2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
78 int sysctl_tcp_timestamps __read_mostly
= 1;
79 int sysctl_tcp_window_scaling __read_mostly
= 1;
80 int sysctl_tcp_sack __read_mostly
= 1;
81 int sysctl_tcp_fack __read_mostly
= 1;
82 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
83 EXPORT_SYMBOL(sysctl_tcp_reordering
);
84 int sysctl_tcp_ecn __read_mostly
= 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn
);
86 int sysctl_tcp_dsack __read_mostly
= 1;
87 int sysctl_tcp_app_win __read_mostly
= 31;
88 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit
= 100;
94 int sysctl_tcp_stdurg __read_mostly
;
95 int sysctl_tcp_rfc1337 __read_mostly
;
96 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
97 int sysctl_tcp_frto __read_mostly
= 2;
98 int sysctl_tcp_frto_response __read_mostly
;
100 int sysctl_tcp_thin_dupack __read_mostly
;
102 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
103 int sysctl_tcp_abc __read_mostly
;
104 int sysctl_tcp_early_retrans __read_mostly
= 2;
106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
112 #define FLAG_ECE 0x40 /* ECE in this ACK */
113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
118 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
120 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
129 /* Adapt the MSS value used to make delayed ack decision to the
132 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
134 struct inet_connection_sock
*icsk
= inet_csk(sk
);
135 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
138 icsk
->icsk_ack
.last_seg_size
= 0;
140 /* skb->len may jitter because of SACKs, even if peer
141 * sends good full-sized frames.
143 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
144 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
145 icsk
->icsk_ack
.rcv_mss
= len
;
147 /* Otherwise, we make more careful check taking into account,
148 * that SACKs block is variable.
150 * "len" is invariant segment length, including TCP header.
152 len
+= skb
->data
- skb_transport_header(skb
);
153 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
154 /* If PSH is not set, packet should be
155 * full sized, provided peer TCP is not badly broken.
156 * This observation (if it is correct 8)) allows
157 * to handle super-low mtu links fairly.
159 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
160 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
161 /* Subtract also invariant (if peer is RFC compliant),
162 * tcp header plus fixed timestamp option length.
163 * Resulting "len" is MSS free of SACK jitter.
165 len
-= tcp_sk(sk
)->tcp_header_len
;
166 icsk
->icsk_ack
.last_seg_size
= len
;
168 icsk
->icsk_ack
.rcv_mss
= len
;
172 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
173 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
174 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
178 static void tcp_incr_quickack(struct sock
*sk
)
180 struct inet_connection_sock
*icsk
= inet_csk(sk
);
181 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
185 if (quickacks
> icsk
->icsk_ack
.quick
)
186 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
189 static void tcp_enter_quickack_mode(struct sock
*sk
)
191 struct inet_connection_sock
*icsk
= inet_csk(sk
);
192 tcp_incr_quickack(sk
);
193 icsk
->icsk_ack
.pingpong
= 0;
194 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
197 /* Send ACKs quickly, if "quick" count is not exhausted
198 * and the session is not interactive.
201 static inline bool tcp_in_quickack_mode(const struct sock
*sk
)
203 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
205 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
208 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
210 if (tp
->ecn_flags
& TCP_ECN_OK
)
211 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
214 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
216 if (tcp_hdr(skb
)->cwr
)
217 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
220 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
222 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
225 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
227 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
230 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
231 case INET_ECN_NOT_ECT
:
232 /* Funny extension: if ECT is not set on a segment,
233 * and we already seen ECT on a previous segment,
234 * it is probably a retransmit.
236 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
237 tcp_enter_quickack_mode((struct sock
*)tp
);
240 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
243 tp
->ecn_flags
|= TCP_ECN_SEEN
;
247 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
249 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
250 tp
->ecn_flags
&= ~TCP_ECN_OK
;
253 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
255 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
256 tp
->ecn_flags
&= ~TCP_ECN_OK
;
259 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
261 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
266 /* Buffer size and advertised window tuning.
268 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
271 static void tcp_fixup_sndbuf(struct sock
*sk
)
273 int sndmem
= SKB_TRUESIZE(tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
);
275 sndmem
*= TCP_INIT_CWND
;
276 if (sk
->sk_sndbuf
< sndmem
)
277 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
280 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
282 * All tcp_full_space() is split to two parts: "network" buffer, allocated
283 * forward and advertised in receiver window (tp->rcv_wnd) and
284 * "application buffer", required to isolate scheduling/application
285 * latencies from network.
286 * window_clamp is maximal advertised window. It can be less than
287 * tcp_full_space(), in this case tcp_full_space() - window_clamp
288 * is reserved for "application" buffer. The less window_clamp is
289 * the smoother our behaviour from viewpoint of network, but the lower
290 * throughput and the higher sensitivity of the connection to losses. 8)
292 * rcv_ssthresh is more strict window_clamp used at "slow start"
293 * phase to predict further behaviour of this connection.
294 * It is used for two goals:
295 * - to enforce header prediction at sender, even when application
296 * requires some significant "application buffer". It is check #1.
297 * - to prevent pruning of receive queue because of misprediction
298 * of receiver window. Check #2.
300 * The scheme does not work when sender sends good segments opening
301 * window and then starts to feed us spaghetti. But it should work
302 * in common situations. Otherwise, we have to rely on queue collapsing.
305 /* Slow part of check#2. */
306 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
308 struct tcp_sock
*tp
= tcp_sk(sk
);
310 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
311 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
313 while (tp
->rcv_ssthresh
<= window
) {
314 if (truesize
<= skb
->len
)
315 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
323 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
325 struct tcp_sock
*tp
= tcp_sk(sk
);
328 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
329 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
330 !sk_under_memory_pressure(sk
)) {
333 /* Check #2. Increase window, if skb with such overhead
334 * will fit to rcvbuf in future.
336 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
337 incr
= 2 * tp
->advmss
;
339 incr
= __tcp_grow_window(sk
, skb
);
342 incr
= max_t(int, incr
, 2 * skb
->len
);
343 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
345 inet_csk(sk
)->icsk_ack
.quick
|= 1;
350 /* 3. Tuning rcvbuf, when connection enters established state. */
352 static void tcp_fixup_rcvbuf(struct sock
*sk
)
354 u32 mss
= tcp_sk(sk
)->advmss
;
355 u32 icwnd
= TCP_DEFAULT_INIT_RCVWND
;
358 /* Limit to 10 segments if mss <= 1460,
359 * or 14600/mss segments, with a minimum of two segments.
362 icwnd
= max_t(u32
, (1460 * TCP_DEFAULT_INIT_RCVWND
) / mss
, 2);
364 rcvmem
= SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
);
365 while (tcp_win_from_space(rcvmem
) < mss
)
370 if (sk
->sk_rcvbuf
< rcvmem
)
371 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
374 /* 4. Try to fixup all. It is made immediately after connection enters
377 static void tcp_init_buffer_space(struct sock
*sk
)
379 struct tcp_sock
*tp
= tcp_sk(sk
);
382 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
383 tcp_fixup_rcvbuf(sk
);
384 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
385 tcp_fixup_sndbuf(sk
);
387 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
389 maxwin
= tcp_full_space(sk
);
391 if (tp
->window_clamp
>= maxwin
) {
392 tp
->window_clamp
= maxwin
;
394 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
395 tp
->window_clamp
= max(maxwin
-
396 (maxwin
>> sysctl_tcp_app_win
),
400 /* Force reservation of one segment. */
401 if (sysctl_tcp_app_win
&&
402 tp
->window_clamp
> 2 * tp
->advmss
&&
403 tp
->window_clamp
+ tp
->advmss
> maxwin
)
404 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
406 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
407 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
410 /* 5. Recalculate window clamp after socket hit its memory bounds. */
411 static void tcp_clamp_window(struct sock
*sk
)
413 struct tcp_sock
*tp
= tcp_sk(sk
);
414 struct inet_connection_sock
*icsk
= inet_csk(sk
);
416 icsk
->icsk_ack
.quick
= 0;
418 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
419 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
420 !sk_under_memory_pressure(sk
) &&
421 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
422 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
425 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
426 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
429 /* Initialize RCV_MSS value.
430 * RCV_MSS is an our guess about MSS used by the peer.
431 * We haven't any direct information about the MSS.
432 * It's better to underestimate the RCV_MSS rather than overestimate.
433 * Overestimations make us ACKing less frequently than needed.
434 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
436 void tcp_initialize_rcv_mss(struct sock
*sk
)
438 const struct tcp_sock
*tp
= tcp_sk(sk
);
439 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
441 hint
= min(hint
, tp
->rcv_wnd
/ 2);
442 hint
= min(hint
, TCP_MSS_DEFAULT
);
443 hint
= max(hint
, TCP_MIN_MSS
);
445 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
447 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
449 /* Receiver "autotuning" code.
451 * The algorithm for RTT estimation w/o timestamps is based on
452 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
453 * <http://public.lanl.gov/radiant/pubs.html#DRS>
455 * More detail on this code can be found at
456 * <http://staff.psc.edu/jheffner/>,
457 * though this reference is out of date. A new paper
460 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
462 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
468 if (new_sample
!= 0) {
469 /* If we sample in larger samples in the non-timestamp
470 * case, we could grossly overestimate the RTT especially
471 * with chatty applications or bulk transfer apps which
472 * are stalled on filesystem I/O.
474 * Also, since we are only going for a minimum in the
475 * non-timestamp case, we do not smooth things out
476 * else with timestamps disabled convergence takes too
480 m
-= (new_sample
>> 3);
488 /* No previous measure. */
492 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
493 tp
->rcv_rtt_est
.rtt
= new_sample
;
496 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
498 if (tp
->rcv_rtt_est
.time
== 0)
500 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
502 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rcv_rtt_est
.time
, 1);
505 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
506 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
509 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
510 const struct sk_buff
*skb
)
512 struct tcp_sock
*tp
= tcp_sk(sk
);
513 if (tp
->rx_opt
.rcv_tsecr
&&
514 (TCP_SKB_CB(skb
)->end_seq
-
515 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
516 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
520 * This function should be called every time data is copied to user space.
521 * It calculates the appropriate TCP receive buffer space.
523 void tcp_rcv_space_adjust(struct sock
*sk
)
525 struct tcp_sock
*tp
= tcp_sk(sk
);
529 if (tp
->rcvq_space
.time
== 0)
532 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
533 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
536 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
538 space
= max(tp
->rcvq_space
.space
, space
);
540 if (tp
->rcvq_space
.space
!= space
) {
543 tp
->rcvq_space
.space
= space
;
545 if (sysctl_tcp_moderate_rcvbuf
&&
546 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
547 int new_clamp
= space
;
549 /* Receive space grows, normalize in order to
550 * take into account packet headers and sk_buff
551 * structure overhead.
556 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
557 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
560 space
= min(space
, sysctl_tcp_rmem
[2]);
561 if (space
> sk
->sk_rcvbuf
) {
562 sk
->sk_rcvbuf
= space
;
564 /* Make the window clamp follow along. */
565 tp
->window_clamp
= new_clamp
;
571 tp
->rcvq_space
.seq
= tp
->copied_seq
;
572 tp
->rcvq_space
.time
= tcp_time_stamp
;
575 /* There is something which you must keep in mind when you analyze the
576 * behavior of the tp->ato delayed ack timeout interval. When a
577 * connection starts up, we want to ack as quickly as possible. The
578 * problem is that "good" TCP's do slow start at the beginning of data
579 * transmission. The means that until we send the first few ACK's the
580 * sender will sit on his end and only queue most of his data, because
581 * he can only send snd_cwnd unacked packets at any given time. For
582 * each ACK we send, he increments snd_cwnd and transmits more of his
585 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
587 struct tcp_sock
*tp
= tcp_sk(sk
);
588 struct inet_connection_sock
*icsk
= inet_csk(sk
);
591 inet_csk_schedule_ack(sk
);
593 tcp_measure_rcv_mss(sk
, skb
);
595 tcp_rcv_rtt_measure(tp
);
597 now
= tcp_time_stamp
;
599 if (!icsk
->icsk_ack
.ato
) {
600 /* The _first_ data packet received, initialize
601 * delayed ACK engine.
603 tcp_incr_quickack(sk
);
604 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
606 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
608 if (m
<= TCP_ATO_MIN
/ 2) {
609 /* The fastest case is the first. */
610 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
611 } else if (m
< icsk
->icsk_ack
.ato
) {
612 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
613 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
614 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
615 } else if (m
> icsk
->icsk_rto
) {
616 /* Too long gap. Apparently sender failed to
617 * restart window, so that we send ACKs quickly.
619 tcp_incr_quickack(sk
);
623 icsk
->icsk_ack
.lrcvtime
= now
;
625 TCP_ECN_check_ce(tp
, skb
);
628 tcp_grow_window(sk
, skb
);
631 /* Called to compute a smoothed rtt estimate. The data fed to this
632 * routine either comes from timestamps, or from segments that were
633 * known _not_ to have been retransmitted [see Karn/Partridge
634 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
635 * piece by Van Jacobson.
636 * NOTE: the next three routines used to be one big routine.
637 * To save cycles in the RFC 1323 implementation it was better to break
638 * it up into three procedures. -- erics
640 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
642 struct tcp_sock
*tp
= tcp_sk(sk
);
643 long m
= mrtt
; /* RTT */
645 /* The following amusing code comes from Jacobson's
646 * article in SIGCOMM '88. Note that rtt and mdev
647 * are scaled versions of rtt and mean deviation.
648 * This is designed to be as fast as possible
649 * m stands for "measurement".
651 * On a 1990 paper the rto value is changed to:
652 * RTO = rtt + 4 * mdev
654 * Funny. This algorithm seems to be very broken.
655 * These formulae increase RTO, when it should be decreased, increase
656 * too slowly, when it should be increased quickly, decrease too quickly
657 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
658 * does not matter how to _calculate_ it. Seems, it was trap
659 * that VJ failed to avoid. 8)
664 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
665 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
667 m
= -m
; /* m is now abs(error) */
668 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
669 /* This is similar to one of Eifel findings.
670 * Eifel blocks mdev updates when rtt decreases.
671 * This solution is a bit different: we use finer gain
672 * for mdev in this case (alpha*beta).
673 * Like Eifel it also prevents growth of rto,
674 * but also it limits too fast rto decreases,
675 * happening in pure Eifel.
680 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
682 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
683 if (tp
->mdev
> tp
->mdev_max
) {
684 tp
->mdev_max
= tp
->mdev
;
685 if (tp
->mdev_max
> tp
->rttvar
)
686 tp
->rttvar
= tp
->mdev_max
;
688 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
689 if (tp
->mdev_max
< tp
->rttvar
)
690 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
691 tp
->rtt_seq
= tp
->snd_nxt
;
692 tp
->mdev_max
= tcp_rto_min(sk
);
695 /* no previous measure. */
696 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
697 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
698 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
699 tp
->rtt_seq
= tp
->snd_nxt
;
703 /* Calculate rto without backoff. This is the second half of Van Jacobson's
704 * routine referred to above.
706 void tcp_set_rto(struct sock
*sk
)
708 const struct tcp_sock
*tp
= tcp_sk(sk
);
709 /* Old crap is replaced with new one. 8)
712 * 1. If rtt variance happened to be less 50msec, it is hallucination.
713 * It cannot be less due to utterly erratic ACK generation made
714 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
715 * to do with delayed acks, because at cwnd>2 true delack timeout
716 * is invisible. Actually, Linux-2.4 also generates erratic
717 * ACKs in some circumstances.
719 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
721 /* 2. Fixups made earlier cannot be right.
722 * If we do not estimate RTO correctly without them,
723 * all the algo is pure shit and should be replaced
724 * with correct one. It is exactly, which we pretend to do.
727 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
728 * guarantees that rto is higher.
733 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
735 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
738 cwnd
= TCP_INIT_CWND
;
739 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
742 /* Set slow start threshold and cwnd not falling to slow start */
743 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
745 struct tcp_sock
*tp
= tcp_sk(sk
);
746 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
748 tp
->prior_ssthresh
= 0;
750 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
753 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
754 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
755 tcp_packets_in_flight(tp
) + 1U);
756 tp
->snd_cwnd_cnt
= 0;
757 tp
->high_seq
= tp
->snd_nxt
;
758 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
759 TCP_ECN_queue_cwr(tp
);
761 tcp_set_ca_state(sk
, TCP_CA_CWR
);
766 * Packet counting of FACK is based on in-order assumptions, therefore TCP
767 * disables it when reordering is detected
769 void tcp_disable_fack(struct tcp_sock
*tp
)
771 /* RFC3517 uses different metric in lost marker => reset on change */
773 tp
->lost_skb_hint
= NULL
;
774 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
777 /* Take a notice that peer is sending D-SACKs */
778 static void tcp_dsack_seen(struct tcp_sock
*tp
)
780 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
783 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
786 struct tcp_sock
*tp
= tcp_sk(sk
);
787 if (metric
> tp
->reordering
) {
790 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
792 /* This exciting event is worth to be remembered. 8) */
794 mib_idx
= LINUX_MIB_TCPTSREORDER
;
795 else if (tcp_is_reno(tp
))
796 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
797 else if (tcp_is_fack(tp
))
798 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
800 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
802 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
803 #if FASTRETRANS_DEBUG > 1
804 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
805 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
809 tp
->undo_marker
? tp
->undo_retrans
: 0);
811 tcp_disable_fack(tp
);
815 tcp_disable_early_retrans(tp
);
818 /* This must be called before lost_out is incremented */
819 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
821 if ((tp
->retransmit_skb_hint
== NULL
) ||
822 before(TCP_SKB_CB(skb
)->seq
,
823 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
824 tp
->retransmit_skb_hint
= skb
;
827 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
828 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
831 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
833 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
834 tcp_verify_retransmit_hint(tp
, skb
);
836 tp
->lost_out
+= tcp_skb_pcount(skb
);
837 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
841 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
844 tcp_verify_retransmit_hint(tp
, skb
);
846 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
847 tp
->lost_out
+= tcp_skb_pcount(skb
);
848 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
852 /* This procedure tags the retransmission queue when SACKs arrive.
854 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
855 * Packets in queue with these bits set are counted in variables
856 * sacked_out, retrans_out and lost_out, correspondingly.
858 * Valid combinations are:
859 * Tag InFlight Description
860 * 0 1 - orig segment is in flight.
861 * S 0 - nothing flies, orig reached receiver.
862 * L 0 - nothing flies, orig lost by net.
863 * R 2 - both orig and retransmit are in flight.
864 * L|R 1 - orig is lost, retransmit is in flight.
865 * S|R 1 - orig reached receiver, retrans is still in flight.
866 * (L|S|R is logically valid, it could occur when L|R is sacked,
867 * but it is equivalent to plain S and code short-curcuits it to S.
868 * L|S is logically invalid, it would mean -1 packet in flight 8))
870 * These 6 states form finite state machine, controlled by the following events:
871 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
872 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
873 * 3. Loss detection event of two flavors:
874 * A. Scoreboard estimator decided the packet is lost.
875 * A'. Reno "three dupacks" marks head of queue lost.
876 * A''. Its FACK modification, head until snd.fack is lost.
877 * B. SACK arrives sacking SND.NXT at the moment, when the
878 * segment was retransmitted.
879 * 4. D-SACK added new rule: D-SACK changes any tag to S.
881 * It is pleasant to note, that state diagram turns out to be commutative,
882 * so that we are allowed not to be bothered by order of our actions,
883 * when multiple events arrive simultaneously. (see the function below).
885 * Reordering detection.
886 * --------------------
887 * Reordering metric is maximal distance, which a packet can be displaced
888 * in packet stream. With SACKs we can estimate it:
890 * 1. SACK fills old hole and the corresponding segment was not
891 * ever retransmitted -> reordering. Alas, we cannot use it
892 * when segment was retransmitted.
893 * 2. The last flaw is solved with D-SACK. D-SACK arrives
894 * for retransmitted and already SACKed segment -> reordering..
895 * Both of these heuristics are not used in Loss state, when we cannot
896 * account for retransmits accurately.
898 * SACK block validation.
899 * ----------------------
901 * SACK block range validation checks that the received SACK block fits to
902 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
903 * Note that SND.UNA is not included to the range though being valid because
904 * it means that the receiver is rather inconsistent with itself reporting
905 * SACK reneging when it should advance SND.UNA. Such SACK block this is
906 * perfectly valid, however, in light of RFC2018 which explicitly states
907 * that "SACK block MUST reflect the newest segment. Even if the newest
908 * segment is going to be discarded ...", not that it looks very clever
909 * in case of head skb. Due to potentional receiver driven attacks, we
910 * choose to avoid immediate execution of a walk in write queue due to
911 * reneging and defer head skb's loss recovery to standard loss recovery
912 * procedure that will eventually trigger (nothing forbids us doing this).
914 * Implements also blockage to start_seq wrap-around. Problem lies in the
915 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
916 * there's no guarantee that it will be before snd_nxt (n). The problem
917 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
920 * <- outs wnd -> <- wrapzone ->
921 * u e n u_w e_w s n_w
923 * |<------------+------+----- TCP seqno space --------------+---------->|
924 * ...-- <2^31 ->| |<--------...
925 * ...---- >2^31 ------>| |<--------...
927 * Current code wouldn't be vulnerable but it's better still to discard such
928 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
929 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
930 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
931 * equal to the ideal case (infinite seqno space without wrap caused issues).
933 * With D-SACK the lower bound is extended to cover sequence space below
934 * SND.UNA down to undo_marker, which is the last point of interest. Yet
935 * again, D-SACK block must not to go across snd_una (for the same reason as
936 * for the normal SACK blocks, explained above). But there all simplicity
937 * ends, TCP might receive valid D-SACKs below that. As long as they reside
938 * fully below undo_marker they do not affect behavior in anyway and can
939 * therefore be safely ignored. In rare cases (which are more or less
940 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
941 * fragmentation and packet reordering past skb's retransmission. To consider
942 * them correctly, the acceptable range must be extended even more though
943 * the exact amount is rather hard to quantify. However, tp->max_window can
944 * be used as an exaggerated estimate.
946 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
947 u32 start_seq
, u32 end_seq
)
949 /* Too far in future, or reversed (interpretation is ambiguous) */
950 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
953 /* Nasty start_seq wrap-around check (see comments above) */
954 if (!before(start_seq
, tp
->snd_nxt
))
957 /* In outstanding window? ...This is valid exit for D-SACKs too.
958 * start_seq == snd_una is non-sensical (see comments above)
960 if (after(start_seq
, tp
->snd_una
))
963 if (!is_dsack
|| !tp
->undo_marker
)
966 /* ...Then it's D-SACK, and must reside below snd_una completely */
967 if (after(end_seq
, tp
->snd_una
))
970 if (!before(start_seq
, tp
->undo_marker
))
974 if (!after(end_seq
, tp
->undo_marker
))
977 /* Undo_marker boundary crossing (overestimates a lot). Known already:
978 * start_seq < undo_marker and end_seq >= undo_marker.
980 return !before(start_seq
, end_seq
- tp
->max_window
);
983 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
984 * Event "B". Later note: FACK people cheated me again 8), we have to account
985 * for reordering! Ugly, but should help.
987 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
988 * less than what is now known to be received by the other end (derived from
989 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
990 * retransmitted skbs to avoid some costly processing per ACKs.
992 static void tcp_mark_lost_retrans(struct sock
*sk
)
994 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
995 struct tcp_sock
*tp
= tcp_sk(sk
);
998 u32 new_low_seq
= tp
->snd_nxt
;
999 u32 received_upto
= tcp_highest_sack_seq(tp
);
1001 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1002 !after(received_upto
, tp
->lost_retrans_low
) ||
1003 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1006 tcp_for_write_queue(skb
, sk
) {
1007 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1009 if (skb
== tcp_send_head(sk
))
1011 if (cnt
== tp
->retrans_out
)
1013 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1016 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1019 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1020 * constraint here (see above) but figuring out that at
1021 * least tp->reordering SACK blocks reside between ack_seq
1022 * and received_upto is not easy task to do cheaply with
1023 * the available datastructures.
1025 * Whether FACK should check here for tp->reordering segs
1026 * in-between one could argue for either way (it would be
1027 * rather simple to implement as we could count fack_count
1028 * during the walk and do tp->fackets_out - fack_count).
1030 if (after(received_upto
, ack_seq
)) {
1031 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1032 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1034 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1035 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1037 if (before(ack_seq
, new_low_seq
))
1038 new_low_seq
= ack_seq
;
1039 cnt
+= tcp_skb_pcount(skb
);
1043 if (tp
->retrans_out
)
1044 tp
->lost_retrans_low
= new_low_seq
;
1047 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1048 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1051 struct tcp_sock
*tp
= tcp_sk(sk
);
1052 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1053 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1054 bool dup_sack
= false;
1056 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1059 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1060 } else if (num_sacks
> 1) {
1061 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1062 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1064 if (!after(end_seq_0
, end_seq_1
) &&
1065 !before(start_seq_0
, start_seq_1
)) {
1068 NET_INC_STATS_BH(sock_net(sk
),
1069 LINUX_MIB_TCPDSACKOFORECV
);
1073 /* D-SACK for already forgotten data... Do dumb counting. */
1074 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
&&
1075 !after(end_seq_0
, prior_snd_una
) &&
1076 after(end_seq_0
, tp
->undo_marker
))
1082 struct tcp_sacktag_state
{
1088 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1089 * the incoming SACK may not exactly match but we can find smaller MSS
1090 * aligned portion of it that matches. Therefore we might need to fragment
1091 * which may fail and creates some hassle (caller must handle error case
1094 * FIXME: this could be merged to shift decision code
1096 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1097 u32 start_seq
, u32 end_seq
)
1101 unsigned int pkt_len
;
1104 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1105 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1107 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1108 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1109 mss
= tcp_skb_mss(skb
);
1110 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1113 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1117 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1122 /* Round if necessary so that SACKs cover only full MSSes
1123 * and/or the remaining small portion (if present)
1125 if (pkt_len
> mss
) {
1126 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1127 if (!in_sack
&& new_len
< pkt_len
) {
1129 if (new_len
> skb
->len
)
1134 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1142 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1143 static u8
tcp_sacktag_one(struct sock
*sk
,
1144 struct tcp_sacktag_state
*state
, u8 sacked
,
1145 u32 start_seq
, u32 end_seq
,
1146 bool dup_sack
, int pcount
)
1148 struct tcp_sock
*tp
= tcp_sk(sk
);
1149 int fack_count
= state
->fack_count
;
1151 /* Account D-SACK for retransmitted packet. */
1152 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1153 if (tp
->undo_marker
&& tp
->undo_retrans
&&
1154 after(end_seq
, tp
->undo_marker
))
1156 if (sacked
& TCPCB_SACKED_ACKED
)
1157 state
->reord
= min(fack_count
, state
->reord
);
1160 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1161 if (!after(end_seq
, tp
->snd_una
))
1164 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1165 if (sacked
& TCPCB_SACKED_RETRANS
) {
1166 /* If the segment is not tagged as lost,
1167 * we do not clear RETRANS, believing
1168 * that retransmission is still in flight.
1170 if (sacked
& TCPCB_LOST
) {
1171 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1172 tp
->lost_out
-= pcount
;
1173 tp
->retrans_out
-= pcount
;
1176 if (!(sacked
& TCPCB_RETRANS
)) {
1177 /* New sack for not retransmitted frame,
1178 * which was in hole. It is reordering.
1180 if (before(start_seq
,
1181 tcp_highest_sack_seq(tp
)))
1182 state
->reord
= min(fack_count
,
1185 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1186 if (!after(end_seq
, tp
->frto_highmark
))
1187 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1190 if (sacked
& TCPCB_LOST
) {
1191 sacked
&= ~TCPCB_LOST
;
1192 tp
->lost_out
-= pcount
;
1196 sacked
|= TCPCB_SACKED_ACKED
;
1197 state
->flag
|= FLAG_DATA_SACKED
;
1198 tp
->sacked_out
+= pcount
;
1200 fack_count
+= pcount
;
1202 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1203 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1204 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1205 tp
->lost_cnt_hint
+= pcount
;
1207 if (fack_count
> tp
->fackets_out
)
1208 tp
->fackets_out
= fack_count
;
1211 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1212 * frames and clear it. undo_retrans is decreased above, L|R frames
1213 * are accounted above as well.
1215 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1216 sacked
&= ~TCPCB_SACKED_RETRANS
;
1217 tp
->retrans_out
-= pcount
;
1223 /* Shift newly-SACKed bytes from this skb to the immediately previous
1224 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1226 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1227 struct tcp_sacktag_state
*state
,
1228 unsigned int pcount
, int shifted
, int mss
,
1231 struct tcp_sock
*tp
= tcp_sk(sk
);
1232 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1233 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1234 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1238 /* Adjust counters and hints for the newly sacked sequence
1239 * range but discard the return value since prev is already
1240 * marked. We must tag the range first because the seq
1241 * advancement below implicitly advances
1242 * tcp_highest_sack_seq() when skb is highest_sack.
1244 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1245 start_seq
, end_seq
, dup_sack
, pcount
);
1247 if (skb
== tp
->lost_skb_hint
)
1248 tp
->lost_cnt_hint
+= pcount
;
1250 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1251 TCP_SKB_CB(skb
)->seq
+= shifted
;
1253 skb_shinfo(prev
)->gso_segs
+= pcount
;
1254 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1255 skb_shinfo(skb
)->gso_segs
-= pcount
;
1257 /* When we're adding to gso_segs == 1, gso_size will be zero,
1258 * in theory this shouldn't be necessary but as long as DSACK
1259 * code can come after this skb later on it's better to keep
1260 * setting gso_size to something.
1262 if (!skb_shinfo(prev
)->gso_size
) {
1263 skb_shinfo(prev
)->gso_size
= mss
;
1264 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1267 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1268 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1269 skb_shinfo(skb
)->gso_size
= 0;
1270 skb_shinfo(skb
)->gso_type
= 0;
1273 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1274 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1277 BUG_ON(!tcp_skb_pcount(skb
));
1278 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1282 /* Whole SKB was eaten :-) */
1284 if (skb
== tp
->retransmit_skb_hint
)
1285 tp
->retransmit_skb_hint
= prev
;
1286 if (skb
== tp
->scoreboard_skb_hint
)
1287 tp
->scoreboard_skb_hint
= prev
;
1288 if (skb
== tp
->lost_skb_hint
) {
1289 tp
->lost_skb_hint
= prev
;
1290 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1293 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(prev
)->tcp_flags
;
1294 if (skb
== tcp_highest_sack(sk
))
1295 tcp_advance_highest_sack(sk
, skb
);
1297 tcp_unlink_write_queue(skb
, sk
);
1298 sk_wmem_free_skb(sk
, skb
);
1300 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1305 /* I wish gso_size would have a bit more sane initialization than
1306 * something-or-zero which complicates things
1308 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1310 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1313 /* Shifting pages past head area doesn't work */
1314 static int skb_can_shift(const struct sk_buff
*skb
)
1316 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1319 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1322 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1323 struct tcp_sacktag_state
*state
,
1324 u32 start_seq
, u32 end_seq
,
1327 struct tcp_sock
*tp
= tcp_sk(sk
);
1328 struct sk_buff
*prev
;
1334 if (!sk_can_gso(sk
))
1337 /* Normally R but no L won't result in plain S */
1339 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1341 if (!skb_can_shift(skb
))
1343 /* This frame is about to be dropped (was ACKed). */
1344 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1347 /* Can only happen with delayed DSACK + discard craziness */
1348 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1350 prev
= tcp_write_queue_prev(sk
, skb
);
1352 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1355 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1356 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1360 pcount
= tcp_skb_pcount(skb
);
1361 mss
= tcp_skb_seglen(skb
);
1363 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1364 * drop this restriction as unnecessary
1366 if (mss
!= tcp_skb_seglen(prev
))
1369 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1371 /* CHECKME: This is non-MSS split case only?, this will
1372 * cause skipped skbs due to advancing loop btw, original
1373 * has that feature too
1375 if (tcp_skb_pcount(skb
) <= 1)
1378 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1380 /* TODO: head merge to next could be attempted here
1381 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1382 * though it might not be worth of the additional hassle
1384 * ...we can probably just fallback to what was done
1385 * previously. We could try merging non-SACKed ones
1386 * as well but it probably isn't going to buy off
1387 * because later SACKs might again split them, and
1388 * it would make skb timestamp tracking considerably
1394 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1396 BUG_ON(len
> skb
->len
);
1398 /* MSS boundaries should be honoured or else pcount will
1399 * severely break even though it makes things bit trickier.
1400 * Optimize common case to avoid most of the divides
1402 mss
= tcp_skb_mss(skb
);
1404 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1405 * drop this restriction as unnecessary
1407 if (mss
!= tcp_skb_seglen(prev
))
1412 } else if (len
< mss
) {
1420 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1421 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1424 if (!skb_shift(prev
, skb
, len
))
1426 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1429 /* Hole filled allows collapsing with the next as well, this is very
1430 * useful when hole on every nth skb pattern happens
1432 if (prev
== tcp_write_queue_tail(sk
))
1434 skb
= tcp_write_queue_next(sk
, prev
);
1436 if (!skb_can_shift(skb
) ||
1437 (skb
== tcp_send_head(sk
)) ||
1438 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1439 (mss
!= tcp_skb_seglen(skb
)))
1443 if (skb_shift(prev
, skb
, len
)) {
1444 pcount
+= tcp_skb_pcount(skb
);
1445 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1449 state
->fack_count
+= pcount
;
1456 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1460 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1461 struct tcp_sack_block
*next_dup
,
1462 struct tcp_sacktag_state
*state
,
1463 u32 start_seq
, u32 end_seq
,
1466 struct tcp_sock
*tp
= tcp_sk(sk
);
1467 struct sk_buff
*tmp
;
1469 tcp_for_write_queue_from(skb
, sk
) {
1471 bool dup_sack
= dup_sack_in
;
1473 if (skb
== tcp_send_head(sk
))
1476 /* queue is in-order => we can short-circuit the walk early */
1477 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1480 if ((next_dup
!= NULL
) &&
1481 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1482 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1483 next_dup
->start_seq
,
1489 /* skb reference here is a bit tricky to get right, since
1490 * shifting can eat and free both this skb and the next,
1491 * so not even _safe variant of the loop is enough.
1494 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1495 start_seq
, end_seq
, dup_sack
);
1504 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1510 if (unlikely(in_sack
< 0))
1514 TCP_SKB_CB(skb
)->sacked
=
1517 TCP_SKB_CB(skb
)->sacked
,
1518 TCP_SKB_CB(skb
)->seq
,
1519 TCP_SKB_CB(skb
)->end_seq
,
1521 tcp_skb_pcount(skb
));
1523 if (!before(TCP_SKB_CB(skb
)->seq
,
1524 tcp_highest_sack_seq(tp
)))
1525 tcp_advance_highest_sack(sk
, skb
);
1528 state
->fack_count
+= tcp_skb_pcount(skb
);
1533 /* Avoid all extra work that is being done by sacktag while walking in
1536 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1537 struct tcp_sacktag_state
*state
,
1540 tcp_for_write_queue_from(skb
, sk
) {
1541 if (skb
== tcp_send_head(sk
))
1544 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1547 state
->fack_count
+= tcp_skb_pcount(skb
);
1552 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1554 struct tcp_sack_block
*next_dup
,
1555 struct tcp_sacktag_state
*state
,
1558 if (next_dup
== NULL
)
1561 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1562 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1563 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1564 next_dup
->start_seq
, next_dup
->end_seq
,
1571 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1573 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1577 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1580 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1581 struct tcp_sock
*tp
= tcp_sk(sk
);
1582 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1583 TCP_SKB_CB(ack_skb
)->sacked
);
1584 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1585 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1586 struct tcp_sack_block
*cache
;
1587 struct tcp_sacktag_state state
;
1588 struct sk_buff
*skb
;
1589 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1591 bool found_dup_sack
= false;
1593 int first_sack_index
;
1596 state
.reord
= tp
->packets_out
;
1598 if (!tp
->sacked_out
) {
1599 if (WARN_ON(tp
->fackets_out
))
1600 tp
->fackets_out
= 0;
1601 tcp_highest_sack_reset(sk
);
1604 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1605 num_sacks
, prior_snd_una
);
1607 state
.flag
|= FLAG_DSACKING_ACK
;
1609 /* Eliminate too old ACKs, but take into
1610 * account more or less fresh ones, they can
1611 * contain valid SACK info.
1613 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1616 if (!tp
->packets_out
)
1620 first_sack_index
= 0;
1621 for (i
= 0; i
< num_sacks
; i
++) {
1622 bool dup_sack
= !i
&& found_dup_sack
;
1624 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1625 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1627 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1628 sp
[used_sacks
].start_seq
,
1629 sp
[used_sacks
].end_seq
)) {
1633 if (!tp
->undo_marker
)
1634 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1636 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1638 /* Don't count olds caused by ACK reordering */
1639 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1640 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1642 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1645 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1647 first_sack_index
= -1;
1651 /* Ignore very old stuff early */
1652 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1658 /* order SACK blocks to allow in order walk of the retrans queue */
1659 for (i
= used_sacks
- 1; i
> 0; i
--) {
1660 for (j
= 0; j
< i
; j
++) {
1661 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1662 swap(sp
[j
], sp
[j
+ 1]);
1664 /* Track where the first SACK block goes to */
1665 if (j
== first_sack_index
)
1666 first_sack_index
= j
+ 1;
1671 skb
= tcp_write_queue_head(sk
);
1672 state
.fack_count
= 0;
1675 if (!tp
->sacked_out
) {
1676 /* It's already past, so skip checking against it */
1677 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1679 cache
= tp
->recv_sack_cache
;
1680 /* Skip empty blocks in at head of the cache */
1681 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1686 while (i
< used_sacks
) {
1687 u32 start_seq
= sp
[i
].start_seq
;
1688 u32 end_seq
= sp
[i
].end_seq
;
1689 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1690 struct tcp_sack_block
*next_dup
= NULL
;
1692 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1693 next_dup
= &sp
[i
+ 1];
1695 /* Skip too early cached blocks */
1696 while (tcp_sack_cache_ok(tp
, cache
) &&
1697 !before(start_seq
, cache
->end_seq
))
1700 /* Can skip some work by looking recv_sack_cache? */
1701 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1702 after(end_seq
, cache
->start_seq
)) {
1705 if (before(start_seq
, cache
->start_seq
)) {
1706 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1708 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1715 /* Rest of the block already fully processed? */
1716 if (!after(end_seq
, cache
->end_seq
))
1719 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1723 /* ...tail remains todo... */
1724 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1725 /* ...but better entrypoint exists! */
1726 skb
= tcp_highest_sack(sk
);
1729 state
.fack_count
= tp
->fackets_out
;
1734 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1735 /* Check overlap against next cached too (past this one already) */
1740 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1741 skb
= tcp_highest_sack(sk
);
1744 state
.fack_count
= tp
->fackets_out
;
1746 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1749 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1750 start_seq
, end_seq
, dup_sack
);
1753 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1754 * due to in-order walk
1756 if (after(end_seq
, tp
->frto_highmark
))
1757 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1762 /* Clear the head of the cache sack blocks so we can skip it next time */
1763 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1764 tp
->recv_sack_cache
[i
].start_seq
= 0;
1765 tp
->recv_sack_cache
[i
].end_seq
= 0;
1767 for (j
= 0; j
< used_sacks
; j
++)
1768 tp
->recv_sack_cache
[i
++] = sp
[j
];
1770 tcp_mark_lost_retrans(sk
);
1772 tcp_verify_left_out(tp
);
1774 if ((state
.reord
< tp
->fackets_out
) &&
1775 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1776 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1777 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1781 #if FASTRETRANS_DEBUG > 0
1782 WARN_ON((int)tp
->sacked_out
< 0);
1783 WARN_ON((int)tp
->lost_out
< 0);
1784 WARN_ON((int)tp
->retrans_out
< 0);
1785 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1790 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1791 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1793 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1797 holes
= max(tp
->lost_out
, 1U);
1798 holes
= min(holes
, tp
->packets_out
);
1800 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1801 tp
->sacked_out
= tp
->packets_out
- holes
;
1807 /* If we receive more dupacks than we expected counting segments
1808 * in assumption of absent reordering, interpret this as reordering.
1809 * The only another reason could be bug in receiver TCP.
1811 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1813 struct tcp_sock
*tp
= tcp_sk(sk
);
1814 if (tcp_limit_reno_sacked(tp
))
1815 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1818 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1820 static void tcp_add_reno_sack(struct sock
*sk
)
1822 struct tcp_sock
*tp
= tcp_sk(sk
);
1824 tcp_check_reno_reordering(sk
, 0);
1825 tcp_verify_left_out(tp
);
1828 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1830 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1832 struct tcp_sock
*tp
= tcp_sk(sk
);
1835 /* One ACK acked hole. The rest eat duplicate ACKs. */
1836 if (acked
- 1 >= tp
->sacked_out
)
1839 tp
->sacked_out
-= acked
- 1;
1841 tcp_check_reno_reordering(sk
, acked
);
1842 tcp_verify_left_out(tp
);
1845 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1850 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
1852 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
1855 /* F-RTO can only be used if TCP has never retransmitted anything other than
1856 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1858 bool tcp_use_frto(struct sock
*sk
)
1860 const struct tcp_sock
*tp
= tcp_sk(sk
);
1861 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1862 struct sk_buff
*skb
;
1864 if (!sysctl_tcp_frto
)
1867 /* MTU probe and F-RTO won't really play nicely along currently */
1868 if (icsk
->icsk_mtup
.probe_size
)
1871 if (tcp_is_sackfrto(tp
))
1874 /* Avoid expensive walking of rexmit queue if possible */
1875 if (tp
->retrans_out
> 1)
1878 skb
= tcp_write_queue_head(sk
);
1879 if (tcp_skb_is_last(sk
, skb
))
1881 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
1882 tcp_for_write_queue_from(skb
, sk
) {
1883 if (skb
== tcp_send_head(sk
))
1885 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1887 /* Short-circuit when first non-SACKed skb has been checked */
1888 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
1894 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1895 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1896 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1897 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1898 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1899 * bits are handled if the Loss state is really to be entered (in
1900 * tcp_enter_frto_loss).
1902 * Do like tcp_enter_loss() would; when RTO expires the second time it
1904 * "Reduce ssthresh if it has not yet been made inside this window."
1906 void tcp_enter_frto(struct sock
*sk
)
1908 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1909 struct tcp_sock
*tp
= tcp_sk(sk
);
1910 struct sk_buff
*skb
;
1912 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
1913 tp
->snd_una
== tp
->high_seq
||
1914 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
1915 !icsk
->icsk_retransmits
)) {
1916 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1917 /* Our state is too optimistic in ssthresh() call because cwnd
1918 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1919 * recovery has not yet completed. Pattern would be this: RTO,
1920 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1922 * RFC4138 should be more specific on what to do, even though
1923 * RTO is quite unlikely to occur after the first Cumulative ACK
1924 * due to back-off and complexity of triggering events ...
1926 if (tp
->frto_counter
) {
1928 stored_cwnd
= tp
->snd_cwnd
;
1930 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1931 tp
->snd_cwnd
= stored_cwnd
;
1933 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1935 /* ... in theory, cong.control module could do "any tricks" in
1936 * ssthresh(), which means that ca_state, lost bits and lost_out
1937 * counter would have to be faked before the call occurs. We
1938 * consider that too expensive, unlikely and hacky, so modules
1939 * using these in ssthresh() must deal these incompatibility
1940 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1942 tcp_ca_event(sk
, CA_EVENT_FRTO
);
1945 tp
->undo_marker
= tp
->snd_una
;
1946 tp
->undo_retrans
= 0;
1948 skb
= tcp_write_queue_head(sk
);
1949 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1950 tp
->undo_marker
= 0;
1951 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
1952 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1953 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1955 tcp_verify_left_out(tp
);
1957 /* Too bad if TCP was application limited */
1958 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
1960 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1961 * The last condition is necessary at least in tp->frto_counter case.
1963 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
1964 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
1965 after(tp
->high_seq
, tp
->snd_una
)) {
1966 tp
->frto_highmark
= tp
->high_seq
;
1968 tp
->frto_highmark
= tp
->snd_nxt
;
1970 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
1971 tp
->high_seq
= tp
->snd_nxt
;
1972 tp
->frto_counter
= 1;
1975 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1976 * which indicates that we should follow the traditional RTO recovery,
1977 * i.e. mark everything lost and do go-back-N retransmission.
1979 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
1981 struct tcp_sock
*tp
= tcp_sk(sk
);
1982 struct sk_buff
*skb
;
1985 tp
->retrans_out
= 0;
1986 if (tcp_is_reno(tp
))
1987 tcp_reset_reno_sack(tp
);
1989 tcp_for_write_queue(skb
, sk
) {
1990 if (skb
== tcp_send_head(sk
))
1993 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1995 * Count the retransmission made on RTO correctly (only when
1996 * waiting for the first ACK and did not get it)...
1998 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
1999 /* For some reason this R-bit might get cleared? */
2000 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
2001 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2002 /* ...enter this if branch just for the first segment */
2003 flag
|= FLAG_DATA_ACKED
;
2005 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2006 tp
->undo_marker
= 0;
2007 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2010 /* Marking forward transmissions that were made after RTO lost
2011 * can cause unnecessary retransmissions in some scenarios,
2012 * SACK blocks will mitigate that in some but not in all cases.
2013 * We used to not mark them but it was causing break-ups with
2014 * receivers that do only in-order receival.
2016 * TODO: we could detect presence of such receiver and select
2017 * different behavior per flow.
2019 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2020 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2021 tp
->lost_out
+= tcp_skb_pcount(skb
);
2022 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2025 tcp_verify_left_out(tp
);
2027 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2028 tp
->snd_cwnd_cnt
= 0;
2029 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2030 tp
->frto_counter
= 0;
2031 tp
->bytes_acked
= 0;
2033 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2034 sysctl_tcp_reordering
);
2035 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2036 tp
->high_seq
= tp
->snd_nxt
;
2037 TCP_ECN_queue_cwr(tp
);
2039 tcp_clear_all_retrans_hints(tp
);
2042 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2044 tp
->retrans_out
= 0;
2047 tp
->undo_marker
= 0;
2048 tp
->undo_retrans
= 0;
2051 void tcp_clear_retrans(struct tcp_sock
*tp
)
2053 tcp_clear_retrans_partial(tp
);
2055 tp
->fackets_out
= 0;
2059 /* Enter Loss state. If "how" is not zero, forget all SACK information
2060 * and reset tags completely, otherwise preserve SACKs. If receiver
2061 * dropped its ofo queue, we will know this due to reneging detection.
2063 void tcp_enter_loss(struct sock
*sk
, int how
)
2065 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2066 struct tcp_sock
*tp
= tcp_sk(sk
);
2067 struct sk_buff
*skb
;
2069 /* Reduce ssthresh if it has not yet been made inside this window. */
2070 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2071 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2072 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2073 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2074 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2077 tp
->snd_cwnd_cnt
= 0;
2078 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2080 tp
->bytes_acked
= 0;
2081 tcp_clear_retrans_partial(tp
);
2083 if (tcp_is_reno(tp
))
2084 tcp_reset_reno_sack(tp
);
2087 /* Push undo marker, if it was plain RTO and nothing
2088 * was retransmitted. */
2089 tp
->undo_marker
= tp
->snd_una
;
2092 tp
->fackets_out
= 0;
2094 tcp_clear_all_retrans_hints(tp
);
2096 tcp_for_write_queue(skb
, sk
) {
2097 if (skb
== tcp_send_head(sk
))
2100 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2101 tp
->undo_marker
= 0;
2102 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2103 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2104 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2105 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2106 tp
->lost_out
+= tcp_skb_pcount(skb
);
2107 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2110 tcp_verify_left_out(tp
);
2112 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2113 sysctl_tcp_reordering
);
2114 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2115 tp
->high_seq
= tp
->snd_nxt
;
2116 TCP_ECN_queue_cwr(tp
);
2117 /* Abort F-RTO algorithm if one is in progress */
2118 tp
->frto_counter
= 0;
2121 /* If ACK arrived pointing to a remembered SACK, it means that our
2122 * remembered SACKs do not reflect real state of receiver i.e.
2123 * receiver _host_ is heavily congested (or buggy).
2125 * Do processing similar to RTO timeout.
2127 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2129 if (flag
& FLAG_SACK_RENEGING
) {
2130 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2131 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2133 tcp_enter_loss(sk
, 1);
2134 icsk
->icsk_retransmits
++;
2135 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2136 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2137 icsk
->icsk_rto
, TCP_RTO_MAX
);
2143 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
2145 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2148 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2149 * counter when SACK is enabled (without SACK, sacked_out is used for
2152 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2153 * segments up to the highest received SACK block so far and holes in
2156 * With reordering, holes may still be in flight, so RFC3517 recovery
2157 * uses pure sacked_out (total number of SACKed segments) even though
2158 * it violates the RFC that uses duplicate ACKs, often these are equal
2159 * but when e.g. out-of-window ACKs or packet duplication occurs,
2160 * they differ. Since neither occurs due to loss, TCP should really
2163 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2165 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2168 static bool tcp_pause_early_retransmit(struct sock
*sk
, int flag
)
2170 struct tcp_sock
*tp
= tcp_sk(sk
);
2171 unsigned long delay
;
2173 /* Delay early retransmit and entering fast recovery for
2174 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2175 * available, or RTO is scheduled to fire first.
2177 if (sysctl_tcp_early_retrans
< 2 || (flag
& FLAG_ECE
) || !tp
->srtt
)
2180 delay
= max_t(unsigned long, (tp
->srtt
>> 5), msecs_to_jiffies(2));
2181 if (!time_after(inet_csk(sk
)->icsk_timeout
, (jiffies
+ delay
)))
2184 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, delay
, TCP_RTO_MAX
);
2185 tp
->early_retrans_delayed
= 1;
2189 static inline int tcp_skb_timedout(const struct sock
*sk
,
2190 const struct sk_buff
*skb
)
2192 return tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
;
2195 static inline int tcp_head_timedout(const struct sock
*sk
)
2197 const struct tcp_sock
*tp
= tcp_sk(sk
);
2199 return tp
->packets_out
&&
2200 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2203 /* Linux NewReno/SACK/FACK/ECN state machine.
2204 * --------------------------------------
2206 * "Open" Normal state, no dubious events, fast path.
2207 * "Disorder" In all the respects it is "Open",
2208 * but requires a bit more attention. It is entered when
2209 * we see some SACKs or dupacks. It is split of "Open"
2210 * mainly to move some processing from fast path to slow one.
2211 * "CWR" CWND was reduced due to some Congestion Notification event.
2212 * It can be ECN, ICMP source quench, local device congestion.
2213 * "Recovery" CWND was reduced, we are fast-retransmitting.
2214 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2216 * tcp_fastretrans_alert() is entered:
2217 * - each incoming ACK, if state is not "Open"
2218 * - when arrived ACK is unusual, namely:
2223 * Counting packets in flight is pretty simple.
2225 * in_flight = packets_out - left_out + retrans_out
2227 * packets_out is SND.NXT-SND.UNA counted in packets.
2229 * retrans_out is number of retransmitted segments.
2231 * left_out is number of segments left network, but not ACKed yet.
2233 * left_out = sacked_out + lost_out
2235 * sacked_out: Packets, which arrived to receiver out of order
2236 * and hence not ACKed. With SACKs this number is simply
2237 * amount of SACKed data. Even without SACKs
2238 * it is easy to give pretty reliable estimate of this number,
2239 * counting duplicate ACKs.
2241 * lost_out: Packets lost by network. TCP has no explicit
2242 * "loss notification" feedback from network (for now).
2243 * It means that this number can be only _guessed_.
2244 * Actually, it is the heuristics to predict lossage that
2245 * distinguishes different algorithms.
2247 * F.e. after RTO, when all the queue is considered as lost,
2248 * lost_out = packets_out and in_flight = retrans_out.
2250 * Essentially, we have now two algorithms counting
2253 * FACK: It is the simplest heuristics. As soon as we decided
2254 * that something is lost, we decide that _all_ not SACKed
2255 * packets until the most forward SACK are lost. I.e.
2256 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2257 * It is absolutely correct estimate, if network does not reorder
2258 * packets. And it loses any connection to reality when reordering
2259 * takes place. We use FACK by default until reordering
2260 * is suspected on the path to this destination.
2262 * NewReno: when Recovery is entered, we assume that one segment
2263 * is lost (classic Reno). While we are in Recovery and
2264 * a partial ACK arrives, we assume that one more packet
2265 * is lost (NewReno). This heuristics are the same in NewReno
2268 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2269 * deflation etc. CWND is real congestion window, never inflated, changes
2270 * only according to classic VJ rules.
2272 * Really tricky (and requiring careful tuning) part of algorithm
2273 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2274 * The first determines the moment _when_ we should reduce CWND and,
2275 * hence, slow down forward transmission. In fact, it determines the moment
2276 * when we decide that hole is caused by loss, rather than by a reorder.
2278 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2279 * holes, caused by lost packets.
2281 * And the most logically complicated part of algorithm is undo
2282 * heuristics. We detect false retransmits due to both too early
2283 * fast retransmit (reordering) and underestimated RTO, analyzing
2284 * timestamps and D-SACKs. When we detect that some segments were
2285 * retransmitted by mistake and CWND reduction was wrong, we undo
2286 * window reduction and abort recovery phase. This logic is hidden
2287 * inside several functions named tcp_try_undo_<something>.
2290 /* This function decides, when we should leave Disordered state
2291 * and enter Recovery phase, reducing congestion window.
2293 * Main question: may we further continue forward transmission
2294 * with the same cwnd?
2296 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2298 struct tcp_sock
*tp
= tcp_sk(sk
);
2301 /* Do not perform any recovery during F-RTO algorithm */
2302 if (tp
->frto_counter
)
2305 /* Trick#1: The loss is proven. */
2309 /* Not-A-Trick#2 : Classic rule... */
2310 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2313 /* Trick#3 : when we use RFC2988 timer restart, fast
2314 * retransmit can be triggered by timeout of queue head.
2316 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2319 /* Trick#4: It is still not OK... But will it be useful to delay
2322 packets_out
= tp
->packets_out
;
2323 if (packets_out
<= tp
->reordering
&&
2324 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2325 !tcp_may_send_now(sk
)) {
2326 /* We have nothing to send. This connection is limited
2327 * either by receiver window or by application.
2332 /* If a thin stream is detected, retransmit after first
2333 * received dupack. Employ only if SACK is supported in order
2334 * to avoid possible corner-case series of spurious retransmissions
2335 * Use only if there are no unsent data.
2337 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2338 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2339 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2342 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2343 * retransmissions due to small network reorderings, we implement
2344 * Mitigation A.3 in the RFC and delay the retransmission for a short
2345 * interval if appropriate.
2347 if (tp
->do_early_retrans
&& !tp
->retrans_out
&& tp
->sacked_out
&&
2348 (tp
->packets_out
== (tp
->sacked_out
+ 1) && tp
->packets_out
< 4) &&
2349 !tcp_may_send_now(sk
))
2350 return !tcp_pause_early_retransmit(sk
, flag
);
2355 /* New heuristics: it is possible only after we switched to restart timer
2356 * each time when something is ACKed. Hence, we can detect timed out packets
2357 * during fast retransmit without falling to slow start.
2359 * Usefulness of this as is very questionable, since we should know which of
2360 * the segments is the next to timeout which is relatively expensive to find
2361 * in general case unless we add some data structure just for that. The
2362 * current approach certainly won't find the right one too often and when it
2363 * finally does find _something_ it usually marks large part of the window
2364 * right away (because a retransmission with a larger timestamp blocks the
2365 * loop from advancing). -ij
2367 static void tcp_timeout_skbs(struct sock
*sk
)
2369 struct tcp_sock
*tp
= tcp_sk(sk
);
2370 struct sk_buff
*skb
;
2372 if (!tcp_is_fack(tp
) || !tcp_head_timedout(sk
))
2375 skb
= tp
->scoreboard_skb_hint
;
2376 if (tp
->scoreboard_skb_hint
== NULL
)
2377 skb
= tcp_write_queue_head(sk
);
2379 tcp_for_write_queue_from(skb
, sk
) {
2380 if (skb
== tcp_send_head(sk
))
2382 if (!tcp_skb_timedout(sk
, skb
))
2385 tcp_skb_mark_lost(tp
, skb
);
2388 tp
->scoreboard_skb_hint
= skb
;
2390 tcp_verify_left_out(tp
);
2393 /* Detect loss in event "A" above by marking head of queue up as lost.
2394 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2395 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2396 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2397 * the maximum SACKed segments to pass before reaching this limit.
2399 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2401 struct tcp_sock
*tp
= tcp_sk(sk
);
2402 struct sk_buff
*skb
;
2406 /* Use SACK to deduce losses of new sequences sent during recovery */
2407 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2409 WARN_ON(packets
> tp
->packets_out
);
2410 if (tp
->lost_skb_hint
) {
2411 skb
= tp
->lost_skb_hint
;
2412 cnt
= tp
->lost_cnt_hint
;
2413 /* Head already handled? */
2414 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2417 skb
= tcp_write_queue_head(sk
);
2421 tcp_for_write_queue_from(skb
, sk
) {
2422 if (skb
== tcp_send_head(sk
))
2424 /* TODO: do this better */
2425 /* this is not the most efficient way to do this... */
2426 tp
->lost_skb_hint
= skb
;
2427 tp
->lost_cnt_hint
= cnt
;
2429 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2433 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2434 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2435 cnt
+= tcp_skb_pcount(skb
);
2437 if (cnt
> packets
) {
2438 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2439 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2440 (oldcnt
>= packets
))
2443 mss
= skb_shinfo(skb
)->gso_size
;
2444 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2450 tcp_skb_mark_lost(tp
, skb
);
2455 tcp_verify_left_out(tp
);
2458 /* Account newly detected lost packet(s) */
2460 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2462 struct tcp_sock
*tp
= tcp_sk(sk
);
2464 if (tcp_is_reno(tp
)) {
2465 tcp_mark_head_lost(sk
, 1, 1);
2466 } else if (tcp_is_fack(tp
)) {
2467 int lost
= tp
->fackets_out
- tp
->reordering
;
2470 tcp_mark_head_lost(sk
, lost
, 0);
2472 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2473 if (sacked_upto
>= 0)
2474 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2475 else if (fast_rexmit
)
2476 tcp_mark_head_lost(sk
, 1, 1);
2479 tcp_timeout_skbs(sk
);
2482 /* CWND moderation, preventing bursts due to too big ACKs
2483 * in dubious situations.
2485 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2487 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2488 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2489 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2492 /* Lower bound on congestion window is slow start threshold
2493 * unless congestion avoidance choice decides to overide it.
2495 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2497 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2499 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2502 /* Decrease cwnd each second ack. */
2503 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2505 struct tcp_sock
*tp
= tcp_sk(sk
);
2506 int decr
= tp
->snd_cwnd_cnt
+ 1;
2508 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2509 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2510 tp
->snd_cwnd_cnt
= decr
& 1;
2513 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2514 tp
->snd_cwnd
-= decr
;
2516 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2517 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2521 /* Nothing was retransmitted or returned timestamp is less
2522 * than timestamp of the first retransmission.
2524 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2526 return !tp
->retrans_stamp
||
2527 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2528 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2531 /* Undo procedures. */
2533 #if FASTRETRANS_DEBUG > 1
2534 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2536 struct tcp_sock
*tp
= tcp_sk(sk
);
2537 struct inet_sock
*inet
= inet_sk(sk
);
2539 if (sk
->sk_family
== AF_INET
) {
2540 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2542 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2543 tp
->snd_cwnd
, tcp_left_out(tp
),
2544 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2547 #if IS_ENABLED(CONFIG_IPV6)
2548 else if (sk
->sk_family
== AF_INET6
) {
2549 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2550 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2552 &np
->daddr
, ntohs(inet
->inet_dport
),
2553 tp
->snd_cwnd
, tcp_left_out(tp
),
2554 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2560 #define DBGUNDO(x...) do { } while (0)
2563 static void tcp_undo_cwr(struct sock
*sk
, const bool undo_ssthresh
)
2565 struct tcp_sock
*tp
= tcp_sk(sk
);
2567 if (tp
->prior_ssthresh
) {
2568 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2570 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2571 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2573 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2575 if (undo_ssthresh
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2576 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2577 TCP_ECN_withdraw_cwr(tp
);
2580 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2582 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2585 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2587 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2590 /* People celebrate: "We love our President!" */
2591 static bool tcp_try_undo_recovery(struct sock
*sk
)
2593 struct tcp_sock
*tp
= tcp_sk(sk
);
2595 if (tcp_may_undo(tp
)) {
2598 /* Happy end! We did not retransmit anything
2599 * or our original transmission succeeded.
2601 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2602 tcp_undo_cwr(sk
, true);
2603 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2604 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2606 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2608 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2609 tp
->undo_marker
= 0;
2611 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2612 /* Hold old state until something *above* high_seq
2613 * is ACKed. For Reno it is MUST to prevent false
2614 * fast retransmits (RFC2582). SACK TCP is safe. */
2615 tcp_moderate_cwnd(tp
);
2618 tcp_set_ca_state(sk
, TCP_CA_Open
);
2622 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2623 static void tcp_try_undo_dsack(struct sock
*sk
)
2625 struct tcp_sock
*tp
= tcp_sk(sk
);
2627 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2628 DBGUNDO(sk
, "D-SACK");
2629 tcp_undo_cwr(sk
, true);
2630 tp
->undo_marker
= 0;
2631 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2635 /* We can clear retrans_stamp when there are no retransmissions in the
2636 * window. It would seem that it is trivially available for us in
2637 * tp->retrans_out, however, that kind of assumptions doesn't consider
2638 * what will happen if errors occur when sending retransmission for the
2639 * second time. ...It could the that such segment has only
2640 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2641 * the head skb is enough except for some reneging corner cases that
2642 * are not worth the effort.
2644 * Main reason for all this complexity is the fact that connection dying
2645 * time now depends on the validity of the retrans_stamp, in particular,
2646 * that successive retransmissions of a segment must not advance
2647 * retrans_stamp under any conditions.
2649 static bool tcp_any_retrans_done(const struct sock
*sk
)
2651 const struct tcp_sock
*tp
= tcp_sk(sk
);
2652 struct sk_buff
*skb
;
2654 if (tp
->retrans_out
)
2657 skb
= tcp_write_queue_head(sk
);
2658 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2664 /* Undo during fast recovery after partial ACK. */
2666 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2668 struct tcp_sock
*tp
= tcp_sk(sk
);
2669 /* Partial ACK arrived. Force Hoe's retransmit. */
2670 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2672 if (tcp_may_undo(tp
)) {
2673 /* Plain luck! Hole if filled with delayed
2674 * packet, rather than with a retransmit.
2676 if (!tcp_any_retrans_done(sk
))
2677 tp
->retrans_stamp
= 0;
2679 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2682 tcp_undo_cwr(sk
, false);
2683 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2685 /* So... Do not make Hoe's retransmit yet.
2686 * If the first packet was delayed, the rest
2687 * ones are most probably delayed as well.
2694 /* Undo during loss recovery after partial ACK. */
2695 static bool tcp_try_undo_loss(struct sock
*sk
)
2697 struct tcp_sock
*tp
= tcp_sk(sk
);
2699 if (tcp_may_undo(tp
)) {
2700 struct sk_buff
*skb
;
2701 tcp_for_write_queue(skb
, sk
) {
2702 if (skb
== tcp_send_head(sk
))
2704 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2707 tcp_clear_all_retrans_hints(tp
);
2709 DBGUNDO(sk
, "partial loss");
2711 tcp_undo_cwr(sk
, true);
2712 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2713 inet_csk(sk
)->icsk_retransmits
= 0;
2714 tp
->undo_marker
= 0;
2715 if (tcp_is_sack(tp
))
2716 tcp_set_ca_state(sk
, TCP_CA_Open
);
2722 static inline void tcp_complete_cwr(struct sock
*sk
)
2724 struct tcp_sock
*tp
= tcp_sk(sk
);
2726 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2727 if (tp
->undo_marker
) {
2728 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
) {
2729 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2730 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2731 } else if (tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
) {
2732 /* PRR algorithm. */
2733 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2734 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2737 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2740 static void tcp_try_keep_open(struct sock
*sk
)
2742 struct tcp_sock
*tp
= tcp_sk(sk
);
2743 int state
= TCP_CA_Open
;
2745 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2746 state
= TCP_CA_Disorder
;
2748 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2749 tcp_set_ca_state(sk
, state
);
2750 tp
->high_seq
= tp
->snd_nxt
;
2754 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2756 struct tcp_sock
*tp
= tcp_sk(sk
);
2758 tcp_verify_left_out(tp
);
2760 if (!tp
->frto_counter
&& !tcp_any_retrans_done(sk
))
2761 tp
->retrans_stamp
= 0;
2763 if (flag
& FLAG_ECE
)
2764 tcp_enter_cwr(sk
, 1);
2766 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2767 tcp_try_keep_open(sk
);
2768 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
)
2769 tcp_moderate_cwnd(tp
);
2771 tcp_cwnd_down(sk
, flag
);
2775 static void tcp_mtup_probe_failed(struct sock
*sk
)
2777 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2779 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2780 icsk
->icsk_mtup
.probe_size
= 0;
2783 static void tcp_mtup_probe_success(struct sock
*sk
)
2785 struct tcp_sock
*tp
= tcp_sk(sk
);
2786 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2788 /* FIXME: breaks with very large cwnd */
2789 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2790 tp
->snd_cwnd
= tp
->snd_cwnd
*
2791 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2792 icsk
->icsk_mtup
.probe_size
;
2793 tp
->snd_cwnd_cnt
= 0;
2794 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2795 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2797 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2798 icsk
->icsk_mtup
.probe_size
= 0;
2799 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2802 /* Do a simple retransmit without using the backoff mechanisms in
2803 * tcp_timer. This is used for path mtu discovery.
2804 * The socket is already locked here.
2806 void tcp_simple_retransmit(struct sock
*sk
)
2808 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2809 struct tcp_sock
*tp
= tcp_sk(sk
);
2810 struct sk_buff
*skb
;
2811 unsigned int mss
= tcp_current_mss(sk
);
2812 u32 prior_lost
= tp
->lost_out
;
2814 tcp_for_write_queue(skb
, sk
) {
2815 if (skb
== tcp_send_head(sk
))
2817 if (tcp_skb_seglen(skb
) > mss
&&
2818 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2819 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2820 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2821 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2823 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2827 tcp_clear_retrans_hints_partial(tp
);
2829 if (prior_lost
== tp
->lost_out
)
2832 if (tcp_is_reno(tp
))
2833 tcp_limit_reno_sacked(tp
);
2835 tcp_verify_left_out(tp
);
2837 /* Don't muck with the congestion window here.
2838 * Reason is that we do not increase amount of _data_
2839 * in network, but units changed and effective
2840 * cwnd/ssthresh really reduced now.
2842 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2843 tp
->high_seq
= tp
->snd_nxt
;
2844 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2845 tp
->prior_ssthresh
= 0;
2846 tp
->undo_marker
= 0;
2847 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2849 tcp_xmit_retransmit_queue(sk
);
2851 EXPORT_SYMBOL(tcp_simple_retransmit
);
2853 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2854 * (proportional rate reduction with slow start reduction bound) as described in
2855 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2856 * It computes the number of packets to send (sndcnt) based on packets newly
2858 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2859 * cwnd reductions across a full RTT.
2860 * 2) If packets in flight is lower than ssthresh (such as due to excess
2861 * losses and/or application stalls), do not perform any further cwnd
2862 * reductions, but instead slow start up to ssthresh.
2864 static void tcp_update_cwnd_in_recovery(struct sock
*sk
, int newly_acked_sacked
,
2865 int fast_rexmit
, int flag
)
2867 struct tcp_sock
*tp
= tcp_sk(sk
);
2869 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2871 if (tcp_packets_in_flight(tp
) > tp
->snd_ssthresh
) {
2872 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2874 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2876 sndcnt
= min_t(int, delta
,
2877 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2878 newly_acked_sacked
) + 1);
2881 sndcnt
= max(sndcnt
, (fast_rexmit
? 1 : 0));
2882 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2885 static void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2887 struct tcp_sock
*tp
= tcp_sk(sk
);
2890 if (tcp_is_reno(tp
))
2891 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2893 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2895 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2897 tp
->high_seq
= tp
->snd_nxt
;
2898 tp
->prior_ssthresh
= 0;
2899 tp
->undo_marker
= tp
->snd_una
;
2900 tp
->undo_retrans
= tp
->retrans_out
;
2902 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2904 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2905 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2906 TCP_ECN_queue_cwr(tp
);
2909 tp
->bytes_acked
= 0;
2910 tp
->snd_cwnd_cnt
= 0;
2911 tp
->prior_cwnd
= tp
->snd_cwnd
;
2912 tp
->prr_delivered
= 0;
2914 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2917 /* Process an event, which can update packets-in-flight not trivially.
2918 * Main goal of this function is to calculate new estimate for left_out,
2919 * taking into account both packets sitting in receiver's buffer and
2920 * packets lost by network.
2922 * Besides that it does CWND reduction, when packet loss is detected
2923 * and changes state of machine.
2925 * It does _not_ decide what to send, it is made in function
2926 * tcp_xmit_retransmit_queue().
2928 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
,
2929 int prior_sacked
, bool is_dupack
,
2932 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2933 struct tcp_sock
*tp
= tcp_sk(sk
);
2934 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2935 (tcp_fackets_out(tp
) > tp
->reordering
));
2936 int newly_acked_sacked
= 0;
2937 int fast_rexmit
= 0;
2939 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2941 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2942 tp
->fackets_out
= 0;
2944 /* Now state machine starts.
2945 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2946 if (flag
& FLAG_ECE
)
2947 tp
->prior_ssthresh
= 0;
2949 /* B. In all the states check for reneging SACKs. */
2950 if (tcp_check_sack_reneging(sk
, flag
))
2953 /* C. Check consistency of the current state. */
2954 tcp_verify_left_out(tp
);
2956 /* D. Check state exit conditions. State can be terminated
2957 * when high_seq is ACKed. */
2958 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2959 WARN_ON(tp
->retrans_out
!= 0);
2960 tp
->retrans_stamp
= 0;
2961 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2962 switch (icsk
->icsk_ca_state
) {
2964 icsk
->icsk_retransmits
= 0;
2965 if (tcp_try_undo_recovery(sk
))
2970 /* CWR is to be held something *above* high_seq
2971 * is ACKed for CWR bit to reach receiver. */
2972 if (tp
->snd_una
!= tp
->high_seq
) {
2973 tcp_complete_cwr(sk
);
2974 tcp_set_ca_state(sk
, TCP_CA_Open
);
2978 case TCP_CA_Recovery
:
2979 if (tcp_is_reno(tp
))
2980 tcp_reset_reno_sack(tp
);
2981 if (tcp_try_undo_recovery(sk
))
2983 tcp_complete_cwr(sk
);
2988 /* E. Process state. */
2989 switch (icsk
->icsk_ca_state
) {
2990 case TCP_CA_Recovery
:
2991 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2992 if (tcp_is_reno(tp
) && is_dupack
)
2993 tcp_add_reno_sack(sk
);
2995 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
2996 newly_acked_sacked
= pkts_acked
+ tp
->sacked_out
- prior_sacked
;
2999 if (flag
& FLAG_DATA_ACKED
)
3000 icsk
->icsk_retransmits
= 0;
3001 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
3002 tcp_reset_reno_sack(tp
);
3003 if (!tcp_try_undo_loss(sk
)) {
3004 tcp_moderate_cwnd(tp
);
3005 tcp_xmit_retransmit_queue(sk
);
3008 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
3010 /* Loss is undone; fall through to processing in Open state. */
3012 if (tcp_is_reno(tp
)) {
3013 if (flag
& FLAG_SND_UNA_ADVANCED
)
3014 tcp_reset_reno_sack(tp
);
3016 tcp_add_reno_sack(sk
);
3018 newly_acked_sacked
= pkts_acked
+ tp
->sacked_out
- prior_sacked
;
3020 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
3021 tcp_try_undo_dsack(sk
);
3023 if (!tcp_time_to_recover(sk
, flag
)) {
3024 tcp_try_to_open(sk
, flag
);
3028 /* MTU probe failure: don't reduce cwnd */
3029 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3030 icsk
->icsk_mtup
.probe_size
&&
3031 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3032 tcp_mtup_probe_failed(sk
);
3033 /* Restores the reduction we did in tcp_mtup_probe() */
3035 tcp_simple_retransmit(sk
);
3039 /* Otherwise enter Recovery state */
3040 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
3044 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3045 tcp_update_scoreboard(sk
, fast_rexmit
);
3046 tp
->prr_delivered
+= newly_acked_sacked
;
3047 tcp_update_cwnd_in_recovery(sk
, newly_acked_sacked
, fast_rexmit
, flag
);
3048 tcp_xmit_retransmit_queue(sk
);
3051 void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3053 tcp_rtt_estimator(sk
, seq_rtt
);
3055 inet_csk(sk
)->icsk_backoff
= 0;
3057 EXPORT_SYMBOL(tcp_valid_rtt_meas
);
3059 /* Read draft-ietf-tcplw-high-performance before mucking
3060 * with this code. (Supersedes RFC1323)
3062 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3064 /* RTTM Rule: A TSecr value received in a segment is used to
3065 * update the averaged RTT measurement only if the segment
3066 * acknowledges some new data, i.e., only if it advances the
3067 * left edge of the send window.
3069 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3070 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3072 * Changed: reset backoff as soon as we see the first valid sample.
3073 * If we do not, we get strongly overestimated rto. With timestamps
3074 * samples are accepted even from very old segments: f.e., when rtt=1
3075 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3076 * answer arrives rto becomes 120 seconds! If at least one of segments
3077 * in window is lost... Voila. --ANK (010210)
3079 struct tcp_sock
*tp
= tcp_sk(sk
);
3081 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3084 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3086 /* We don't have a timestamp. Can only use
3087 * packets that are not retransmitted to determine
3088 * rtt estimates. Also, we must not reset the
3089 * backoff for rto until we get a non-retransmitted
3090 * packet. This allows us to deal with a situation
3091 * where the network delay has increased suddenly.
3092 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3095 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3098 tcp_valid_rtt_meas(sk
, seq_rtt
);
3101 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3104 const struct tcp_sock
*tp
= tcp_sk(sk
);
3105 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3106 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3107 tcp_ack_saw_tstamp(sk
, flag
);
3108 else if (seq_rtt
>= 0)
3109 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3112 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3114 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3115 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3116 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3119 /* Restart timer after forward progress on connection.
3120 * RFC2988 recommends to restart timer to now+rto.
3122 void tcp_rearm_rto(struct sock
*sk
)
3124 struct tcp_sock
*tp
= tcp_sk(sk
);
3126 if (!tp
->packets_out
) {
3127 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3129 u32 rto
= inet_csk(sk
)->icsk_rto
;
3130 /* Offset the time elapsed after installing regular RTO */
3131 if (tp
->early_retrans_delayed
) {
3132 struct sk_buff
*skb
= tcp_write_queue_head(sk
);
3133 const u32 rto_time_stamp
= TCP_SKB_CB(skb
)->when
+ rto
;
3134 s32 delta
= (s32
)(rto_time_stamp
- tcp_time_stamp
);
3135 /* delta may not be positive if the socket is locked
3136 * when the delayed ER timer fires and is rescheduled.
3141 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3144 tp
->early_retrans_delayed
= 0;
3147 /* This function is called when the delayed ER timer fires. TCP enters
3148 * fast recovery and performs fast-retransmit.
3150 void tcp_resume_early_retransmit(struct sock
*sk
)
3152 struct tcp_sock
*tp
= tcp_sk(sk
);
3156 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3157 if (!tp
->do_early_retrans
)
3160 tcp_enter_recovery(sk
, false);
3161 tcp_update_scoreboard(sk
, 1);
3162 tcp_xmit_retransmit_queue(sk
);
3165 /* If we get here, the whole TSO packet has not been acked. */
3166 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3168 struct tcp_sock
*tp
= tcp_sk(sk
);
3171 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3173 packets_acked
= tcp_skb_pcount(skb
);
3174 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3176 packets_acked
-= tcp_skb_pcount(skb
);
3178 if (packets_acked
) {
3179 BUG_ON(tcp_skb_pcount(skb
) == 0);
3180 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3183 return packets_acked
;
3186 /* Remove acknowledged frames from the retransmission queue. If our packet
3187 * is before the ack sequence we can discard it as it's confirmed to have
3188 * arrived at the other end.
3190 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3193 struct tcp_sock
*tp
= tcp_sk(sk
);
3194 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3195 struct sk_buff
*skb
;
3196 u32 now
= tcp_time_stamp
;
3197 int fully_acked
= true;
3200 u32 reord
= tp
->packets_out
;
3201 u32 prior_sacked
= tp
->sacked_out
;
3203 s32 ca_seq_rtt
= -1;
3204 ktime_t last_ackt
= net_invalid_timestamp();
3206 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3207 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3209 u8 sacked
= scb
->sacked
;
3211 /* Determine how many packets and what bytes were acked, tso and else */
3212 if (after(scb
->end_seq
, tp
->snd_una
)) {
3213 if (tcp_skb_pcount(skb
) == 1 ||
3214 !after(tp
->snd_una
, scb
->seq
))
3217 acked_pcount
= tcp_tso_acked(sk
, skb
);
3221 fully_acked
= false;
3223 acked_pcount
= tcp_skb_pcount(skb
);
3226 if (sacked
& TCPCB_RETRANS
) {
3227 if (sacked
& TCPCB_SACKED_RETRANS
)
3228 tp
->retrans_out
-= acked_pcount
;
3229 flag
|= FLAG_RETRANS_DATA_ACKED
;
3232 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3233 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3235 ca_seq_rtt
= now
- scb
->when
;
3236 last_ackt
= skb
->tstamp
;
3238 seq_rtt
= ca_seq_rtt
;
3240 if (!(sacked
& TCPCB_SACKED_ACKED
))
3241 reord
= min(pkts_acked
, reord
);
3244 if (sacked
& TCPCB_SACKED_ACKED
)
3245 tp
->sacked_out
-= acked_pcount
;
3246 if (sacked
& TCPCB_LOST
)
3247 tp
->lost_out
-= acked_pcount
;
3249 tp
->packets_out
-= acked_pcount
;
3250 pkts_acked
+= acked_pcount
;
3252 /* Initial outgoing SYN's get put onto the write_queue
3253 * just like anything else we transmit. It is not
3254 * true data, and if we misinform our callers that
3255 * this ACK acks real data, we will erroneously exit
3256 * connection startup slow start one packet too
3257 * quickly. This is severely frowned upon behavior.
3259 if (!(scb
->tcp_flags
& TCPHDR_SYN
)) {
3260 flag
|= FLAG_DATA_ACKED
;
3262 flag
|= FLAG_SYN_ACKED
;
3263 tp
->retrans_stamp
= 0;
3269 tcp_unlink_write_queue(skb
, sk
);
3270 sk_wmem_free_skb(sk
, skb
);
3271 tp
->scoreboard_skb_hint
= NULL
;
3272 if (skb
== tp
->retransmit_skb_hint
)
3273 tp
->retransmit_skb_hint
= NULL
;
3274 if (skb
== tp
->lost_skb_hint
)
3275 tp
->lost_skb_hint
= NULL
;
3278 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3279 tp
->snd_up
= tp
->snd_una
;
3281 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3282 flag
|= FLAG_SACK_RENEGING
;
3284 if (flag
& FLAG_ACKED
) {
3285 const struct tcp_congestion_ops
*ca_ops
3286 = inet_csk(sk
)->icsk_ca_ops
;
3288 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3289 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3290 tcp_mtup_probe_success(sk
);
3293 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3296 if (tcp_is_reno(tp
)) {
3297 tcp_remove_reno_sacks(sk
, pkts_acked
);
3301 /* Non-retransmitted hole got filled? That's reordering */
3302 if (reord
< prior_fackets
)
3303 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3305 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3306 prior_sacked
- tp
->sacked_out
;
3307 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3310 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3312 if (ca_ops
->pkts_acked
) {
3315 /* Is the ACK triggering packet unambiguous? */
3316 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3317 /* High resolution needed and available? */
3318 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3319 !ktime_equal(last_ackt
,
3320 net_invalid_timestamp()))
3321 rtt_us
= ktime_us_delta(ktime_get_real(),
3323 else if (ca_seq_rtt
>= 0)
3324 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3327 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3331 #if FASTRETRANS_DEBUG > 0
3332 WARN_ON((int)tp
->sacked_out
< 0);
3333 WARN_ON((int)tp
->lost_out
< 0);
3334 WARN_ON((int)tp
->retrans_out
< 0);
3335 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3336 icsk
= inet_csk(sk
);
3338 pr_debug("Leak l=%u %d\n",
3339 tp
->lost_out
, icsk
->icsk_ca_state
);
3342 if (tp
->sacked_out
) {
3343 pr_debug("Leak s=%u %d\n",
3344 tp
->sacked_out
, icsk
->icsk_ca_state
);
3347 if (tp
->retrans_out
) {
3348 pr_debug("Leak r=%u %d\n",
3349 tp
->retrans_out
, icsk
->icsk_ca_state
);
3350 tp
->retrans_out
= 0;
3357 static void tcp_ack_probe(struct sock
*sk
)
3359 const struct tcp_sock
*tp
= tcp_sk(sk
);
3360 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3362 /* Was it a usable window open? */
3364 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3365 icsk
->icsk_backoff
= 0;
3366 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3367 /* Socket must be waked up by subsequent tcp_data_snd_check().
3368 * This function is not for random using!
3371 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3372 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3377 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3379 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3380 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3383 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3385 const struct tcp_sock
*tp
= tcp_sk(sk
);
3386 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3387 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3390 /* Check that window update is acceptable.
3391 * The function assumes that snd_una<=ack<=snd_next.
3393 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3394 const u32 ack
, const u32 ack_seq
,
3397 return after(ack
, tp
->snd_una
) ||
3398 after(ack_seq
, tp
->snd_wl1
) ||
3399 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3402 /* Update our send window.
3404 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3405 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3407 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3410 struct tcp_sock
*tp
= tcp_sk(sk
);
3412 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3414 if (likely(!tcp_hdr(skb
)->syn
))
3415 nwin
<<= tp
->rx_opt
.snd_wscale
;
3417 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3418 flag
|= FLAG_WIN_UPDATE
;
3419 tcp_update_wl(tp
, ack_seq
);
3421 if (tp
->snd_wnd
!= nwin
) {
3424 /* Note, it is the only place, where
3425 * fast path is recovered for sending TCP.
3428 tcp_fast_path_check(sk
);
3430 if (nwin
> tp
->max_window
) {
3431 tp
->max_window
= nwin
;
3432 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3442 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3443 * continue in congestion avoidance.
3445 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3447 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3448 tp
->snd_cwnd_cnt
= 0;
3449 tp
->bytes_acked
= 0;
3450 TCP_ECN_queue_cwr(tp
);
3451 tcp_moderate_cwnd(tp
);
3454 /* A conservative spurious RTO response algorithm: reduce cwnd using
3455 * rate halving and continue in congestion avoidance.
3457 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3459 tcp_enter_cwr(sk
, 0);
3462 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3464 if (flag
& FLAG_ECE
)
3465 tcp_ratehalving_spur_to_response(sk
);
3467 tcp_undo_cwr(sk
, true);
3470 /* F-RTO spurious RTO detection algorithm (RFC4138)
3472 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3473 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3474 * window (but not to or beyond highest sequence sent before RTO):
3475 * On First ACK, send two new segments out.
3476 * On Second ACK, RTO was likely spurious. Do spurious response (response
3477 * algorithm is not part of the F-RTO detection algorithm
3478 * given in RFC4138 but can be selected separately).
3479 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3480 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3481 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3482 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3484 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3485 * original window even after we transmit two new data segments.
3488 * on first step, wait until first cumulative ACK arrives, then move to
3489 * the second step. In second step, the next ACK decides.
3491 * F-RTO is implemented (mainly) in four functions:
3492 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3493 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3494 * called when tcp_use_frto() showed green light
3495 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3496 * - tcp_enter_frto_loss() is called if there is not enough evidence
3497 * to prove that the RTO is indeed spurious. It transfers the control
3498 * from F-RTO to the conventional RTO recovery
3500 static bool tcp_process_frto(struct sock
*sk
, int flag
)
3502 struct tcp_sock
*tp
= tcp_sk(sk
);
3504 tcp_verify_left_out(tp
);
3506 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3507 if (flag
& FLAG_DATA_ACKED
)
3508 inet_csk(sk
)->icsk_retransmits
= 0;
3510 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3511 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3512 tp
->undo_marker
= 0;
3514 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3515 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3519 if (!tcp_is_sackfrto(tp
)) {
3520 /* RFC4138 shortcoming in step 2; should also have case c):
3521 * ACK isn't duplicate nor advances window, e.g., opposite dir
3524 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3527 if (!(flag
& FLAG_DATA_ACKED
)) {
3528 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3533 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3534 /* Prevent sending of new data. */
3535 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3536 tcp_packets_in_flight(tp
));
3540 if ((tp
->frto_counter
>= 2) &&
3541 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3542 ((flag
& FLAG_DATA_SACKED
) &&
3543 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3544 /* RFC4138 shortcoming (see comment above) */
3545 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3546 (flag
& FLAG_NOT_DUP
))
3549 tcp_enter_frto_loss(sk
, 3, flag
);
3554 if (tp
->frto_counter
== 1) {
3555 /* tcp_may_send_now needs to see updated state */
3556 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3557 tp
->frto_counter
= 2;
3559 if (!tcp_may_send_now(sk
))
3560 tcp_enter_frto_loss(sk
, 2, flag
);
3564 switch (sysctl_tcp_frto_response
) {
3566 tcp_undo_spur_to_response(sk
, flag
);
3569 tcp_conservative_spur_to_response(tp
);
3572 tcp_ratehalving_spur_to_response(sk
);
3575 tp
->frto_counter
= 0;
3576 tp
->undo_marker
= 0;
3577 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3582 /* This routine deals with incoming acks, but not outgoing ones. */
3583 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3585 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3586 struct tcp_sock
*tp
= tcp_sk(sk
);
3587 u32 prior_snd_una
= tp
->snd_una
;
3588 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3589 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3590 bool is_dupack
= false;
3591 u32 prior_in_flight
;
3594 int prior_sacked
= tp
->sacked_out
;
3596 bool frto_cwnd
= false;
3598 /* If the ack is older than previous acks
3599 * then we can probably ignore it.
3601 if (before(ack
, prior_snd_una
))
3604 /* If the ack includes data we haven't sent yet, discard
3605 * this segment (RFC793 Section 3.9).
3607 if (after(ack
, tp
->snd_nxt
))
3610 if (tp
->early_retrans_delayed
)
3613 if (after(ack
, prior_snd_una
))
3614 flag
|= FLAG_SND_UNA_ADVANCED
;
3616 if (sysctl_tcp_abc
) {
3617 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3618 tp
->bytes_acked
+= ack
- prior_snd_una
;
3619 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3620 /* we assume just one segment left network */
3621 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3625 prior_fackets
= tp
->fackets_out
;
3626 prior_in_flight
= tcp_packets_in_flight(tp
);
3628 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3629 /* Window is constant, pure forward advance.
3630 * No more checks are required.
3631 * Note, we use the fact that SND.UNA>=SND.WL2.
3633 tcp_update_wl(tp
, ack_seq
);
3635 flag
|= FLAG_WIN_UPDATE
;
3637 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3639 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3641 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3644 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3646 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3648 if (TCP_SKB_CB(skb
)->sacked
)
3649 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3651 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3654 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3657 /* We passed data and got it acked, remove any soft error
3658 * log. Something worked...
3660 sk
->sk_err_soft
= 0;
3661 icsk
->icsk_probes_out
= 0;
3662 tp
->rcv_tstamp
= tcp_time_stamp
;
3663 prior_packets
= tp
->packets_out
;
3667 /* See if we can take anything off of the retransmit queue. */
3668 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3670 pkts_acked
= prior_packets
- tp
->packets_out
;
3672 if (tp
->frto_counter
)
3673 frto_cwnd
= tcp_process_frto(sk
, flag
);
3674 /* Guarantee sacktag reordering detection against wrap-arounds */
3675 if (before(tp
->frto_highmark
, tp
->snd_una
))
3676 tp
->frto_highmark
= 0;
3678 if (tcp_ack_is_dubious(sk
, flag
)) {
3679 /* Advance CWND, if state allows this. */
3680 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3681 tcp_may_raise_cwnd(sk
, flag
))
3682 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3683 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3684 tcp_fastretrans_alert(sk
, pkts_acked
, prior_sacked
,
3687 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3688 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3691 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
)) {
3692 struct dst_entry
*dst
= __sk_dst_get(sk
);
3699 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3700 if (flag
& FLAG_DSACKING_ACK
)
3701 tcp_fastretrans_alert(sk
, pkts_acked
, prior_sacked
,
3703 /* If this ack opens up a zero window, clear backoff. It was
3704 * being used to time the probes, and is probably far higher than
3705 * it needs to be for normal retransmission.
3707 if (tcp_send_head(sk
))
3712 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3716 /* If data was SACKed, tag it and see if we should send more data.
3717 * If data was DSACKed, see if we can undo a cwnd reduction.
3719 if (TCP_SKB_CB(skb
)->sacked
) {
3720 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3721 tcp_fastretrans_alert(sk
, pkts_acked
, prior_sacked
,
3725 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3729 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3730 * But, this can also be called on packets in the established flow when
3731 * the fast version below fails.
3733 void tcp_parse_options(const struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3734 const u8
**hvpp
, int estab
,
3735 struct tcp_fastopen_cookie
*foc
)
3737 const unsigned char *ptr
;
3738 const struct tcphdr
*th
= tcp_hdr(skb
);
3739 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3741 ptr
= (const unsigned char *)(th
+ 1);
3742 opt_rx
->saw_tstamp
= 0;
3744 while (length
> 0) {
3745 int opcode
= *ptr
++;
3751 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3756 if (opsize
< 2) /* "silly options" */
3758 if (opsize
> length
)
3759 return; /* don't parse partial options */
3762 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3763 u16 in_mss
= get_unaligned_be16(ptr
);
3765 if (opt_rx
->user_mss
&&
3766 opt_rx
->user_mss
< in_mss
)
3767 in_mss
= opt_rx
->user_mss
;
3768 opt_rx
->mss_clamp
= in_mss
;
3773 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3774 !estab
&& sysctl_tcp_window_scaling
) {
3775 __u8 snd_wscale
= *(__u8
*)ptr
;
3776 opt_rx
->wscale_ok
= 1;
3777 if (snd_wscale
> 14) {
3778 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3783 opt_rx
->snd_wscale
= snd_wscale
;
3786 case TCPOPT_TIMESTAMP
:
3787 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3788 ((estab
&& opt_rx
->tstamp_ok
) ||
3789 (!estab
&& sysctl_tcp_timestamps
))) {
3790 opt_rx
->saw_tstamp
= 1;
3791 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3792 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3795 case TCPOPT_SACK_PERM
:
3796 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3797 !estab
&& sysctl_tcp_sack
) {
3798 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3799 tcp_sack_reset(opt_rx
);
3804 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3805 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3807 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3810 #ifdef CONFIG_TCP_MD5SIG
3813 * The MD5 Hash has already been
3814 * checked (see tcp_v{4,6}_do_rcv()).
3819 /* This option is variable length.
3822 case TCPOLEN_COOKIE_BASE
:
3823 /* not yet implemented */
3825 case TCPOLEN_COOKIE_PAIR
:
3826 /* not yet implemented */
3828 case TCPOLEN_COOKIE_MIN
+0:
3829 case TCPOLEN_COOKIE_MIN
+2:
3830 case TCPOLEN_COOKIE_MIN
+4:
3831 case TCPOLEN_COOKIE_MIN
+6:
3832 case TCPOLEN_COOKIE_MAX
:
3833 /* 16-bit multiple */
3834 opt_rx
->cookie_plus
= opsize
;
3844 /* Fast Open option shares code 254 using a
3845 * 16 bits magic number. It's valid only in
3846 * SYN or SYN-ACK with an even size.
3848 if (opsize
< TCPOLEN_EXP_FASTOPEN_BASE
||
3849 get_unaligned_be16(ptr
) != TCPOPT_FASTOPEN_MAGIC
||
3850 foc
== NULL
|| !th
->syn
|| (opsize
& 1))
3852 foc
->len
= opsize
- TCPOLEN_EXP_FASTOPEN_BASE
;
3853 if (foc
->len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3854 foc
->len
<= TCP_FASTOPEN_COOKIE_MAX
)
3855 memcpy(foc
->val
, ptr
+ 2, foc
->len
);
3856 else if (foc
->len
!= 0)
3866 EXPORT_SYMBOL(tcp_parse_options
);
3868 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3870 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3872 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3873 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3874 tp
->rx_opt
.saw_tstamp
= 1;
3876 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3878 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3884 /* Fast parse options. This hopes to only see timestamps.
3885 * If it is wrong it falls back on tcp_parse_options().
3887 static bool tcp_fast_parse_options(const struct sk_buff
*skb
,
3888 const struct tcphdr
*th
,
3889 struct tcp_sock
*tp
, const u8
**hvpp
)
3891 /* In the spirit of fast parsing, compare doff directly to constant
3892 * values. Because equality is used, short doff can be ignored here.
3894 if (th
->doff
== (sizeof(*th
) / 4)) {
3895 tp
->rx_opt
.saw_tstamp
= 0;
3897 } else if (tp
->rx_opt
.tstamp_ok
&&
3898 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3899 if (tcp_parse_aligned_timestamp(tp
, th
))
3902 tcp_parse_options(skb
, &tp
->rx_opt
, hvpp
, 1, NULL
);
3906 #ifdef CONFIG_TCP_MD5SIG
3908 * Parse MD5 Signature option
3910 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3912 int length
= (th
->doff
<< 2) - sizeof(*th
);
3913 const u8
*ptr
= (const u8
*)(th
+ 1);
3915 /* If the TCP option is too short, we can short cut */
3916 if (length
< TCPOLEN_MD5SIG
)
3919 while (length
> 0) {
3920 int opcode
= *ptr
++;
3931 if (opsize
< 2 || opsize
> length
)
3933 if (opcode
== TCPOPT_MD5SIG
)
3934 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3941 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3944 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3946 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3947 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3950 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3952 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3953 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3954 * extra check below makes sure this can only happen
3955 * for pure ACK frames. -DaveM
3957 * Not only, also it occurs for expired timestamps.
3960 if (tcp_paws_check(&tp
->rx_opt
, 0))
3961 tcp_store_ts_recent(tp
);
3965 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3967 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3968 * it can pass through stack. So, the following predicate verifies that
3969 * this segment is not used for anything but congestion avoidance or
3970 * fast retransmit. Moreover, we even are able to eliminate most of such
3971 * second order effects, if we apply some small "replay" window (~RTO)
3972 * to timestamp space.
3974 * All these measures still do not guarantee that we reject wrapped ACKs
3975 * on networks with high bandwidth, when sequence space is recycled fastly,
3976 * but it guarantees that such events will be very rare and do not affect
3977 * connection seriously. This doesn't look nice, but alas, PAWS is really
3980 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3981 * states that events when retransmit arrives after original data are rare.
3982 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3983 * the biggest problem on large power networks even with minor reordering.
3984 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3985 * up to bandwidth of 18Gigabit/sec. 8) ]
3988 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3990 const struct tcp_sock
*tp
= tcp_sk(sk
);
3991 const struct tcphdr
*th
= tcp_hdr(skb
);
3992 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3993 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3995 return (/* 1. Pure ACK with correct sequence number. */
3996 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3998 /* 2. ... and duplicate ACK. */
3999 ack
== tp
->snd_una
&&
4001 /* 3. ... and does not update window. */
4002 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4004 /* 4. ... and sits in replay window. */
4005 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4008 static inline bool tcp_paws_discard(const struct sock
*sk
,
4009 const struct sk_buff
*skb
)
4011 const struct tcp_sock
*tp
= tcp_sk(sk
);
4013 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4014 !tcp_disordered_ack(sk
, skb
);
4017 /* Check segment sequence number for validity.
4019 * Segment controls are considered valid, if the segment
4020 * fits to the window after truncation to the window. Acceptability
4021 * of data (and SYN, FIN, of course) is checked separately.
4022 * See tcp_data_queue(), for example.
4024 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4025 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4026 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4027 * (borrowed from freebsd)
4030 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4032 return !before(end_seq
, tp
->rcv_wup
) &&
4033 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4036 /* When we get a reset we do this. */
4037 static void tcp_reset(struct sock
*sk
)
4039 /* We want the right error as BSD sees it (and indeed as we do). */
4040 switch (sk
->sk_state
) {
4042 sk
->sk_err
= ECONNREFUSED
;
4044 case TCP_CLOSE_WAIT
:
4050 sk
->sk_err
= ECONNRESET
;
4052 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4055 if (!sock_flag(sk
, SOCK_DEAD
))
4056 sk
->sk_error_report(sk
);
4062 * Process the FIN bit. This now behaves as it is supposed to work
4063 * and the FIN takes effect when it is validly part of sequence
4064 * space. Not before when we get holes.
4066 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4067 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4070 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4071 * close and we go into CLOSING (and later onto TIME-WAIT)
4073 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4075 static void tcp_fin(struct sock
*sk
)
4077 struct tcp_sock
*tp
= tcp_sk(sk
);
4079 inet_csk_schedule_ack(sk
);
4081 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4082 sock_set_flag(sk
, SOCK_DONE
);
4084 switch (sk
->sk_state
) {
4086 case TCP_ESTABLISHED
:
4087 /* Move to CLOSE_WAIT */
4088 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4089 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4092 case TCP_CLOSE_WAIT
:
4094 /* Received a retransmission of the FIN, do
4099 /* RFC793: Remain in the LAST-ACK state. */
4103 /* This case occurs when a simultaneous close
4104 * happens, we must ack the received FIN and
4105 * enter the CLOSING state.
4108 tcp_set_state(sk
, TCP_CLOSING
);
4111 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4113 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4116 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4117 * cases we should never reach this piece of code.
4119 pr_err("%s: Impossible, sk->sk_state=%d\n",
4120 __func__
, sk
->sk_state
);
4124 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4125 * Probably, we should reset in this case. For now drop them.
4127 __skb_queue_purge(&tp
->out_of_order_queue
);
4128 if (tcp_is_sack(tp
))
4129 tcp_sack_reset(&tp
->rx_opt
);
4132 if (!sock_flag(sk
, SOCK_DEAD
)) {
4133 sk
->sk_state_change(sk
);
4135 /* Do not send POLL_HUP for half duplex close. */
4136 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4137 sk
->sk_state
== TCP_CLOSE
)
4138 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4140 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4144 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4147 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4148 if (before(seq
, sp
->start_seq
))
4149 sp
->start_seq
= seq
;
4150 if (after(end_seq
, sp
->end_seq
))
4151 sp
->end_seq
= end_seq
;
4157 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4159 struct tcp_sock
*tp
= tcp_sk(sk
);
4161 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4164 if (before(seq
, tp
->rcv_nxt
))
4165 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4167 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4169 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4171 tp
->rx_opt
.dsack
= 1;
4172 tp
->duplicate_sack
[0].start_seq
= seq
;
4173 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4177 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4179 struct tcp_sock
*tp
= tcp_sk(sk
);
4181 if (!tp
->rx_opt
.dsack
)
4182 tcp_dsack_set(sk
, seq
, end_seq
);
4184 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4187 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4189 struct tcp_sock
*tp
= tcp_sk(sk
);
4191 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4192 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4193 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4194 tcp_enter_quickack_mode(sk
);
4196 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4197 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4199 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4200 end_seq
= tp
->rcv_nxt
;
4201 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4208 /* These routines update the SACK block as out-of-order packets arrive or
4209 * in-order packets close up the sequence space.
4211 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4214 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4215 struct tcp_sack_block
*swalk
= sp
+ 1;
4217 /* See if the recent change to the first SACK eats into
4218 * or hits the sequence space of other SACK blocks, if so coalesce.
4220 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4221 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4224 /* Zap SWALK, by moving every further SACK up by one slot.
4225 * Decrease num_sacks.
4227 tp
->rx_opt
.num_sacks
--;
4228 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4232 this_sack
++, swalk
++;
4236 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4238 struct tcp_sock
*tp
= tcp_sk(sk
);
4239 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4240 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4246 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4247 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4248 /* Rotate this_sack to the first one. */
4249 for (; this_sack
> 0; this_sack
--, sp
--)
4250 swap(*sp
, *(sp
- 1));
4252 tcp_sack_maybe_coalesce(tp
);
4257 /* Could not find an adjacent existing SACK, build a new one,
4258 * put it at the front, and shift everyone else down. We
4259 * always know there is at least one SACK present already here.
4261 * If the sack array is full, forget about the last one.
4263 if (this_sack
>= TCP_NUM_SACKS
) {
4265 tp
->rx_opt
.num_sacks
--;
4268 for (; this_sack
> 0; this_sack
--, sp
--)
4272 /* Build the new head SACK, and we're done. */
4273 sp
->start_seq
= seq
;
4274 sp
->end_seq
= end_seq
;
4275 tp
->rx_opt
.num_sacks
++;
4278 /* RCV.NXT advances, some SACKs should be eaten. */
4280 static void tcp_sack_remove(struct tcp_sock
*tp
)
4282 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4283 int num_sacks
= tp
->rx_opt
.num_sacks
;
4286 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4287 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4288 tp
->rx_opt
.num_sacks
= 0;
4292 for (this_sack
= 0; this_sack
< num_sacks
;) {
4293 /* Check if the start of the sack is covered by RCV.NXT. */
4294 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4297 /* RCV.NXT must cover all the block! */
4298 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4300 /* Zap this SACK, by moving forward any other SACKS. */
4301 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4302 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4309 tp
->rx_opt
.num_sacks
= num_sacks
;
4312 /* This one checks to see if we can put data from the
4313 * out_of_order queue into the receive_queue.
4315 static void tcp_ofo_queue(struct sock
*sk
)
4317 struct tcp_sock
*tp
= tcp_sk(sk
);
4318 __u32 dsack_high
= tp
->rcv_nxt
;
4319 struct sk_buff
*skb
;
4321 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4322 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4325 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4326 __u32 dsack
= dsack_high
;
4327 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4328 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4329 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4332 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4333 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4334 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4338 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4339 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4340 TCP_SKB_CB(skb
)->end_seq
);
4342 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4343 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4344 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4345 if (tcp_hdr(skb
)->fin
)
4350 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4351 static int tcp_prune_queue(struct sock
*sk
);
4353 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4356 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4357 !sk_rmem_schedule(sk
, skb
, size
)) {
4359 if (tcp_prune_queue(sk
) < 0)
4362 if (!sk_rmem_schedule(sk
, skb
, size
)) {
4363 if (!tcp_prune_ofo_queue(sk
))
4366 if (!sk_rmem_schedule(sk
, skb
, size
))
4374 * tcp_try_coalesce - try to merge skb to prior one
4377 * @from: buffer to add in queue
4378 * @fragstolen: pointer to boolean
4380 * Before queueing skb @from after @to, try to merge them
4381 * to reduce overall memory use and queue lengths, if cost is small.
4382 * Packets in ofo or receive queues can stay a long time.
4383 * Better try to coalesce them right now to avoid future collapses.
4384 * Returns true if caller should free @from instead of queueing it
4386 static bool tcp_try_coalesce(struct sock
*sk
,
4388 struct sk_buff
*from
,
4393 *fragstolen
= false;
4395 if (tcp_hdr(from
)->fin
)
4398 /* Its possible this segment overlaps with prior segment in queue */
4399 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4402 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4405 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4406 sk_mem_charge(sk
, delta
);
4407 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4408 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4409 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4413 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4415 struct tcp_sock
*tp
= tcp_sk(sk
);
4416 struct sk_buff
*skb1
;
4419 TCP_ECN_check_ce(tp
, skb
);
4421 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4422 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4427 /* Disable header prediction. */
4429 inet_csk_schedule_ack(sk
);
4431 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4432 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4433 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4435 skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4437 /* Initial out of order segment, build 1 SACK. */
4438 if (tcp_is_sack(tp
)) {
4439 tp
->rx_opt
.num_sacks
= 1;
4440 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4441 tp
->selective_acks
[0].end_seq
=
4442 TCP_SKB_CB(skb
)->end_seq
;
4444 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4448 seq
= TCP_SKB_CB(skb
)->seq
;
4449 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4451 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4454 if (!tcp_try_coalesce(sk
, skb1
, skb
, &fragstolen
)) {
4455 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4457 kfree_skb_partial(skb
, fragstolen
);
4461 if (!tp
->rx_opt
.num_sacks
||
4462 tp
->selective_acks
[0].end_seq
!= seq
)
4465 /* Common case: data arrive in order after hole. */
4466 tp
->selective_acks
[0].end_seq
= end_seq
;
4470 /* Find place to insert this segment. */
4472 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4474 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4478 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4481 /* Do skb overlap to previous one? */
4482 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4483 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4484 /* All the bits are present. Drop. */
4485 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4488 tcp_dsack_set(sk
, seq
, end_seq
);
4491 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4492 /* Partial overlap. */
4493 tcp_dsack_set(sk
, seq
,
4494 TCP_SKB_CB(skb1
)->end_seq
);
4496 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4500 skb1
= skb_queue_prev(
4501 &tp
->out_of_order_queue
,
4506 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4508 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4510 /* And clean segments covered by new one as whole. */
4511 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4512 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4514 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4516 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4517 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4521 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4522 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4523 TCP_SKB_CB(skb1
)->end_seq
);
4524 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4529 if (tcp_is_sack(tp
))
4530 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4533 skb_set_owner_r(skb
, sk
);
4536 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4540 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4542 __skb_pull(skb
, hdrlen
);
4544 tcp_try_coalesce(sk
, tail
, skb
, fragstolen
)) ? 1 : 0;
4545 tcp_sk(sk
)->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4547 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4548 skb_set_owner_r(skb
, sk
);
4553 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4555 struct sk_buff
*skb
= NULL
;
4562 skb
= alloc_skb(size
+ sizeof(*th
), sk
->sk_allocation
);
4566 if (tcp_try_rmem_schedule(sk
, skb
, size
+ sizeof(*th
)))
4569 th
= (struct tcphdr
*)skb_put(skb
, sizeof(*th
));
4570 skb_reset_transport_header(skb
);
4571 memset(th
, 0, sizeof(*th
));
4573 if (memcpy_fromiovec(skb_put(skb
, size
), msg
->msg_iov
, size
))
4576 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4577 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4578 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4580 if (tcp_queue_rcv(sk
, skb
, sizeof(*th
), &fragstolen
)) {
4581 WARN_ON_ONCE(fragstolen
); /* should not happen */
4592 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4594 const struct tcphdr
*th
= tcp_hdr(skb
);
4595 struct tcp_sock
*tp
= tcp_sk(sk
);
4597 bool fragstolen
= false;
4599 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4603 __skb_pull(skb
, th
->doff
* 4);
4605 TCP_ECN_accept_cwr(tp
, skb
);
4607 tp
->rx_opt
.dsack
= 0;
4609 /* Queue data for delivery to the user.
4610 * Packets in sequence go to the receive queue.
4611 * Out of sequence packets to the out_of_order_queue.
4613 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4614 if (tcp_receive_window(tp
) == 0)
4617 /* Ok. In sequence. In window. */
4618 if (tp
->ucopy
.task
== current
&&
4619 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4620 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4621 int chunk
= min_t(unsigned int, skb
->len
,
4624 __set_current_state(TASK_RUNNING
);
4627 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4628 tp
->ucopy
.len
-= chunk
;
4629 tp
->copied_seq
+= chunk
;
4630 eaten
= (chunk
== skb
->len
);
4631 tcp_rcv_space_adjust(sk
);
4639 tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4642 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4644 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4646 tcp_event_data_recv(sk
, skb
);
4650 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4653 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4654 * gap in queue is filled.
4656 if (skb_queue_empty(&tp
->out_of_order_queue
))
4657 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4660 if (tp
->rx_opt
.num_sacks
)
4661 tcp_sack_remove(tp
);
4663 tcp_fast_path_check(sk
);
4666 kfree_skb_partial(skb
, fragstolen
);
4667 if (!sock_flag(sk
, SOCK_DEAD
))
4668 sk
->sk_data_ready(sk
, 0);
4672 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4673 /* A retransmit, 2nd most common case. Force an immediate ack. */
4674 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4675 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4678 tcp_enter_quickack_mode(sk
);
4679 inet_csk_schedule_ack(sk
);
4685 /* Out of window. F.e. zero window probe. */
4686 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4689 tcp_enter_quickack_mode(sk
);
4691 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4692 /* Partial packet, seq < rcv_next < end_seq */
4693 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4694 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4695 TCP_SKB_CB(skb
)->end_seq
);
4697 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4699 /* If window is closed, drop tail of packet. But after
4700 * remembering D-SACK for its head made in previous line.
4702 if (!tcp_receive_window(tp
))
4707 tcp_data_queue_ofo(sk
, skb
);
4710 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4711 struct sk_buff_head
*list
)
4713 struct sk_buff
*next
= NULL
;
4715 if (!skb_queue_is_last(list
, skb
))
4716 next
= skb_queue_next(list
, skb
);
4718 __skb_unlink(skb
, list
);
4720 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4725 /* Collapse contiguous sequence of skbs head..tail with
4726 * sequence numbers start..end.
4728 * If tail is NULL, this means until the end of the list.
4730 * Segments with FIN/SYN are not collapsed (only because this
4734 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4735 struct sk_buff
*head
, struct sk_buff
*tail
,
4738 struct sk_buff
*skb
, *n
;
4741 /* First, check that queue is collapsible and find
4742 * the point where collapsing can be useful. */
4746 skb_queue_walk_from_safe(list
, skb
, n
) {
4749 /* No new bits? It is possible on ofo queue. */
4750 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4751 skb
= tcp_collapse_one(sk
, skb
, list
);
4757 /* The first skb to collapse is:
4759 * - bloated or contains data before "start" or
4760 * overlaps to the next one.
4762 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4763 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4764 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4765 end_of_skbs
= false;
4769 if (!skb_queue_is_last(list
, skb
)) {
4770 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4772 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4773 end_of_skbs
= false;
4778 /* Decided to skip this, advance start seq. */
4779 start
= TCP_SKB_CB(skb
)->end_seq
;
4781 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4784 while (before(start
, end
)) {
4785 struct sk_buff
*nskb
;
4786 unsigned int header
= skb_headroom(skb
);
4787 int copy
= SKB_MAX_ORDER(header
, 0);
4789 /* Too big header? This can happen with IPv6. */
4792 if (end
- start
< copy
)
4794 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4798 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4799 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4801 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4803 skb_reserve(nskb
, header
);
4804 memcpy(nskb
->head
, skb
->head
, header
);
4805 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4806 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4807 __skb_queue_before(list
, skb
, nskb
);
4808 skb_set_owner_r(nskb
, sk
);
4810 /* Copy data, releasing collapsed skbs. */
4812 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4813 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4817 size
= min(copy
, size
);
4818 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4820 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4824 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4825 skb
= tcp_collapse_one(sk
, skb
, list
);
4828 tcp_hdr(skb
)->syn
||
4836 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4837 * and tcp_collapse() them until all the queue is collapsed.
4839 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4841 struct tcp_sock
*tp
= tcp_sk(sk
);
4842 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4843 struct sk_buff
*head
;
4849 start
= TCP_SKB_CB(skb
)->seq
;
4850 end
= TCP_SKB_CB(skb
)->end_seq
;
4854 struct sk_buff
*next
= NULL
;
4856 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4857 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4860 /* Segment is terminated when we see gap or when
4861 * we are at the end of all the queue. */
4863 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4864 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4865 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4866 head
, skb
, start
, end
);
4870 /* Start new segment */
4871 start
= TCP_SKB_CB(skb
)->seq
;
4872 end
= TCP_SKB_CB(skb
)->end_seq
;
4874 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4875 start
= TCP_SKB_CB(skb
)->seq
;
4876 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4877 end
= TCP_SKB_CB(skb
)->end_seq
;
4883 * Purge the out-of-order queue.
4884 * Return true if queue was pruned.
4886 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4888 struct tcp_sock
*tp
= tcp_sk(sk
);
4891 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4892 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4893 __skb_queue_purge(&tp
->out_of_order_queue
);
4895 /* Reset SACK state. A conforming SACK implementation will
4896 * do the same at a timeout based retransmit. When a connection
4897 * is in a sad state like this, we care only about integrity
4898 * of the connection not performance.
4900 if (tp
->rx_opt
.sack_ok
)
4901 tcp_sack_reset(&tp
->rx_opt
);
4908 /* Reduce allocated memory if we can, trying to get
4909 * the socket within its memory limits again.
4911 * Return less than zero if we should start dropping frames
4912 * until the socket owning process reads some of the data
4913 * to stabilize the situation.
4915 static int tcp_prune_queue(struct sock
*sk
)
4917 struct tcp_sock
*tp
= tcp_sk(sk
);
4919 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4921 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4923 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4924 tcp_clamp_window(sk
);
4925 else if (sk_under_memory_pressure(sk
))
4926 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4928 tcp_collapse_ofo_queue(sk
);
4929 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4930 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4931 skb_peek(&sk
->sk_receive_queue
),
4933 tp
->copied_seq
, tp
->rcv_nxt
);
4936 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4939 /* Collapsing did not help, destructive actions follow.
4940 * This must not ever occur. */
4942 tcp_prune_ofo_queue(sk
);
4944 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4947 /* If we are really being abused, tell the caller to silently
4948 * drop receive data on the floor. It will get retransmitted
4949 * and hopefully then we'll have sufficient space.
4951 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4953 /* Massive buffer overcommit. */
4958 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4959 * As additional protections, we do not touch cwnd in retransmission phases,
4960 * and if application hit its sndbuf limit recently.
4962 void tcp_cwnd_application_limited(struct sock
*sk
)
4964 struct tcp_sock
*tp
= tcp_sk(sk
);
4966 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4967 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4968 /* Limited by application or receiver window. */
4969 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4970 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4971 if (win_used
< tp
->snd_cwnd
) {
4972 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4973 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4975 tp
->snd_cwnd_used
= 0;
4977 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4980 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
4982 const struct tcp_sock
*tp
= tcp_sk(sk
);
4984 /* If the user specified a specific send buffer setting, do
4987 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4990 /* If we are under global TCP memory pressure, do not expand. */
4991 if (sk_under_memory_pressure(sk
))
4994 /* If we are under soft global TCP memory pressure, do not expand. */
4995 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
4998 /* If we filled the congestion window, do not expand. */
4999 if (tp
->packets_out
>= tp
->snd_cwnd
)
5005 /* When incoming ACK allowed to free some skb from write_queue,
5006 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5007 * on the exit from tcp input handler.
5009 * PROBLEM: sndbuf expansion does not work well with largesend.
5011 static void tcp_new_space(struct sock
*sk
)
5013 struct tcp_sock
*tp
= tcp_sk(sk
);
5015 if (tcp_should_expand_sndbuf(sk
)) {
5016 int sndmem
= SKB_TRUESIZE(max_t(u32
,
5017 tp
->rx_opt
.mss_clamp
,
5020 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
5021 tp
->reordering
+ 1);
5022 sndmem
*= 2 * demanded
;
5023 if (sndmem
> sk
->sk_sndbuf
)
5024 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
5025 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
5028 sk
->sk_write_space(sk
);
5031 static void tcp_check_space(struct sock
*sk
)
5033 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5034 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5035 if (sk
->sk_socket
&&
5036 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5041 static inline void tcp_data_snd_check(struct sock
*sk
)
5043 tcp_push_pending_frames(sk
);
5044 tcp_check_space(sk
);
5048 * Check if sending an ack is needed.
5050 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5052 struct tcp_sock
*tp
= tcp_sk(sk
);
5054 /* More than one full frame received... */
5055 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5056 /* ... and right edge of window advances far enough.
5057 * (tcp_recvmsg() will send ACK otherwise). Or...
5059 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5060 /* We ACK each frame or... */
5061 tcp_in_quickack_mode(sk
) ||
5062 /* We have out of order data. */
5063 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
5064 /* Then ack it now */
5067 /* Else, send delayed ack. */
5068 tcp_send_delayed_ack(sk
);
5072 static inline void tcp_ack_snd_check(struct sock
*sk
)
5074 if (!inet_csk_ack_scheduled(sk
)) {
5075 /* We sent a data segment already. */
5078 __tcp_ack_snd_check(sk
, 1);
5082 * This routine is only called when we have urgent data
5083 * signaled. Its the 'slow' part of tcp_urg. It could be
5084 * moved inline now as tcp_urg is only called from one
5085 * place. We handle URGent data wrong. We have to - as
5086 * BSD still doesn't use the correction from RFC961.
5087 * For 1003.1g we should support a new option TCP_STDURG to permit
5088 * either form (or just set the sysctl tcp_stdurg).
5091 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5093 struct tcp_sock
*tp
= tcp_sk(sk
);
5094 u32 ptr
= ntohs(th
->urg_ptr
);
5096 if (ptr
&& !sysctl_tcp_stdurg
)
5098 ptr
+= ntohl(th
->seq
);
5100 /* Ignore urgent data that we've already seen and read. */
5101 if (after(tp
->copied_seq
, ptr
))
5104 /* Do not replay urg ptr.
5106 * NOTE: interesting situation not covered by specs.
5107 * Misbehaving sender may send urg ptr, pointing to segment,
5108 * which we already have in ofo queue. We are not able to fetch
5109 * such data and will stay in TCP_URG_NOTYET until will be eaten
5110 * by recvmsg(). Seems, we are not obliged to handle such wicked
5111 * situations. But it is worth to think about possibility of some
5112 * DoSes using some hypothetical application level deadlock.
5114 if (before(ptr
, tp
->rcv_nxt
))
5117 /* Do we already have a newer (or duplicate) urgent pointer? */
5118 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5121 /* Tell the world about our new urgent pointer. */
5124 /* We may be adding urgent data when the last byte read was
5125 * urgent. To do this requires some care. We cannot just ignore
5126 * tp->copied_seq since we would read the last urgent byte again
5127 * as data, nor can we alter copied_seq until this data arrives
5128 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5130 * NOTE. Double Dutch. Rendering to plain English: author of comment
5131 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5132 * and expect that both A and B disappear from stream. This is _wrong_.
5133 * Though this happens in BSD with high probability, this is occasional.
5134 * Any application relying on this is buggy. Note also, that fix "works"
5135 * only in this artificial test. Insert some normal data between A and B and we will
5136 * decline of BSD again. Verdict: it is better to remove to trap
5139 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5140 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5141 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5143 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5144 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5149 tp
->urg_data
= TCP_URG_NOTYET
;
5152 /* Disable header prediction. */
5156 /* This is the 'fast' part of urgent handling. */
5157 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5159 struct tcp_sock
*tp
= tcp_sk(sk
);
5161 /* Check if we get a new urgent pointer - normally not. */
5163 tcp_check_urg(sk
, th
);
5165 /* Do we wait for any urgent data? - normally not... */
5166 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5167 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5170 /* Is the urgent pointer pointing into this packet? */
5171 if (ptr
< skb
->len
) {
5173 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5175 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5176 if (!sock_flag(sk
, SOCK_DEAD
))
5177 sk
->sk_data_ready(sk
, 0);
5182 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5184 struct tcp_sock
*tp
= tcp_sk(sk
);
5185 int chunk
= skb
->len
- hlen
;
5189 if (skb_csum_unnecessary(skb
))
5190 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
5192 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
5196 tp
->ucopy
.len
-= chunk
;
5197 tp
->copied_seq
+= chunk
;
5198 tcp_rcv_space_adjust(sk
);
5205 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5206 struct sk_buff
*skb
)
5210 if (sock_owned_by_user(sk
)) {
5212 result
= __tcp_checksum_complete(skb
);
5215 result
= __tcp_checksum_complete(skb
);
5220 static inline bool tcp_checksum_complete_user(struct sock
*sk
,
5221 struct sk_buff
*skb
)
5223 return !skb_csum_unnecessary(skb
) &&
5224 __tcp_checksum_complete_user(sk
, skb
);
5227 #ifdef CONFIG_NET_DMA
5228 static bool tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5231 struct tcp_sock
*tp
= tcp_sk(sk
);
5232 int chunk
= skb
->len
- hlen
;
5234 bool copied_early
= false;
5236 if (tp
->ucopy
.wakeup
)
5239 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5240 tp
->ucopy
.dma_chan
= net_dma_find_channel();
5242 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5244 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5246 tp
->ucopy
.iov
, chunk
,
5247 tp
->ucopy
.pinned_list
);
5252 tp
->ucopy
.dma_cookie
= dma_cookie
;
5253 copied_early
= true;
5255 tp
->ucopy
.len
-= chunk
;
5256 tp
->copied_seq
+= chunk
;
5257 tcp_rcv_space_adjust(sk
);
5259 if ((tp
->ucopy
.len
== 0) ||
5260 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5261 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5262 tp
->ucopy
.wakeup
= 1;
5263 sk
->sk_data_ready(sk
, 0);
5265 } else if (chunk
> 0) {
5266 tp
->ucopy
.wakeup
= 1;
5267 sk
->sk_data_ready(sk
, 0);
5270 return copied_early
;
5272 #endif /* CONFIG_NET_DMA */
5274 static void tcp_send_challenge_ack(struct sock
*sk
)
5276 /* unprotected vars, we dont care of overwrites */
5277 static u32 challenge_timestamp
;
5278 static unsigned int challenge_count
;
5279 u32 now
= jiffies
/ HZ
;
5281 if (now
!= challenge_timestamp
) {
5282 challenge_timestamp
= now
;
5283 challenge_count
= 0;
5285 if (++challenge_count
<= sysctl_tcp_challenge_ack_limit
) {
5286 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
5291 /* Does PAWS and seqno based validation of an incoming segment, flags will
5292 * play significant role here.
5294 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5295 const struct tcphdr
*th
, int syn_inerr
)
5297 const u8
*hash_location
;
5298 struct tcp_sock
*tp
= tcp_sk(sk
);
5300 /* RFC1323: H1. Apply PAWS check first. */
5301 if (tcp_fast_parse_options(skb
, th
, tp
, &hash_location
) &&
5302 tp
->rx_opt
.saw_tstamp
&&
5303 tcp_paws_discard(sk
, skb
)) {
5305 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5306 tcp_send_dupack(sk
, skb
);
5309 /* Reset is accepted even if it did not pass PAWS. */
5312 /* Step 1: check sequence number */
5313 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5314 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5315 * (RST) segments are validated by checking their SEQ-fields."
5316 * And page 69: "If an incoming segment is not acceptable,
5317 * an acknowledgment should be sent in reply (unless the RST
5318 * bit is set, if so drop the segment and return)".
5323 tcp_send_dupack(sk
, skb
);
5328 /* Step 2: check RST bit */
5331 * If sequence number exactly matches RCV.NXT, then
5332 * RESET the connection
5334 * Send a challenge ACK
5336 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
)
5339 tcp_send_challenge_ack(sk
);
5343 /* ts_recent update must be made after we are sure that the packet
5346 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5348 /* step 3: check security and precedence [ignored] */
5350 /* step 4: Check for a SYN
5351 * RFC 5691 4.2 : Send a challenge ack
5356 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5357 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5358 tcp_send_challenge_ack(sk
);
5370 * TCP receive function for the ESTABLISHED state.
5372 * It is split into a fast path and a slow path. The fast path is
5374 * - A zero window was announced from us - zero window probing
5375 * is only handled properly in the slow path.
5376 * - Out of order segments arrived.
5377 * - Urgent data is expected.
5378 * - There is no buffer space left
5379 * - Unexpected TCP flags/window values/header lengths are received
5380 * (detected by checking the TCP header against pred_flags)
5381 * - Data is sent in both directions. Fast path only supports pure senders
5382 * or pure receivers (this means either the sequence number or the ack
5383 * value must stay constant)
5384 * - Unexpected TCP option.
5386 * When these conditions are not satisfied it drops into a standard
5387 * receive procedure patterned after RFC793 to handle all cases.
5388 * The first three cases are guaranteed by proper pred_flags setting,
5389 * the rest is checked inline. Fast processing is turned on in
5390 * tcp_data_queue when everything is OK.
5392 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5393 const struct tcphdr
*th
, unsigned int len
)
5395 struct tcp_sock
*tp
= tcp_sk(sk
);
5397 if (unlikely(sk
->sk_rx_dst
== NULL
))
5398 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5400 * Header prediction.
5401 * The code loosely follows the one in the famous
5402 * "30 instruction TCP receive" Van Jacobson mail.
5404 * Van's trick is to deposit buffers into socket queue
5405 * on a device interrupt, to call tcp_recv function
5406 * on the receive process context and checksum and copy
5407 * the buffer to user space. smart...
5409 * Our current scheme is not silly either but we take the
5410 * extra cost of the net_bh soft interrupt processing...
5411 * We do checksum and copy also but from device to kernel.
5414 tp
->rx_opt
.saw_tstamp
= 0;
5416 /* pred_flags is 0xS?10 << 16 + snd_wnd
5417 * if header_prediction is to be made
5418 * 'S' will always be tp->tcp_header_len >> 2
5419 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5420 * turn it off (when there are holes in the receive
5421 * space for instance)
5422 * PSH flag is ignored.
5425 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5426 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5427 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5428 int tcp_header_len
= tp
->tcp_header_len
;
5430 /* Timestamp header prediction: tcp_header_len
5431 * is automatically equal to th->doff*4 due to pred_flags
5435 /* Check timestamp */
5436 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5437 /* No? Slow path! */
5438 if (!tcp_parse_aligned_timestamp(tp
, th
))
5441 /* If PAWS failed, check it more carefully in slow path */
5442 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5445 /* DO NOT update ts_recent here, if checksum fails
5446 * and timestamp was corrupted part, it will result
5447 * in a hung connection since we will drop all
5448 * future packets due to the PAWS test.
5452 if (len
<= tcp_header_len
) {
5453 /* Bulk data transfer: sender */
5454 if (len
== tcp_header_len
) {
5455 /* Predicted packet is in window by definition.
5456 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5457 * Hence, check seq<=rcv_wup reduces to:
5459 if (tcp_header_len
==
5460 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5461 tp
->rcv_nxt
== tp
->rcv_wup
)
5462 tcp_store_ts_recent(tp
);
5464 /* We know that such packets are checksummed
5467 tcp_ack(sk
, skb
, 0);
5469 tcp_data_snd_check(sk
);
5471 } else { /* Header too small */
5472 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5477 int copied_early
= 0;
5478 bool fragstolen
= false;
5480 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5481 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5482 #ifdef CONFIG_NET_DMA
5483 if (tp
->ucopy
.task
== current
&&
5484 sock_owned_by_user(sk
) &&
5485 tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5490 if (tp
->ucopy
.task
== current
&&
5491 sock_owned_by_user(sk
) && !copied_early
) {
5492 __set_current_state(TASK_RUNNING
);
5494 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5498 /* Predicted packet is in window by definition.
5499 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5500 * Hence, check seq<=rcv_wup reduces to:
5502 if (tcp_header_len
==
5503 (sizeof(struct tcphdr
) +
5504 TCPOLEN_TSTAMP_ALIGNED
) &&
5505 tp
->rcv_nxt
== tp
->rcv_wup
)
5506 tcp_store_ts_recent(tp
);
5508 tcp_rcv_rtt_measure_ts(sk
, skb
);
5510 __skb_pull(skb
, tcp_header_len
);
5511 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5512 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5515 tcp_cleanup_rbuf(sk
, skb
->len
);
5518 if (tcp_checksum_complete_user(sk
, skb
))
5521 /* Predicted packet is in window by definition.
5522 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5523 * Hence, check seq<=rcv_wup reduces to:
5525 if (tcp_header_len
==
5526 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5527 tp
->rcv_nxt
== tp
->rcv_wup
)
5528 tcp_store_ts_recent(tp
);
5530 tcp_rcv_rtt_measure_ts(sk
, skb
);
5532 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5535 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5537 /* Bulk data transfer: receiver */
5538 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5542 tcp_event_data_recv(sk
, skb
);
5544 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5545 /* Well, only one small jumplet in fast path... */
5546 tcp_ack(sk
, skb
, FLAG_DATA
);
5547 tcp_data_snd_check(sk
);
5548 if (!inet_csk_ack_scheduled(sk
))
5552 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5553 __tcp_ack_snd_check(sk
, 0);
5555 #ifdef CONFIG_NET_DMA
5557 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5561 kfree_skb_partial(skb
, fragstolen
);
5562 sk
->sk_data_ready(sk
, 0);
5568 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5572 * Standard slow path.
5575 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5579 if (th
->ack
&& tcp_ack(sk
, skb
, FLAG_SLOWPATH
) < 0)
5582 tcp_rcv_rtt_measure_ts(sk
, skb
);
5584 /* Process urgent data. */
5585 tcp_urg(sk
, skb
, th
);
5587 /* step 7: process the segment text */
5588 tcp_data_queue(sk
, skb
);
5590 tcp_data_snd_check(sk
);
5591 tcp_ack_snd_check(sk
);
5595 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5601 EXPORT_SYMBOL(tcp_rcv_established
);
5603 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5605 struct tcp_sock
*tp
= tcp_sk(sk
);
5606 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5608 tcp_set_state(sk
, TCP_ESTABLISHED
);
5611 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5612 security_inet_conn_established(sk
, skb
);
5615 /* Make sure socket is routed, for correct metrics. */
5616 icsk
->icsk_af_ops
->rebuild_header(sk
);
5618 tcp_init_metrics(sk
);
5620 tcp_init_congestion_control(sk
);
5622 /* Prevent spurious tcp_cwnd_restart() on first data
5625 tp
->lsndtime
= tcp_time_stamp
;
5627 tcp_init_buffer_space(sk
);
5629 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5630 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5632 if (!tp
->rx_opt
.snd_wscale
)
5633 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5637 if (!sock_flag(sk
, SOCK_DEAD
)) {
5638 sk
->sk_state_change(sk
);
5639 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5643 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5644 struct tcp_fastopen_cookie
*cookie
)
5646 struct tcp_sock
*tp
= tcp_sk(sk
);
5647 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5648 u16 mss
= tp
->rx_opt
.mss_clamp
;
5651 if (mss
== tp
->rx_opt
.user_mss
) {
5652 struct tcp_options_received opt
;
5653 const u8
*hash_location
;
5655 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5656 tcp_clear_options(&opt
);
5657 opt
.user_mss
= opt
.mss_clamp
= 0;
5658 tcp_parse_options(synack
, &opt
, &hash_location
, 0, NULL
);
5659 mss
= opt
.mss_clamp
;
5662 if (!tp
->syn_fastopen
) /* Ignore an unsolicited cookie */
5665 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5666 * the remote receives only the retransmitted (regular) SYNs: either
5667 * the original SYN-data or the corresponding SYN-ACK is lost.
5669 syn_drop
= (cookie
->len
<= 0 && data
&&
5670 inet_csk(sk
)->icsk_retransmits
);
5672 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
);
5674 if (data
) { /* Retransmit unacked data in SYN */
5675 tcp_retransmit_skb(sk
, data
);
5682 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5683 const struct tcphdr
*th
, unsigned int len
)
5685 const u8
*hash_location
;
5686 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5687 struct tcp_sock
*tp
= tcp_sk(sk
);
5688 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
5689 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5690 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5692 tcp_parse_options(skb
, &tp
->rx_opt
, &hash_location
, 0, &foc
);
5696 * "If the state is SYN-SENT then
5697 * first check the ACK bit
5698 * If the ACK bit is set
5699 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5700 * a reset (unless the RST bit is set, if so drop
5701 * the segment and return)"
5703 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5704 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5705 goto reset_and_undo
;
5707 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5708 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5710 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5711 goto reset_and_undo
;
5714 /* Now ACK is acceptable.
5716 * "If the RST bit is set
5717 * If the ACK was acceptable then signal the user "error:
5718 * connection reset", drop the segment, enter CLOSED state,
5719 * delete TCB, and return."
5728 * "fifth, if neither of the SYN or RST bits is set then
5729 * drop the segment and return."
5735 goto discard_and_undo
;
5738 * "If the SYN bit is on ...
5739 * are acceptable then ...
5740 * (our SYN has been ACKed), change the connection
5741 * state to ESTABLISHED..."
5744 TCP_ECN_rcv_synack(tp
, th
);
5746 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5747 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5749 /* Ok.. it's good. Set up sequence numbers and
5750 * move to established.
5752 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5753 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5755 /* RFC1323: The window in SYN & SYN/ACK segments is
5758 tp
->snd_wnd
= ntohs(th
->window
);
5759 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5761 if (!tp
->rx_opt
.wscale_ok
) {
5762 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5763 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5766 if (tp
->rx_opt
.saw_tstamp
) {
5767 tp
->rx_opt
.tstamp_ok
= 1;
5768 tp
->tcp_header_len
=
5769 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5770 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5771 tcp_store_ts_recent(tp
);
5773 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5776 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5777 tcp_enable_fack(tp
);
5780 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5781 tcp_initialize_rcv_mss(sk
);
5783 /* Remember, tcp_poll() does not lock socket!
5784 * Change state from SYN-SENT only after copied_seq
5785 * is initialized. */
5786 tp
->copied_seq
= tp
->rcv_nxt
;
5789 cvp
->cookie_pair_size
> 0 &&
5790 tp
->rx_opt
.cookie_plus
> 0) {
5791 int cookie_size
= tp
->rx_opt
.cookie_plus
5792 - TCPOLEN_COOKIE_BASE
;
5793 int cookie_pair_size
= cookie_size
5794 + cvp
->cookie_desired
;
5796 /* A cookie extension option was sent and returned.
5797 * Note that each incoming SYNACK replaces the
5798 * Responder cookie. The initial exchange is most
5799 * fragile, as protection against spoofing relies
5800 * entirely upon the sequence and timestamp (above).
5801 * This replacement strategy allows the correct pair to
5802 * pass through, while any others will be filtered via
5803 * Responder verification later.
5805 if (sizeof(cvp
->cookie_pair
) >= cookie_pair_size
) {
5806 memcpy(&cvp
->cookie_pair
[cvp
->cookie_desired
],
5807 hash_location
, cookie_size
);
5808 cvp
->cookie_pair_size
= cookie_pair_size
;
5814 tcp_finish_connect(sk
, skb
);
5816 if ((tp
->syn_fastopen
|| tp
->syn_data
) &&
5817 tcp_rcv_fastopen_synack(sk
, skb
, &foc
))
5820 if (sk
->sk_write_pending
||
5821 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5822 icsk
->icsk_ack
.pingpong
) {
5823 /* Save one ACK. Data will be ready after
5824 * several ticks, if write_pending is set.
5826 * It may be deleted, but with this feature tcpdumps
5827 * look so _wonderfully_ clever, that I was not able
5828 * to stand against the temptation 8) --ANK
5830 inet_csk_schedule_ack(sk
);
5831 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5832 tcp_enter_quickack_mode(sk
);
5833 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5834 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5845 /* No ACK in the segment */
5849 * "If the RST bit is set
5851 * Otherwise (no ACK) drop the segment and return."
5854 goto discard_and_undo
;
5858 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5859 tcp_paws_reject(&tp
->rx_opt
, 0))
5860 goto discard_and_undo
;
5863 /* We see SYN without ACK. It is attempt of
5864 * simultaneous connect with crossed SYNs.
5865 * Particularly, it can be connect to self.
5867 tcp_set_state(sk
, TCP_SYN_RECV
);
5869 if (tp
->rx_opt
.saw_tstamp
) {
5870 tp
->rx_opt
.tstamp_ok
= 1;
5871 tcp_store_ts_recent(tp
);
5872 tp
->tcp_header_len
=
5873 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5875 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5878 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5879 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5881 /* RFC1323: The window in SYN & SYN/ACK segments is
5884 tp
->snd_wnd
= ntohs(th
->window
);
5885 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5886 tp
->max_window
= tp
->snd_wnd
;
5888 TCP_ECN_rcv_syn(tp
, th
);
5891 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5892 tcp_initialize_rcv_mss(sk
);
5894 tcp_send_synack(sk
);
5896 /* Note, we could accept data and URG from this segment.
5897 * There are no obstacles to make this.
5899 * However, if we ignore data in ACKless segments sometimes,
5900 * we have no reasons to accept it sometimes.
5901 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5902 * is not flawless. So, discard packet for sanity.
5903 * Uncomment this return to process the data.
5910 /* "fifth, if neither of the SYN or RST bits is set then
5911 * drop the segment and return."
5915 tcp_clear_options(&tp
->rx_opt
);
5916 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5920 tcp_clear_options(&tp
->rx_opt
);
5921 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5926 * This function implements the receiving procedure of RFC 793 for
5927 * all states except ESTABLISHED and TIME_WAIT.
5928 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5929 * address independent.
5932 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5933 const struct tcphdr
*th
, unsigned int len
)
5935 struct tcp_sock
*tp
= tcp_sk(sk
);
5936 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5939 tp
->rx_opt
.saw_tstamp
= 0;
5941 switch (sk
->sk_state
) {
5955 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5958 /* Now we have several options: In theory there is
5959 * nothing else in the frame. KA9Q has an option to
5960 * send data with the syn, BSD accepts data with the
5961 * syn up to the [to be] advertised window and
5962 * Solaris 2.1 gives you a protocol error. For now
5963 * we just ignore it, that fits the spec precisely
5964 * and avoids incompatibilities. It would be nice in
5965 * future to drop through and process the data.
5967 * Now that TTCP is starting to be used we ought to
5969 * But, this leaves one open to an easy denial of
5970 * service attack, and SYN cookies can't defend
5971 * against this problem. So, we drop the data
5972 * in the interest of security over speed unless
5973 * it's still in use.
5981 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5985 /* Do step6 onward by hand. */
5986 tcp_urg(sk
, skb
, th
);
5988 tcp_data_snd_check(sk
);
5992 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5995 /* step 5: check the ACK field */
5997 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
) > 0;
5999 switch (sk
->sk_state
) {
6002 tp
->copied_seq
= tp
->rcv_nxt
;
6004 tcp_set_state(sk
, TCP_ESTABLISHED
);
6005 sk
->sk_state_change(sk
);
6007 /* Note, that this wakeup is only for marginal
6008 * crossed SYN case. Passively open sockets
6009 * are not waked up, because sk->sk_sleep ==
6010 * NULL and sk->sk_socket == NULL.
6014 SOCK_WAKE_IO
, POLL_OUT
);
6016 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
6017 tp
->snd_wnd
= ntohs(th
->window
) <<
6018 tp
->rx_opt
.snd_wscale
;
6019 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
6021 if (tp
->rx_opt
.tstamp_ok
)
6022 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
6024 /* Make sure socket is routed, for
6027 icsk
->icsk_af_ops
->rebuild_header(sk
);
6029 tcp_init_metrics(sk
);
6031 tcp_init_congestion_control(sk
);
6033 /* Prevent spurious tcp_cwnd_restart() on
6034 * first data packet.
6036 tp
->lsndtime
= tcp_time_stamp
;
6039 tcp_initialize_rcv_mss(sk
);
6040 tcp_init_buffer_space(sk
);
6041 tcp_fast_path_on(tp
);
6048 if (tp
->snd_una
== tp
->write_seq
) {
6049 struct dst_entry
*dst
;
6051 tcp_set_state(sk
, TCP_FIN_WAIT2
);
6052 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
6054 dst
= __sk_dst_get(sk
);
6058 if (!sock_flag(sk
, SOCK_DEAD
))
6059 /* Wake up lingering close() */
6060 sk
->sk_state_change(sk
);
6064 if (tp
->linger2
< 0 ||
6065 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6066 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
6068 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6072 tmo
= tcp_fin_time(sk
);
6073 if (tmo
> TCP_TIMEWAIT_LEN
) {
6074 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
6075 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
6076 /* Bad case. We could lose such FIN otherwise.
6077 * It is not a big problem, but it looks confusing
6078 * and not so rare event. We still can lose it now,
6079 * if it spins in bh_lock_sock(), but it is really
6082 inet_csk_reset_keepalive_timer(sk
, tmo
);
6084 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6092 if (tp
->snd_una
== tp
->write_seq
) {
6093 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6099 if (tp
->snd_una
== tp
->write_seq
) {
6100 tcp_update_metrics(sk
);
6109 /* step 6: check the URG bit */
6110 tcp_urg(sk
, skb
, th
);
6112 /* step 7: process the segment text */
6113 switch (sk
->sk_state
) {
6114 case TCP_CLOSE_WAIT
:
6117 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6121 /* RFC 793 says to queue data in these states,
6122 * RFC 1122 says we MUST send a reset.
6123 * BSD 4.4 also does reset.
6125 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6126 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6127 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6128 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6134 case TCP_ESTABLISHED
:
6135 tcp_data_queue(sk
, skb
);
6140 /* tcp_data could move socket to TIME-WAIT */
6141 if (sk
->sk_state
!= TCP_CLOSE
) {
6142 tcp_data_snd_check(sk
);
6143 tcp_ack_snd_check(sk
);
6152 EXPORT_SYMBOL(tcp_rcv_state_process
);