class *prev_class;
4000 BUG_ON(prio < 0 || prio > MAX_PRIO);
4002 rq = __task_rq_lock(p);
4005 * Idle task boosting is a nono in general. There is one
4006 * exception, when PREEMPT_RT and NOHZ is active:
4008 * The idle task calls get_next_timer_interrupt() and holds
4009 * the timer wheel base->lock on the CPU and another CPU wants
4010 * to access the timer (probably to cancel it). We can safely
4011 * ignore the boosting request, as the idle CPU runs this code
4012 * with interrupts disabled and will complete the lock
4013 * protected section without being interrupted. So there is no
4014 * real need to boost.
4016 if (unlikely(p == rq->idle)) {
4017 WARN_ON(p != rq->curr);
4018 WARN_ON(p->pi_blocked_on);
4019 goto out_unlock;
4022 trace_sched_pi_setprio(p, prio);
4023 oldprio = p->prio;
4024 prev_class = p->sched_class;
4025 on_rq = p->on_rq;
4026 running = task_current(rq, p);
4027 if (on_rq)
4028 dequeue_task(rq, p, 0);
4029 if (running)
4030 p->sched_class->put_prev_task(rq, p);
4032 if (rt_prio(prio))
4033 p->sched_class = &rt_sched_class;
4034 else
4035 p->sched_class = &fair_sched_class;
4037 p->prio = prio;
4039 if (running)
4040 p->sched_class->set_curr_task(rq);
4041 if (on_rq)
4042 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4044 check_class_changed(rq, p, prev_class, oldprio);
4045 out_unlock:
4046 __task_rq_unlock(rq);
4048 #endif
4049 void set_user_nice(struct task_struct *p, long nice)
4051 int old_prio, delta, on_rq;
4052 unsigned long flags;
4053 struct rq *rq;
4055 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4056 return;
4058 * We have to be careful, if called from sys_setpriority(),
4059 * the task might be in the middle of scheduling on another CPU.
4061 rq = task_rq_lock(p, &flags);
4063 * The RT priorities are set via sched_setscheduler(), but we still
4064 * allow the 'normal' nice value to be set - but as expected
4065 * it wont have any effect on scheduling until the task is
4066 * SCHED_FIFO/SCHED_RR:
4068 if (task_has_rt_policy(p)) {
4069 p->static_prio = NICE_TO_PRIO(nice);
4070 goto out_unlock;
4072 on_rq = p->on_rq;
4073 if (on_rq)
4074 dequeue_task(rq, p, 0);
4076 p->static_prio = NICE_TO_PRIO(nice);
4077 set_load_weight(p);
4078 old_prio = p->prio;
4079 p->prio = effective_prio(p);
4080 delta = p->prio - old_prio;
4082 if (on_rq) {
4083 enqueue_task(rq, p, 0);
4085 * If the task increased its priority or is running and
4086 * lowered its priority, then reschedule its CPU:
4088 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4089 resched_task(rq->curr);
4091 out_unlock:
4092 task_rq_unlock(rq, p, &flags);
4094 EXPORT_SYMBOL(set_user_nice);
4097 * can_nice - check if a task can reduce its nice value
4098 * @p: task
4099 * @nice: nice value
4101 int can_nice(const struct task_struct *p, const int nice)
4103 /* convert nice value [19,-20] to rlimit style value [1,40] */
4104 int nice_rlim = 20 - nice;
4106 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4107 capable(CAP_SYS_NICE));
4110 #ifdef __ARCH_WANT_SYS_NICE
4113 * sys_nice - change the priority of the current process.
4114 * @increment: priority increment
4116 * sys_setpriority is a more generic, but much slower function that
4117 * does similar things.
4119 SYSCALL_DEFINE1(nice, int, increment)
4121 long nice, retval;
4124 * Setpriority might change our priority at the same moment.
4125 * We don't have to worry. Conceptually one call occurs first
4126 * and we have a single winner.
4128 if (increment < -40)
4129 increment = -40;
4130 if (increment > 40)
4131 increment = 40;
4133 nice = TASK_NICE(current) + increment;
4134 if (nice < -20)
4135 nice = -20;
4136 if (nice > 19)
4137 nice = 19;
4139 if (increment < 0 && !can_nice(current, nice))
4140 return -EPERM;
4142 retval = security_task_setnice(current, nice);
4143 if (retval)
4144 return retval;
4146 set_user_nice(current, nice);
4147 return 0;
4150 #endif
4153 * task_prio - return the priority value of a given task.
4154 * @p: the task in question.
4156 * This is the priority value as seen by users in /proc.
4157 * RT tasks are offset by -200. Normal tasks are centered
4158 * around 0, value goes from -16 to +15.
4160 int task_prio(const struct task_struct *p)
4162 return p->prio - MAX_RT_PRIO;
4166 * task_nice - return the nice value of a given task.
4167 * @p: the task in question.
4169 int task_nice(const struct task_struct *p)
4171 return TASK_NICE(p);
4173 EXPORT_SYMBOL(task_nice);
4176 * idle_cpu - is a given cpu idle currently?
4177 * @cpu: the processor in question.
4179 int idle_cpu(int cpu)
4181 struct rq *rq = cpu_rq(cpu);
4183 if (rq->curr != rq->idle)
4184 return 0;
4186 if (rq->nr_running)
4187 return 0;
4189 #ifdef CONFIG_SMP
4190 if (!llist_empty(&rq->wake_list))
4191 return 0;
4192 #endif
4194 return 1;
4198 * idle_task - return the idle task for a given cpu.
4199 * @cpu: the processor in question.
4201 struct task_struct *idle_task(int cpu)
4203 return cpu_rq(cpu)->idle;
4207 * find_process_by_pid - find a process with a matching PID value.
4208 * @pid: the pid in question.
4210 static struct task_struct *find_process_by_pid(pid_t pid)
4212 return pid ? find_task_by_vpid(pid) : current;
4215 /* Actually do priority change: must hold rq lock. */
4216 static void
4217 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4219 p->policy = policy;
4220 p->rt_priority = prio;
4221 p->normal_prio = normal_prio(p);
4222 /* we are holding p->pi_lock already */
4223 p->prio = rt_mutex_getprio(p);
4224 if (rt_prio(p->prio))
4225 p->sched_class = &rt_sched_class;
4226 else
4227 p->sched_class = &fair_sched_class;
4228 set_load_weight(p);
4232 * check the target process has a UID that matches the current process's
4234 static bool check_same_owner(struct task_struct *p)
4236 const struct cred *cred = current_cred(), *pcred;
4237 bool match;
4239 rcu_read_lock();
4240 pcred = __task_cred(p);
4241 match = (uid_eq(cred->euid, pcred->euid) ||
4242 uid_eq(cred->euid, pcred->uid));
4243 rcu_read_unlock();
4244 return match;
4247 static int __sched_setscheduler(struct task_struct *p, int policy,
4248 const struct sched_param *param, bool user)
4250 int retval, oldprio, oldpolicy = -1, on_rq, running;
4251 unsigned long flags;
4252 const struct sched_class *prev_class;
4253 struct rq *rq;
4254 int reset_on_fork;
4256 /* may grab non-irq protected spin_locks */
4257 BUG_ON(in_interrupt());
4258 recheck:
4259 /* double check policy once rq lock held */
4260 if (policy < 0) {
4261 reset_on_fork = p->sched_reset_on_fork;
4262 policy = oldpolicy = p->policy;
4263 } else {
4264 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4265 policy &= ~SCHED_RESET_ON_FORK;
4267 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4268 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4269 policy != SCHED_IDLE)
4270 return -EINVAL;
4274 * Valid priorities for SCHED_FIFO and SCHED_RR are
4275 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4276 * SCHED_BATCH and SCHED_IDLE is 0.
4278 if (param->sched_priority < 0 ||
4279 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4280 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4281 return -EINVAL;
4282 if (rt_policy(policy) != (param->sched_priority != 0))
4283 return -EINVAL;
4286 * Allow unprivileged RT tasks to decrease priority:
4288 if (user && !capable(CAP_SYS_NICE)) {
4289 if (rt_policy(policy)) {
4290 unsigned long rlim_rtprio =
4291 task_rlimit(p, RLIMIT_RTPRIO);
4293 /* can't set/change the rt policy */
4294 if (policy != p->policy && !rlim_rtprio)
4295 return -EPERM;
4297 /* can't increase priority */
4298 if (param->sched_priority > p->rt_priority &&
4299 param->sched_priority > rlim_rtprio)
4300 return -EPERM;
4304 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4305 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4307 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4308 if (!can_nice(p, TASK_NICE(p)))
4309 return -EPERM;
4312 /* can't change other user's priorities */
4313 if (!check_same_owner(p))
4314 return -EPERM;
4316 /* Normal users shall not reset the sched_reset_on_fork flag */
4317 if (p->sched_reset_on_fork && !reset_on_fork)
4318 return -EPERM;
4321 if (user) {
4322 retval = security_task_setscheduler(p);
4323 if (retval)
4324 return retval;
4328 * make sure no PI-waiters arrive (or leave) while we are
4329 * changing the priority of the task:
4331 * To be able to change p->policy safely, the appropriate
4332 * runqueue lock must be held.
4334 rq = task_rq_lock(p, &flags);
4337 * Changing the policy of the stop threads its a very bad idea
4339 if (p == rq->stop) {
4340 task_rq_unlock(rq, p, &flags);
4341 return -EINVAL;
4345 * If not changing anything there's no need to proceed further:
4347 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4348 param->sched_priority == p->rt_priority))) {
4349 task_rq_unlock(rq, p, &flags);
4350 return 0;
4353 #ifdef CONFIG_RT_GROUP_SCHED
4354 if (user) {
4356 * Do not allow realtime tasks into groups that have no runtime
4357 * assigned.
4359 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4360 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4361 !task_group_is_autogroup(task_group(p))) {
4362 task_rq_unlock(rq, p, &flags);
4363 return -EPERM;
4366 #endif
4368 /* recheck policy now with rq lock held */
4369 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4370 policy = oldpolicy = -1;
4371 task_rq_unlock(rq, p, &flags);
4372 goto recheck;
4374 on_rq = p->on_rq;
4375 running = task_current(rq, p);
4376 if (on_rq)
4377 dequeue_task(rq, p, 0);
4378 if (running)
4379 p->sched_class->put_prev_task(rq, p);
4381 p->sched_reset_on_fork = reset_on_fork;
4383 oldprio = p->prio;
4384 prev_class = p->sched_class;
4385 __setscheduler(rq, p, policy, param->sched_priority);
4387 if (running)
4388 p->sched_class->set_curr_task(rq);
4389 if (on_rq)
4390 enqueue_task(rq, p, 0);
4392 check_class_changed(rq, p, prev_class, oldprio);
4393 task_rq_unlock(rq, p, &flags);
4395 rt_mutex_adjust_pi(p);
4397 return 0;
4401 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4402 * @p: the task in question.
4403 * @policy: new policy.
4404 * @param: structure containing the new RT priority.
4406 * NOTE that the task may be already dead.
4408 int sched_setscheduler(struct task_struct *p, int policy,
4409 const struct sched_param *param)
4411 return __sched_setscheduler(p, policy, param, true);
4413 EXPORT_SYMBOL_GPL(sched_setscheduler);
4416 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4417 * @p: the task in question.
4418 * @policy: new policy.
4419 * @param: structure containing the new RT priority.
4421 * Just like sched_setscheduler, only don't bother checking if the
4422 * current context has permission. For example, this is needed in
4423 * stop_machine(): we create temporary high priority worker threads,
4424 * but our caller might not have that capability.
4426 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4427 const struct sched_param *param)
4429 return __sched_setscheduler(p, policy, param, false);
4432 static int
4433 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4435 struct sched_param lparam;
4436 struct task_struct *p;
4437 int retval;
4439 if (!param || pid < 0)
4440 return -EINVAL;
4441 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4442 return -EFAULT;
4444 rcu_read_lock();
4445 retval = -ESRCH;
4446 p = find_process_by_pid(pid);
4447 if (p != NULL)
4448 retval = sched_setscheduler(p, policy, &lparam);
4449 rcu_read_unlock();
4451 return retval;
4455 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4456 * @pid: the pid in question.
4457 * @policy: new policy.
4458 * @param: structure containing the new RT priority.
4460 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4461 struct sched_param __user *, param)
4463 /* negative values for policy are not valid */
4464 if (policy < 0)
4465 return -EINVAL;
4467 return do_sched_setscheduler(pid, policy, param);
4471 * sys_sched_setparam - set/change the RT priority of a thread
4472 * @pid: the pid in question.
4473 * @param: structure containing the new RT priority.
4475 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4477 return do_sched_setscheduler(pid, -1, param);
4481 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4482 * @pid: the pid in question.
4484 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4486 struct task_struct *p;
4487 int retval;
4489 if (pid < 0)
4490 return -EINVAL;
4492 retval = -ESRCH;
4493 rcu_read_lock();
4494 p = find_process_by_pid(pid);
4495 if (p) {
4496 retval = security_task_getscheduler(p);
4497 if (!retval)
4498 retval = p->policy
4499 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4501 rcu_read_unlock();
4502 return retval;
4506 * sys_sched_getparam - get the RT priority of a thread
4507 * @pid: the pid in question.
4508 * @param: structure containing the RT priority.
4510 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4512 struct sched_param lp;
4513 struct task_struct *p;
4514 int retval;
4516 if (!param || pid < 0)
4517 return -EINVAL;
4519 rcu_read_lock();
4520 p = find_process_by_pid(pid);
4521 retval = -ESRCH;
4522 if (!p)
4523 goto out_unlock;
4525 retval = security_task_getscheduler(p);
4526 if (retval)
4527 goto out_unlock;
4529 lp.sched_priority = p->rt_priority;
4530 rcu_read_unlock();
4533 * This one might sleep, we cannot do it with a spinlock held ...
4535 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4537 return retval;
4539 out_unlock:
4540 rcu_read_unlock();
4541 return retval;
4544 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4546 cpumask_var_t cpus_allowed, new_mask;
4547 struct task_struct *p;
4548 int retval;
4550 get_online_cpus();
4551 rcu_read_lock();
4553 p = find_process_by_pid(pid);
4554 if (!p) {
4555 rcu_read_unlock();
4556 put_online_cpus();
4557 return -ESRCH;
4560 /* Prevent p going away */
4561 get_task_struct(p);
4562 rcu_read_unlock();
4564 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4565 retval = -ENOMEM;
4566 goto out_put_task;
4568 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4569 retval = -ENOMEM;
4570 goto out_free_cpus_allowed;
4572 retval = -EPERM;
4573 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4574 goto out_unlock;
4576 retval = security_task_setscheduler(p);
4577 if (retval)
4578 goto out_unlock;
4580 cpuset_cpus_allowed(p, cpus_allowed);
4581 cpumask_and(new_mask, in_mask, cpus_allowed);
4582 again:
4583 retval = set_cpus_allowed_ptr(p, new_mask);
4585 if (!retval) {
4586 cpuset_cpus_allowed(p, cpus_allowed);
4587 if (!cpumask_subset(new_mask, cpus_allowed)) {
4589 * We must have raced with a concurrent cpuset
4590 * update. Just reset the cpus_allowed to the
4591 * cpuset's cpus_allowed
4593 cpumask_copy(new_mask, cpus_allowed);
4594 goto again;
4597 out_unlock:
4598 free_cpumask_var(new_mask);
4599 out_free_cpus_allowed:
4600 free_cpumask_var(cpus_allowed);
4601 out_put_task:
4602 put_task_struct(p);
4603 put_online_cpus();
4604 return retval;
4607 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4608 struct cpumask *new_mask)
4610 if (len < cpumask_size())
4611 cpumask_clear(new_mask);
4612 else if (len > cpumask_size())
4613 len = cpumask_size();
4615 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4619 * sys_sched_setaffinity - set the cpu affinity of a process
4620 * @pid: pid of the process
4621 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4622 * @user_mask_ptr: user-space pointer to the new cpu mask
4624 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4625 unsigned long __user *, user_mask_ptr)
4627 cpumask_var_t new_mask;
4628 int retval;
4630 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4631 return -ENOMEM;
4633 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4634 if (retval == 0)
4635 retval = sched_setaffinity(pid, new_mask);
4636 free_cpumask_var(new_mask);
4637 return retval;
4640 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4642 struct task_struct *p;
4643 unsigned long flags;
4644 int retval;
4646 get_online_cpus();
4647 rcu_read_lock();
4649 retval = -ESRCH;
4650 p = find_process_by_pid(pid);
4651 if (!p)
4652 goto out_unlock;
4654 retval = security_task_getscheduler(p);
4655 if (retval)
4656 goto out_unlock;
4658 raw_spin_lock_irqsave(&p->pi_lock, flags);
4659 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4660 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4662 out_unlock:
4663 rcu_read_unlock();
4664 put_online_cpus();
4666 return retval;
4670 * sys_sched_getaffinity - get the cpu affinity of a process
4671 * @pid: pid of the process
4672 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4673 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4675 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4676 unsigned long __user *, user_mask_ptr)
4678 int ret;
4679 cpumask_var_t mask;
4681 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4682 return -EINVAL;
4683 if (len & (sizeof(unsigned long)-1))
4684 return -EINVAL;
4686 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4687 return -ENOMEM;
4689 ret = sched_getaffinity(pid, mask);
4690 if (ret == 0) {
4691 size_t retlen = min_t(size_t, len, cpumask_size());
4693 if (copy_to_user(user_mask_ptr, mask, retlen))
4694 ret = -EFAULT;
4695 else
4696 ret = retlen;
4698 free_cpumask_var(mask);
4700 return ret;
4704 * sys_sched_yield - yield the current processor to other threads.
4706 * This function yields the current CPU to other tasks. If there are no
4707 * other threads running on this CPU then this function will return.
4709 SYSCALL_DEFINE0(sched_yield)
4711 struct rq *rq = this_rq_lock();
4713 schedstat_inc(rq, yld_count);
4714 current->sched_class->yield_task(rq);
4717 * Since we are going to call schedule() anyway, there's
4718 * no need to preempt or enable interrupts:
4720 __release(rq->lock);
4721 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4722 do_raw_spin_unlock(&rq->lock);
4723 sched_preempt_enable_no_resched();
4725 schedule();
4727 return 0;
4730 static inline int should_resched(void)
4732 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4735 static void __cond_resched(void)
4737 add_preempt_count(PREEMPT_ACTIVE);
4738 __schedule();
4739 sub_preempt_count(PREEMPT_ACTIVE);
4742 int __sched _cond_resched(void)
4744 if (should_resched()) {
4745 __cond_resched();
4746 return 1;
4748 return 0;
4750 EXPORT_SYMBOL(_cond_resched);
4753 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4754 * call schedule, and on return reacquire the lock.
4756 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4757 * operations here to prevent schedule() from being called twice (once via
4758 * spin_unlock(), once by hand).
4760 int __cond_resched_lock(spinlock_t *lock)
4762 int resched = should_resched();
4763 int ret = 0;
4765 lockdep_assert_held(lock);
4767 if (spin_needbreak(lock) || resched) {
4768 spin_unlock(lock);
4769 if (resched)
4770 __cond_resched();
4771 else
4772 cpu_relax();
4773 ret = 1;
4774 spin_lock(lock);
4776 return ret;
4778 EXPORT_SYMBOL(__cond_resched_lock);
4780 int __sched __cond_resched_softirq(void)
4782 BUG_ON(!in_softirq());
4784 if (should_resched()) {
4785 local_bh_enable();
4786 __cond_resched();
4787 local_bh_disable();
4788 return 1;
4790 return 0;
4792 EXPORT_SYMBOL(__cond_resched_softirq);
4795 * yield - yield the current processor to other threads.
4797 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4799 * The scheduler is at all times free to pick the calling task as the most
4800 * eligible task to run, if removing the yield() call from your code breaks
4801 * it, its already broken.
4803 * Typical broken usage is:
4805 * while (!event)
4806 * yield();
4808 * where one assumes that yield() will let 'the other' process run that will
4809 * make event true. If the current task is a SCHED_FIFO task that will never
4810 * happen. Never use yield() as a progress guarantee!!
4812 * If you want to use yield() to wait for something, use wait_event().
4813 * If you want to use yield() to be 'nice' for others, use cond_resched().
4814 * If you still want to use yield(), do not!
4816 void __sched yield(void)
4818 set_current_state(TASK_RUNNING);
4819 sys_sched_yield();
4821 EXPORT_SYMBOL(yield);
4824 * yield_to - yield the current processor to another thread in
4825 * your thread group, or accelerate that thread toward the
4826 * processor it's on.
4827 * @p: target task
4828 * @preempt: whether task preemption is allowed or not
4830 * It's the caller's job to ensure that the target task struct
4831 * can't go away on us before we can do any checks.
4833 * Returns true if we indeed boosted the target task.
4835 bool __sched yield_to(struct task_struct *p, bool preempt)
4837 struct task_struct *curr = current;
4838 struct rq *rq, *p_rq;
4839 unsigned long flags;
4840 bool yielded = 0;
4842 local_irq_save(flags);
4843 rq = this_rq();
4845 again:
4846 p_rq = task_rq(p);
4847 double_rq_lock(rq, p_rq);
4848 while (task_rq(p) != p_rq) {
4849 double_rq_unlock(rq, p_rq);
4850 goto again;
4853 if (!curr->sched_class->yield_to_task)
4854 goto out;
4856 if (curr->sched_class != p->sched_class)
4857 goto out;
4859 if (task_running(p_rq, p) || p->state)
4860 goto out;
4862 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4863 if (yielded) {
4864 schedstat_inc(rq, yld_count);
4866 * Make p's CPU reschedule; pick_next_entity takes care of
4867 * fairness.
4869 if (preempt && rq != p_rq)
4870 resched_task(p_rq->curr);
4871 } else {
4873 * We might have set it in task_yield_fair(), but are
4874 * not going to schedule(), so don't want to skip
4875 * the next update.
4877 rq->skip_clock_update = 0;
4880 out:
4881 double_rq_unlock(rq, p_rq);
4882 local_irq_restore(flags);
4884 if (yielded)
4885 schedule();
4887 return yielded;
4889 EXPORT_SYMBOL_GPL(yield_to);
4892 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4893 * that process accounting knows that this is a task in IO wait state.
4895 void __sched io_schedule(void)
4897 struct rq *rq = raw_rq();
4899 delayacct_blkio_start();
4900 atomic_inc(&rq->nr_iowait);
4901 blk_flush_plug(current);
4902 current->in_iowait = 1;
4903 schedule();
4904 current->in_iowait = 0;
4905 atomic_dec(&rq->nr_iowait);
4906 delayacct_blkio_end();
4908 EXPORT_SYMBOL(io_schedule);
4910 long __sched io_schedule_timeout(long timeout)
4912 struct rq *rq = raw_rq();
4913 long ret;
4915 delayacct_blkio_start();
4916 atomic_inc(&rq->nr_iowait);
4917 blk_flush_plug(current);
4918 current->in_iowait = 1;
4919 ret = schedule_timeout(timeout);
4920 current->in_iowait = 0;
4921 atomic_dec(&rq->nr_iowait);
4922 delayacct_blkio_end();
4923 return ret;
4927 * sys_sched_get_priority_max - return maximum RT priority.
4928 * @policy: scheduling class.
4930 * this syscall returns the maximum rt_priority that can be used
4931 * by a given scheduling class.
4933 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4935 int ret = -EINVAL;
4937 switch (policy) {
4938 case SCHED_FIFO:
4939 case SCHED_RR:
4940 ret = MAX_USER_RT_PRIO-1;
4941 break;
4942 case SCHED_NORMAL:
4943 case SCHED_BATCH:
4944 case SCHED_IDLE:
4945 ret = 0;
4946 break;
4948 return ret;
4952 * sys_sched_get_priority_min - return minimum RT priority.
4953 * @policy: scheduling class.
4955 * this syscall returns the minimum rt_priority that can be used
4956 * by a given scheduling class.
4958 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4960 int ret = -EINVAL;
4962 switch (policy) {
4963 case SCHED_FIFO:
4964 case SCHED_RR:
4965 ret = 1;
4966 break;
4967 case SCHED_NORMAL:
4968 case SCHED_BATCH:
4969 case SCHED_IDLE:
4970 ret = 0;
4972 return ret;
4976 * sys_sched_rr_get_interval - return the default timeslice of a process.
4977 * @pid: pid of the process.
4978 * @interval: userspace pointer to the timeslice value.
4980 * this syscall writes the default timeslice value of a given process
4981 * into the user-space timespec buffer. A value of '0' means infinity.
4983 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4984 struct timespec __user *, interval)
4986 struct task_struct *p;
4987 unsigned int time_slice;
4988 unsigned long flags;
4989 struct rq *rq;
4990 int retval;
4991 struct timespec t;
4993 if (pid < 0)
4994 return -EINVAL;
4996 retval = -ESRCH;
4997 rcu_read_lock();
4998 p = find_process_by_pid(pid);
4999 if (!p)
5000 goto out_unlock;
5002 retval = security_task_getscheduler(p);
5003 if (retval)
5004 goto out_unlock;
5006 rq = task_rq_lock(p, &flags);
5007 time_slice = p->sched_class->get_rr_interval(rq, p);
5008 task_rq_unlock(rq, p, &flags);
5010 rcu_read_unlock();
5011 jiffies_to_timespec(time_slice, &t);
5012 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5013 return retval;
5015 out_unlock:
5016 rcu_read_unlock();
5017 return retval;
5020 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5022 void sched_show_task(struct task_struct *p)
5024 unsigned long free = 0;
5025 unsigned state;
5027 state = p->state ? __ffs(p->state) + 1 : 0;
5028 printk(KERN_INFO "%-15.15s %c", p->comm,
5029 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5030 #if BITS_PER_LONG == 32
5031 if (state == TASK_RUNNING)
5032 printk(KERN_CONT " running ");
5033 else
5034 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5035 #else
5036 if (state == TASK_RUNNING)
5037 printk(KERN_CONT " running task ");
5038 else
5039 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5040 #endif
5041 #ifdef CONFIG_DEBUG_STACK_USAGE
5042 free = stack_not_used(p);
5043 #endif
5044 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5045 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
5046 (unsigned long)task_thread_info(p)->flags);
5048 show_stack(p, NULL);
5051 void show_state_filter(unsigned long state_filter)
5053 struct task_struct *g, *p;
5055 #if BITS_PER_LONG == 32
5056 printk(KERN_INFO
5057 " task PC stack pid father\n");
5058 #else
5059 printk(KERN_INFO
5060 " task PC stack pid father\n");
5061 #endif
5062 rcu_read_lock();
5063 do_each_thread(g, p) {
5065 * reset the NMI-timeout, listing all files on a slow
5066 * console might take a lot of time:
5068 touch_nmi_watchdog();
5069 if (!state_filter || (p->state & state_filter))
5070 sched_show_task(p);
5071 } while_each_thread(g, p);
5073 touch_all_softlockup_watchdogs();
5075 #ifdef CONFIG_SCHED_DEBUG
5076 sysrq_sched_debug_show();
5077 #endif
5078 rcu_read_unlock();
5080 * Only show locks if all tasks are dumped:
5082 if (!state_filter)
5083 debug_show_all_locks();
5086 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5088 idle->sched_class = &idle_sched_class;
5092 * init_idle - set up an idle thread for a given CPU
5093 * @idle: task in question
5094 * @cpu: cpu the idle task belongs to
5096 * NOTE: this function does not set the idle thread's NEED_RESCHED
5097 * flag, to make booting more robust.
5099 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5101 struct rq *rq = cpu_rq(cpu);
5102 unsigned long flags;
5104 raw_spin_lock_irqsave(&rq->lock, flags);
5106 __sched_fork(idle);
5107 idle->state = TASK_RUNNING;
5108 idle->se.exec_start = sched_clock();
5110 do_set_cpus_allowed(idle, cpumask_of(cpu));
5112 * We're having a chicken and egg problem, even though we are
5113 * holding rq->lock, the cpu isn't yet set to this cpu so the
5114 * lockdep check in task_group() will fail.
5116 * Similar case to sched_fork(). / Alternatively we could
5117 * use task_rq_lock() here and obtain the other rq->lock.
5119 * Silence PROVE_RCU
5121 rcu_read_lock();
5122 __set_task_cpu(idle, cpu);
5123 rcu_read_unlock();
5125 rq->curr = rq->idle = idle;
5126 #if defined(CONFIG_SMP)
5127 idle->on_cpu = 1;
5128 #endif
5129 raw_spin_unlock_irqrestore(&rq->lock, flags);
5131 /* Set the preempt count _outside_ the spinlocks! */
5132 task_thread_info(idle)->preempt_count = 0;
5135 * The idle tasks have their own, simple scheduling class:
5137 idle->sched_class = &idle_sched_class;
5138 ftrace_graph_init_idle_task(idle, cpu);
5139 #if defined(CONFIG_SMP)
5140 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5141 #endif
5144 #ifdef CONFIG_SMP
5145 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5147 if (p->sched_class && p->sched_class->set_cpus_allowed)
5148 p->sched_class->set_cpus_allowed(p, new_mask);
5150 cpumask_copy(&p->cpus_allowed, new_mask);
5151 p->nr_cpus_allowed = cpumask_weight(new_mask);
5155 * This is how migration works:
5157 * 1) we invoke migration_cpu_stop() on the target CPU using
5158 * stop_one_cpu().
5159 * 2) stopper starts to run (implicitly forcing the migrated thread
5160 * off the CPU)
5161 * 3) it checks whether the migrated task is still in the wrong runqueue.
5162 * 4) if it's in the wrong runqueue then the migration thread removes
5163 * it and puts it into the right queue.
5164 * 5) stopper completes and stop_one_cpu() returns and the migration
5165 * is done.
5169 * Change a given task's CPU affinity. Migrate the thread to a
5170 * proper CPU and schedule it away if the CPU it's executing on
5171 * is removed from the allowed bitmask.
5173 * NOTE: the caller must have a valid reference to the task, the
5174 * task must not exit() & deallocate itself prematurely. The
5175 * call is not atomic; no spinlocks may be held.
5177 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5179 unsigned long flags;
5180 struct rq *rq;
5181 unsigned int dest_cpu;
5182 int ret = 0;
5184 rq = task_rq_lock(p, &flags);
5186 if (cpumask_equal(&p->cpus_allowed, new_mask))
5187 goto out;
5189 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5190 ret = -EINVAL;
5191 goto out;
5194 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5195 ret = -EINVAL;
5196 goto out;
5199 do_set_cpus_allowed(p, new_mask);
5201 /* Can the task run on the task's current CPU? If so, we're done */
5202 if (cpumask_test_cpu(task_cpu(p), new_mask))
5203 goto out;
5205 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5206 if (p->on_rq) {
5207 struct migration_arg arg = { p, dest_cpu };
5208 /* Need help from migration thread: drop lock and wait. */
5209 task_rq_unlock(rq, p, &flags);
5210 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5211 tlb_migrate_finish(p->mm);
5212 return 0;
5214 out:
5215 task_rq_unlock(rq, p, &flags);
5217 return ret;
5219 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5222 * Move (not current) task off this cpu, onto dest cpu. We're doing
5223 * this because either it can't run here any more (set_cpus_allowed()
5224 * away from this CPU, or CPU going down), or because we're
5225 * attempting to rebalance this task on exec (sched_exec).
5227 * So we race with normal scheduler movements, but that's OK, as long
5228 * as the task is no longer on this CPU.
5230 * Returns non-zero if task was successfully migrated.
5232 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5234 struct rq *rq_dest, *rq_src;
5235 int ret = 0;
5237 if (unlikely(!cpu_active(dest_cpu)))
5238 return ret;
5240 rq_src = cpu_rq(src_cpu);
5241 rq_dest = cpu_rq(dest_cpu);
5243 raw_spin_lock(&p->pi_lock);
5244 double_rq_lock(rq_src, rq_dest);
5245 /* Already moved. */
5246 if (task_cpu(p) != src_cpu)
5247 goto done;
5248 /* Affinity changed (again). */
5249 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5250 goto fail;
5253 * If we're not on a rq, the next wake-up will ensure we're
5254 * placed properly.
5256 if (p->on_rq) {
5257 dequeue_task(rq_src, p, 0);
5258 set_task_cpu(p, dest_cpu);
5259 enqueue_task(rq_dest, p, 0);
5260 check_preempt_curr(rq_dest, p, 0);
5262 done:
5263 ret = 1;
5264 fail:
5265 double_rq_unlock(rq_src, rq_dest);
5266 raw_spin_unlock(&p->pi_lock);
5267 return ret;
5271 * migration_cpu_stop - this will be executed by a highprio stopper thread
5272 * and performs thread migration by bumping thread off CPU then
5273 * 'pushing' onto another runqueue.
5275 static int migration_cpu_stop(void *data)
5277 struct migration_arg *arg = data;
5280 * The original target cpu might have gone down and we might
5281 * be on another cpu but it doesn't matter.
5283 local_irq_disable();
5284 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5285 local_irq_enable();
5286 return 0;
5289 #ifdef CONFIG_HOTPLUG_CPU
5292 * Ensures that the idle task is using init_mm right before its cpu goes
5293 * offline.
5295 void idle_task_exit(void)
5297 struct mm_struct *mm = current->active_mm;
5299 BUG_ON(cpu_online(smp_processor_id()));
5301 if (mm != &init_mm)
5302 switch_mm(mm, &init_mm, current);
5303 mmdrop(mm);
5307 * Since this CPU is going 'away' for a while, fold any nr_active delta
5308 * we might have. Assumes we're called after migrate_tasks() so that the
5309 * nr_active count is stable.
5311 * Also see the comment "Global load-average calculations".
5313 static void calc_load_migrate(struct rq *rq)
5315 long delta = calc_load_fold_active(rq);
5316 if (delta)
5317 atomic_long_add(delta, &calc_load_tasks);
5321 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5322 * try_to_wake_up()->select_task_rq().
5324 * Called with rq->lock held even though we'er in stop_machine() and
5325 * there's no concurrency possible, we hold the required locks anyway
5326 * because of lock validation efforts.
5328 static void migrate_tasks(unsigned int dead_cpu)
5330 struct rq *rq = cpu_rq(dead_cpu);
5331 struct task_struct *next, *stop = rq->stop;
5332 int dest_cpu;
5335 * Fudge the rq selection such that the below task selection loop
5336 * doesn't get stuck on the currently eligible stop task.
5338 * We're currently inside stop_machine() and the rq is either stuck
5339 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5340 * either way we should never end up calling schedule() until we're
5341 * done here.
5343 rq->stop = NULL;
5345 for ( ; ; ) {
5347 * There's this thread running, bail when that's the only
5348 * remaining thread.
5350 if (rq->nr_running == 1)
5351 break;
5353 next = pick_next_task(rq);
5354 BUG_ON(!next);
5355 next->sched_class->put_prev_task(rq, next);
5357 /* Find suitable destination for @next, with force if needed. */
5358 dest_cpu = select_fallback_rq(dead_cpu, next);
5359 raw_spin_unlock(&rq->lock);
5361 __migrate_task(next, dead_cpu, dest_cpu);
5363 raw_spin_lock(&rq->lock);
5366 rq->stop = stop;
5369 #endif /* CONFIG_HOTPLUG_CPU */
5371 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5373 static struct ctl_table sd_ctl_dir[] = {
5375 .procname = "sched_domain",
5376 .mode = 0555,
5381 static struct ctl_table sd_ctl_root[] = {
5383 .procname = "kernel",
5384 .mode = 0555,
5385 .child = sd_ctl_dir,
5390 static struct ctl_table *sd_alloc_ctl_entry(int n)
5392 struct ctl_table *entry =
5393 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5395 return entry;
5398 static void sd_free_ctl_entry(struct ctl_table **tablep)
5400 struct ctl_table *entry;
5403 * In the intermediate directories, both the child directory and
5404 * procname are dynamically allocated and could fail but the mode
5405 * will always be set. In the lowest directory the names are
5406 * static strings and all have proc handlers.
5408 for (entry = *tablep; entry->mode; entry++) {
5409 if (entry->child)
5410 sd_free_ctl_entry(&entry->child);
5411 if (entry->proc_handler == NULL)
5412 kfree(entry->procname);
5415 kfree(*tablep);
5416 *tablep = NULL;
5419 static void
5420 set_table_entry(struct ctl_table *entry,
5421 const char *procname, void *data, int maxlen,
5422 umode_t mode, proc_handler *proc_handler)
5424 entry->procname = procname;
5425 entry->data = data;
5426 entry->maxlen = maxlen;
5427 entry->mode = mode;
5428 entry->proc_handler = proc_handler;
5431 static struct ctl_table *
5432 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5434 struct ctl_table *table = sd_alloc_ctl_entry(13);
5436 if (table == NULL)
5437 return NULL;
5439 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5440 sizeof(long), 0644, proc_doulongvec_minmax);
5441 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5442 sizeof(long), 0644, proc_doulongvec_minmax);
5443 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5444 sizeof(int), 0644, proc_dointvec_minmax);
5445 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5446 sizeof(int), 0644, proc_dointvec_minmax);
5447 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5448 sizeof(int), 0644, proc_dointvec_minmax);
5449 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5450 sizeof(int), 0644, proc_dointvec_minmax);
5451 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5452 sizeof(int), 0644, proc_dointvec_minmax);
5453 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5454 sizeof(int), 0644, proc_dointvec_minmax);
5455 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5456 sizeof(int), 0644, proc_dointvec_minmax);
5457 set_table_entry(&table[9], "cache_nice_tries",
5458 &sd->cache_nice_tries,
5459 sizeof(int), 0644, proc_dointvec_minmax);
5460 set_table_entry(&table[10], "flags", &sd->flags,
5461 sizeof(int), 0644, proc_dointvec_minmax);
5462 set_table_entry(&table[11], "name", sd->name,
5463 CORENAME_MAX_SIZE, 0444, proc_dostring);
5464 /* &table[12] is terminator */
5466 return table;
5469 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5471 struct ctl_table *entry, *table;
5472 struct sched_domain *sd;
5473 int domain_num = 0, i;
5474 char buf[32];
5476 for_each_domain(cpu, sd)
5477 domain_num++;
5478 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5479 if (table == NULL)
5480 return NULL;
5482 i = 0;
5483 for_each_domain(cpu, sd) {
5484 snprintf(buf, 32, "domain%d", i);
5485 entry->procname = kstrdup(buf, GFP_KERNEL);
5486 entry->mode = 0555;
5487 entry->child = sd_alloc_ctl_domain_table(sd);
5488 entry++;
5489 i++;
5491 return table;
5494 static struct ctl_table_header *sd_sysctl_header;
5495 static void register_sched_domain_sysctl(void)
5497 int i, cpu_num = num_possible_cpus();
5498 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5499 char buf[32];
5501 WARN_ON(sd_ctl_dir[0].child);
5502 sd_ctl_dir[0].child = entry;
5504 if (entry == NULL)
5505 return;
5507 for_each_possible_cpu(i) {
5508 snprintf(buf, 32, "cpu%d", i);
5509 entry->procname = kstrdup(buf, GFP_KERNEL);
5510 entry->mode = 0555;
5511 entry->child = sd_alloc_ctl_cpu_table(i);
5512 entry++;
5515 WARN_ON(sd_sysctl_header);
5516 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5519 /* may be called multiple times per register */
5520 static void unregister_sched_domain_sysctl(void)
5522 if (sd_sysctl_header)
5523 unregister_sysctl_table(sd_sysctl_header);
5524 sd_sysctl_header = NULL;
5525 if (sd_ctl_dir[0].child)
5526 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5528 #else
5529 static void register_sched_domain_sysctl(void)
5532 static void unregister_sched_domain_sysctl(void)
5535 #endif
5537 static void set_rq_online(struct rq *rq)
5539 if (!rq->online) {
5540 const struct sched_class *class;
5542 cpumask_set_cpu(rq->cpu, rq->rd->online);
5543 rq->online = 1;
5545 for_each_class(class) {
5546 if (class->rq_online)
5547 class->rq_online(rq);
5552 static void set_rq_offline(struct rq *rq)
5554 if (rq->online) {
5555 const struct sched_class *class;
5557 for_each_class(class) {
5558 if (class->rq_offline)
5559 class->rq_offline(rq);
5562 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5563 rq->online = 0;
5568 * migration_call - callback that gets triggered when a CPU is added.
5569 * Here we can start up the necessary migration thread for the new CPU.
5571 static int __cpuinit
5572 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5574 int cpu = (long)hcpu;
5575 unsigned long flags;
5576 struct rq *rq = cpu_rq(cpu);
5578 switch (action & ~CPU_TASKS_FROZEN) {
5580 case CPU_UP_PREPARE:
5581 rq->calc_load_update = calc_load_update;
5582 break;
5584 case CPU_ONLINE:
5585 /* Update our root-domain */
5586 raw_spin_lock_irqsave(&rq->lock, flags);
5587 if (rq->rd) {
5588 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5590 set_rq_online(rq);
5592 raw_spin_unlock_irqrestore(&rq->lock, flags);
5593 break;
5595 #ifdef CONFIG_HOTPLUG_CPU
5596 case CPU_DYING:
5597 sched_ttwu_pending();
5598 /* Update our root-domain */
5599 raw_spin_lock_irqsave(&rq->lock, flags);
5600 if (rq->rd) {
5601 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5602 set_rq_offline(rq);
5604 migrate_tasks(cpu);
5605 BUG_ON(rq->nr_running != 1); /* the migration thread */
5606 raw_spin_unlock_irqrestore(&rq->lock, flags);
5607 break;
5609 case CPU_DEAD:
5610 calc_load_migrate(rq);
5611 break;
5612 #endif
5615 update_max_interval();
5617 return NOTIFY_OK;
5621 * Register at high priority so that task migration (migrate_all_tasks)
5622 * happens before everything else. This has to be lower priority than
5623 * the notifier in the perf_event subsystem, though.
5625 static struct notifier_block __cpuinitdata migration_notifier = {
5626 .notifier_call = migration_call,
5627 .priority = CPU_PRI_MIGRATION,
5630 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5631 unsigned long action, void *hcpu)
5633 switch (action & ~CPU_TASKS_FROZEN) {
5634 case CPU_STARTING:
5635 case CPU_DOWN_FAILED:
5636 set_cpu_active((long)hcpu, true);
5637 return NOTIFY_OK;
5638 default:
5639 return NOTIFY_DONE;
5643 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5644 unsigned long action, void *hcpu)
5646 switch (action & ~CPU_TASKS_FROZEN) {
5647 case CPU_DOWN_PREPARE:
5648 set_cpu_active((long)hcpu, false);
5649 return NOTIFY_OK;
5650 default:
5651 return NOTIFY_DONE;
5655 static int __init migration_init(void)
5657 void *cpu = (void *)(long)smp_processor_id();
5658 int err;
5660 /* Initialize migration for the boot CPU */
5661 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5662 BUG_ON(err == NOTIFY_BAD);
5663 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5664 register_cpu_notifier(&migration_notifier);
5666 /* Register cpu active notifiers */
5667 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5668 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5670 return 0;
5672 early_initcall(migration_init);
5673 #endif
5675 #ifdef CONFIG_SMP
5677 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5679 #ifdef CONFIG_SCHED_DEBUG
5681 static __read_mostly int sched_debug_enabled;
5683 static int __init sched_debug_setup(char *str)
5685 sched_debug_enabled = 1;
5687 return 0;
5689 early_param("sched_debug", sched_debug_setup);
5691 static inline bool sched_debug(void)
5693 return sched_debug_enabled;
5696 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5697 struct cpumask *groupmask)
5699 struct sched_group *group = sd->groups;
5700 char str[256];
5702 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5703 cpumask_clear(groupmask);
5705 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5707 if (!(sd->flags & SD_LOAD_BALANCE)) {
5708 printk("does not load-balance\n");
5709 if (sd->parent)
5710 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5711 " has parent");
5712 return -1;
5715 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5717 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5718 printk(KERN_ERR "ERROR: domain->span does not contain "
5719 "CPU%d\n", cpu);
5721 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5722 printk(KERN_ERR "ERROR: domain->groups does not contain"
5723 " CPU%d\n", cpu);
5726 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5727 do {
5728 if (!group) {
5729 printk("\n");
5730 printk(KERN_ERR "ERROR: group is NULL\n");
5731 break;
5735 * Even though we initialize ->power to something semi-sane,
5736 * we leave power_orig unset. This allows us to detect if
5737 * domain iteration is still funny without causing /0 traps.
5739 if (!group->sgp->power_orig) {
5740 printk(KERN_CONT "\n");
5741 printk(KERN_ERR "ERROR: domain->cpu_power not "
5742 "set\n");
5743 break;
5746 if (!cpumask_weight(sched_group_cpus(group))) {
5747 printk(KERN_CONT "\n");
5748 printk(KERN_ERR "ERROR: empty group\n");
5749 break;
5752 if (!(sd->flags & SD_OVERLAP) &&
5753 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5754 printk(KERN_CONT "\n");
5755 printk(KERN_ERR "ERROR: repeated CPUs\n");
5756 break;
5759 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5761 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5763 printk(KERN_CONT " %s", str);
5764 if (group->sgp->power != SCHED_POWER_SCALE) {
5765 printk(KERN_CONT " (cpu_power = %d)",
5766 group->sgp->power);
5769 group = group->next;
5770 } while (group != sd->groups);
5771 printk(KERN_CONT "\n");
5773 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5774 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5776 if (sd->parent &&
5777 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5778 printk(KERN_ERR "ERROR: parent span is not a superset "
5779 "of domain->span\n");
5780 return 0;
5783 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5785 int level = 0;
5787 if (!sched_debug_enabled)
5788 return;
5790 if (!sd) {
5791 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5792 return;
5795 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5797 for (;;) {
5798 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5799 break;
5800 level++;
5801 sd = sd->parent;
5802 if (!sd)
5803 break;
5806 #else /* !CONFIG_SCHED_DEBUG */
5807 # define sched_domain_debug(sd, cpu) do { } while (0)
5808 static inline bool sched_debug(void)
5810 return false;
5812 #endif /* CONFIG_SCHED_DEBUG */
5814 static int sd_degenerate(struct sched_domain *sd)
5816 if (cpumask_weight(sched_domain_span(sd)) == 1)
5817 return 1;
5819 /* Following flags need at least 2 groups */
5820 if (sd->flags & (SD_LOAD_BALANCE |
5821 SD_BALANCE_NEWIDLE |
5822 SD_BALANCE_FORK |
5823 SD_BALANCE_EXEC |
5824 SD_SHARE_CPUPOWER |
5825 SD_SHARE_PKG_RESOURCES)) {
5826 if (sd->groups != sd->groups->next)
5827 return 0;
5830 /* Following flags don't use groups */
5831 if (sd->flags & (SD_WAKE_AFFINE))
5832 return 0;
5834 return 1;
5837 static int
5838 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5840 unsigned long cflags = sd->flags, pflags = parent->flags;
5842 if (sd_degenerate(parent))
5843 return 1;
5845 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5846 return 0;
5848 /* Flags needing groups don't count if only 1 group in parent */
5849 if (parent->groups == parent->groups->next) {
5850 pflags &= ~(SD_LOAD_BALANCE |
5851 SD_BALANCE_NEWIDLE |
5852 SD_BALANCE_FORK |
5853 SD_BALANCE_EXEC |
5854 SD_SHARE_CPUPOWER |
5855 SD_SHARE_PKG_RESOURCES);
5856 if (nr_node_ids == 1)
5857 pflags &= ~SD_SERIALIZE;
5859 if (~cflags & pflags)
5860 return 0;
5862 return 1;
5865 static void free_rootdomain(struct rcu_head *rcu)
5867 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5869 cpupri_cleanup(&rd->cpupri);
5870 free_cpumask_var(rd->rto_mask);
5871 free_cpumask_var(rd->online);
5872 free_cpumask_var(rd->span);
5873 kfree(rd);
5876 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5878 struct root_domain *old_rd = NULL;
5879 unsigned long flags;
5881 raw_spin_lock_irqsave(&rq->lock, flags);
5883 if (rq->rd) {
5884 old_rd = rq->rd;
5886 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5887 set_rq_offline(rq);
5889 cpumask_clear_cpu(rq->cpu, old_rd->span);
5892 * If we dont want to free the old_rt yet then
5893 * set old_rd to NULL to skip the freeing later
5894 * in this function:
5896 if (!atomic_dec_and_test(&old_rd->refcount))
5897 old_rd = NULL;
5900 atomic_inc(&rd->refcount);
5901 rq->rd = rd;
5903 cpumask_set_cpu(rq->cpu, rd->span);
5904 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5905 set_rq_online(rq);
5907 raw_spin_unlock_irqrestore(&rq->lock, flags);
5909 if (old_rd)
5910 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5913 static int init_rootdomain(struct root_domain *rd)
5915 memset(rd, 0, sizeof(*rd));
5917 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5918 goto out;
5919 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5920 goto free_span;
5921 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5922 goto free_online;
5924 if (cpupri_init(&rd->cpupri) != 0)
5925 goto free_rto_mask;
5926 return 0;
5928 free_rto_mask:
5929 free_cpumask_var(rd->rto_mask);
5930 free_online:
5931 free_cpumask_var(rd->online);
5932 free_span:
5933 free_cpumask_var(rd->span);
5934 out:
5935 return -ENOMEM;
5939 * By default the system creates a single root-domain with all cpus as
5940 * members (mimicking the global state we have today).
5942 struct root_domain def_root_domain;
5944 static void init_defrootdomain(void)
5946 init_rootdomain(&def_root_domain);
5948 atomic_set(&def_root_domain.refcount, 1);
5951 static struct root_domain *alloc_rootdomain(void)
5953 struct root_domain *rd;
5955 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5956 if (!rd)
5957 return NULL;
5959 if (init_rootdomain(rd) != 0) {
5960 kfree(rd);
5961 return NULL;
5964 return rd;
5967 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5969 struct sched_group *tmp, *first;
5971 if (!sg)
5972 return;
5974 first = sg;
5975 do {
5976 tmp = sg->next;
5978 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5979 kfree(sg->sgp);
5981 kfree(sg);
5982 sg = tmp;
5983 } while (sg != first);
5986 static void free_sched_domain(struct rcu_head *rcu)
5988 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5991 * If its an overlapping domain it has private groups, iterate and
5992 * nuke them all.
5994 if (sd->flags & SD_OVERLAP) {
5995 free_sched_groups(sd->groups, 1);
5996 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5997 kfree(sd->groups->sgp);
5998 kfree(sd->groups);
6000 kfree(sd);
6003 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6005 call_rcu(&sd->rcu, free_sched_domain);
6008 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6010 for (; sd; sd = sd->parent)
6011 destroy_sched_domain(sd, cpu);
6015 * Keep a special pointer to the highest sched_domain that has
6016 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6017 * allows us to avoid some pointer chasing select_idle_sibling().
6019 * Also keep a unique ID per domain (we use the first cpu number in
6020 * the cpumask of the domain), this allows us to quickly tell if
6021 * two cpus are in the same cache domain, see cpus_share_cache().
6023 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6024 DEFINE_PER_CPU(int, sd_llc_id);
6026 static void update_top_cache_domain(int cpu)
6028 struct sched_domain *sd;
6029 int id = cpu;
6031 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6032 if (sd)
6033 id = cpumask_first(sched_domain_span(sd));
6035 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6036 per_cpu(sd_llc_id, cpu) = id;
6040 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6041 * hold the hotplug lock.
6043 static void
6044 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6046 struct rq *rq = cpu_rq(cpu);
6047 struct sched_domain *tmp;
6049 /* Remove the sched domains which do not contribute to scheduling. */
6050 for (tmp = sd; tmp; ) {
6051 struct sched_domain *parent = tmp->parent;
6052 if (!parent)
6053 break;
6055 if (sd_parent_degenerate(tmp, parent)) {
6056 tmp->parent = parent->parent;
6057 if (parent->parent)
6058 parent->parent->child = tmp;
6059 destroy_sched_domain(parent, cpu);
6060 } else
6061 tmp = tmp->parent;
6064 if (sd && sd_degenerate(sd)) {
6065 tmp = sd;
6066 sd = sd->parent;
6067 destroy_sched_domain(tmp, cpu);
6068 if (sd)
6069 sd->child = NULL;
6072 sched_domain_debug(sd, cpu);
6074 rq_attach_root(rq, rd);
6075 tmp = rq->sd;
6076 rcu_assign_pointer(rq->sd, sd);
6077 destroy_sched_domains(tmp, cpu);
6079 update_top_cache_domain(cpu);
6082 /* cpus with isolated domains */
6083 static cpumask_var_t cpu_isolated_map;
6085 /* Setup the mask of cpus configured for isolated domains */
6086 static int __init isolated_cpu_setup(char *str)
6088 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6089 cpulist_parse(str, cpu_isolated_map);
6090 return 1;
6093 __setup("isolcpus=", isolated_cpu_setup);
6095 static const struct cpumask *cpu_cpu_mask(int cpu)
6097 return cpumask_of_node(cpu_to_node(cpu));
6100 struct sd_data {
6101 struct sched_domain **__percpu sd;
6102 struct sched_group **__percpu sg;
6103 struct sched_group_power **__percpu sgp;
6106 struct s_data {
6107 struct sched_domain ** __percpu sd;
6108 struct root_domain *rd;
6111 enum s_alloc {
6112 sa_rootdomain,
6113 sa_sd,
6114 sa_sd_storage,
6115 sa_none,
6118 struct sched_domain_topology_level;
6120 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6121 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6123 #define SDTL_OVERLAP 0x01
6125 struct sched_domain_topology_level {
6126 sched_domain_init_f init;
6127 sched_domain_mask_f mask;
6128 int flags;
6129 int numa_level;
6130 struct sd_data data;
6134 * Build an iteration mask that can exclude certain CPUs from the upwards
6135 * domain traversal.
6137 * Asymmetric node setups can result in situations where the domain tree is of
6138 * unequal depth, make sure to skip domains that already cover the entire
6139 * range.
6141 * In that case build_sched_domains() will have terminated the iteration early
6142 * and our sibling sd spans will be empty. Domains should always include the
6143 * cpu they're built on, so check that.
6146 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6148 const struct cpumask *span = sched_domain_span(sd);
6149 struct sd_data *sdd = sd->private;
6150 struct sched_domain *sibling;
6151 int i;
6153 for_each_cpu(i, span) {
6154 sibling = *per_cpu_ptr(sdd->sd, i);
6155 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6156 continue;
6158 cpumask_set_cpu(i, sched_group_mask(sg));
6163 * Return the canonical balance cpu for this group, this is the first cpu
6164 * of this group that's also in the iteration mask.
6166 int group_balance_cpu(struct sched_group *sg)
6168 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6171 static int
6172 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6174 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6175 const struct cpumask *span = sched_domain_span(sd);
6176 struct cpumask *covered = sched_domains_tmpmask;
6177 struct sd_data *sdd = sd->private;
6178 struct sched_domain *child;
6179 int i;
6181 cpumask_clear(covered);
6183 for_each_cpu(i, span) {
6184 struct cpumask *sg_span;
6186 if (cpumask_test_cpu(i, covered))
6187 continue;
6189 child = *per_cpu_ptr(sdd->sd, i);
6191 /* See the comment near build_group_mask(). */
6192 if (!cpumask_test_cpu(i, sched_domain_span(child)))
6193 continue;
6195 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6196 GFP_KERNEL, cpu_to_node(cpu));
6198 if (!sg)
6199 goto fail;
6201 sg_span = sched_group_cpus(sg);
6202 if (child->child) {
6203 child = child->child;
6204 cpumask_copy(sg_span, sched_domain_span(child));
6205 } else
6206 cpumask_set_cpu(i, sg_span);
6208 cpumask_or(covered, covered, sg_span);
6210 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
6211 if (atomic_inc_return(&sg->sgp->ref) == 1)
6212 build_group_mask(sd, sg);
6215 * Initialize sgp->power such that even if we mess up the
6216 * domains and no possible iteration will get us here, we won't
6217 * die on a /0 trap.
6219 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
6222 * Make sure the first group of this domain contains the
6223 * canonical balance cpu. Otherwise the sched_domain iteration
6224 * breaks. See update_sg_lb_stats().
6226 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6227 group_balance_cpu(sg) == cpu)
6228 groups = sg;
6230 if (!first)
6231 first = sg;
6232 if (last)
6233 last->next = sg;
6234 last = sg;
6235 last->next = first;
6237 sd->groups = groups;
6239 return 0;
6241 fail:
6242 free_sched_groups(first, 0);
6244 return -ENOMEM;
6247 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6249 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6250 struct sched_domain *child = sd->child;
6252 if (child)
6253 cpu = cpumask_first(sched_domain_span(child));
6255 if (sg) {
6256 *sg = *per_cpu_ptr(sdd->sg, cpu);
6257 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6258 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6261 return cpu;
6265 * build_sched_groups will build a circular linked list of the groups
6266 * covered by the given span, and will set each group's ->cpumask correctly,
6267 * and ->cpu_power to 0.
6269 * Assumes the sched_domain tree is fully constructed
6271 static int
6272 build_sched_groups(struct sched_domain *sd, int cpu)
6274 struct sched_group *first = NULL, *last = NULL;
6275 struct sd_data *sdd = sd->private;
6276 const struct cpumask *span = sched_domain_span(sd);
6277 struct cpumask *covered;
6278 int i;
6280 get_group(cpu, sdd, &sd->groups);
6281 atomic_inc(&sd->groups->ref);
6283 if (cpu != cpumask_first(sched_domain_span(sd)))
6284 return 0;
6286 lockdep_assert_held(&sched_domains_mutex);
6287 covered = sched_domains_tmpmask;
6289 cpumask_clear(covered);
6291 for_each_cpu(i, span) {
6292 struct sched_group *sg;
6293 int group = get_group(i, sdd, &sg);
6294 int j;
6296 if (cpumask_test_cpu(i, covered))
6297 continue;
6299 cpumask_clear(sched_group_cpus(sg));
6300 sg->sgp->power = 0;
6301 cpumask_setall(sched_group_mask(sg));
6303 for_each_cpu(j, span) {
6304 if (get_group(j, sdd, NULL) != group)
6305 continue;
6307 cpumask_set_cpu(j, covered);
6308 cpumask_set_cpu(j, sched_group_cpus(sg));
6311 if (!first)
6312 first = sg;
6313 if (last)
6314 last->next = sg;
6315 last = sg;
6317 last->next = first;
6319 return 0;
6323 * Initialize sched groups cpu_power.
6325 * cpu_power indicates the capacity of sched group, which is used while
6326 * distributing the load between different sched groups in a sched domain.
6327 * Typically cpu_power for all the groups in a sched domain will be same unless
6328 * there are asymmetries in the topology. If there are asymmetries, group
6329 * having more cpu_power will pickup more load compared to the group having
6330 * less cpu_power.
6332 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6334 struct sched_group *sg = sd->groups;
6336 WARN_ON(!sd || !sg);
6338 do {
6339 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6340 sg = sg->next;
6341 } while (sg != sd->groups);
6343 if (cpu != group_balance_cpu(sg))
6344 return;
6346 update_group_power(sd, cpu);
6347 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6350 int __weak arch_sd_sibling_asym_packing(void)
6352 return 0*SD_ASYM_PACKING;
6356 * Initializers for schedule domains
6357 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6360 #ifdef CONFIG_SCHED_DEBUG
6361 # define SD_INIT_NAME(sd, type) sd->name = #type
6362 #else
6363 # define SD_INIT_NAME(sd, type) do { } while (0)
6364 #endif
6366 #define SD_INIT_FUNC(type) \
6367 static noinline struct sched_domain * \
6368 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6370 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6371 *sd = SD_##type##_INIT; \
6372 SD_INIT_NAME(sd, type); \
6373 sd->private = &tl->data; \
6374 return sd; \
6377 SD_INIT_FUNC(CPU)
6378 #ifdef CONFIG_SCHED_SMT
6379 SD_INIT_FUNC(SIBLING)
6380 #endif
6381 #ifdef CONFIG_SCHED_MC
6382 SD_INIT_FUNC(MC)
6383 #endif
6384 #ifdef CONFIG_SCHED_BOOK
6385 SD_INIT_FUNC(BOOK)
6386 #endif
6388 static int default_relax_domain_level = -1;
6389 int sched_domain_level_max;
6391 static int __init setup_relax_domain_level(char *str)
6393 if (kstrtoint(str, 0, &default_relax_domain_level))
6394 pr_warn("Unable to set relax_domain_level\n");
6396 return 1;
6398 __setup("relax_domain_level=", setup_relax_domain_level);
6400 static void set_domain_attribute(struct sched_domain *sd,
6401 struct sched_domain_attr *attr)
6403 int request;
6405 if (!attr || attr->relax_domain_level < 0) {
6406 if (default_relax_domain_level < 0)
6407 return;
6408 else
6409 request = default_relax_domain_level;
6410 } else
6411 request = attr->relax_domain_level;
6412 if (request < sd->level) {
6413 /* turn off idle balance on this domain */
6414 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6415 } else {
6416 /* turn on idle balance on this domain */
6417 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6421 static void __sdt_free(const struct cpumask *cpu_map);
6422 static int __sdt_alloc(const struct cpumask *cpu_map);
6424 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6425 const struct cpumask *cpu_map)
6427 switch (what) {
6428 case sa_rootdomain:
6429 if (!atomic_read(&d->rd->refcount))
6430 free_rootdomain(&d->rd->rcu); /* fall through */
6431 case sa_sd:
6432 free_percpu(d->sd); /* fall through */
6433 case sa_sd_storage:
6434 __sdt_free(cpu_map); /* fall through */
6435 case sa_none:
6436 break;
6440 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6441 const struct cpumask *cpu_map)
6443 memset(d, 0, sizeof(*d));
6445 if (__sdt_alloc(cpu_map))
6446 return sa_sd_storage;
6447 d->sd = alloc_percpu(struct sched_domain *);
6448 if (!d->sd)
6449 return sa_sd_storage;
6450 d->rd = alloc_rootdomain();
6451 if (!d->rd)
6452 return sa_sd;
6453 return sa_rootdomain;
6457 * NULL the sd_data elements we've used to build the sched_domain and
6458 * sched_group structure so that the subsequent __free_domain_allocs()
6459 * will not free the data we're using.
6461 static void claim_allocations(int cpu, struct sched_domain *sd)
6463 struct sd_data *sdd = sd->private;
6465 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6466 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6468 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6469 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6471 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6472 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6475 #ifdef CONFIG_SCHED_SMT
6476 static const struct cpumask *cpu_smt_mask(int cpu)
6478 return topology_thread_cpumask(cpu);
6480 #endif
6483 * Topology list, bottom-up.
6485 static struct sched_domain_topology_level default_topology[] = {
6486 #ifdef CONFIG_SCHED_SMT
6487 { sd_init_SIBLING, cpu_smt_mask, },
6488 #endif
6489 #ifdef CONFIG_SCHED_MC
6490 { sd_init_MC, cpu_coregroup_mask, },
6491 #endif
6492 #ifdef CONFIG_SCHED_BOOK
6493 { sd_init_BOOK, cpu_book_mask, },
6494 #endif
6495 { sd_init_CPU, cpu_cpu_mask, },
6496 { NULL, },
6499 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6501 #ifdef CONFIG_NUMA
6503 static int sched_domains_numa_levels;
6504 static int *sched_domains_numa_distance;
6505 static struct cpumask ***sched_domains_numa_masks;
6506 static int sched_domains_curr_level;
6508 static inline int sd_local_flags(int level)
6510 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6511 return 0;
6513 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6516 static struct sched_domain *
6517 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6519 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6520 int level = tl->numa_level;
6521 int sd_weight = cpumask_weight(
6522 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6524 *sd = (struct sched_domain){
6525 .min_interval = sd_weight,
6526 .max_interval = 2*sd_weight,
6527 .busy_factor = 32,
6528 .imbalance_pct = 125,
6529 .cache_nice_tries = 2,
6530 .busy_idx = 3,
6531 .idle_idx = 2,
6532 .newidle_idx = 0,
6533 .wake_idx = 0,
6534 .forkexec_idx = 0,
6536 .flags = 1*SD_LOAD_BALANCE
6537 | 1*SD_BALANCE_NEWIDLE
6538 | 0*SD_BALANCE_EXEC
6539 | 0*SD_BALANCE_FORK
6540 | 0*SD_BALANCE_WAKE
6541 | 0*SD_WAKE_AFFINE
6542 | 0*SD_PREFER_LOCAL
6543 | 0*SD_SHARE_CPUPOWER
6544 | 0*SD_SHARE_PKG_RESOURCES
6545 | 1*SD_SERIALIZE
6546 | 0*SD_PREFER_SIBLING
6547 | sd_local_flags(level)
6549 .last_balance = jiffies,
6550 .balance_interval = sd_weight,
6552 SD_INIT_NAME(sd, NUMA);
6553 sd->private = &tl->data;
6556 * Ugly hack to pass state to sd_numa_mask()...
6558 sched_domains_curr_level = tl->numa_level;
6560 return sd;
6563 static const struct cpumask *sd_numa_mask(int cpu)
6565 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6568 static void sched_numa_warn(const char *str)
6570 static int done = false;
6571 int i,j;
6573 if (done)
6574 return;
6576 done = true;
6578 printk(KERN_WARNING "ERROR: %s\n\n", str);
6580 for (i = 0; i < nr_node_ids; i++) {
6581 printk(KERN_WARNING " ");
6582 for (j = 0; j < nr_node_ids; j++)
6583 printk(KERN_CONT "%02d ", node_distance(i,j));
6584 printk(KERN_CONT "\n");
6586 printk(KERN_WARNING "\n");
6589 static bool find_numa_distance(int distance)
6591 int i;
6593 if (distance == node_distance(0, 0))
6594 return true;
6596 for (i = 0; i < sched_domains_numa_levels; i++) {
6597 if (sched_domains_numa_distance[i] == distance)
6598 return true;
6601 return false;
6604 static void sched_init_numa(void)
6606 int next_distance, curr_distance = node_distance(0, 0);
6607 struct sched_domain_topology_level *tl;
6608 int level = 0;
6609 int i, j, k;
6611 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6612 if (!sched_domains_numa_distance)
6613 return;
6616 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6617 * unique distances in the node_distance() table.
6619 * Assumes node_distance(0,j) includes all distances in
6620 * node_distance(i,j) in order to avoid cubic time.
6622 next_distance = curr_distance;
6623 for (i = 0; i < nr_node_ids; i++) {
6624 for (j = 0; j < nr_node_ids; j++) {
6625 for (k = 0; k < nr_node_ids; k++) {
6626 int distance = node_distance(i, k);
6628 if (distance > curr_distance &&
6629 (distance < next_distance ||
6630 next_distance == curr_distance))
6631 next_distance = distance;
6634 * While not a strong assumption it would be nice to know
6635 * about cases where if node A is connected to B, B is not
6636 * equally connected to A.
6638 if (sched_debug() && node_distance(k, i) != distance)
6639 sched_numa_warn("Node-distance not symmetric");
6641 if (sched_debug() && i && !find_numa_distance(distance))
6642 sched_numa_warn("Node-0 not representative");
6644 if (next_distance != curr_distance) {
6645 sched_domains_numa_distance[level++] = next_distance;
6646 sched_domains_numa_levels = level;
6647 curr_distance = next_distance;
6648 } else break;
6652 * In case of sched_debug() we verify the above assumption.
6654 if (!sched_debug())
6655 break;
6658 * 'level' contains the number of unique distances, excluding the
6659 * identity distance node_distance(i,i).
6661 * The sched_domains_nume_distance[] array includes the actual distance
6662 * numbers.
6665 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6666 if (!sched_domains_numa_masks)
6667 return;
6670 * Now for each level, construct a mask per node which contains all
6671 * cpus of nodes that are that many hops away from us.
6673 for (i = 0; i < level; i++) {
6674 sched_domains_numa_masks[i] =
6675 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6676 if (!sched_domains_numa_masks[i])
6677 return;
6679 for (j = 0; j < nr_node_ids; j++) {
6680 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6681 if (!mask)
6682 return;
6684 sched_domains_numa_masks[i][j] = mask;
6686 for (k = 0; k < nr_node_ids; k++) {
6687 if (node_distance(j, k) > sched_domains_numa_distance[i])
6688 continue;
6690 cpumask_or(mask, mask, cpumask_of_node(k));
6695 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6696 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6697 if (!tl)
6698 return;
6701 * Copy the default topology bits..
6703 for (i = 0; default_topology[i].init; i++)
6704 tl[i] = default_topology[i];
6707 * .. and append 'j' levels of NUMA goodness.
6709 for (j = 0; j < level; i++, j++) {
6710 tl[i] = (struct sched_domain_topology_level){
6711 .init = sd_numa_init,
6712 .mask = sd_numa_mask,
6713 .flags = SDTL_OVERLAP,
6714 .numa_level = j,
6718 sched_domain_topology = tl;
6720 #else
6721 static inline void sched_init_numa(void)
6724 #endif /* CONFIG_NUMA */
6726 static int __sdt_alloc(const struct cpumask *cpu_map)
6728 struct sched_domain_topology_level *tl;
6729 int j;
6731 for (tl = sched_domain_topology; tl->init; tl++) {
6732 struct sd_data *sdd = &tl->data;
6734 sdd->sd = alloc_percpu(struct sched_domain *);
6735 if (!sdd->sd)
6736 return -ENOMEM;
6738 sdd->sg = alloc_percpu(struct sched_group *);
6739 if (!sdd->sg)
6740 return -ENOMEM;
6742 sdd->sgp = alloc_percpu(struct sched_group_power *);
6743 if (!sdd->sgp)
6744 return -ENOMEM;
6746 for_each_cpu(j, cpu_map) {
6747 struct sched_domain *sd;
6748 struct sched_group *sg;
6749 struct sched_group_power *sgp;
6751 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6752 GFP_KERNEL, cpu_to_node(j));
6753 if (!sd)
6754 return -ENOMEM;
6756 *per_cpu_ptr(sdd->sd, j) = sd;
6758 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6759 GFP_KERNEL, cpu_to_node(j));
6760 if (!sg)
6761 return -ENOMEM;
6763 sg->next = sg;
6765 *per_cpu_ptr(sdd->sg, j) = sg;
6767 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6768 GFP_KERNEL, cpu_to_node(j));
6769 if (!sgp)
6770 return -ENOMEM;
6772 *per_cpu_ptr(sdd->sgp, j) = sgp;
6776 return 0;
6779 static void __sdt_free(const struct cpumask *cpu_map)
6781 struct sched_domain_topology_level *tl;
6782 int j;
6784 for (tl = sched_domain_topology; tl->init; tl++) {
6785 struct sd_data *sdd = &tl->data;
6787 for_each_cpu(j, cpu_map) {
6788 struct sched_domain *sd;
6790 if (sdd->sd) {
6791 sd = *per_cpu_ptr(sdd->sd, j);
6792 if (sd && (sd->flags & SD_OVERLAP))
6793 free_sched_groups(sd->groups, 0);
6794 kfree(*per_cpu_ptr(sdd->sd, j));
6797 if (sdd->sg)
6798 kfree(*per_cpu_ptr(sdd->sg, j));
6799 if (sdd->sgp)
6800 kfree(*per_cpu_ptr(sdd->sgp, j));
6802 free_percpu(sdd->sd);
6803 sdd->sd = NULL;
6804 free_percpu(sdd->sg);
6805 sdd->sg = NULL;
6806 free_percpu(sdd->sgp);
6807 sdd->sgp = NULL;
6811 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6812 struct s_data *d, const struct cpumask *cpu_map,
6813 struct sched_domain_attr *attr, struct sched_domain *child,
6814 int cpu)
6816 struct sched_domain *sd = tl->init(tl, cpu);
6817 if (!sd)
6818 return child;
6820 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6821 if (child) {
6822 sd->level = child->level + 1;
6823 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6824 child->parent = sd;
6826 sd->child = child;
6827 set_domain_attribute(sd, attr);
6829 return sd;
6833 * Build sched domains for a given set of cpus and attach the sched domains
6834 * to the individual cpus
6836 static int build_sched_domains(const struct cpumask *cpu_map,
6837 struct sched_domain_attr *attr)
6839 enum s_alloc alloc_state = sa_none;
6840 struct sched_domain *sd;
6841 struct s_data d;
6842 int i, ret = -ENOMEM;
6844 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6845 if (alloc_state != sa_rootdomain)
6846 goto error;
6848 /* Set up domains for cpus specified by the cpu_map. */
6849 for_each_cpu(i, cpu_map) {
6850 struct sched_domain_topology_level *tl;
6852 sd = NULL;
6853 for (tl = sched_domain_topology; tl->init; tl++) {
6854 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6855 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6856 sd->flags |= SD_OVERLAP;
6857 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6858 break;
6861 while (sd->child)
6862 sd = sd->child;
6864 *per_cpu_ptr(d.sd, i) = sd;
6867 /* Build the groups for the domains */
6868 for_each_cpu(i, cpu_map) {
6869 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6870 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6871 if (sd->flags & SD_OVERLAP) {
6872 if (build_overlap_sched_groups(sd, i))
6873 goto error;
6874 } else {
6875 if (build_sched_groups(sd, i))
6876 goto error;
6881 /* Calculate CPU power for physical packages and nodes */
6882 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6883 if (!cpumask_test_cpu(i, cpu_map))
6884 continue;
6886 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6887 claim_allocations(i, sd);
6888 init_sched_groups_power(i, sd);
6892 /* Attach the domains */
6893 rcu_read_lock();
6894 for_each_cpu(i, cpu_map) {
6895 sd = *per_cpu_ptr(d.sd, i);
6896 cpu_attach_domain(sd, d.rd, i);
6898 rcu_read_unlock();
6900 ret = 0;
6901 error:
6902 __free_domain_allocs(&d, alloc_state, cpu_map);
6903 return ret;
6906 static cpumask_var_t *doms_cur; /* current sched domains */
6907 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6908 static struct sched_domain_attr *dattr_cur;
6909 /* attribues of custom domains in 'doms_cur' */
6912 * Special case: If a kmalloc of a doms_cur partition (array of
6913 * cpumask) fails, then fallback to a single sched domain,
6914 * as determined by the single cpumask fallback_doms.
6916 static cpumask_var_t fallback_doms;
6919 * arch_update_cpu_topology lets virtualized architectures update the
6920 * cpu core maps. It is supposed to return 1 if the topology changed
6921 * or 0 if it stayed the same.
6923 int __attribute__((weak)) arch_update_cpu_topology(void)
6925 return 0;
6928 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6930 int i;
6931 cpumask_var_t *doms;
6933 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6934 if (!doms)
6935 return NULL;
6936 for (i = 0; i < ndoms; i++) {
6937 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6938 free_sched_domains(doms, i);
6939 return NULL;
6942 return doms;
6945 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6947 unsigned int i;
6948 for (i = 0; i < ndoms; i++)
6949 free_cpumask_var(doms[i]);
6950 kfree(doms);
6954 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6955 * For now this just excludes isolated cpus, but could be used to
6956 * exclude other special cases in the future.
6958 static int init_sched_domains(const struct cpumask *cpu_map)
6960 int err;
6962 arch_update_cpu_topology();
6963 ndoms_cur = 1;
6964 doms_cur = alloc_sched_domains(ndoms_cur);
6965 if (!doms_cur)
6966 doms_cur = &fallback_doms;
6967 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6968 err = build_sched_domains(doms_cur[0], NULL);
6969 register_sched_domain_sysctl();
6971 return err;
6975 * Detach sched domains from a group of cpus specified in cpu_map
6976 * These cpus will now be attached to the NULL domain
6978 static void detach_destroy_domains(const struct cpumask *cpu_map)
6980 int i;
6982 rcu_read_lock();
6983 for_each_cpu(i, cpu_map)
6984 cpu_attach_domain(NULL, &def_root_domain, i);
6985 rcu_read_unlock();
6988 /* handle null as "default" */
6989 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6990 struct sched_domain_attr *new, int idx_new)
6992 struct sched_domain_attr tmp;
6994 /* fast path */
6995 if (!new && !cur)
6996 return 1;
6998 tmp = SD_ATTR_INIT;
6999 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7000 new ? (new + idx_new) : &tmp,
7001 sizeof(struct sched_domain_attr));
7005 * Partition sched domains as specified by the 'ndoms_new'
7006 * cpumasks in the array doms_new[] of cpumasks. This compares
7007 * doms_new[] to the current sched domain partitioning, doms_cur[].
7008 * It destroys each deleted domain and builds each new domain.
7010 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7011 * The masks don't intersect (don't overlap.) We should setup one
7012 * sched domain for each mask. CPUs not in any of the cpumasks will
7013 * not be load balanced. If the same cpumask appears both in the
7014 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7015 * it as it is.
7017 * The passed in 'doms_new' should be allocated using
7018 * alloc_sched_domains. This routine takes ownership of it and will
7019 * free_sched_domains it when done with it. If the caller failed the
7020 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7021 * and partition_sched_domains() will fallback to the single partition
7022 * 'fallback_doms', it also forces the domains to be rebuilt.
7024 * If doms_new == NULL it will be replaced with cpu_online_mask.
7025 * ndoms_new == 0 is a special case for destroying existing domains,
7026 * and it will not create the default domain.
7028 * Call with hotplug lock held
7030 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7031 struct sched_domain_attr *dattr_new)
7033 int i, j, n;
7034 int new_topology;
7036 mutex_lock(&sched_domains_mutex);
7038 /* always unregister in case we don't destroy any domains */
7039 unregister_sched_domain_sysctl();
7041 /* Let architecture update cpu core mappings. */
7042 new_topology = arch_update_cpu_topology();
7044 n = doms_new ? ndoms_new : 0;
7046 /* Destroy deleted domains */
7047 for (i = 0; i < ndoms_cur; i++) {
7048 for (j = 0; j < n && !new_topology; j++) {
7049 if (cpumask_equal(doms_cur[i], doms_new[j])
7050 && dattrs_equal(dattr_cur, i, dattr_new, j))
7051 goto match1;
7053 /* no match - a current sched domain not in new doms_new[] */
7054 detach_destroy_domains(doms_cur[i]);
7055 match1:
7059 if (doms_new == NULL) {
7060 ndoms_cur = 0;
7061 doms_new = &fallback_doms;
7062 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7063 WARN_ON_ONCE(dattr_new);
7066 /* Build new domains */
7067 for (i = 0; i < ndoms_new; i++) {
7068 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7069 if (cpumask_equal(doms_new[i], doms_cur[j])
7070 && dattrs_equal(dattr_new, i, dattr_cur, j))
7071 goto match2;
7073 /* no match - add a new doms_new */
7074 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7075 match2:
7079 /* Remember the new sched domains */
7080 if (doms_cur != &fallback_doms)
7081 free_sched_domains(doms_cur, ndoms_cur);
7082 kfree(dattr_cur); /* kfree(NULL) is safe */
7083 doms_cur = doms_new;
7084 dattr_cur = dattr_new;
7085 ndoms_cur = ndoms_new;
7087 register_sched_domain_sysctl();
7089 mutex_unlock(&sched_domains_mutex);
7092 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7095 * Update cpusets according to cpu_active mask. If cpusets are
7096 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7097 * around partition_sched_domains().
7099 * If we come here as part of a suspend/resume, don't touch cpusets because we
7100 * want to restore it back to its original state upon resume anyway.
7102 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7103 void *hcpu)
7105 switch (action) {
7106 case CPU_ONLINE_FROZEN:
7107 case CPU_DOWN_FAILED_FROZEN:
7110 * num_cpus_frozen tracks how many CPUs are involved in suspend
7111 * resume sequence. As long as this is not the last online
7112 * operation in the resume sequence, just build a single sched
7113 * domain, ignoring cpusets.
7115 num_cpus_frozen--;
7116 if (likely(num_cpus_frozen)) {
7117 partition_sched_domains(1, NULL, NULL);
7118 break;
7122 * This is the last CPU online operation. So fall through and
7123 * restore the original sched domains by considering the
7124 * cpuset configurations.
7127 case CPU_ONLINE:
7128 case CPU_DOWN_FAILED:
7129 cpuset_update_active_cpus(true);
7130 break;
7131 default:
7132 return NOTIFY_DONE;
7134 return NOTIFY_OK;
7137 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7138 void *hcpu)
7140 switch (action) {
7141 case CPU_DOWN_PREPARE:
7142 cpuset_update_active_cpus(false);
7143 break;
7144 case CPU_DOWN_PREPARE_FROZEN:
7145 num_cpus_frozen++;
7146 partition_sched_domains(1, NULL, NULL);
7147 break;
7148 default:
7149 return NOTIFY_DONE;
7151 return NOTIFY_OK;
7154 void __init sched_init_smp(void)
7156 cpumask_var_t non_isolated_cpus;
7158 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7159 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7161 sched_init_numa();
7163 get_online_cpus();
7164 mutex_lock(&sched_domains_mutex);
7165 init_sched_domains(cpu_active_mask);
7166 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7167 if (cpumask_empty(non_isolated_cpus))
7168 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7169 mutex_unlock(&sched_domains_mutex);
7170 put_online_cpus();
7172 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7173 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7175 /* RT runtime code needs to handle some hotplug events */
7176 hotcpu_notifier(update_runtime, 0);
7178 init_hrtick();
7180 /* Move init over to a non-isolated CPU */
7181 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7182 BUG();
7183 sched_init_granularity();
7184 free_cpumask_var(non_isolated_cpus);
7186 init_sched_rt_class();
7188 #else
7189 void __init sched_init_smp(void)
7191 sched_init_granularity();
7193 #endif /* CONFIG_SMP */
7195 const_debug unsigned int sysctl_timer_migration = 1;
7197 int in_sched_functions(unsigned long addr)
7199 return in_lock_functions(addr) ||
7200 (addr >= (unsigned long)__sched_text_start
7201 && addr < (unsigned long)__sched_text_end);
7204 #ifdef CONFIG_CGROUP_SCHED
7205 struct task_group root_task_group;
7206 LIST_HEAD(task_groups);
7207 #endif
7209 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
7211 void __init sched_init(void)
7213 int i, j;
7214 unsigned long alloc_size = 0, ptr;
7216 #ifdef CONFIG_FAIR_GROUP_SCHED
7217 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7218 #endif
7219 #ifdef CONFIG_RT_GROUP_SCHED
7220 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7221 #endif
7222 #ifdef CONFIG_CPUMASK_OFFSTACK
7223 alloc_size += num_possible_cpus() * cpumask_size();
7224 #endif
7225 if (alloc_size) {
7226 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7228 #ifdef CONFIG_FAIR_GROUP_SCHED
7229 root_task_group.se = (struct sched_entity **)ptr;
7230 ptr += nr_cpu_ids * sizeof(void **);
7232 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7233 ptr += nr_cpu_ids * sizeof(void **);
7235 #endif /* CONFIG_FAIR_GROUP_SCHED */
7236 #ifdef CONFIG_RT_GROUP_SCHED
7237 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7238 ptr += nr_cpu_ids * sizeof(void **);
7240 root_task_group.rt_rq = (struct rt_rq **)ptr;
7241 ptr += nr_cpu_ids * sizeof(void **);
7243 #endif /* CONFIG_RT_GROUP_SCHED */
7244 #ifdef CONFIG_CPUMASK_OFFSTACK
7245 for_each_possible_cpu(i) {
7246 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7247 ptr += cpumask_size();
7249 #endif /* CONFIG_CPUMASK_OFFSTACK */
7252 #ifdef CONFIG_SMP
7253 init_defrootdomain();
7254 #endif
7256 init_rt_bandwidth(&def_rt_bandwidth,
7257 global_rt_period(), global_rt_runtime());
7259 #ifdef CONFIG_RT_GROUP_SCHED
7260 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7261 global_rt_period(), global_rt_runtime());
7262 #endif /* CONFIG_RT_GROUP_SCHED */
7264 #ifdef CONFIG_CGROUP_SCHED
7265 list_add(&root_task_group.list, &task_groups);
7266 INIT_LIST_HEAD(&root_task_group.children);
7267 INIT_LIST_HEAD(&root_task_group.siblings);
7268 autogroup_init(&init_task);
7270 #endif /* CONFIG_CGROUP_SCHED */
7272 #ifdef CONFIG_CGROUP_CPUACCT
7273 root_cpuacct.cpustat = &kernel_cpustat;
7274 root_cpuacct.cpuusage = alloc_percpu(u64);
7275 /* Too early, not expected to fail */
7276 BUG_ON(!root_cpuacct.cpuusage);
7277 #endif
7278 for_each_possible_cpu(i) {
7279 struct rq *rq;
7281 rq = cpu_rq(i);
7282 raw_spin_lock_init(&rq->lock);
7283 rq->nr_running = 0;
7284 rq->calc_load_active = 0;
7285 rq->calc_load_update = jiffies + LOAD_FREQ;
7286 init_cfs_rq(&rq->cfs);
7287 init_rt_rq(&rq->rt, rq);
7288 #ifdef CONFIG_FAIR_GROUP_SCHED
7289 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7290 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7292 * How much cpu bandwidth does root_task_group get?
7294 * In case of task-groups formed thr' the cgroup filesystem, it
7295 * gets 100% of the cpu resources in the system. This overall
7296 * system cpu resource is divided among the tasks of
7297 * root_task_group and its child task-groups in a fair manner,
7298 * based on each entity's (task or task-group's) weight
7299 * (se->load.weight).
7301 * In other words, if root_task_group has 10 tasks of weight
7302 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7303 * then A0's share of the cpu resource is:
7305 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7307 * We achieve this by letting root_task_group's tasks sit
7308 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7310 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7311 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7312 #endif /* CONFIG_FAIR_GROUP_SCHED */
7314 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7315 #ifdef CONFIG_RT_GROUP_SCHED
7316 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7317 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7318 #endif
7320 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7321 rq->cpu_load[j] = 0;
7323 rq->last_load_update_tick = jiffies;
7325 #ifdef CONFIG_SMP
7326 rq->sd = NULL;
7327 rq->rd = NULL;
7328 rq->cpu_power = SCHED_POWER_SCALE;
7329 rq->post_schedule = 0;
7330 rq->active_balance = 0;
7331 rq->next_balance = jiffies;
7332 rq->push_cpu = 0;
7333 rq->cpu = i;
7334 rq->online = 0;
7335 rq->idle_stamp = 0;
7336 rq->avg_idle = 2*sysctl_sched_migration_cost;
7338 INIT_LIST_HEAD(&rq->cfs_tasks);
7340 rq_attach_root(rq, &def_root_domain);
7341 #ifdef CONFIG_NO_HZ
7342 rq->nohz_flags = 0;
7343 #endif
7344 #endif
7345 init_rq_hrtick(rq);
7346 atomic_set(&rq->nr_iowait, 0);
7349 set_load_weight(&init_task);
7351 #ifdef CONFIG_PREEMPT_NOTIFIERS
7352 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7353 #endif
7355 #ifdef CONFIG_RT_MUTEXES
7356 plist_head_init(&init_task.pi_waiters);
7357 #endif
7360 * The boot idle thread does lazy MMU switching as well:
7362 atomic_inc(&init_mm.mm_count);
7363 enter_lazy_tlb(&init_mm, current);
7366 * Make us the idle thread. Technically, schedule() should not be
7367 * called from this thread, however somewhere below it might be,
7368 * but because we are the idle thread, we just pick up running again
7369 * when this runqueue becomes "idle".
7371 init_idle(current, smp_processor_id());
7373 calc_load_update = jiffies + LOAD_FREQ;
7376 * During early bootup we pretend to be a normal task:
7378 current->sched_class = &fair_sched_class;
7380 #ifdef CONFIG_SMP
7381 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7382 /* May be allocated at isolcpus cmdline parse time */
7383 if (cpu_isolated_map == NULL)
7384 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7385 idle_thread_set_boot_cpu();
7386 #endif
7387 init_sched_fair_class();
7389 scheduler_running = 1;
7392 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7393 static inline int preempt_count_equals(int preempt_offset)
7395 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7397 return (nested == preempt_offset);
7400 void __might_sleep(const char *file, int line, int preempt_offset)
7402 static unsigned long prev_jiffy; /* ratelimiting */
7404 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7405 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7406 system_state != SYSTEM_RUNNING || oops_in_progress)
7407 return;
7408 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7409 return;
7410 prev_jiffy = jiffies;
7412 printk(KERN_ERR
7413 "BUG: sleeping function called from invalid context at %s:%d\n",
7414 file, line);
7415 printk(KERN_ERR
7416 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7417 in_atomic(), irqs_disabled(),
7418 current->pid, current->comm);
7420 debug_show_held_locks(current);
7421 if (irqs_disabled())
7422 print_irqtrace_events(current);
7423 dump_stack();
7425 EXPORT_SYMBOL(__might_sleep);
7426 #endif
7428 #ifdef CONFIG_MAGIC_SYSRQ
7429 static void normalize_task(struct rq *rq, struct task_struct *p)
7431 const struct sched_class *prev_class = p->sched_class;
7432 int old_prio = p->prio;
7433 int on_rq;
7435 on_rq = p->on_rq;
7436 if (on_rq)
7437 dequeue_task(rq, p, 0);
7438 __setscheduler(rq, p, SCHED_NORMAL, 0);
7439 if (on_rq) {
7440 enqueue_task(rq, p, 0);
7441 resched_task(rq->curr);
7444 check_class_changed(rq, p, prev_class, old_prio);
7447 void normalize_rt_tasks(void)
7449 struct task_struct *g, *p;
7450 unsigned long flags;
7451 struct rq *rq;
7453 read_lock_irqsave(&tasklist_lock, flags);
7454 do_each_thread(g, p) {
7456 * Only normalize user tasks:
7458 if (!p->mm)
7459 continue;
7461 p->se.exec_start = 0;
7462 #ifdef CONFIG_SCHEDSTATS
7463 p->se.statistics.wait_start = 0;
7464 p->se.statistics.sleep_start = 0;
7465 p->se.statistics.block_start = 0;
7466 #endif
7468 if (!rt_task(p)) {
7470 * Renice negative nice level userspace
7471 * tasks back to 0:
7473 if (TASK_NICE(p) < 0 && p->mm)
7474 set_user_nice(p, 0);
7475 continue;
7478 raw_spin_lock(&p->pi_lock);
7479 rq = __task_rq_lock(p);
7481 normalize_task(rq, p);
7483 __task_rq_unlock(rq);
7484 raw_spin_unlock(&p->pi_lock);
7485 } while_each_thread(g, p);
7487 read_unlock_irqrestore(&tasklist_lock, flags);
7490 #endif /* CONFIG_MAGIC_SYSRQ */
7492 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7494 * These functions are only useful for the IA64 MCA handling, or kdb.
7496 * They can only be called when the whole system has been
7497 * stopped - every CPU needs to be quiescent, and no scheduling
7498 * activity can take place. Using them for anything else would
7499 * be a serious bug, and as a result, they aren't even visible
7500 * under any other configuration.
7504 * curr_task - return the current task for a given cpu.
7505 * @cpu: the processor in question.
7507 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7509 struct task_struct *curr_task(int cpu)
7511 return cpu_curr(cpu);
7514 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7516 #ifdef CONFIG_IA64
7518 * set_curr_task - set the current task for a given cpu.
7519 * @cpu: the processor in question.
7520 * @p: the task pointer to set.
7522 * Description: This function must only be used when non-maskable interrupts
7523 * are serviced on a separate stack. It allows the architecture to switch the
7524 * notion of the current task on a cpu in a non-blocking manner. This function
7525 * must be called with all CPU's synchronized, and interrupts disabled, the
7526 * and caller must save the original value of the current task (see
7527 * curr_task() above) and restore that value before reenabling interrupts and
7528 * re-starting the system.
7530 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7532 void set_curr_task(int cpu, struct task_struct *p)
7534 cpu_curr(cpu) = p;
7537 #endif
7539 #ifdef CONFIG_CGROUP_SCHED
7540 /* task_group_lock serializes the addition/removal of task groups */
7541 static DEFINE_SPINLOCK(task_group_lock);
7543 static void free_sched_group(struct task_group *tg)
7545 free_fair_sched_group(tg);
7546 free_rt_sched_group(tg);
7547 autogroup_free(tg);
7548 kfree(tg);
7551 /* allocate runqueue etc for a new task group */
7552 struct task_group *sched_create_group(struct task_group *parent)
7554 struct task_group *tg;
7555 unsigned long flags;
7557 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7558 if (!tg)
7559 return ERR_PTR(-ENOMEM);
7561 if (!alloc_fair_sched_group(tg, parent))
7562 goto err;
7564 if (!alloc_rt_sched_group(tg, parent))
7565 goto err;
7567 spin_lock_irqsave(&task_group_lock, flags);
7568 list_add_rcu(&tg->list, &task_groups);
7570 WARN_ON(!parent); /* root should already exist */
7572 tg->parent = parent;
7573 INIT_LIST_HEAD(&tg->children);
7574 list_add_rcu(&tg->siblings, &parent->children);
7575 spin_unlock_irqrestore(&task_group_lock, flags);
7577 return tg;
7579 err:
7580 free_sched_group(tg);
7581 return ERR_PTR(-ENOMEM);
7584 /* rcu callback to free various structures associated with a task group */
7585 static void free_sched_group_rcu(struct rcu_head *rhp)
7587 /* now it should be safe to free those cfs_rqs */
7588 free_sched_group(container_of(rhp, struct task_group, rcu));
7591 /* Destroy runqueue etc associated with a task group */
7592 void sched_destroy_group(struct task_group *tg)
7594 unsigned long flags;
7595 int i;
7597 /* end participation in shares distribution */
7598 for_each_possible_cpu(i)
7599 unregister_fair_sched_group(tg, i);
7601 spin_lock_irqsave(&task_group_lock, flags);
7602 list_del_rcu(&tg->list);
7603 list_del_rcu(&tg->siblings);
7604 spin_unlock_irqrestore(&task_group_lock, flags);
7606 /* wait for possible concurrent references to cfs_rqs complete */
7607 call_rcu(&tg->rcu, free_sched_group_rcu);
7610 /* change task's runqueue when it moves between groups.
7611 * The caller of this function should have put the task in its new group
7612 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7613 * reflect its new group.
7615 void sched_move_task(struct task_struct *tsk)
7617 struct task_group *tg;
7618 int on_rq, running;
7619 unsigned long flags;
7620 struct rq *rq;
7622 rq = task_rq_lock(tsk, &flags);
7624 running = task_current(rq, tsk);
7625 on_rq = tsk->on_rq;
7627 if (on_rq)
7628 dequeue_task(rq, tsk, 0);
7629 if (unlikely(running))
7630 tsk->sched_class->put_prev_task(rq, tsk);
7632 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7633 lockdep_is_held(&tsk->sighand->siglock)),
7634 struct task_group, css);
7635 tg = autogroup_task_group(tsk, tg);
7636 tsk->sched_task_group = tg;
7638 #ifdef CONFIG_FAIR_GROUP_SCHED
7639 if (tsk->sched_class->task_move_group)
7640 tsk->sched_class->task_move_group(tsk, on_rq);
7641 else
7642 #endif
7643 set_task_rq(tsk, task_cpu(tsk));
7645 if (unlikely(running))
7646 tsk->sched_class->set_curr_task(rq);
7647 if (on_rq)
7648 enqueue_task(rq, tsk, 0);
7650 task_rq_unlock(rq, tsk, &flags);
7652 #endif /* CONFIG_CGROUP_SCHED */
7654 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7655 static unsigned long to_ratio(u64 period, u64 runtime)
7657 if (runtime == RUNTIME_INF)
7658 return 1ULL << 20;
7660 return div64_u64(runtime << 20, period);
7662 #endif
7664 #ifdef CONFIG_RT_GROUP_SCHED
7666 * Ensure that the real time constraints are schedulable.
7668 static DEFINE_MUTEX(rt_constraints_mutex);
7670 /* Must be called with tasklist_lock held */
7671 static inline int tg_has_rt_tasks(struct task_group *tg)
7673 struct task_struct *g, *p;
7675 do_each_thread(g, p) {
7676 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7677 return 1;
7678 } while_each_thread(g, p);
7680 return 0;
7683 struct rt_schedulable_data {
7684 struct task_group *tg;
7685 u64 rt_period;
7686 u64 rt_runtime;
7689 static int tg_rt_schedulable(struct task_group *tg, void *data)
7691 struct rt_schedulable_data *d = data;
7692 struct task_group *child;
7693 unsigned long total, sum = 0;
7694 u64 period, runtime;
7696 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7697 runtime = tg->rt_bandwidth.rt_runtime;
7699 if (tg == d->tg) {
7700 period = d->rt_period;
7701 runtime = d->rt_runtime;
7705 * Cannot have more runtime than the period.
7707 if (runtime > period && runtime != RUNTIME_INF)
7708 return -EINVAL;
7711 * Ensure we don't starve existing RT tasks.
7713 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7714 return -EBUSY;
7716 total = to_ratio(period, runtime);
7719 * Nobody can have more than the global setting allows.
7721 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7722 return -EINVAL;
7725 * The sum of our children's runtime should not exceed our own.
7727 list_for_each_entry_rcu(child, &tg->children, siblings) {
7728 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7729 runtime = child->rt_bandwidth.rt_runtime;
7731 if (child == d->tg) {
7732 period = d->rt_period;
7733 runtime = d->rt_runtime;
7736 sum += to_ratio(period, runtime);
7739 if (sum > total)
7740 return -EINVAL;
7742 return 0;
7745 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7747 int ret;
7749 struct rt_schedulable_data data = {
7750 .tg = tg,
7751 .rt_period = period,
7752 .rt_runtime = runtime,
7755 rcu_read_lock();
7756 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7757 rcu_read_unlock();
7759 return ret;
7762 static int tg_set_rt_bandwidth(struct task_group *tg,
7763 u64 rt_period, u64 rt_runtime)
7765 int i, err = 0;
7767 mutex_lock(&rt_constraints_mutex);
7768 read_lock(&tasklist_lock);
7769 err = __rt_schedulable(tg, rt_period, rt_runtime);
7770 if (err)
7771 goto unlock;
7773 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7774 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7775 tg->rt_bandwidth.rt_runtime = rt_runtime;
7777 for_each_possible_cpu(i) {
7778 struct rt_rq *rt_rq = tg->rt_rq[i];
7780 raw_spin_lock(&rt_rq->rt_runtime_lock);
7781 rt_rq->rt_runtime = rt_runtime;
7782 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7784 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7785 unlock:
7786 read_unlock(&tasklist_lock);
7787 mutex_unlock(&rt_constraints_mutex);
7789 return err;
7792 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7794 u64 rt_runtime, rt_period;
7796 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7797 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7798 if (rt_runtime_us < 0)
7799 rt_runtime = RUNTIME_INF;
7801 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7804 long sched_group_rt_runtime(struct task_group *tg)
7806 u64 rt_runtime_us;
7808 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7809 return -1;
7811 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7812 do_div(rt_runtime_us, NSEC_PER_USEC);
7813 return rt_runtime_us;
7816 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7818 u64 rt_runtime, rt_period;
7820 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7821 rt_runtime = tg->rt_bandwidth.rt_runtime;
7823 if (rt_period == 0)
7824 return -EINVAL;
7826 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7829 long sched_group_rt_period(struct task_group *tg)
7831 u64 rt_period_us;
7833 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7834 do_div(rt_period_us, NSEC_PER_USEC);
7835 return rt_period_us;
7838 static int sched_rt_global_constraints(void)
7840 u64 runtime, period;
7841 int ret = 0;
7843 if (sysctl_sched_rt_period <= 0)
7844 return -EINVAL;
7846 runtime = global_rt_runtime();
7847 period = global_rt_period();
7850 * Sanity check on the sysctl variables.
7852 if (runtime > period && runtime != RUNTIME_INF)
7853 return -EINVAL;
7855 mutex_lock(&rt_constraints_mutex);
7856 read_lock(&tasklist_lock);
7857 ret = __rt_schedulable(NULL, 0, 0);
7858 read_unlock(&tasklist_lock);
7859 mutex_unlock(&rt_constraints_mutex);
7861 return ret;
7864 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7866 /* Don't accept realtime tasks when there is no way for them to run */
7867 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7868 return 0;
7870 return 1;
7873 #else /* !CONFIG_RT_GROUP_SCHED */
7874 static int sched_rt_global_constraints(void)
7876 unsigned long flags;
7877 int i;
7879 if (sysctl_sched_rt_period <= 0)
7880 return -EINVAL;
7883 * There's always some RT tasks in the root group
7884 * -- migration, kstopmachine etc..
7886 if (sysctl_sched_rt_runtime == 0)
7887 return -EBUSY;
7889 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7890 for_each_possible_cpu(i) {
7891 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7893 raw_spin_lock(&rt_rq->rt_runtime_lock);
7894 rt_rq->rt_runtime = global_rt_runtime();
7895 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7897 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7899 return 0;
7901 #endif /* CONFIG_RT_GROUP_SCHED */
7903 int sched_rt_handler(struct ctl_table *table, int write,
7904 void __user *buffer, size_t *lenp,
7905 loff_t *ppos)
7907 int ret;
7908 int old_period, old_runtime;
7909 static DEFINE_MUTEX(mutex);
7911 mutex_lock(&mutex);
7912 old_period = sysctl_sched_rt_period;
7913 old_runtime = sysctl_sched_rt_runtime;
7915 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7917 if (!ret && write) {
7918 ret = sched_rt_global_constraints();
7919 if (ret) {
7920 sysctl_sched_rt_period = old_period;
7921 sysctl_sched_rt_runtime = old_runtime;
7922 } else {
7923 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7924 def_rt_bandwidth.rt_period =
7925 ns_to_ktime(global_rt_period());
7928 mutex_unlock(&mutex);
7930 return ret;
7933 #ifdef CONFIG_CGROUP_SCHED
7935 /* return corresponding task_group object of a cgroup */
7936 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7938 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7939 struct task_group, css);
7942 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7944 struct task_group *tg, *parent;
7946 if (!cgrp->parent) {
7947 /* This is early initialization for the top cgroup */
7948 return &root_task_group.css;
7951 parent = cgroup_tg(cgrp->parent);
7952 tg = sched_create_group(parent);
7953 if (IS_ERR(tg))
7954 return ERR_PTR(-ENOMEM);
7956 return &tg->css;
7959 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7961 struct task_group *tg = cgroup_tg(cgrp);
7963 sched_destroy_group(tg);
7966 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7967 struct cgroup_taskset *tset)
7969 struct task_struct *task;
7971 cgroup_taskset_for_each(task, cgrp, tset) {
7972 #ifdef CONFIG_RT_GROUP_SCHED
7973 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7974 return -EINVAL;
7975 #else
7976 /* We don't support RT-tasks being in separate groups */
7977 if (task->sched_class != &fair_sched_class)
7978 return -EINVAL;
7979 #endif
7981 return 0;
7984 static void cpu_cgroup_attach(struct cgroup *cgrp,
7985 struct cgroup_taskset *tset)
7987 struct task_struct *task;
7989 cgroup_taskset_for_each(task, cgrp, tset)
7990 sched_move_task(task);
7993 static void
7994 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7995 struct task_struct *task)
7998 * cgroup_exit() is called in the copy_process() failure path.
7999 * Ignore this case since the task hasn't ran yet, this avoids
8000 * trying to poke a half freed task state from generic code.
8002 if (!(task->flags & PF_EXITING))
8003 return;
8005 sched_move_task(task);
8008 #ifdef CONFIG_FAIR_GROUP_SCHED
8009 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8010 u64 shareval)
8012 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
8015 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8017 struct task_group *tg = cgroup_tg(cgrp);
8019 return (u64) scale_load_down(tg->shares);
8022 #ifdef CONFIG_CFS_BANDWIDTH
8023 static DEFINE_MUTEX(cfs_constraints_mutex);
8025 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8026 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8028 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8030 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8032 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8033 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8035 if (tg == &root_task_group)
8036 return -EINVAL;
8039 * Ensure we have at some amount of bandwidth every period. This is
8040 * to prevent reaching a state of large arrears when throttled via
8041 * entity_tick() resulting in prolonged exit starvation.
8043 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8044 return -EINVAL;
8047 * Likewise, bound things on the otherside by preventing insane quota
8048 * periods. This also allows us to normalize in computing quota
8049 * feasibility.
8051 if (period > max_cfs_quota_period)
8052 return -EINVAL;
8054 mutex_lock(&cfs_constraints_mutex);
8055 ret = __cfs_schedulable(tg, period, quota);
8056 if (ret)
8057 goto out_unlock;
8059 runtime_enabled = quota != RUNTIME_INF;
8060 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8061 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
8062 raw_spin_lock_irq(&cfs_b->lock);
8063 cfs_b->period = ns_to_ktime(period);
8064 cfs_b->quota = quota;
8066 __refill_cfs_bandwidth_runtime(cfs_b);
8067 /* restart the period timer (if active) to handle new period expiry */
8068 if (runtime_enabled && cfs_b->timer_active) {
8069 /* force a reprogram */
8070 cfs_b->timer_active = 0;
8071 __start_cfs_bandwidth(cfs_b);
8073 raw_spin_unlock_irq(&cfs_b->lock);
8075 for_each_possible_cpu(i) {
8076 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8077 struct rq *rq = cfs_rq->rq;
8079 raw_spin_lock_irq(&rq->lock);
8080 cfs_rq->runtime_enabled = runtime_enabled;
8081 cfs_rq->runtime_remaining = 0;
8083 if (cfs_rq->throttled)
8084 unthrottle_cfs_rq(cfs_rq);
8085 raw_spin_unlock_irq(&rq->lock);
8087 out_unlock:
8088 mutex_unlock(&cfs_constraints_mutex);
8090 return ret;
8093 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8095 u64 quota, period;
8097 period = ktime_to_ns(tg->cfs_bandwidth.period);
8098 if (cfs_quota_us < 0)
8099 quota = RUNTIME_INF;
8100 else
8101 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8103 return tg_set_cfs_bandwidth(tg, period, quota);
8106 long tg_get_cfs_quota(struct task_group *tg)
8108 u64 quota_us;
8110 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8111 return -1;
8113 quota_us = tg->cfs_bandwidth.quota;
8114 do_div(quota_us, NSEC_PER_USEC);
8116 return quota_us;
8119 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8121 u64 quota, period;
8123 period = (u64)cfs_period_us * NSEC_PER_USEC;
8124 quota = tg->cfs_bandwidth.quota;
8126 return tg_set_cfs_bandwidth(tg, period, quota);
8129 long tg_get_cfs_period(struct task_group *tg)
8131 u64 cfs_period_us;
8133 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8134 do_div(cfs_period_us, NSEC_PER_USEC);
8136 return cfs_period_us;
8139 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
8141 return tg_get_cfs_quota(cgroup_tg(cgrp));
8144 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
8145 s64 cfs_quota_us)
8147 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
8150 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
8152 return tg_get_cfs_period(cgroup_tg(cgrp));
8155 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8156 u64 cfs_period_us)
8158 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
8161 struct cfs_schedulable_data {
8162 struct task_group *tg;
8163 u64 period, quota;
8167 * normalize group quota/period to be quota/max_period
8168 * note: units are usecs
8170 static u64 normalize_cfs_quota(struct task_group *tg,
8171 struct cfs_schedulable_data *d)
8173 u64 quota, period;
8175 if (tg == d->tg) {
8176 period = d->period;
8177 quota = d->quota;
8178 } else {
8179 period = tg_get_cfs_period(tg);
8180 quota = tg_get_cfs_quota(tg);
8183 /* note: these should typically be equivalent */
8184 if (quota == RUNTIME_INF || quota == -1)
8185 return RUNTIME_INF;
8187 return to_ratio(period, quota);
8190 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8192 struct cfs_schedulable_data *d = data;
8193 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8194 s64 quota = 0, parent_quota = -1;
8196 if (!tg->parent) {
8197 quota = RUNTIME_INF;
8198 } else {
8199 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8201 quota = normalize_cfs_quota(tg, d);
8202 parent_quota = parent_b->hierarchal_quota;
8205 * ensure max(child_quota) <= parent_quota, inherit when no
8206 * limit is set
8208 if (quota == RUNTIME_INF)
8209 quota = parent_quota;
8210 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8211 return -EINVAL;
8213 cfs_b->hierarchal_quota = quota;
8215 return 0;
8218 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8220 int ret;
8221 struct cfs_schedulable_data data = {
8222 .tg = tg,
8223 .period = period,
8224 .quota = quota,
8227 if (quota != RUNTIME_INF) {
8228 do_div(data.period, NSEC_PER_USEC);
8229 do_div(data.quota, NSEC_PER_USEC);
8232 rcu_read_lock();
8233 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8234 rcu_read_unlock();
8236 return ret;
8239 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8240 struct cgroup_map_cb *cb)
8242 struct task_group *tg = cgroup_tg(cgrp);
8243 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8245 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8246 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8247 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8249 return 0;
8251 #endif /* CONFIG_CFS_BANDWIDTH */
8252 #endif /* CONFIG_FAIR_GROUP_SCHED */
8254 #ifdef CONFIG_RT_GROUP_SCHED
8255 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8256 s64 val)
8258 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8261 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8263 return sched_group_rt_runtime(cgroup_tg(cgrp));
8266 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8267 u64 rt_period_us)
8269 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8272 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8274 return sched_group_rt_period(cgroup_tg(cgrp));
8276 #endif /* CONFIG_RT_GROUP_SCHED */
8278 static struct cftype cpu_files[] = {
8279 #ifdef CONFIG_FAIR_GROUP_SCHED
8281 .name = "shares",
8282 .read_u64 = cpu_shares_read_u64,
8283 .write_u64 = cpu_shares_write_u64,
8285 #endif
8286 #ifdef CONFIG_CFS_BANDWIDTH
8288 .name = "cfs_quota_us",
8289 .read_s64 = cpu_cfs_quota_read_s64,
8290 .write_s64 = cpu_cfs_quota_write_s64,
8293 .name = "cfs_period_us",
8294 .read_u64 = cpu_cfs_period_read_u64,
8295 .write_u64 = cpu_cfs_period_write_u64,
8298 .name = "stat",
8299 .read_map = cpu_stats_show,
8301 #endif
8302 #ifdef CONFIG_RT_GROUP_SCHED
8304 .name = "rt_runtime_us",
8305 .read_s64 = cpu_rt_runtime_read,
8306 .write_s64 = cpu_rt_runtime_write,
8309 .name = "rt_period_us",
8310 .read_u64 = cpu_rt_period_read_uint,
8311 .write_u64 = cpu_rt_period_write_uint,
8313 #endif
8314 { } /* terminate */
8317 struct cgroup_subsys cpu_cgroup_subsys = {
8318 .name = "cpu",
8319 .create = cpu_cgroup_create,
8320 .destroy = cpu_cgroup_destroy,
8321 .can_attach = cpu_cgroup_can_attach,
8322 .attach = cpu_cgroup_attach,
8323 .exit = cpu_cgroup_exit,
8324 .subsys_id = cpu_cgroup_subsys_id,
8325 .base_cftypes = cpu_files,
8326 .early_init = 1,
8329 #endif /* CONFIG_CGROUP_SCHED */
8331 #ifdef CONFIG_CGROUP_CPUACCT
8334 * CPU accounting code for task groups.
8336 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8337 * (balbir@in.ibm.com).
8340 /* create a new cpu accounting group */
8341 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8343 struct cpuacct *ca;
8345 if (!cgrp->parent)
8346 return &root_cpuacct.css;
8348 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8349 if (!ca)
8350 goto out;
8352 ca->cpuusage = alloc_percpu(u64);
8353 if (!ca->cpuusage)
8354 goto out_free_ca;
8356 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8357 if (!ca->cpustat)
8358 goto out_free_cpuusage;
8360 return &ca->css;
8362 out_free_cpuusage:
8363 free_percpu(ca->cpuusage);
8364 out_free_ca:
8365 kfree(ca);
8366 out:
8367 return ERR_PTR(-ENOMEM);
8370 /* destroy an existing cpu accounting group */
8371 static void cpuacct_destroy(struct cgroup *cgrp)
8373 struct cpuacct *ca = cgroup_ca(cgrp);
8375 free_percpu(ca->cpustat);
8376 free_percpu(ca->cpuusage);
8377 kfree(ca);
8380 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8382 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8383 u64 data;
8385 #ifndef CONFIG_64BIT
8387 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8389 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8390 data = *cpuusage;
8391 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8392 #else
8393 data = *cpuusage;
8394 #endif
8396 return data;
8399 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8401 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8403 #ifndef CONFIG_64BIT
8405 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8407 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8408 *cpuusage = val;
8409 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8410 #else
8411 *cpuusage = val;
8412 #endif
8415 /* return total cpu usage (in nanoseconds) of a group */
8416 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8418 struct cpuacct *ca = cgroup_ca(cgrp);
8419 u64 totalcpuusage = 0;
8420 int i;
8422 for_each_present_cpu(i)
8423 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8425 return totalcpuusage;
8428 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8429 u64 reset)
8431 struct cpuacct *ca = cgroup_ca(cgrp);
8432 int err = 0;
8433 int i;
8435 if (reset) {
8436 err = -EINVAL;
8437 goto out;
8440 for_each_present_cpu(i)
8441 cpuacct_cpuusage_write(ca, i, 0);
8443 out:
8444 return err;
8447 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8448 struct seq_file *m)
8450 struct cpuacct *ca = cgroup_ca(cgroup);
8451 u64 percpu;
8452 int i;
8454 for_each_present_cpu(i) {
8455 percpu = cpuacct_cpuusage_read(ca, i);
8456 seq_printf(m, "%llu ", (unsigned long long) percpu);
8458 seq_printf(m, "\n");
8459 return 0;
8462 static const char *cpuacct_stat_desc[] = {
8463 [CPUACCT_STAT_USER] = "user",
8464 [CPUACCT_STAT_SYSTEM] = "system",
8467 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8468 struct cgroup_map_cb *cb)
8470 struct cpuacct *ca = cgroup_ca(cgrp);
8471 int cpu;
8472 s64 val = 0;
8474 for_each_online_cpu(cpu) {
8475 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8476 val += kcpustat->cpustat[CPUTIME_USER];
8477 val += kcpustat->cpustat[CPUTIME_NICE];
8479 val = cputime64_to_clock_t(val);
8480 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8482 val = 0;
8483 for_each_online_cpu(cpu) {
8484 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8485 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8486 val += kcpustat->cpustat[CPUTIME_IRQ];
8487 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8490 val = cputime64_to_clock_t(val);
8491 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8493 return 0;
8496 static struct cftype files[] = {
8498 .name = "usage",
8499 .read_u64 = cpuusage_read,
8500 .write_u64 = cpuusage_write,
8503 .name = "usage_percpu",
8504 .read_seq_string = cpuacct_percpu_seq_read,
8507 .name = "stat",
8508 .read_map = cpuacct_stats_show,
8510 { } /* terminate */
8514 * charge this task's execution time to its accounting group.
8516 * called with rq->lock held.
8518 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8520 struct cpuacct *ca;
8521 int cpu;
8523 if (unlikely(!cpuacct_subsys.active))
8524 return;
8526 cpu = task_cpu(tsk);
8528 rcu_read_lock();
8530 ca = task_ca(tsk);
8532 for (; ca; ca = parent_ca(ca)) {
8533 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8534 *cpuusage += cputime;
8537 rcu_read_unlock();
8540 struct cgroup_subsys cpuacct_subsys = {
8541 .name = "cpuacct",
8542 .create = cpuacct_create,
8543 .destroy = cpuacct_destroy,
8544 .subsys_id = cpuacct_subsys_id,
8545 .base_cftypes = files,
8547 #endif /* CONFIG_CGROUP_CPUACCT */