ehea: fix skb_frag_size typo
[linux-btrfs-devel.git] / fs / eventpoll.c
blob9026fc91fe3bf34f2b8d71fd084dfac3ef1aa05c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
43 * LOCKING:
44 * There are three level of locking required by epoll :
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (spinlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
73 * It is possible to drop the "ep->mtx" and to use the global
74 * mutex "epmutex" (together with "ep->lock") to have it working,
75 * but having "ep->mtx" will make the interface more scalable.
76 * Events that require holding "epmutex" are very rare, while for
77 * normal operations the epoll private "ep->mtx" will guarantee
78 * a better scalability.
81 /* Epoll private bits inside the event mask */
82 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
84 /* Maximum number of nesting allowed inside epoll sets */
85 #define EP_MAX_NESTS 4
87 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
89 #define EP_UNACTIVE_PTR ((void *) -1L)
91 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
93 struct epoll_filefd {
94 struct file *file;
95 int fd;
99 * Structure used to track possible nested calls, for too deep recursions
100 * and loop cycles.
102 struct nested_call_node {
103 struct list_head llink;
104 void *cookie;
105 void *ctx;
109 * This structure is used as collector for nested calls, to check for
110 * maximum recursion dept and loop cycles.
112 struct nested_calls {
113 struct list_head tasks_call_list;
114 spinlock_t lock;
118 * Each file descriptor added to the eventpoll interface will
119 * have an entry of this type linked to the "rbr" RB tree.
121 struct epitem {
122 /* RB tree node used to link this structure to the eventpoll RB tree */
123 struct rb_node rbn;
125 /* List header used to link this structure to the eventpoll ready list */
126 struct list_head rdllink;
129 * Works together "struct eventpoll"->ovflist in keeping the
130 * single linked chain of items.
132 struct epitem *next;
134 /* The file descriptor information this item refers to */
135 struct epoll_filefd ffd;
137 /* Number of active wait queue attached to poll operations */
138 int nwait;
140 /* List containing poll wait queues */
141 struct list_head pwqlist;
143 /* The "container" of this item */
144 struct eventpoll *ep;
146 /* List header used to link this item to the "struct file" items list */
147 struct list_head fllink;
149 /* The structure that describe the interested events and the source fd */
150 struct epoll_event event;
154 * This structure is stored inside the "private_data" member of the file
155 * structure and represents the main data structure for the eventpoll
156 * interface.
158 struct eventpoll {
159 /* Protect the access to this structure */
160 spinlock_t lock;
163 * This mutex is used to ensure that files are not removed
164 * while epoll is using them. This is held during the event
165 * collection loop, the file cleanup path, the epoll file exit
166 * code and the ctl operations.
168 struct mutex mtx;
170 /* Wait queue used by sys_epoll_wait() */
171 wait_queue_head_t wq;
173 /* Wait queue used by file->poll() */
174 wait_queue_head_t poll_wait;
176 /* List of ready file descriptors */
177 struct list_head rdllist;
179 /* RB tree root used to store monitored fd structs */
180 struct rb_root rbr;
183 * This is a single linked list that chains all the "struct epitem" that
184 * happened while transferring ready events to userspace w/out
185 * holding ->lock.
187 struct epitem *ovflist;
189 /* The user that created the eventpoll descriptor */
190 struct user_struct *user;
193 /* Wait structure used by the poll hooks */
194 struct eppoll_entry {
195 /* List header used to link this structure to the "struct epitem" */
196 struct list_head llink;
198 /* The "base" pointer is set to the container "struct epitem" */
199 struct epitem *base;
202 * Wait queue item that will be linked to the target file wait
203 * queue head.
205 wait_queue_t wait;
207 /* The wait queue head that linked the "wait" wait queue item */
208 wait_queue_head_t *whead;
211 /* Wrapper struct used by poll queueing */
212 struct ep_pqueue {
213 poll_table pt;
214 struct epitem *epi;
217 /* Used by the ep_send_events() function as callback private data */
218 struct ep_send_events_data {
219 int maxevents;
220 struct epoll_event __user *events;
224 * Configuration options available inside /proc/sys/fs/epoll/
226 /* Maximum number of epoll watched descriptors, per user */
227 static long max_user_watches __read_mostly;
230 * This mutex is used to serialize ep_free() and eventpoll_release_file().
232 static DEFINE_MUTEX(epmutex);
234 /* Used to check for epoll file descriptor inclusion loops */
235 static struct nested_calls poll_loop_ncalls;
237 /* Used for safe wake up implementation */
238 static struct nested_calls poll_safewake_ncalls;
240 /* Used to call file's f_op->poll() under the nested calls boundaries */
241 static struct nested_calls poll_readywalk_ncalls;
243 /* Slab cache used to allocate "struct epitem" */
244 static struct kmem_cache *epi_cache __read_mostly;
246 /* Slab cache used to allocate "struct eppoll_entry" */
247 static struct kmem_cache *pwq_cache __read_mostly;
249 #ifdef CONFIG_SYSCTL
251 #include <linux/sysctl.h>
253 static long zero;
254 static long long_max = LONG_MAX;
256 ctl_table epoll_table[] = {
258 .procname = "max_user_watches",
259 .data = &max_user_watches,
260 .maxlen = sizeof(max_user_watches),
261 .mode = 0644,
262 .proc_handler = proc_doulongvec_minmax,
263 .extra1 = &zero,
264 .extra2 = &long_max,
268 #endif /* CONFIG_SYSCTL */
271 /* Setup the structure that is used as key for the RB tree */
272 static inline void ep_set_ffd(struct epoll_filefd *ffd,
273 struct file *file, int fd)
275 ffd->file = file;
276 ffd->fd = fd;
279 /* Compare RB tree keys */
280 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
281 struct epoll_filefd *p2)
283 return (p1->file > p2->file ? +1:
284 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
287 /* Tells us if the item is currently linked */
288 static inline int ep_is_linked(struct list_head *p)
290 return !list_empty(p);
293 /* Get the "struct epitem" from a wait queue pointer */
294 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
296 return container_of(p, struct eppoll_entry, wait)->base;
299 /* Get the "struct epitem" from an epoll queue wrapper */
300 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
302 return container_of(p, struct ep_pqueue, pt)->epi;
305 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
306 static inline int ep_op_has_event(int op)
308 return op != EPOLL_CTL_DEL;
311 /* Initialize the poll safe wake up structure */
312 static void ep_nested_calls_init(struct nested_calls *ncalls)
314 INIT_LIST_HEAD(&ncalls->tasks_call_list);
315 spin_lock_init(&ncalls->lock);
319 * ep_events_available - Checks if ready events might be available.
321 * @ep: Pointer to the eventpoll context.
323 * Returns: Returns a value different than zero if ready events are available,
324 * or zero otherwise.
326 static inline int ep_events_available(struct eventpoll *ep)
328 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
332 * ep_call_nested - Perform a bound (possibly) nested call, by checking
333 * that the recursion limit is not exceeded, and that
334 * the same nested call (by the meaning of same cookie) is
335 * no re-entered.
337 * @ncalls: Pointer to the nested_calls structure to be used for this call.
338 * @max_nests: Maximum number of allowed nesting calls.
339 * @nproc: Nested call core function pointer.
340 * @priv: Opaque data to be passed to the @nproc callback.
341 * @cookie: Cookie to be used to identify this nested call.
342 * @ctx: This instance context.
344 * Returns: Returns the code returned by the @nproc callback, or -1 if
345 * the maximum recursion limit has been exceeded.
347 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
348 int (*nproc)(void *, void *, int), void *priv,
349 void *cookie, void *ctx)
351 int error, call_nests = 0;
352 unsigned long flags;
353 struct list_head *lsthead = &ncalls->tasks_call_list;
354 struct nested_call_node *tncur;
355 struct nested_call_node tnode;
357 spin_lock_irqsave(&ncalls->lock, flags);
360 * Try to see if the current task is already inside this wakeup call.
361 * We use a list here, since the population inside this set is always
362 * very much limited.
364 list_for_each_entry(tncur, lsthead, llink) {
365 if (tncur->ctx == ctx &&
366 (tncur->cookie == cookie || ++call_nests > max_nests)) {
368 * Ops ... loop detected or maximum nest level reached.
369 * We abort this wake by breaking the cycle itself.
371 error = -1;
372 goto out_unlock;
376 /* Add the current task and cookie to the list */
377 tnode.ctx = ctx;
378 tnode.cookie = cookie;
379 list_add(&tnode.llink, lsthead);
381 spin_unlock_irqrestore(&ncalls->lock, flags);
383 /* Call the nested function */
384 error = (*nproc)(priv, cookie, call_nests);
386 /* Remove the current task from the list */
387 spin_lock_irqsave(&ncalls->lock, flags);
388 list_del(&tnode.llink);
389 out_unlock:
390 spin_unlock_irqrestore(&ncalls->lock, flags);
392 return error;
395 #ifdef CONFIG_DEBUG_LOCK_ALLOC
396 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
397 unsigned long events, int subclass)
399 unsigned long flags;
401 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
402 wake_up_locked_poll(wqueue, events);
403 spin_unlock_irqrestore(&wqueue->lock, flags);
405 #else
406 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
407 unsigned long events, int subclass)
409 wake_up_poll(wqueue, events);
411 #endif
413 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
415 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
416 1 + call_nests);
417 return 0;
421 * Perform a safe wake up of the poll wait list. The problem is that
422 * with the new callback'd wake up system, it is possible that the
423 * poll callback is reentered from inside the call to wake_up() done
424 * on the poll wait queue head. The rule is that we cannot reenter the
425 * wake up code from the same task more than EP_MAX_NESTS times,
426 * and we cannot reenter the same wait queue head at all. This will
427 * enable to have a hierarchy of epoll file descriptor of no more than
428 * EP_MAX_NESTS deep.
430 static void ep_poll_safewake(wait_queue_head_t *wq)
432 int this_cpu = get_cpu();
434 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
435 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
437 put_cpu();
441 * This function unregisters poll callbacks from the associated file
442 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
443 * ep_free).
445 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
447 struct list_head *lsthead = &epi->pwqlist;
448 struct eppoll_entry *pwq;
450 while (!list_empty(lsthead)) {
451 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
453 list_del(&pwq->llink);
454 remove_wait_queue(pwq->whead, &pwq->wait);
455 kmem_cache_free(pwq_cache, pwq);
460 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
461 * the scan code, to call f_op->poll(). Also allows for
462 * O(NumReady) performance.
464 * @ep: Pointer to the epoll private data structure.
465 * @sproc: Pointer to the scan callback.
466 * @priv: Private opaque data passed to the @sproc callback.
468 * Returns: The same integer error code returned by the @sproc callback.
470 static int ep_scan_ready_list(struct eventpoll *ep,
471 int (*sproc)(struct eventpoll *,
472 struct list_head *, void *),
473 void *priv)
475 int error, pwake = 0;
476 unsigned long flags;
477 struct epitem *epi, *nepi;
478 LIST_HEAD(txlist);
481 * We need to lock this because we could be hit by
482 * eventpoll_release_file() and epoll_ctl().
484 mutex_lock(&ep->mtx);
487 * Steal the ready list, and re-init the original one to the
488 * empty list. Also, set ep->ovflist to NULL so that events
489 * happening while looping w/out locks, are not lost. We cannot
490 * have the poll callback to queue directly on ep->rdllist,
491 * because we want the "sproc" callback to be able to do it
492 * in a lockless way.
494 spin_lock_irqsave(&ep->lock, flags);
495 list_splice_init(&ep->rdllist, &txlist);
496 ep->ovflist = NULL;
497 spin_unlock_irqrestore(&ep->lock, flags);
500 * Now call the callback function.
502 error = (*sproc)(ep, &txlist, priv);
504 spin_lock_irqsave(&ep->lock, flags);
506 * During the time we spent inside the "sproc" callback, some
507 * other events might have been queued by the poll callback.
508 * We re-insert them inside the main ready-list here.
510 for (nepi = ep->ovflist; (epi = nepi) != NULL;
511 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
513 * We need to check if the item is already in the list.
514 * During the "sproc" callback execution time, items are
515 * queued into ->ovflist but the "txlist" might already
516 * contain them, and the list_splice() below takes care of them.
518 if (!ep_is_linked(&epi->rdllink))
519 list_add_tail(&epi->rdllink, &ep->rdllist);
522 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
523 * releasing the lock, events will be queued in the normal way inside
524 * ep->rdllist.
526 ep->ovflist = EP_UNACTIVE_PTR;
529 * Quickly re-inject items left on "txlist".
531 list_splice(&txlist, &ep->rdllist);
533 if (!list_empty(&ep->rdllist)) {
535 * Wake up (if active) both the eventpoll wait list and
536 * the ->poll() wait list (delayed after we release the lock).
538 if (waitqueue_active(&ep->wq))
539 wake_up_locked(&ep->wq);
540 if (waitqueue_active(&ep->poll_wait))
541 pwake++;
543 spin_unlock_irqrestore(&ep->lock, flags);
545 mutex_unlock(&ep->mtx);
547 /* We have to call this outside the lock */
548 if (pwake)
549 ep_poll_safewake(&ep->poll_wait);
551 return error;
555 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
556 * all the associated resources. Must be called with "mtx" held.
558 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
560 unsigned long flags;
561 struct file *file = epi->ffd.file;
564 * Removes poll wait queue hooks. We _have_ to do this without holding
565 * the "ep->lock" otherwise a deadlock might occur. This because of the
566 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
567 * queue head lock when unregistering the wait queue. The wakeup callback
568 * will run by holding the wait queue head lock and will call our callback
569 * that will try to get "ep->lock".
571 ep_unregister_pollwait(ep, epi);
573 /* Remove the current item from the list of epoll hooks */
574 spin_lock(&file->f_lock);
575 if (ep_is_linked(&epi->fllink))
576 list_del_init(&epi->fllink);
577 spin_unlock(&file->f_lock);
579 rb_erase(&epi->rbn, &ep->rbr);
581 spin_lock_irqsave(&ep->lock, flags);
582 if (ep_is_linked(&epi->rdllink))
583 list_del_init(&epi->rdllink);
584 spin_unlock_irqrestore(&ep->lock, flags);
586 /* At this point it is safe to free the eventpoll item */
587 kmem_cache_free(epi_cache, epi);
589 atomic_long_dec(&ep->user->epoll_watches);
591 return 0;
594 static void ep_free(struct eventpoll *ep)
596 struct rb_node *rbp;
597 struct epitem *epi;
599 /* We need to release all tasks waiting for these file */
600 if (waitqueue_active(&ep->poll_wait))
601 ep_poll_safewake(&ep->poll_wait);
604 * We need to lock this because we could be hit by
605 * eventpoll_release_file() while we're freeing the "struct eventpoll".
606 * We do not need to hold "ep->mtx" here because the epoll file
607 * is on the way to be removed and no one has references to it
608 * anymore. The only hit might come from eventpoll_release_file() but
609 * holding "epmutex" is sufficient here.
611 mutex_lock(&epmutex);
614 * Walks through the whole tree by unregistering poll callbacks.
616 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
617 epi = rb_entry(rbp, struct epitem, rbn);
619 ep_unregister_pollwait(ep, epi);
623 * Walks through the whole tree by freeing each "struct epitem". At this
624 * point we are sure no poll callbacks will be lingering around, and also by
625 * holding "epmutex" we can be sure that no file cleanup code will hit
626 * us during this operation. So we can avoid the lock on "ep->lock".
628 while ((rbp = rb_first(&ep->rbr)) != NULL) {
629 epi = rb_entry(rbp, struct epitem, rbn);
630 ep_remove(ep, epi);
633 mutex_unlock(&epmutex);
634 mutex_destroy(&ep->mtx);
635 free_uid(ep->user);
636 kfree(ep);
639 static int ep_eventpoll_release(struct inode *inode, struct file *file)
641 struct eventpoll *ep = file->private_data;
643 if (ep)
644 ep_free(ep);
646 return 0;
649 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
650 void *priv)
652 struct epitem *epi, *tmp;
654 list_for_each_entry_safe(epi, tmp, head, rdllink) {
655 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
656 epi->event.events)
657 return POLLIN | POLLRDNORM;
658 else {
660 * Item has been dropped into the ready list by the poll
661 * callback, but it's not actually ready, as far as
662 * caller requested events goes. We can remove it here.
664 list_del_init(&epi->rdllink);
668 return 0;
671 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
673 return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
676 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
678 int pollflags;
679 struct eventpoll *ep = file->private_data;
681 /* Insert inside our poll wait queue */
682 poll_wait(file, &ep->poll_wait, wait);
685 * Proceed to find out if wanted events are really available inside
686 * the ready list. This need to be done under ep_call_nested()
687 * supervision, since the call to f_op->poll() done on listed files
688 * could re-enter here.
690 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
691 ep_poll_readyevents_proc, ep, ep, current);
693 return pollflags != -1 ? pollflags : 0;
696 /* File callbacks that implement the eventpoll file behaviour */
697 static const struct file_operations eventpoll_fops = {
698 .release = ep_eventpoll_release,
699 .poll = ep_eventpoll_poll,
700 .llseek = noop_llseek,
703 /* Fast test to see if the file is an eventpoll file */
704 static inline int is_file_epoll(struct file *f)
706 return f->f_op == &eventpoll_fops;
710 * This is called from eventpoll_release() to unlink files from the eventpoll
711 * interface. We need to have this facility to cleanup correctly files that are
712 * closed without being removed from the eventpoll interface.
714 void eventpoll_release_file(struct file *file)
716 struct list_head *lsthead = &file->f_ep_links;
717 struct eventpoll *ep;
718 struct epitem *epi;
721 * We don't want to get "file->f_lock" because it is not
722 * necessary. It is not necessary because we're in the "struct file"
723 * cleanup path, and this means that no one is using this file anymore.
724 * So, for example, epoll_ctl() cannot hit here since if we reach this
725 * point, the file counter already went to zero and fget() would fail.
726 * The only hit might come from ep_free() but by holding the mutex
727 * will correctly serialize the operation. We do need to acquire
728 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
729 * from anywhere but ep_free().
731 * Besides, ep_remove() acquires the lock, so we can't hold it here.
733 mutex_lock(&epmutex);
735 while (!list_empty(lsthead)) {
736 epi = list_first_entry(lsthead, struct epitem, fllink);
738 ep = epi->ep;
739 list_del_init(&epi->fllink);
740 mutex_lock(&ep->mtx);
741 ep_remove(ep, epi);
742 mutex_unlock(&ep->mtx);
745 mutex_unlock(&epmutex);
748 static int ep_alloc(struct eventpoll **pep)
750 int error;
751 struct user_struct *user;
752 struct eventpoll *ep;
754 user = get_current_user();
755 error = -ENOMEM;
756 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
757 if (unlikely(!ep))
758 goto free_uid;
760 spin_lock_init(&ep->lock);
761 mutex_init(&ep->mtx);
762 init_waitqueue_head(&ep->wq);
763 init_waitqueue_head(&ep->poll_wait);
764 INIT_LIST_HEAD(&ep->rdllist);
765 ep->rbr = RB_ROOT;
766 ep->ovflist = EP_UNACTIVE_PTR;
767 ep->user = user;
769 *pep = ep;
771 return 0;
773 free_uid:
774 free_uid(user);
775 return error;
779 * Search the file inside the eventpoll tree. The RB tree operations
780 * are protected by the "mtx" mutex, and ep_find() must be called with
781 * "mtx" held.
783 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
785 int kcmp;
786 struct rb_node *rbp;
787 struct epitem *epi, *epir = NULL;
788 struct epoll_filefd ffd;
790 ep_set_ffd(&ffd, file, fd);
791 for (rbp = ep->rbr.rb_node; rbp; ) {
792 epi = rb_entry(rbp, struct epitem, rbn);
793 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
794 if (kcmp > 0)
795 rbp = rbp->rb_right;
796 else if (kcmp < 0)
797 rbp = rbp->rb_left;
798 else {
799 epir = epi;
800 break;
804 return epir;
808 * This is the callback that is passed to the wait queue wakeup
809 * mechanism. It is called by the stored file descriptors when they
810 * have events to report.
812 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
814 int pwake = 0;
815 unsigned long flags;
816 struct epitem *epi = ep_item_from_wait(wait);
817 struct eventpoll *ep = epi->ep;
819 spin_lock_irqsave(&ep->lock, flags);
822 * If the event mask does not contain any poll(2) event, we consider the
823 * descriptor to be disabled. This condition is likely the effect of the
824 * EPOLLONESHOT bit that disables the descriptor when an event is received,
825 * until the next EPOLL_CTL_MOD will be issued.
827 if (!(epi->event.events & ~EP_PRIVATE_BITS))
828 goto out_unlock;
831 * Check the events coming with the callback. At this stage, not
832 * every device reports the events in the "key" parameter of the
833 * callback. We need to be able to handle both cases here, hence the
834 * test for "key" != NULL before the event match test.
836 if (key && !((unsigned long) key & epi->event.events))
837 goto out_unlock;
840 * If we are transferring events to userspace, we can hold no locks
841 * (because we're accessing user memory, and because of linux f_op->poll()
842 * semantics). All the events that happen during that period of time are
843 * chained in ep->ovflist and requeued later on.
845 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
846 if (epi->next == EP_UNACTIVE_PTR) {
847 epi->next = ep->ovflist;
848 ep->ovflist = epi;
850 goto out_unlock;
853 /* If this file is already in the ready list we exit soon */
854 if (!ep_is_linked(&epi->rdllink))
855 list_add_tail(&epi->rdllink, &ep->rdllist);
858 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
859 * wait list.
861 if (waitqueue_active(&ep->wq))
862 wake_up_locked(&ep->wq);
863 if (waitqueue_active(&ep->poll_wait))
864 pwake++;
866 out_unlock:
867 spin_unlock_irqrestore(&ep->lock, flags);
869 /* We have to call this outside the lock */
870 if (pwake)
871 ep_poll_safewake(&ep->poll_wait);
873 return 1;
877 * This is the callback that is used to add our wait queue to the
878 * target file wakeup lists.
880 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
881 poll_table *pt)
883 struct epitem *epi = ep_item_from_epqueue(pt);
884 struct eppoll_entry *pwq;
886 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
887 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
888 pwq->whead = whead;
889 pwq->base = epi;
890 add_wait_queue(whead, &pwq->wait);
891 list_add_tail(&pwq->llink, &epi->pwqlist);
892 epi->nwait++;
893 } else {
894 /* We have to signal that an error occurred */
895 epi->nwait = -1;
899 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
901 int kcmp;
902 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
903 struct epitem *epic;
905 while (*p) {
906 parent = *p;
907 epic = rb_entry(parent, struct epitem, rbn);
908 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
909 if (kcmp > 0)
910 p = &parent->rb_right;
911 else
912 p = &parent->rb_left;
914 rb_link_node(&epi->rbn, parent, p);
915 rb_insert_color(&epi->rbn, &ep->rbr);
919 * Must be called with "mtx" held.
921 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
922 struct file *tfile, int fd)
924 int error, revents, pwake = 0;
925 unsigned long flags;
926 long user_watches;
927 struct epitem *epi;
928 struct ep_pqueue epq;
930 user_watches = atomic_long_read(&ep->user->epoll_watches);
931 if (unlikely(user_watches >= max_user_watches))
932 return -ENOSPC;
933 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
934 return -ENOMEM;
936 /* Item initialization follow here ... */
937 INIT_LIST_HEAD(&epi->rdllink);
938 INIT_LIST_HEAD(&epi->fllink);
939 INIT_LIST_HEAD(&epi->pwqlist);
940 epi->ep = ep;
941 ep_set_ffd(&epi->ffd, tfile, fd);
942 epi->event = *event;
943 epi->nwait = 0;
944 epi->next = EP_UNACTIVE_PTR;
946 /* Initialize the poll table using the queue callback */
947 epq.epi = epi;
948 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
951 * Attach the item to the poll hooks and get current event bits.
952 * We can safely use the file* here because its usage count has
953 * been increased by the caller of this function. Note that after
954 * this operation completes, the poll callback can start hitting
955 * the new item.
957 revents = tfile->f_op->poll(tfile, &epq.pt);
960 * We have to check if something went wrong during the poll wait queue
961 * install process. Namely an allocation for a wait queue failed due
962 * high memory pressure.
964 error = -ENOMEM;
965 if (epi->nwait < 0)
966 goto error_unregister;
968 /* Add the current item to the list of active epoll hook for this file */
969 spin_lock(&tfile->f_lock);
970 list_add_tail(&epi->fllink, &tfile->f_ep_links);
971 spin_unlock(&tfile->f_lock);
974 * Add the current item to the RB tree. All RB tree operations are
975 * protected by "mtx", and ep_insert() is called with "mtx" held.
977 ep_rbtree_insert(ep, epi);
979 /* We have to drop the new item inside our item list to keep track of it */
980 spin_lock_irqsave(&ep->lock, flags);
982 /* If the file is already "ready" we drop it inside the ready list */
983 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
984 list_add_tail(&epi->rdllink, &ep->rdllist);
986 /* Notify waiting tasks that events are available */
987 if (waitqueue_active(&ep->wq))
988 wake_up_locked(&ep->wq);
989 if (waitqueue_active(&ep->poll_wait))
990 pwake++;
993 spin_unlock_irqrestore(&ep->lock, flags);
995 atomic_long_inc(&ep->user->epoll_watches);
997 /* We have to call this outside the lock */
998 if (pwake)
999 ep_poll_safewake(&ep->poll_wait);
1001 return 0;
1003 error_unregister:
1004 ep_unregister_pollwait(ep, epi);
1007 * We need to do this because an event could have been arrived on some
1008 * allocated wait queue. Note that we don't care about the ep->ovflist
1009 * list, since that is used/cleaned only inside a section bound by "mtx".
1010 * And ep_insert() is called with "mtx" held.
1012 spin_lock_irqsave(&ep->lock, flags);
1013 if (ep_is_linked(&epi->rdllink))
1014 list_del_init(&epi->rdllink);
1015 spin_unlock_irqrestore(&ep->lock, flags);
1017 kmem_cache_free(epi_cache, epi);
1019 return error;
1023 * Modify the interest event mask by dropping an event if the new mask
1024 * has a match in the current file status. Must be called with "mtx" held.
1026 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1028 int pwake = 0;
1029 unsigned int revents;
1032 * Set the new event interest mask before calling f_op->poll();
1033 * otherwise we might miss an event that happens between the
1034 * f_op->poll() call and the new event set registering.
1036 epi->event.events = event->events;
1037 epi->event.data = event->data; /* protected by mtx */
1040 * Get current event bits. We can safely use the file* here because
1041 * its usage count has been increased by the caller of this function.
1043 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1046 * If the item is "hot" and it is not registered inside the ready
1047 * list, push it inside.
1049 if (revents & event->events) {
1050 spin_lock_irq(&ep->lock);
1051 if (!ep_is_linked(&epi->rdllink)) {
1052 list_add_tail(&epi->rdllink, &ep->rdllist);
1054 /* Notify waiting tasks that events are available */
1055 if (waitqueue_active(&ep->wq))
1056 wake_up_locked(&ep->wq);
1057 if (waitqueue_active(&ep->poll_wait))
1058 pwake++;
1060 spin_unlock_irq(&ep->lock);
1063 /* We have to call this outside the lock */
1064 if (pwake)
1065 ep_poll_safewake(&ep->poll_wait);
1067 return 0;
1070 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1071 void *priv)
1073 struct ep_send_events_data *esed = priv;
1074 int eventcnt;
1075 unsigned int revents;
1076 struct epitem *epi;
1077 struct epoll_event __user *uevent;
1080 * We can loop without lock because we are passed a task private list.
1081 * Items cannot vanish during the loop because ep_scan_ready_list() is
1082 * holding "mtx" during this call.
1084 for (eventcnt = 0, uevent = esed->events;
1085 !list_empty(head) && eventcnt < esed->maxevents;) {
1086 epi = list_first_entry(head, struct epitem, rdllink);
1088 list_del_init(&epi->rdllink);
1090 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1091 epi->event.events;
1094 * If the event mask intersect the caller-requested one,
1095 * deliver the event to userspace. Again, ep_scan_ready_list()
1096 * is holding "mtx", so no operations coming from userspace
1097 * can change the item.
1099 if (revents) {
1100 if (__put_user(revents, &uevent->events) ||
1101 __put_user(epi->event.data, &uevent->data)) {
1102 list_add(&epi->rdllink, head);
1103 return eventcnt ? eventcnt : -EFAULT;
1105 eventcnt++;
1106 uevent++;
1107 if (epi->event.events & EPOLLONESHOT)
1108 epi->event.events &= EP_PRIVATE_BITS;
1109 else if (!(epi->event.events & EPOLLET)) {
1111 * If this file has been added with Level
1112 * Trigger mode, we need to insert back inside
1113 * the ready list, so that the next call to
1114 * epoll_wait() will check again the events
1115 * availability. At this point, no one can insert
1116 * into ep->rdllist besides us. The epoll_ctl()
1117 * callers are locked out by
1118 * ep_scan_ready_list() holding "mtx" and the
1119 * poll callback will queue them in ep->ovflist.
1121 list_add_tail(&epi->rdllink, &ep->rdllist);
1126 return eventcnt;
1129 static int ep_send_events(struct eventpoll *ep,
1130 struct epoll_event __user *events, int maxevents)
1132 struct ep_send_events_data esed;
1134 esed.maxevents = maxevents;
1135 esed.events = events;
1137 return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1140 static inline struct timespec ep_set_mstimeout(long ms)
1142 struct timespec now, ts = {
1143 .tv_sec = ms / MSEC_PER_SEC,
1144 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1147 ktime_get_ts(&now);
1148 return timespec_add_safe(now, ts);
1152 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1153 * event buffer.
1155 * @ep: Pointer to the eventpoll context.
1156 * @events: Pointer to the userspace buffer where the ready events should be
1157 * stored.
1158 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1159 * @timeout: Maximum timeout for the ready events fetch operation, in
1160 * milliseconds. If the @timeout is zero, the function will not block,
1161 * while if the @timeout is less than zero, the function will block
1162 * until at least one event has been retrieved (or an error
1163 * occurred).
1165 * Returns: Returns the number of ready events which have been fetched, or an
1166 * error code, in case of error.
1168 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1169 int maxevents, long timeout)
1171 int res = 0, eavail, timed_out = 0;
1172 unsigned long flags;
1173 long slack = 0;
1174 wait_queue_t wait;
1175 ktime_t expires, *to = NULL;
1177 if (timeout > 0) {
1178 struct timespec end_time = ep_set_mstimeout(timeout);
1180 slack = select_estimate_accuracy(&end_time);
1181 to = &expires;
1182 *to = timespec_to_ktime(end_time);
1183 } else if (timeout == 0) {
1185 * Avoid the unnecessary trip to the wait queue loop, if the
1186 * caller specified a non blocking operation.
1188 timed_out = 1;
1189 spin_lock_irqsave(&ep->lock, flags);
1190 goto check_events;
1193 fetch_events:
1194 spin_lock_irqsave(&ep->lock, flags);
1196 if (!ep_events_available(ep)) {
1198 * We don't have any available event to return to the caller.
1199 * We need to sleep here, and we will be wake up by
1200 * ep_poll_callback() when events will become available.
1202 init_waitqueue_entry(&wait, current);
1203 __add_wait_queue_exclusive(&ep->wq, &wait);
1205 for (;;) {
1207 * We don't want to sleep if the ep_poll_callback() sends us
1208 * a wakeup in between. That's why we set the task state
1209 * to TASK_INTERRUPTIBLE before doing the checks.
1211 set_current_state(TASK_INTERRUPTIBLE);
1212 if (ep_events_available(ep) || timed_out)
1213 break;
1214 if (signal_pending(current)) {
1215 res = -EINTR;
1216 break;
1219 spin_unlock_irqrestore(&ep->lock, flags);
1220 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1221 timed_out = 1;
1223 spin_lock_irqsave(&ep->lock, flags);
1225 __remove_wait_queue(&ep->wq, &wait);
1227 set_current_state(TASK_RUNNING);
1229 check_events:
1230 /* Is it worth to try to dig for events ? */
1231 eavail = ep_events_available(ep);
1233 spin_unlock_irqrestore(&ep->lock, flags);
1236 * Try to transfer events to user space. In case we get 0 events and
1237 * there's still timeout left over, we go trying again in search of
1238 * more luck.
1240 if (!res && eavail &&
1241 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1242 goto fetch_events;
1244 return res;
1248 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1249 * API, to verify that adding an epoll file inside another
1250 * epoll structure, does not violate the constraints, in
1251 * terms of closed loops, or too deep chains (which can
1252 * result in excessive stack usage).
1254 * @priv: Pointer to the epoll file to be currently checked.
1255 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1256 * data structure pointer.
1257 * @call_nests: Current dept of the @ep_call_nested() call stack.
1259 * Returns: Returns zero if adding the epoll @file inside current epoll
1260 * structure @ep does not violate the constraints, or -1 otherwise.
1262 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1264 int error = 0;
1265 struct file *file = priv;
1266 struct eventpoll *ep = file->private_data;
1267 struct rb_node *rbp;
1268 struct epitem *epi;
1270 mutex_lock(&ep->mtx);
1271 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1272 epi = rb_entry(rbp, struct epitem, rbn);
1273 if (unlikely(is_file_epoll(epi->ffd.file))) {
1274 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1275 ep_loop_check_proc, epi->ffd.file,
1276 epi->ffd.file->private_data, current);
1277 if (error != 0)
1278 break;
1281 mutex_unlock(&ep->mtx);
1283 return error;
1287 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1288 * another epoll file (represented by @ep) does not create
1289 * closed loops or too deep chains.
1291 * @ep: Pointer to the epoll private data structure.
1292 * @file: Pointer to the epoll file to be checked.
1294 * Returns: Returns zero if adding the epoll @file inside current epoll
1295 * structure @ep does not violate the constraints, or -1 otherwise.
1297 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1299 return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1300 ep_loop_check_proc, file, ep, current);
1304 * Open an eventpoll file descriptor.
1306 SYSCALL_DEFINE1(epoll_create1, int, flags)
1308 int error;
1309 struct eventpoll *ep = NULL;
1311 /* Check the EPOLL_* constant for consistency. */
1312 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1314 if (flags & ~EPOLL_CLOEXEC)
1315 return -EINVAL;
1317 * Create the internal data structure ("struct eventpoll").
1319 error = ep_alloc(&ep);
1320 if (error < 0)
1321 return error;
1323 * Creates all the items needed to setup an eventpoll file. That is,
1324 * a file structure and a free file descriptor.
1326 error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1327 O_RDWR | (flags & O_CLOEXEC));
1328 if (error < 0)
1329 ep_free(ep);
1331 return error;
1334 SYSCALL_DEFINE1(epoll_create, int, size)
1336 if (size <= 0)
1337 return -EINVAL;
1339 return sys_epoll_create1(0);
1343 * The following function implements the controller interface for
1344 * the eventpoll file that enables the insertion/removal/change of
1345 * file descriptors inside the interest set.
1347 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1348 struct epoll_event __user *, event)
1350 int error;
1351 int did_lock_epmutex = 0;
1352 struct file *file, *tfile;
1353 struct eventpoll *ep;
1354 struct epitem *epi;
1355 struct epoll_event epds;
1357 error = -EFAULT;
1358 if (ep_op_has_event(op) &&
1359 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1360 goto error_return;
1362 /* Get the "struct file *" for the eventpoll file */
1363 error = -EBADF;
1364 file = fget(epfd);
1365 if (!file)
1366 goto error_return;
1368 /* Get the "struct file *" for the target file */
1369 tfile = fget(fd);
1370 if (!tfile)
1371 goto error_fput;
1373 /* The target file descriptor must support poll */
1374 error = -EPERM;
1375 if (!tfile->f_op || !tfile->f_op->poll)
1376 goto error_tgt_fput;
1379 * We have to check that the file structure underneath the file descriptor
1380 * the user passed to us _is_ an eventpoll file. And also we do not permit
1381 * adding an epoll file descriptor inside itself.
1383 error = -EINVAL;
1384 if (file == tfile || !is_file_epoll(file))
1385 goto error_tgt_fput;
1388 * At this point it is safe to assume that the "private_data" contains
1389 * our own data structure.
1391 ep = file->private_data;
1394 * When we insert an epoll file descriptor, inside another epoll file
1395 * descriptor, there is the change of creating closed loops, which are
1396 * better be handled here, than in more critical paths.
1398 * We hold epmutex across the loop check and the insert in this case, in
1399 * order to prevent two separate inserts from racing and each doing the
1400 * insert "at the same time" such that ep_loop_check passes on both
1401 * before either one does the insert, thereby creating a cycle.
1403 if (unlikely(is_file_epoll(tfile) && op == EPOLL_CTL_ADD)) {
1404 mutex_lock(&epmutex);
1405 did_lock_epmutex = 1;
1406 error = -ELOOP;
1407 if (ep_loop_check(ep, tfile) != 0)
1408 goto error_tgt_fput;
1412 mutex_lock(&ep->mtx);
1415 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1416 * above, we can be sure to be able to use the item looked up by
1417 * ep_find() till we release the mutex.
1419 epi = ep_find(ep, tfile, fd);
1421 error = -EINVAL;
1422 switch (op) {
1423 case EPOLL_CTL_ADD:
1424 if (!epi) {
1425 epds.events |= POLLERR | POLLHUP;
1426 error = ep_insert(ep, &epds, tfile, fd);
1427 } else
1428 error = -EEXIST;
1429 break;
1430 case EPOLL_CTL_DEL:
1431 if (epi)
1432 error = ep_remove(ep, epi);
1433 else
1434 error = -ENOENT;
1435 break;
1436 case EPOLL_CTL_MOD:
1437 if (epi) {
1438 epds.events |= POLLERR | POLLHUP;
1439 error = ep_modify(ep, epi, &epds);
1440 } else
1441 error = -ENOENT;
1442 break;
1444 mutex_unlock(&ep->mtx);
1446 error_tgt_fput:
1447 if (unlikely(did_lock_epmutex))
1448 mutex_unlock(&epmutex);
1450 fput(tfile);
1451 error_fput:
1452 fput(file);
1453 error_return:
1455 return error;
1459 * Implement the event wait interface for the eventpoll file. It is the kernel
1460 * part of the user space epoll_wait(2).
1462 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1463 int, maxevents, int, timeout)
1465 int error;
1466 struct file *file;
1467 struct eventpoll *ep;
1469 /* The maximum number of event must be greater than zero */
1470 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1471 return -EINVAL;
1473 /* Verify that the area passed by the user is writeable */
1474 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1475 error = -EFAULT;
1476 goto error_return;
1479 /* Get the "struct file *" for the eventpoll file */
1480 error = -EBADF;
1481 file = fget(epfd);
1482 if (!file)
1483 goto error_return;
1486 * We have to check that the file structure underneath the fd
1487 * the user passed to us _is_ an eventpoll file.
1489 error = -EINVAL;
1490 if (!is_file_epoll(file))
1491 goto error_fput;
1494 * At this point it is safe to assume that the "private_data" contains
1495 * our own data structure.
1497 ep = file->private_data;
1499 /* Time to fish for events ... */
1500 error = ep_poll(ep, events, maxevents, timeout);
1502 error_fput:
1503 fput(file);
1504 error_return:
1506 return error;
1509 #ifdef HAVE_SET_RESTORE_SIGMASK
1512 * Implement the event wait interface for the eventpoll file. It is the kernel
1513 * part of the user space epoll_pwait(2).
1515 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1516 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1517 size_t, sigsetsize)
1519 int error;
1520 sigset_t ksigmask, sigsaved;
1523 * If the caller wants a certain signal mask to be set during the wait,
1524 * we apply it here.
1526 if (sigmask) {
1527 if (sigsetsize != sizeof(sigset_t))
1528 return -EINVAL;
1529 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1530 return -EFAULT;
1531 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1532 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1535 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1538 * If we changed the signal mask, we need to restore the original one.
1539 * In case we've got a signal while waiting, we do not restore the
1540 * signal mask yet, and we allow do_signal() to deliver the signal on
1541 * the way back to userspace, before the signal mask is restored.
1543 if (sigmask) {
1544 if (error == -EINTR) {
1545 memcpy(&current->saved_sigmask, &sigsaved,
1546 sizeof(sigsaved));
1547 set_restore_sigmask();
1548 } else
1549 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1552 return error;
1555 #endif /* HAVE_SET_RESTORE_SIGMASK */
1557 static int __init eventpoll_init(void)
1559 struct sysinfo si;
1561 si_meminfo(&si);
1563 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1565 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1566 EP_ITEM_COST;
1567 BUG_ON(max_user_watches < 0);
1570 * Initialize the structure used to perform epoll file descriptor
1571 * inclusion loops checks.
1573 ep_nested_calls_init(&poll_loop_ncalls);
1575 /* Initialize the structure used to perform safe poll wait head wake ups */
1576 ep_nested_calls_init(&poll_safewake_ncalls);
1578 /* Initialize the structure used to perform file's f_op->poll() calls */
1579 ep_nested_calls_init(&poll_readywalk_ncalls);
1581 /* Allocates slab cache used to allocate "struct epitem" items */
1582 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1583 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1585 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1586 pwq_cache = kmem_cache_create("eventpoll_pwq",
1587 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1589 return 0;
1591 fs_initcall(eventpoll_init);