4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
51 #include <trace/events/xen.h>
53 #include <asm/pgtable.h>
54 #include <asm/tlbflush.h>
55 #include <asm/fixmap.h>
56 #include <asm/mmu_context.h>
57 #include <asm/setup.h>
58 #include <asm/paravirt.h>
60 #include <asm/linkage.h>
66 #include <asm/xen/hypercall.h>
67 #include <asm/xen/hypervisor.h>
71 #include <xen/interface/xen.h>
72 #include <xen/interface/hvm/hvm_op.h>
73 #include <xen/interface/version.h>
74 #include <xen/interface/memory.h>
75 #include <xen/hvc-console.h>
77 #include "multicalls.h"
82 * Protects atomic reservation decrease/increase against concurrent increases.
83 * Also protects non-atomic updates of current_pages and balloon lists.
85 DEFINE_SPINLOCK(xen_reservation_lock
);
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t
, level1_ident_pgt
, LEVEL1_IDENT_ENTRIES
);
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall
[PTRS_PER_PUD
] __page_aligned_bss
;
98 #endif /* CONFIG_X86_64 */
101 * Note about cr3 (pagetable base) values:
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
114 DEFINE_PER_CPU(unsigned long, xen_cr3
); /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3
); /* actual vcpu cr3 */
119 * Just beyond the highest usermode address. STACK_TOP_MAX has a
120 * redzone above it, so round it up to a PGD boundary.
122 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124 unsigned long arbitrary_virt_to_mfn(void *vaddr
)
126 xmaddr_t maddr
= arbitrary_virt_to_machine(vaddr
);
128 return PFN_DOWN(maddr
.maddr
);
131 xmaddr_t
arbitrary_virt_to_machine(void *vaddr
)
133 unsigned long address
= (unsigned long)vaddr
;
139 * if the PFN is in the linear mapped vaddr range, we can just use
140 * the (quick) virt_to_machine() p2m lookup
142 if (virt_addr_valid(vaddr
))
143 return virt_to_machine(vaddr
);
145 /* otherwise we have to do a (slower) full page-table walk */
147 pte
= lookup_address(address
, &level
);
149 offset
= address
& ~PAGE_MASK
;
150 return XMADDR(((phys_addr_t
)pte_mfn(*pte
) << PAGE_SHIFT
) + offset
);
152 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine
);
154 void make_lowmem_page_readonly(void *vaddr
)
157 unsigned long address
= (unsigned long)vaddr
;
160 pte
= lookup_address(address
, &level
);
162 return; /* vaddr missing */
164 ptev
= pte_wrprotect(*pte
);
166 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
170 void make_lowmem_page_readwrite(void *vaddr
)
173 unsigned long address
= (unsigned long)vaddr
;
176 pte
= lookup_address(address
, &level
);
178 return; /* vaddr missing */
180 ptev
= pte_mkwrite(*pte
);
182 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
187 static bool xen_page_pinned(void *ptr
)
189 struct page
*page
= virt_to_page(ptr
);
191 return PagePinned(page
);
194 void xen_set_domain_pte(pte_t
*ptep
, pte_t pteval
, unsigned domid
)
196 struct multicall_space mcs
;
197 struct mmu_update
*u
;
199 trace_xen_mmu_set_domain_pte(ptep
, pteval
, domid
);
201 mcs
= xen_mc_entry(sizeof(*u
));
204 /* ptep might be kmapped when using 32-bit HIGHPTE */
205 u
->ptr
= virt_to_machine(ptep
).maddr
;
206 u
->val
= pte_val_ma(pteval
);
208 MULTI_mmu_update(mcs
.mc
, mcs
.args
, 1, NULL
, domid
);
210 xen_mc_issue(PARAVIRT_LAZY_MMU
);
212 EXPORT_SYMBOL_GPL(xen_set_domain_pte
);
214 static void xen_extend_mmu_update(const struct mmu_update
*update
)
216 struct multicall_space mcs
;
217 struct mmu_update
*u
;
219 mcs
= xen_mc_extend_args(__HYPERVISOR_mmu_update
, sizeof(*u
));
221 if (mcs
.mc
!= NULL
) {
224 mcs
= __xen_mc_entry(sizeof(*u
));
225 MULTI_mmu_update(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
232 static void xen_extend_mmuext_op(const struct mmuext_op
*op
)
234 struct multicall_space mcs
;
237 mcs
= xen_mc_extend_args(__HYPERVISOR_mmuext_op
, sizeof(*u
));
239 if (mcs
.mc
!= NULL
) {
242 mcs
= __xen_mc_entry(sizeof(*u
));
243 MULTI_mmuext_op(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
250 static void xen_set_pmd_hyper(pmd_t
*ptr
, pmd_t val
)
258 /* ptr may be ioremapped for 64-bit pagetable setup */
259 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
260 u
.val
= pmd_val_ma(val
);
261 xen_extend_mmu_update(&u
);
263 xen_mc_issue(PARAVIRT_LAZY_MMU
);
268 static void xen_set_pmd(pmd_t
*ptr
, pmd_t val
)
270 trace_xen_mmu_set_pmd(ptr
, val
);
272 /* If page is not pinned, we can just update the entry
274 if (!xen_page_pinned(ptr
)) {
279 xen_set_pmd_hyper(ptr
, val
);
283 * Associate a virtual page frame with a given physical page frame
284 * and protection flags for that frame.
286 void set_pte_mfn(unsigned long vaddr
, unsigned long mfn
, pgprot_t flags
)
288 set_pte_vaddr(vaddr
, mfn_pte(mfn
, flags
));
291 static bool xen_batched_set_pte(pte_t
*ptep
, pte_t pteval
)
295 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU
)
300 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_NORMAL_PT_UPDATE
;
301 u
.val
= pte_val_ma(pteval
);
302 xen_extend_mmu_update(&u
);
304 xen_mc_issue(PARAVIRT_LAZY_MMU
);
309 static inline void __xen_set_pte(pte_t
*ptep
, pte_t pteval
)
311 if (!xen_batched_set_pte(ptep
, pteval
))
312 native_set_pte(ptep
, pteval
);
315 static void xen_set_pte(pte_t
*ptep
, pte_t pteval
)
317 trace_xen_mmu_set_pte(ptep
, pteval
);
318 __xen_set_pte(ptep
, pteval
);
321 static void xen_set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
322 pte_t
*ptep
, pte_t pteval
)
324 trace_xen_mmu_set_pte_at(mm
, addr
, ptep
, pteval
);
325 __xen_set_pte(ptep
, pteval
);
328 pte_t
xen_ptep_modify_prot_start(struct mm_struct
*mm
,
329 unsigned long addr
, pte_t
*ptep
)
331 /* Just return the pte as-is. We preserve the bits on commit */
332 trace_xen_mmu_ptep_modify_prot_start(mm
, addr
, ptep
, *ptep
);
336 void xen_ptep_modify_prot_commit(struct mm_struct
*mm
, unsigned long addr
,
337 pte_t
*ptep
, pte_t pte
)
341 trace_xen_mmu_ptep_modify_prot_commit(mm
, addr
, ptep
, pte
);
344 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_PT_UPDATE_PRESERVE_AD
;
345 u
.val
= pte_val_ma(pte
);
346 xen_extend_mmu_update(&u
);
348 xen_mc_issue(PARAVIRT_LAZY_MMU
);
351 /* Assume pteval_t is equivalent to all the other *val_t types. */
352 static pteval_t
pte_mfn_to_pfn(pteval_t val
)
354 if (val
& _PAGE_PRESENT
) {
355 unsigned long mfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
356 pteval_t flags
= val
& PTE_FLAGS_MASK
;
357 val
= ((pteval_t
)mfn_to_pfn(mfn
) << PAGE_SHIFT
) | flags
;
363 static pteval_t
pte_pfn_to_mfn(pteval_t val
)
365 if (val
& _PAGE_PRESENT
) {
366 unsigned long pfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
367 pteval_t flags
= val
& PTE_FLAGS_MASK
;
370 if (!xen_feature(XENFEAT_auto_translated_physmap
))
371 mfn
= get_phys_to_machine(pfn
);
375 * If there's no mfn for the pfn, then just create an
376 * empty non-present pte. Unfortunately this loses
377 * information about the original pfn, so
378 * pte_mfn_to_pfn is asymmetric.
380 if (unlikely(mfn
== INVALID_P2M_ENTRY
)) {
385 * Paramount to do this test _after_ the
386 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
387 * IDENTITY_FRAME_BIT resolves to true.
389 mfn
&= ~FOREIGN_FRAME_BIT
;
390 if (mfn
& IDENTITY_FRAME_BIT
) {
391 mfn
&= ~IDENTITY_FRAME_BIT
;
392 flags
|= _PAGE_IOMAP
;
395 val
= ((pteval_t
)mfn
<< PAGE_SHIFT
) | flags
;
401 static pteval_t
iomap_pte(pteval_t val
)
403 if (val
& _PAGE_PRESENT
) {
404 unsigned long pfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
405 pteval_t flags
= val
& PTE_FLAGS_MASK
;
407 /* We assume the pte frame number is a MFN, so
408 just use it as-is. */
409 val
= ((pteval_t
)pfn
<< PAGE_SHIFT
) | flags
;
415 static pteval_t
xen_pte_val(pte_t pte
)
417 pteval_t pteval
= pte
.pte
;
419 /* If this is a WC pte, convert back from Xen WC to Linux WC */
420 if ((pteval
& (_PAGE_PAT
| _PAGE_PCD
| _PAGE_PWT
)) == _PAGE_PAT
) {
421 WARN_ON(!pat_enabled
);
422 pteval
= (pteval
& ~_PAGE_PAT
) | _PAGE_PWT
;
425 if (xen_initial_domain() && (pteval
& _PAGE_IOMAP
))
428 return pte_mfn_to_pfn(pteval
);
430 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val
);
432 static pgdval_t
xen_pgd_val(pgd_t pgd
)
434 return pte_mfn_to_pfn(pgd
.pgd
);
436 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val
);
439 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
440 * are reserved for now, to correspond to the Intel-reserved PAT
443 * We expect Linux's PAT set as follows:
445 * Idx PTE flags Linux Xen Default
452 * 6 PAT PCD UC- UC UC-
453 * 7 PAT PCD PWT UC UC UC
456 void xen_set_pat(u64 pat
)
458 /* We expect Linux to use a PAT setting of
459 * UC UC- WC WB (ignoring the PAT flag) */
460 WARN_ON(pat
!= 0x0007010600070106ull
);
463 static pte_t
xen_make_pte(pteval_t pte
)
465 phys_addr_t addr
= (pte
& PTE_PFN_MASK
);
467 /* If Linux is trying to set a WC pte, then map to the Xen WC.
468 * If _PAGE_PAT is set, then it probably means it is really
469 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
470 * things work out OK...
472 * (We should never see kernel mappings with _PAGE_PSE set,
473 * but we could see hugetlbfs mappings, I think.).
475 if (pat_enabled
&& !WARN_ON(pte
& _PAGE_PAT
)) {
476 if ((pte
& (_PAGE_PCD
| _PAGE_PWT
)) == _PAGE_PWT
)
477 pte
= (pte
& ~(_PAGE_PCD
| _PAGE_PWT
)) | _PAGE_PAT
;
481 * Unprivileged domains are allowed to do IOMAPpings for
482 * PCI passthrough, but not map ISA space. The ISA
483 * mappings are just dummy local mappings to keep other
484 * parts of the kernel happy.
486 if (unlikely(pte
& _PAGE_IOMAP
) &&
487 (xen_initial_domain() || addr
>= ISA_END_ADDRESS
)) {
488 pte
= iomap_pte(pte
);
491 pte
= pte_pfn_to_mfn(pte
);
494 return native_make_pte(pte
);
496 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte
);
498 static pgd_t
xen_make_pgd(pgdval_t pgd
)
500 pgd
= pte_pfn_to_mfn(pgd
);
501 return native_make_pgd(pgd
);
503 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd
);
505 static pmdval_t
xen_pmd_val(pmd_t pmd
)
507 return pte_mfn_to_pfn(pmd
.pmd
);
509 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val
);
511 static void xen_set_pud_hyper(pud_t
*ptr
, pud_t val
)
519 /* ptr may be ioremapped for 64-bit pagetable setup */
520 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
521 u
.val
= pud_val_ma(val
);
522 xen_extend_mmu_update(&u
);
524 xen_mc_issue(PARAVIRT_LAZY_MMU
);
529 static void xen_set_pud(pud_t
*ptr
, pud_t val
)
531 trace_xen_mmu_set_pud(ptr
, val
);
533 /* If page is not pinned, we can just update the entry
535 if (!xen_page_pinned(ptr
)) {
540 xen_set_pud_hyper(ptr
, val
);
543 #ifdef CONFIG_X86_PAE
544 static void xen_set_pte_atomic(pte_t
*ptep
, pte_t pte
)
546 trace_xen_mmu_set_pte_atomic(ptep
, pte
);
547 set_64bit((u64
*)ptep
, native_pte_val(pte
));
550 static void xen_pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
552 trace_xen_mmu_pte_clear(mm
, addr
, ptep
);
553 if (!xen_batched_set_pte(ptep
, native_make_pte(0)))
554 native_pte_clear(mm
, addr
, ptep
);
557 static void xen_pmd_clear(pmd_t
*pmdp
)
559 trace_xen_mmu_pmd_clear(pmdp
);
560 set_pmd(pmdp
, __pmd(0));
562 #endif /* CONFIG_X86_PAE */
564 static pmd_t
xen_make_pmd(pmdval_t pmd
)
566 pmd
= pte_pfn_to_mfn(pmd
);
567 return native_make_pmd(pmd
);
569 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd
);
571 #if PAGETABLE_LEVELS == 4
572 static pudval_t
xen_pud_val(pud_t pud
)
574 return pte_mfn_to_pfn(pud
.pud
);
576 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val
);
578 static pud_t
xen_make_pud(pudval_t pud
)
580 pud
= pte_pfn_to_mfn(pud
);
582 return native_make_pud(pud
);
584 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud
);
586 static pgd_t
*xen_get_user_pgd(pgd_t
*pgd
)
588 pgd_t
*pgd_page
= (pgd_t
*)(((unsigned long)pgd
) & PAGE_MASK
);
589 unsigned offset
= pgd
- pgd_page
;
590 pgd_t
*user_ptr
= NULL
;
592 if (offset
< pgd_index(USER_LIMIT
)) {
593 struct page
*page
= virt_to_page(pgd_page
);
594 user_ptr
= (pgd_t
*)page
->private;
602 static void __xen_set_pgd_hyper(pgd_t
*ptr
, pgd_t val
)
606 u
.ptr
= virt_to_machine(ptr
).maddr
;
607 u
.val
= pgd_val_ma(val
);
608 xen_extend_mmu_update(&u
);
612 * Raw hypercall-based set_pgd, intended for in early boot before
613 * there's a page structure. This implies:
614 * 1. The only existing pagetable is the kernel's
615 * 2. It is always pinned
616 * 3. It has no user pagetable attached to it
618 static void __init
xen_set_pgd_hyper(pgd_t
*ptr
, pgd_t val
)
624 __xen_set_pgd_hyper(ptr
, val
);
626 xen_mc_issue(PARAVIRT_LAZY_MMU
);
631 static void xen_set_pgd(pgd_t
*ptr
, pgd_t val
)
633 pgd_t
*user_ptr
= xen_get_user_pgd(ptr
);
635 trace_xen_mmu_set_pgd(ptr
, user_ptr
, val
);
637 /* If page is not pinned, we can just update the entry
639 if (!xen_page_pinned(ptr
)) {
642 WARN_ON(xen_page_pinned(user_ptr
));
648 /* If it's pinned, then we can at least batch the kernel and
649 user updates together. */
652 __xen_set_pgd_hyper(ptr
, val
);
654 __xen_set_pgd_hyper(user_ptr
, val
);
656 xen_mc_issue(PARAVIRT_LAZY_MMU
);
658 #endif /* PAGETABLE_LEVELS == 4 */
661 * (Yet another) pagetable walker. This one is intended for pinning a
662 * pagetable. This means that it walks a pagetable and calls the
663 * callback function on each page it finds making up the page table,
664 * at every level. It walks the entire pagetable, but it only bothers
665 * pinning pte pages which are below limit. In the normal case this
666 * will be STACK_TOP_MAX, but at boot we need to pin up to
669 * For 32-bit the important bit is that we don't pin beyond there,
670 * because then we start getting into Xen's ptes.
672 * For 64-bit, we must skip the Xen hole in the middle of the address
673 * space, just after the big x86-64 virtual hole.
675 static int __xen_pgd_walk(struct mm_struct
*mm
, pgd_t
*pgd
,
676 int (*func
)(struct mm_struct
*mm
, struct page
*,
681 unsigned hole_low
, hole_high
;
682 unsigned pgdidx_limit
, pudidx_limit
, pmdidx_limit
;
683 unsigned pgdidx
, pudidx
, pmdidx
;
685 /* The limit is the last byte to be touched */
687 BUG_ON(limit
>= FIXADDR_TOP
);
689 if (xen_feature(XENFEAT_auto_translated_physmap
))
693 * 64-bit has a great big hole in the middle of the address
694 * space, which contains the Xen mappings. On 32-bit these
695 * will end up making a zero-sized hole and so is a no-op.
697 hole_low
= pgd_index(USER_LIMIT
);
698 hole_high
= pgd_index(PAGE_OFFSET
);
700 pgdidx_limit
= pgd_index(limit
);
702 pudidx_limit
= pud_index(limit
);
707 pmdidx_limit
= pmd_index(limit
);
712 for (pgdidx
= 0; pgdidx
<= pgdidx_limit
; pgdidx
++) {
715 if (pgdidx
>= hole_low
&& pgdidx
< hole_high
)
718 if (!pgd_val(pgd
[pgdidx
]))
721 pud
= pud_offset(&pgd
[pgdidx
], 0);
723 if (PTRS_PER_PUD
> 1) /* not folded */
724 flush
|= (*func
)(mm
, virt_to_page(pud
), PT_PUD
);
726 for (pudidx
= 0; pudidx
< PTRS_PER_PUD
; pudidx
++) {
729 if (pgdidx
== pgdidx_limit
&&
730 pudidx
> pudidx_limit
)
733 if (pud_none(pud
[pudidx
]))
736 pmd
= pmd_offset(&pud
[pudidx
], 0);
738 if (PTRS_PER_PMD
> 1) /* not folded */
739 flush
|= (*func
)(mm
, virt_to_page(pmd
), PT_PMD
);
741 for (pmdidx
= 0; pmdidx
< PTRS_PER_PMD
; pmdidx
++) {
744 if (pgdidx
== pgdidx_limit
&&
745 pudidx
== pudidx_limit
&&
746 pmdidx
> pmdidx_limit
)
749 if (pmd_none(pmd
[pmdidx
]))
752 pte
= pmd_page(pmd
[pmdidx
]);
753 flush
|= (*func
)(mm
, pte
, PT_PTE
);
759 /* Do the top level last, so that the callbacks can use it as
760 a cue to do final things like tlb flushes. */
761 flush
|= (*func
)(mm
, virt_to_page(pgd
), PT_PGD
);
766 static int xen_pgd_walk(struct mm_struct
*mm
,
767 int (*func
)(struct mm_struct
*mm
, struct page
*,
771 return __xen_pgd_walk(mm
, mm
->pgd
, func
, limit
);
774 /* If we're using split pte locks, then take the page's lock and
775 return a pointer to it. Otherwise return NULL. */
776 static spinlock_t
*xen_pte_lock(struct page
*page
, struct mm_struct
*mm
)
778 spinlock_t
*ptl
= NULL
;
780 #if USE_SPLIT_PTLOCKS
781 ptl
= __pte_lockptr(page
);
782 spin_lock_nest_lock(ptl
, &mm
->page_table_lock
);
788 static void xen_pte_unlock(void *v
)
794 static void xen_do_pin(unsigned level
, unsigned long pfn
)
799 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
801 xen_extend_mmuext_op(&op
);
804 static int xen_pin_page(struct mm_struct
*mm
, struct page
*page
,
807 unsigned pgfl
= TestSetPagePinned(page
);
811 flush
= 0; /* already pinned */
812 else if (PageHighMem(page
))
813 /* kmaps need flushing if we found an unpinned
817 void *pt
= lowmem_page_address(page
);
818 unsigned long pfn
= page_to_pfn(page
);
819 struct multicall_space mcs
= __xen_mc_entry(0);
825 * We need to hold the pagetable lock between the time
826 * we make the pagetable RO and when we actually pin
827 * it. If we don't, then other users may come in and
828 * attempt to update the pagetable by writing it,
829 * which will fail because the memory is RO but not
830 * pinned, so Xen won't do the trap'n'emulate.
832 * If we're using split pte locks, we can't hold the
833 * entire pagetable's worth of locks during the
834 * traverse, because we may wrap the preempt count (8
835 * bits). The solution is to mark RO and pin each PTE
836 * page while holding the lock. This means the number
837 * of locks we end up holding is never more than a
838 * batch size (~32 entries, at present).
840 * If we're not using split pte locks, we needn't pin
841 * the PTE pages independently, because we're
842 * protected by the overall pagetable lock.
846 ptl
= xen_pte_lock(page
, mm
);
848 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
849 pfn_pte(pfn
, PAGE_KERNEL_RO
),
850 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
853 xen_do_pin(MMUEXT_PIN_L1_TABLE
, pfn
);
855 /* Queue a deferred unlock for when this batch
857 xen_mc_callback(xen_pte_unlock
, ptl
);
864 /* This is called just after a mm has been created, but it has not
865 been used yet. We need to make sure that its pagetable is all
866 read-only, and can be pinned. */
867 static void __xen_pgd_pin(struct mm_struct
*mm
, pgd_t
*pgd
)
869 trace_xen_mmu_pgd_pin(mm
, pgd
);
873 if (__xen_pgd_walk(mm
, pgd
, xen_pin_page
, USER_LIMIT
)) {
874 /* re-enable interrupts for flushing */
884 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
886 xen_do_pin(MMUEXT_PIN_L4_TABLE
, PFN_DOWN(__pa(pgd
)));
889 xen_pin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
890 xen_do_pin(MMUEXT_PIN_L4_TABLE
,
891 PFN_DOWN(__pa(user_pgd
)));
894 #else /* CONFIG_X86_32 */
895 #ifdef CONFIG_X86_PAE
896 /* Need to make sure unshared kernel PMD is pinnable */
897 xen_pin_page(mm
, pgd_page(pgd
[pgd_index(TASK_SIZE
)]),
900 xen_do_pin(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(__pa(pgd
)));
901 #endif /* CONFIG_X86_64 */
905 static void xen_pgd_pin(struct mm_struct
*mm
)
907 __xen_pgd_pin(mm
, mm
->pgd
);
911 * On save, we need to pin all pagetables to make sure they get their
912 * mfns turned into pfns. Search the list for any unpinned pgds and pin
913 * them (unpinned pgds are not currently in use, probably because the
914 * process is under construction or destruction).
916 * Expected to be called in stop_machine() ("equivalent to taking
917 * every spinlock in the system"), so the locking doesn't really
918 * matter all that much.
920 void xen_mm_pin_all(void)
924 spin_lock(&pgd_lock
);
926 list_for_each_entry(page
, &pgd_list
, lru
) {
927 if (!PagePinned(page
)) {
928 __xen_pgd_pin(&init_mm
, (pgd_t
*)page_address(page
));
929 SetPageSavePinned(page
);
933 spin_unlock(&pgd_lock
);
937 * The init_mm pagetable is really pinned as soon as its created, but
938 * that's before we have page structures to store the bits. So do all
939 * the book-keeping now.
941 static int __init
xen_mark_pinned(struct mm_struct
*mm
, struct page
*page
,
948 static void __init
xen_mark_init_mm_pinned(void)
950 xen_pgd_walk(&init_mm
, xen_mark_pinned
, FIXADDR_TOP
);
953 static int xen_unpin_page(struct mm_struct
*mm
, struct page
*page
,
956 unsigned pgfl
= TestClearPagePinned(page
);
958 if (pgfl
&& !PageHighMem(page
)) {
959 void *pt
= lowmem_page_address(page
);
960 unsigned long pfn
= page_to_pfn(page
);
961 spinlock_t
*ptl
= NULL
;
962 struct multicall_space mcs
;
965 * Do the converse to pin_page. If we're using split
966 * pte locks, we must be holding the lock for while
967 * the pte page is unpinned but still RO to prevent
968 * concurrent updates from seeing it in this
969 * partially-pinned state.
971 if (level
== PT_PTE
) {
972 ptl
= xen_pte_lock(page
, mm
);
975 xen_do_pin(MMUEXT_UNPIN_TABLE
, pfn
);
978 mcs
= __xen_mc_entry(0);
980 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
981 pfn_pte(pfn
, PAGE_KERNEL
),
982 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
985 /* unlock when batch completed */
986 xen_mc_callback(xen_pte_unlock
, ptl
);
990 return 0; /* never need to flush on unpin */
993 /* Release a pagetables pages back as normal RW */
994 static void __xen_pgd_unpin(struct mm_struct
*mm
, pgd_t
*pgd
)
996 trace_xen_mmu_pgd_unpin(mm
, pgd
);
1000 xen_do_pin(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
1002 #ifdef CONFIG_X86_64
1004 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
1007 xen_do_pin(MMUEXT_UNPIN_TABLE
,
1008 PFN_DOWN(__pa(user_pgd
)));
1009 xen_unpin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
1014 #ifdef CONFIG_X86_PAE
1015 /* Need to make sure unshared kernel PMD is unpinned */
1016 xen_unpin_page(mm
, pgd_page(pgd
[pgd_index(TASK_SIZE
)]),
1020 __xen_pgd_walk(mm
, pgd
, xen_unpin_page
, USER_LIMIT
);
1025 static void xen_pgd_unpin(struct mm_struct
*mm
)
1027 __xen_pgd_unpin(mm
, mm
->pgd
);
1031 * On resume, undo any pinning done at save, so that the rest of the
1032 * kernel doesn't see any unexpected pinned pagetables.
1034 void xen_mm_unpin_all(void)
1038 spin_lock(&pgd_lock
);
1040 list_for_each_entry(page
, &pgd_list
, lru
) {
1041 if (PageSavePinned(page
)) {
1042 BUG_ON(!PagePinned(page
));
1043 __xen_pgd_unpin(&init_mm
, (pgd_t
*)page_address(page
));
1044 ClearPageSavePinned(page
);
1048 spin_unlock(&pgd_lock
);
1051 static void xen_activate_mm(struct mm_struct
*prev
, struct mm_struct
*next
)
1053 spin_lock(&next
->page_table_lock
);
1055 spin_unlock(&next
->page_table_lock
);
1058 static void xen_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*mm
)
1060 spin_lock(&mm
->page_table_lock
);
1062 spin_unlock(&mm
->page_table_lock
);
1067 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1068 we need to repoint it somewhere else before we can unpin it. */
1069 static void drop_other_mm_ref(void *info
)
1071 struct mm_struct
*mm
= info
;
1072 struct mm_struct
*active_mm
;
1074 active_mm
= percpu_read(cpu_tlbstate
.active_mm
);
1076 if (active_mm
== mm
&& percpu_read(cpu_tlbstate
.state
) != TLBSTATE_OK
)
1077 leave_mm(smp_processor_id());
1079 /* If this cpu still has a stale cr3 reference, then make sure
1080 it has been flushed. */
1081 if (percpu_read(xen_current_cr3
) == __pa(mm
->pgd
))
1082 load_cr3(swapper_pg_dir
);
1085 static void xen_drop_mm_ref(struct mm_struct
*mm
)
1090 if (current
->active_mm
== mm
) {
1091 if (current
->mm
== mm
)
1092 load_cr3(swapper_pg_dir
);
1094 leave_mm(smp_processor_id());
1097 /* Get the "official" set of cpus referring to our pagetable. */
1098 if (!alloc_cpumask_var(&mask
, GFP_ATOMIC
)) {
1099 for_each_online_cpu(cpu
) {
1100 if (!cpumask_test_cpu(cpu
, mm_cpumask(mm
))
1101 && per_cpu(xen_current_cr3
, cpu
) != __pa(mm
->pgd
))
1103 smp_call_function_single(cpu
, drop_other_mm_ref
, mm
, 1);
1107 cpumask_copy(mask
, mm_cpumask(mm
));
1109 /* It's possible that a vcpu may have a stale reference to our
1110 cr3, because its in lazy mode, and it hasn't yet flushed
1111 its set of pending hypercalls yet. In this case, we can
1112 look at its actual current cr3 value, and force it to flush
1114 for_each_online_cpu(cpu
) {
1115 if (per_cpu(xen_current_cr3
, cpu
) == __pa(mm
->pgd
))
1116 cpumask_set_cpu(cpu
, mask
);
1119 if (!cpumask_empty(mask
))
1120 smp_call_function_many(mask
, drop_other_mm_ref
, mm
, 1);
1121 free_cpumask_var(mask
);
1124 static void xen_drop_mm_ref(struct mm_struct
*mm
)
1126 if (current
->active_mm
== mm
)
1127 load_cr3(swapper_pg_dir
);
1132 * While a process runs, Xen pins its pagetables, which means that the
1133 * hypervisor forces it to be read-only, and it controls all updates
1134 * to it. This means that all pagetable updates have to go via the
1135 * hypervisor, which is moderately expensive.
1137 * Since we're pulling the pagetable down, we switch to use init_mm,
1138 * unpin old process pagetable and mark it all read-write, which
1139 * allows further operations on it to be simple memory accesses.
1141 * The only subtle point is that another CPU may be still using the
1142 * pagetable because of lazy tlb flushing. This means we need need to
1143 * switch all CPUs off this pagetable before we can unpin it.
1145 static void xen_exit_mmap(struct mm_struct
*mm
)
1147 get_cpu(); /* make sure we don't move around */
1148 xen_drop_mm_ref(mm
);
1151 spin_lock(&mm
->page_table_lock
);
1153 /* pgd may not be pinned in the error exit path of execve */
1154 if (xen_page_pinned(mm
->pgd
))
1157 spin_unlock(&mm
->page_table_lock
);
1160 static void __init
xen_pagetable_setup_start(pgd_t
*base
)
1164 static __init
void xen_mapping_pagetable_reserve(u64 start
, u64 end
)
1166 /* reserve the range used */
1167 native_pagetable_reserve(start
, end
);
1169 /* set as RW the rest */
1170 printk(KERN_DEBUG
"xen: setting RW the range %llx - %llx\n", end
,
1171 PFN_PHYS(pgt_buf_top
));
1172 while (end
< PFN_PHYS(pgt_buf_top
)) {
1173 make_lowmem_page_readwrite(__va(end
));
1178 static void xen_post_allocator_init(void);
1180 static void __init
xen_pagetable_setup_done(pgd_t
*base
)
1182 xen_setup_shared_info();
1183 xen_post_allocator_init();
1186 static void xen_write_cr2(unsigned long cr2
)
1188 percpu_read(xen_vcpu
)->arch
.cr2
= cr2
;
1191 static unsigned long xen_read_cr2(void)
1193 return percpu_read(xen_vcpu
)->arch
.cr2
;
1196 unsigned long xen_read_cr2_direct(void)
1198 return percpu_read(xen_vcpu_info
.arch
.cr2
);
1201 static void xen_flush_tlb(void)
1203 struct mmuext_op
*op
;
1204 struct multicall_space mcs
;
1206 trace_xen_mmu_flush_tlb(0);
1210 mcs
= xen_mc_entry(sizeof(*op
));
1213 op
->cmd
= MMUEXT_TLB_FLUSH_LOCAL
;
1214 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1216 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1221 static void xen_flush_tlb_single(unsigned long addr
)
1223 struct mmuext_op
*op
;
1224 struct multicall_space mcs
;
1226 trace_xen_mmu_flush_tlb_single(addr
);
1230 mcs
= xen_mc_entry(sizeof(*op
));
1232 op
->cmd
= MMUEXT_INVLPG_LOCAL
;
1233 op
->arg1
.linear_addr
= addr
& PAGE_MASK
;
1234 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1236 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1241 static void xen_flush_tlb_others(const struct cpumask
*cpus
,
1242 struct mm_struct
*mm
, unsigned long va
)
1245 struct mmuext_op op
;
1247 DECLARE_BITMAP(mask
, num_processors
);
1249 DECLARE_BITMAP(mask
, NR_CPUS
);
1252 struct multicall_space mcs
;
1254 trace_xen_mmu_flush_tlb_others(cpus
, mm
, va
);
1256 if (cpumask_empty(cpus
))
1257 return; /* nothing to do */
1259 mcs
= xen_mc_entry(sizeof(*args
));
1261 args
->op
.arg2
.vcpumask
= to_cpumask(args
->mask
);
1263 /* Remove us, and any offline CPUS. */
1264 cpumask_and(to_cpumask(args
->mask
), cpus
, cpu_online_mask
);
1265 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args
->mask
));
1267 if (va
== TLB_FLUSH_ALL
) {
1268 args
->op
.cmd
= MMUEXT_TLB_FLUSH_MULTI
;
1270 args
->op
.cmd
= MMUEXT_INVLPG_MULTI
;
1271 args
->op
.arg1
.linear_addr
= va
;
1274 MULTI_mmuext_op(mcs
.mc
, &args
->op
, 1, NULL
, DOMID_SELF
);
1276 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1279 static unsigned long xen_read_cr3(void)
1281 return percpu_read(xen_cr3
);
1284 static void set_current_cr3(void *v
)
1286 percpu_write(xen_current_cr3
, (unsigned long)v
);
1289 static void __xen_write_cr3(bool kernel
, unsigned long cr3
)
1291 struct mmuext_op op
;
1294 trace_xen_mmu_write_cr3(kernel
, cr3
);
1297 mfn
= pfn_to_mfn(PFN_DOWN(cr3
));
1301 WARN_ON(mfn
== 0 && kernel
);
1303 op
.cmd
= kernel
? MMUEXT_NEW_BASEPTR
: MMUEXT_NEW_USER_BASEPTR
;
1306 xen_extend_mmuext_op(&op
);
1309 percpu_write(xen_cr3
, cr3
);
1311 /* Update xen_current_cr3 once the batch has actually
1313 xen_mc_callback(set_current_cr3
, (void *)cr3
);
1317 static void xen_write_cr3(unsigned long cr3
)
1319 BUG_ON(preemptible());
1321 xen_mc_batch(); /* disables interrupts */
1323 /* Update while interrupts are disabled, so its atomic with
1325 percpu_write(xen_cr3
, cr3
);
1327 __xen_write_cr3(true, cr3
);
1329 #ifdef CONFIG_X86_64
1331 pgd_t
*user_pgd
= xen_get_user_pgd(__va(cr3
));
1333 __xen_write_cr3(false, __pa(user_pgd
));
1335 __xen_write_cr3(false, 0);
1339 xen_mc_issue(PARAVIRT_LAZY_CPU
); /* interrupts restored */
1342 static int xen_pgd_alloc(struct mm_struct
*mm
)
1344 pgd_t
*pgd
= mm
->pgd
;
1347 BUG_ON(PagePinned(virt_to_page(pgd
)));
1349 #ifdef CONFIG_X86_64
1351 struct page
*page
= virt_to_page(pgd
);
1354 BUG_ON(page
->private != 0);
1358 user_pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
1359 page
->private = (unsigned long)user_pgd
;
1361 if (user_pgd
!= NULL
) {
1362 user_pgd
[pgd_index(VSYSCALL_START
)] =
1363 __pgd(__pa(level3_user_vsyscall
) | _PAGE_TABLE
);
1367 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd
))));
1374 static void xen_pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
1376 #ifdef CONFIG_X86_64
1377 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
1380 free_page((unsigned long)user_pgd
);
1384 #ifdef CONFIG_X86_32
1385 static pte_t __init
mask_rw_pte(pte_t
*ptep
, pte_t pte
)
1387 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1388 if (pte_val_ma(*ptep
) & _PAGE_PRESENT
)
1389 pte
= __pte_ma(((pte_val_ma(*ptep
) & _PAGE_RW
) | ~_PAGE_RW
) &
1394 #else /* CONFIG_X86_64 */
1395 static pte_t __init
mask_rw_pte(pte_t
*ptep
, pte_t pte
)
1397 unsigned long pfn
= pte_pfn(pte
);
1400 * If the new pfn is within the range of the newly allocated
1401 * kernel pagetable, and it isn't being mapped into an
1402 * early_ioremap fixmap slot as a freshly allocated page, make sure
1405 if (((!is_early_ioremap_ptep(ptep
) &&
1406 pfn
>= pgt_buf_start
&& pfn
< pgt_buf_top
)) ||
1407 (is_early_ioremap_ptep(ptep
) && pfn
!= (pgt_buf_end
- 1)))
1408 pte
= pte_wrprotect(pte
);
1412 #endif /* CONFIG_X86_64 */
1414 /* Init-time set_pte while constructing initial pagetables, which
1415 doesn't allow RO pagetable pages to be remapped RW */
1416 static void __init
xen_set_pte_init(pte_t
*ptep
, pte_t pte
)
1418 pte
= mask_rw_pte(ptep
, pte
);
1420 xen_set_pte(ptep
, pte
);
1423 static void pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1425 struct mmuext_op op
;
1427 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
1428 if (HYPERVISOR_mmuext_op(&op
, 1, NULL
, DOMID_SELF
))
1432 /* Early in boot, while setting up the initial pagetable, assume
1433 everything is pinned. */
1434 static void __init
xen_alloc_pte_init(struct mm_struct
*mm
, unsigned long pfn
)
1436 #ifdef CONFIG_FLATMEM
1437 BUG_ON(mem_map
); /* should only be used early */
1439 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1440 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1443 /* Used for pmd and pud */
1444 static void __init
xen_alloc_pmd_init(struct mm_struct
*mm
, unsigned long pfn
)
1446 #ifdef CONFIG_FLATMEM
1447 BUG_ON(mem_map
); /* should only be used early */
1449 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1452 /* Early release_pte assumes that all pts are pinned, since there's
1453 only init_mm and anything attached to that is pinned. */
1454 static void __init
xen_release_pte_init(unsigned long pfn
)
1456 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1457 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1460 static void __init
xen_release_pmd_init(unsigned long pfn
)
1462 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1465 static inline void __pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1467 struct multicall_space mcs
;
1468 struct mmuext_op
*op
;
1470 mcs
= __xen_mc_entry(sizeof(*op
));
1473 op
->arg1
.mfn
= pfn_to_mfn(pfn
);
1475 MULTI_mmuext_op(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
1478 static inline void __set_pfn_prot(unsigned long pfn
, pgprot_t prot
)
1480 struct multicall_space mcs
;
1481 unsigned long addr
= (unsigned long)__va(pfn
<< PAGE_SHIFT
);
1483 mcs
= __xen_mc_entry(0);
1484 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)addr
,
1485 pfn_pte(pfn
, prot
), 0);
1488 /* This needs to make sure the new pte page is pinned iff its being
1489 attached to a pinned pagetable. */
1490 static inline void xen_alloc_ptpage(struct mm_struct
*mm
, unsigned long pfn
,
1493 bool pinned
= PagePinned(virt_to_page(mm
->pgd
));
1495 trace_xen_mmu_alloc_ptpage(mm
, pfn
, level
, pinned
);
1498 struct page
*page
= pfn_to_page(pfn
);
1500 SetPagePinned(page
);
1502 if (!PageHighMem(page
)) {
1505 __set_pfn_prot(pfn
, PAGE_KERNEL_RO
);
1507 if (level
== PT_PTE
&& USE_SPLIT_PTLOCKS
)
1508 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1510 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1512 /* make sure there are no stray mappings of
1514 kmap_flush_unused();
1519 static void xen_alloc_pte(struct mm_struct
*mm
, unsigned long pfn
)
1521 xen_alloc_ptpage(mm
, pfn
, PT_PTE
);
1524 static void xen_alloc_pmd(struct mm_struct
*mm
, unsigned long pfn
)
1526 xen_alloc_ptpage(mm
, pfn
, PT_PMD
);
1529 /* This should never happen until we're OK to use struct page */
1530 static inline void xen_release_ptpage(unsigned long pfn
, unsigned level
)
1532 struct page
*page
= pfn_to_page(pfn
);
1533 bool pinned
= PagePinned(page
);
1535 trace_xen_mmu_release_ptpage(pfn
, level
, pinned
);
1538 if (!PageHighMem(page
)) {
1541 if (level
== PT_PTE
&& USE_SPLIT_PTLOCKS
)
1542 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1544 __set_pfn_prot(pfn
, PAGE_KERNEL
);
1546 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1548 ClearPagePinned(page
);
1552 static void xen_release_pte(unsigned long pfn
)
1554 xen_release_ptpage(pfn
, PT_PTE
);
1557 static void xen_release_pmd(unsigned long pfn
)
1559 xen_release_ptpage(pfn
, PT_PMD
);
1562 #if PAGETABLE_LEVELS == 4
1563 static void xen_alloc_pud(struct mm_struct
*mm
, unsigned long pfn
)
1565 xen_alloc_ptpage(mm
, pfn
, PT_PUD
);
1568 static void xen_release_pud(unsigned long pfn
)
1570 xen_release_ptpage(pfn
, PT_PUD
);
1574 void __init
xen_reserve_top(void)
1576 #ifdef CONFIG_X86_32
1577 unsigned long top
= HYPERVISOR_VIRT_START
;
1578 struct xen_platform_parameters pp
;
1580 if (HYPERVISOR_xen_version(XENVER_platform_parameters
, &pp
) == 0)
1581 top
= pp
.virt_start
;
1583 reserve_top_address(-top
);
1584 #endif /* CONFIG_X86_32 */
1588 * Like __va(), but returns address in the kernel mapping (which is
1589 * all we have until the physical memory mapping has been set up.
1591 static void *__ka(phys_addr_t paddr
)
1593 #ifdef CONFIG_X86_64
1594 return (void *)(paddr
+ __START_KERNEL_map
);
1600 /* Convert a machine address to physical address */
1601 static unsigned long m2p(phys_addr_t maddr
)
1605 maddr
&= PTE_PFN_MASK
;
1606 paddr
= mfn_to_pfn(maddr
>> PAGE_SHIFT
) << PAGE_SHIFT
;
1611 /* Convert a machine address to kernel virtual */
1612 static void *m2v(phys_addr_t maddr
)
1614 return __ka(m2p(maddr
));
1617 /* Set the page permissions on an identity-mapped pages */
1618 static void set_page_prot(void *addr
, pgprot_t prot
)
1620 unsigned long pfn
= __pa(addr
) >> PAGE_SHIFT
;
1621 pte_t pte
= pfn_pte(pfn
, prot
);
1623 if (HYPERVISOR_update_va_mapping((unsigned long)addr
, pte
, 0))
1627 static void __init
xen_map_identity_early(pmd_t
*pmd
, unsigned long max_pfn
)
1629 unsigned pmdidx
, pteidx
;
1633 level1_ident_pgt
= extend_brk(sizeof(pte_t
) * LEVEL1_IDENT_ENTRIES
,
1638 for (pmdidx
= 0; pmdidx
< PTRS_PER_PMD
&& pfn
< max_pfn
; pmdidx
++) {
1641 /* Reuse or allocate a page of ptes */
1642 if (pmd_present(pmd
[pmdidx
]))
1643 pte_page
= m2v(pmd
[pmdidx
].pmd
);
1645 /* Check for free pte pages */
1646 if (ident_pte
== LEVEL1_IDENT_ENTRIES
)
1649 pte_page
= &level1_ident_pgt
[ident_pte
];
1650 ident_pte
+= PTRS_PER_PTE
;
1652 pmd
[pmdidx
] = __pmd(__pa(pte_page
) | _PAGE_TABLE
);
1655 /* Install mappings */
1656 for (pteidx
= 0; pteidx
< PTRS_PER_PTE
; pteidx
++, pfn
++) {
1659 #ifdef CONFIG_X86_32
1660 if (pfn
> max_pfn_mapped
)
1661 max_pfn_mapped
= pfn
;
1664 if (!pte_none(pte_page
[pteidx
]))
1667 pte
= pfn_pte(pfn
, PAGE_KERNEL_EXEC
);
1668 pte_page
[pteidx
] = pte
;
1672 for (pteidx
= 0; pteidx
< ident_pte
; pteidx
+= PTRS_PER_PTE
)
1673 set_page_prot(&level1_ident_pgt
[pteidx
], PAGE_KERNEL_RO
);
1675 set_page_prot(pmd
, PAGE_KERNEL_RO
);
1678 void __init
xen_setup_machphys_mapping(void)
1680 struct xen_machphys_mapping mapping
;
1682 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping
, &mapping
) == 0) {
1683 machine_to_phys_mapping
= (unsigned long *)mapping
.v_start
;
1684 machine_to_phys_nr
= mapping
.max_mfn
+ 1;
1686 machine_to_phys_nr
= MACH2PHYS_NR_ENTRIES
;
1688 #ifdef CONFIG_X86_32
1689 WARN_ON((machine_to_phys_mapping
+ (machine_to_phys_nr
- 1))
1690 < machine_to_phys_mapping
);
1694 #ifdef CONFIG_X86_64
1695 static void convert_pfn_mfn(void *v
)
1700 /* All levels are converted the same way, so just treat them
1702 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
1703 pte
[i
] = xen_make_pte(pte
[i
].pte
);
1707 * Set up the initial kernel pagetable.
1709 * We can construct this by grafting the Xen provided pagetable into
1710 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1711 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1712 * means that only the kernel has a physical mapping to start with -
1713 * but that's enough to get __va working. We need to fill in the rest
1714 * of the physical mapping once some sort of allocator has been set
1717 pgd_t
* __init
xen_setup_kernel_pagetable(pgd_t
*pgd
,
1718 unsigned long max_pfn
)
1723 /* max_pfn_mapped is the last pfn mapped in the initial memory
1724 * mappings. Considering that on Xen after the kernel mappings we
1725 * have the mappings of some pages that don't exist in pfn space, we
1726 * set max_pfn_mapped to the last real pfn mapped. */
1727 max_pfn_mapped
= PFN_DOWN(__pa(xen_start_info
->mfn_list
));
1729 /* Zap identity mapping */
1730 init_level4_pgt
[0] = __pgd(0);
1732 /* Pre-constructed entries are in pfn, so convert to mfn */
1733 convert_pfn_mfn(init_level4_pgt
);
1734 convert_pfn_mfn(level3_ident_pgt
);
1735 convert_pfn_mfn(level3_kernel_pgt
);
1737 l3
= m2v(pgd
[pgd_index(__START_KERNEL_map
)].pgd
);
1738 l2
= m2v(l3
[pud_index(__START_KERNEL_map
)].pud
);
1740 memcpy(level2_ident_pgt
, l2
, sizeof(pmd_t
) * PTRS_PER_PMD
);
1741 memcpy(level2_kernel_pgt
, l2
, sizeof(pmd_t
) * PTRS_PER_PMD
);
1743 l3
= m2v(pgd
[pgd_index(__START_KERNEL_map
+ PMD_SIZE
)].pgd
);
1744 l2
= m2v(l3
[pud_index(__START_KERNEL_map
+ PMD_SIZE
)].pud
);
1745 memcpy(level2_fixmap_pgt
, l2
, sizeof(pmd_t
) * PTRS_PER_PMD
);
1747 /* Set up identity map */
1748 xen_map_identity_early(level2_ident_pgt
, max_pfn
);
1750 /* Make pagetable pieces RO */
1751 set_page_prot(init_level4_pgt
, PAGE_KERNEL_RO
);
1752 set_page_prot(level3_ident_pgt
, PAGE_KERNEL_RO
);
1753 set_page_prot(level3_kernel_pgt
, PAGE_KERNEL_RO
);
1754 set_page_prot(level3_user_vsyscall
, PAGE_KERNEL_RO
);
1755 set_page_prot(level2_kernel_pgt
, PAGE_KERNEL_RO
);
1756 set_page_prot(level2_fixmap_pgt
, PAGE_KERNEL_RO
);
1758 /* Pin down new L4 */
1759 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE
,
1760 PFN_DOWN(__pa_symbol(init_level4_pgt
)));
1762 /* Unpin Xen-provided one */
1763 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
1766 pgd
= init_level4_pgt
;
1769 * At this stage there can be no user pgd, and no page
1770 * structure to attach it to, so make sure we just set kernel
1774 __xen_write_cr3(true, __pa(pgd
));
1775 xen_mc_issue(PARAVIRT_LAZY_CPU
);
1777 memblock_x86_reserve_range(__pa(xen_start_info
->pt_base
),
1778 __pa(xen_start_info
->pt_base
+
1779 xen_start_info
->nr_pt_frames
* PAGE_SIZE
),
1784 #else /* !CONFIG_X86_64 */
1785 static RESERVE_BRK_ARRAY(pmd_t
, initial_kernel_pmd
, PTRS_PER_PMD
);
1786 static RESERVE_BRK_ARRAY(pmd_t
, swapper_kernel_pmd
, PTRS_PER_PMD
);
1788 static void __init
xen_write_cr3_init(unsigned long cr3
)
1790 unsigned long pfn
= PFN_DOWN(__pa(swapper_pg_dir
));
1792 BUG_ON(read_cr3() != __pa(initial_page_table
));
1793 BUG_ON(cr3
!= __pa(swapper_pg_dir
));
1796 * We are switching to swapper_pg_dir for the first time (from
1797 * initial_page_table) and therefore need to mark that page
1798 * read-only and then pin it.
1800 * Xen disallows sharing of kernel PMDs for PAE
1801 * guests. Therefore we must copy the kernel PMD from
1802 * initial_page_table into a new kernel PMD to be used in
1805 swapper_kernel_pmd
=
1806 extend_brk(sizeof(pmd_t
) * PTRS_PER_PMD
, PAGE_SIZE
);
1807 memcpy(swapper_kernel_pmd
, initial_kernel_pmd
,
1808 sizeof(pmd_t
) * PTRS_PER_PMD
);
1809 swapper_pg_dir
[KERNEL_PGD_BOUNDARY
] =
1810 __pgd(__pa(swapper_kernel_pmd
) | _PAGE_PRESENT
);
1811 set_page_prot(swapper_kernel_pmd
, PAGE_KERNEL_RO
);
1813 set_page_prot(swapper_pg_dir
, PAGE_KERNEL_RO
);
1815 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
, pfn
);
1817 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
,
1818 PFN_DOWN(__pa(initial_page_table
)));
1819 set_page_prot(initial_page_table
, PAGE_KERNEL
);
1820 set_page_prot(initial_kernel_pmd
, PAGE_KERNEL
);
1822 pv_mmu_ops
.write_cr3
= &xen_write_cr3
;
1825 pgd_t
* __init
xen_setup_kernel_pagetable(pgd_t
*pgd
,
1826 unsigned long max_pfn
)
1830 initial_kernel_pmd
=
1831 extend_brk(sizeof(pmd_t
) * PTRS_PER_PMD
, PAGE_SIZE
);
1833 max_pfn_mapped
= PFN_DOWN(__pa(xen_start_info
->pt_base
) +
1834 xen_start_info
->nr_pt_frames
* PAGE_SIZE
+
1837 kernel_pmd
= m2v(pgd
[KERNEL_PGD_BOUNDARY
].pgd
);
1838 memcpy(initial_kernel_pmd
, kernel_pmd
, sizeof(pmd_t
) * PTRS_PER_PMD
);
1840 xen_map_identity_early(initial_kernel_pmd
, max_pfn
);
1842 memcpy(initial_page_table
, pgd
, sizeof(pgd_t
) * PTRS_PER_PGD
);
1843 initial_page_table
[KERNEL_PGD_BOUNDARY
] =
1844 __pgd(__pa(initial_kernel_pmd
) | _PAGE_PRESENT
);
1846 set_page_prot(initial_kernel_pmd
, PAGE_KERNEL_RO
);
1847 set_page_prot(initial_page_table
, PAGE_KERNEL_RO
);
1848 set_page_prot(empty_zero_page
, PAGE_KERNEL_RO
);
1850 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
1852 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
,
1853 PFN_DOWN(__pa(initial_page_table
)));
1854 xen_write_cr3(__pa(initial_page_table
));
1856 memblock_x86_reserve_range(__pa(xen_start_info
->pt_base
),
1857 __pa(xen_start_info
->pt_base
+
1858 xen_start_info
->nr_pt_frames
* PAGE_SIZE
),
1861 return initial_page_table
;
1863 #endif /* CONFIG_X86_64 */
1865 static unsigned char dummy_mapping
[PAGE_SIZE
] __page_aligned_bss
;
1867 static void xen_set_fixmap(unsigned idx
, phys_addr_t phys
, pgprot_t prot
)
1871 phys
>>= PAGE_SHIFT
;
1874 case FIX_BTMAP_END
... FIX_BTMAP_BEGIN
:
1875 #ifdef CONFIG_X86_F00F_BUG
1878 #ifdef CONFIG_X86_32
1881 # ifdef CONFIG_HIGHMEM
1882 case FIX_KMAP_BEGIN
... FIX_KMAP_END
:
1885 case VSYSCALL_LAST_PAGE
... VSYSCALL_FIRST_PAGE
:
1888 case FIX_TEXT_POKE0
:
1889 case FIX_TEXT_POKE1
:
1890 /* All local page mappings */
1891 pte
= pfn_pte(phys
, prot
);
1894 #ifdef CONFIG_X86_LOCAL_APIC
1895 case FIX_APIC_BASE
: /* maps dummy local APIC */
1896 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
1900 #ifdef CONFIG_X86_IO_APIC
1901 case FIX_IO_APIC_BASE_0
... FIX_IO_APIC_BASE_END
:
1903 * We just don't map the IO APIC - all access is via
1904 * hypercalls. Keep the address in the pte for reference.
1906 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
1910 case FIX_PARAVIRT_BOOTMAP
:
1911 /* This is an MFN, but it isn't an IO mapping from the
1913 pte
= mfn_pte(phys
, prot
);
1917 /* By default, set_fixmap is used for hardware mappings */
1918 pte
= mfn_pte(phys
, __pgprot(pgprot_val(prot
) | _PAGE_IOMAP
));
1922 __native_set_fixmap(idx
, pte
);
1924 #ifdef CONFIG_X86_64
1925 /* Replicate changes to map the vsyscall page into the user
1926 pagetable vsyscall mapping. */
1927 if ((idx
>= VSYSCALL_LAST_PAGE
&& idx
<= VSYSCALL_FIRST_PAGE
) ||
1929 unsigned long vaddr
= __fix_to_virt(idx
);
1930 set_pte_vaddr_pud(level3_user_vsyscall
, vaddr
, pte
);
1935 void __init
xen_ident_map_ISA(void)
1940 * If we're dom0, then linear map the ISA machine addresses into
1941 * the kernel's address space.
1943 if (!xen_initial_domain())
1946 xen_raw_printk("Xen: setup ISA identity maps\n");
1948 for (pa
= ISA_START_ADDRESS
; pa
< ISA_END_ADDRESS
; pa
+= PAGE_SIZE
) {
1949 pte_t pte
= mfn_pte(PFN_DOWN(pa
), PAGE_KERNEL_IO
);
1951 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET
+ pa
, pte
, 0))
1958 static void __init
xen_post_allocator_init(void)
1960 pv_mmu_ops
.set_pte
= xen_set_pte
;
1961 pv_mmu_ops
.set_pmd
= xen_set_pmd
;
1962 pv_mmu_ops
.set_pud
= xen_set_pud
;
1963 #if PAGETABLE_LEVELS == 4
1964 pv_mmu_ops
.set_pgd
= xen_set_pgd
;
1967 /* This will work as long as patching hasn't happened yet
1968 (which it hasn't) */
1969 pv_mmu_ops
.alloc_pte
= xen_alloc_pte
;
1970 pv_mmu_ops
.alloc_pmd
= xen_alloc_pmd
;
1971 pv_mmu_ops
.release_pte
= xen_release_pte
;
1972 pv_mmu_ops
.release_pmd
= xen_release_pmd
;
1973 #if PAGETABLE_LEVELS == 4
1974 pv_mmu_ops
.alloc_pud
= xen_alloc_pud
;
1975 pv_mmu_ops
.release_pud
= xen_release_pud
;
1978 #ifdef CONFIG_X86_64
1979 SetPagePinned(virt_to_page(level3_user_vsyscall
));
1981 xen_mark_init_mm_pinned();
1984 static void xen_leave_lazy_mmu(void)
1988 paravirt_leave_lazy_mmu();
1992 static const struct pv_mmu_ops xen_mmu_ops __initconst
= {
1993 .read_cr2
= xen_read_cr2
,
1994 .write_cr2
= xen_write_cr2
,
1996 .read_cr3
= xen_read_cr3
,
1997 #ifdef CONFIG_X86_32
1998 .write_cr3
= xen_write_cr3_init
,
2000 .write_cr3
= xen_write_cr3
,
2003 .flush_tlb_user
= xen_flush_tlb
,
2004 .flush_tlb_kernel
= xen_flush_tlb
,
2005 .flush_tlb_single
= xen_flush_tlb_single
,
2006 .flush_tlb_others
= xen_flush_tlb_others
,
2008 .pte_update
= paravirt_nop
,
2009 .pte_update_defer
= paravirt_nop
,
2011 .pgd_alloc
= xen_pgd_alloc
,
2012 .pgd_free
= xen_pgd_free
,
2014 .alloc_pte
= xen_alloc_pte_init
,
2015 .release_pte
= xen_release_pte_init
,
2016 .alloc_pmd
= xen_alloc_pmd_init
,
2017 .release_pmd
= xen_release_pmd_init
,
2019 .set_pte
= xen_set_pte_init
,
2020 .set_pte_at
= xen_set_pte_at
,
2021 .set_pmd
= xen_set_pmd_hyper
,
2023 .ptep_modify_prot_start
= __ptep_modify_prot_start
,
2024 .ptep_modify_prot_commit
= __ptep_modify_prot_commit
,
2026 .pte_val
= PV_CALLEE_SAVE(xen_pte_val
),
2027 .pgd_val
= PV_CALLEE_SAVE(xen_pgd_val
),
2029 .make_pte
= PV_CALLEE_SAVE(xen_make_pte
),
2030 .make_pgd
= PV_CALLEE_SAVE(xen_make_pgd
),
2032 #ifdef CONFIG_X86_PAE
2033 .set_pte_atomic
= xen_set_pte_atomic
,
2034 .pte_clear
= xen_pte_clear
,
2035 .pmd_clear
= xen_pmd_clear
,
2036 #endif /* CONFIG_X86_PAE */
2037 .set_pud
= xen_set_pud_hyper
,
2039 .make_pmd
= PV_CALLEE_SAVE(xen_make_pmd
),
2040 .pmd_val
= PV_CALLEE_SAVE(xen_pmd_val
),
2042 #if PAGETABLE_LEVELS == 4
2043 .pud_val
= PV_CALLEE_SAVE(xen_pud_val
),
2044 .make_pud
= PV_CALLEE_SAVE(xen_make_pud
),
2045 .set_pgd
= xen_set_pgd_hyper
,
2047 .alloc_pud
= xen_alloc_pmd_init
,
2048 .release_pud
= xen_release_pmd_init
,
2049 #endif /* PAGETABLE_LEVELS == 4 */
2051 .activate_mm
= xen_activate_mm
,
2052 .dup_mmap
= xen_dup_mmap
,
2053 .exit_mmap
= xen_exit_mmap
,
2056 .enter
= paravirt_enter_lazy_mmu
,
2057 .leave
= xen_leave_lazy_mmu
,
2060 .set_fixmap
= xen_set_fixmap
,
2063 void __init
xen_init_mmu_ops(void)
2065 x86_init
.mapping
.pagetable_reserve
= xen_mapping_pagetable_reserve
;
2066 x86_init
.paging
.pagetable_setup_start
= xen_pagetable_setup_start
;
2067 x86_init
.paging
.pagetable_setup_done
= xen_pagetable_setup_done
;
2068 pv_mmu_ops
= xen_mmu_ops
;
2070 memset(dummy_mapping
, 0xff, PAGE_SIZE
);
2073 /* Protected by xen_reservation_lock. */
2074 #define MAX_CONTIG_ORDER 9 /* 2MB */
2075 static unsigned long discontig_frames
[1<<MAX_CONTIG_ORDER
];
2077 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2078 static void xen_zap_pfn_range(unsigned long vaddr
, unsigned int order
,
2079 unsigned long *in_frames
,
2080 unsigned long *out_frames
)
2083 struct multicall_space mcs
;
2086 for (i
= 0; i
< (1UL<<order
); i
++, vaddr
+= PAGE_SIZE
) {
2087 mcs
= __xen_mc_entry(0);
2090 in_frames
[i
] = virt_to_mfn(vaddr
);
2092 MULTI_update_va_mapping(mcs
.mc
, vaddr
, VOID_PTE
, 0);
2093 __set_phys_to_machine(virt_to_pfn(vaddr
), INVALID_P2M_ENTRY
);
2096 out_frames
[i
] = virt_to_pfn(vaddr
);
2102 * Update the pfn-to-mfn mappings for a virtual address range, either to
2103 * point to an array of mfns, or contiguously from a single starting
2106 static void xen_remap_exchanged_ptes(unsigned long vaddr
, int order
,
2107 unsigned long *mfns
,
2108 unsigned long first_mfn
)
2115 limit
= 1u << order
;
2116 for (i
= 0; i
< limit
; i
++, vaddr
+= PAGE_SIZE
) {
2117 struct multicall_space mcs
;
2120 mcs
= __xen_mc_entry(0);
2124 mfn
= first_mfn
+ i
;
2126 if (i
< (limit
- 1))
2130 flags
= UVMF_INVLPG
| UVMF_ALL
;
2132 flags
= UVMF_TLB_FLUSH
| UVMF_ALL
;
2135 MULTI_update_va_mapping(mcs
.mc
, vaddr
,
2136 mfn_pte(mfn
, PAGE_KERNEL
), flags
);
2138 set_phys_to_machine(virt_to_pfn(vaddr
), mfn
);
2145 * Perform the hypercall to exchange a region of our pfns to point to
2146 * memory with the required contiguous alignment. Takes the pfns as
2147 * input, and populates mfns as output.
2149 * Returns a success code indicating whether the hypervisor was able to
2150 * satisfy the request or not.
2152 static int xen_exchange_memory(unsigned long extents_in
, unsigned int order_in
,
2153 unsigned long *pfns_in
,
2154 unsigned long extents_out
,
2155 unsigned int order_out
,
2156 unsigned long *mfns_out
,
2157 unsigned int address_bits
)
2162 struct xen_memory_exchange exchange
= {
2164 .nr_extents
= extents_in
,
2165 .extent_order
= order_in
,
2166 .extent_start
= pfns_in
,
2170 .nr_extents
= extents_out
,
2171 .extent_order
= order_out
,
2172 .extent_start
= mfns_out
,
2173 .address_bits
= address_bits
,
2178 BUG_ON(extents_in
<< order_in
!= extents_out
<< order_out
);
2180 rc
= HYPERVISOR_memory_op(XENMEM_exchange
, &exchange
);
2181 success
= (exchange
.nr_exchanged
== extents_in
);
2183 BUG_ON(!success
&& ((exchange
.nr_exchanged
!= 0) || (rc
== 0)));
2184 BUG_ON(success
&& (rc
!= 0));
2189 int xen_create_contiguous_region(unsigned long vstart
, unsigned int order
,
2190 unsigned int address_bits
)
2192 unsigned long *in_frames
= discontig_frames
, out_frame
;
2193 unsigned long flags
;
2197 * Currently an auto-translated guest will not perform I/O, nor will
2198 * it require PAE page directories below 4GB. Therefore any calls to
2199 * this function are redundant and can be ignored.
2202 if (xen_feature(XENFEAT_auto_translated_physmap
))
2205 if (unlikely(order
> MAX_CONTIG_ORDER
))
2208 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2210 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2212 /* 1. Zap current PTEs, remembering MFNs. */
2213 xen_zap_pfn_range(vstart
, order
, in_frames
, NULL
);
2215 /* 2. Get a new contiguous memory extent. */
2216 out_frame
= virt_to_pfn(vstart
);
2217 success
= xen_exchange_memory(1UL << order
, 0, in_frames
,
2218 1, order
, &out_frame
,
2221 /* 3. Map the new extent in place of old pages. */
2223 xen_remap_exchanged_ptes(vstart
, order
, NULL
, out_frame
);
2225 xen_remap_exchanged_ptes(vstart
, order
, in_frames
, 0);
2227 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2229 return success
? 0 : -ENOMEM
;
2231 EXPORT_SYMBOL_GPL(xen_create_contiguous_region
);
2233 void xen_destroy_contiguous_region(unsigned long vstart
, unsigned int order
)
2235 unsigned long *out_frames
= discontig_frames
, in_frame
;
2236 unsigned long flags
;
2239 if (xen_feature(XENFEAT_auto_translated_physmap
))
2242 if (unlikely(order
> MAX_CONTIG_ORDER
))
2245 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2247 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2249 /* 1. Find start MFN of contiguous extent. */
2250 in_frame
= virt_to_mfn(vstart
);
2252 /* 2. Zap current PTEs. */
2253 xen_zap_pfn_range(vstart
, order
, NULL
, out_frames
);
2255 /* 3. Do the exchange for non-contiguous MFNs. */
2256 success
= xen_exchange_memory(1, order
, &in_frame
, 1UL << order
,
2259 /* 4. Map new pages in place of old pages. */
2261 xen_remap_exchanged_ptes(vstart
, order
, out_frames
, 0);
2263 xen_remap_exchanged_ptes(vstart
, order
, NULL
, in_frame
);
2265 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2267 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region
);
2269 #ifdef CONFIG_XEN_PVHVM
2270 static void xen_hvm_exit_mmap(struct mm_struct
*mm
)
2272 struct xen_hvm_pagetable_dying a
;
2275 a
.domid
= DOMID_SELF
;
2276 a
.gpa
= __pa(mm
->pgd
);
2277 rc
= HYPERVISOR_hvm_op(HVMOP_pagetable_dying
, &a
);
2278 WARN_ON_ONCE(rc
< 0);
2281 static int is_pagetable_dying_supported(void)
2283 struct xen_hvm_pagetable_dying a
;
2286 a
.domid
= DOMID_SELF
;
2288 rc
= HYPERVISOR_hvm_op(HVMOP_pagetable_dying
, &a
);
2290 printk(KERN_DEBUG
"HVMOP_pagetable_dying not supported\n");
2296 void __init
xen_hvm_init_mmu_ops(void)
2298 if (is_pagetable_dying_supported())
2299 pv_mmu_ops
.exit_mmap
= xen_hvm_exit_mmap
;
2303 #define REMAP_BATCH_SIZE 16
2308 struct mmu_update
*mmu_update
;
2311 static int remap_area_mfn_pte_fn(pte_t
*ptep
, pgtable_t token
,
2312 unsigned long addr
, void *data
)
2314 struct remap_data
*rmd
= data
;
2315 pte_t pte
= pte_mkspecial(pfn_pte(rmd
->mfn
++, rmd
->prot
));
2317 rmd
->mmu_update
->ptr
= virt_to_machine(ptep
).maddr
;
2318 rmd
->mmu_update
->val
= pte_val_ma(pte
);
2324 int xen_remap_domain_mfn_range(struct vm_area_struct
*vma
,
2326 unsigned long mfn
, int nr
,
2327 pgprot_t prot
, unsigned domid
)
2329 struct remap_data rmd
;
2330 struct mmu_update mmu_update
[REMAP_BATCH_SIZE
];
2332 unsigned long range
;
2335 prot
= __pgprot(pgprot_val(prot
) | _PAGE_IOMAP
);
2337 BUG_ON(!((vma
->vm_flags
& (VM_PFNMAP
| VM_RESERVED
| VM_IO
)) ==
2338 (VM_PFNMAP
| VM_RESERVED
| VM_IO
)));
2344 batch
= min(REMAP_BATCH_SIZE
, nr
);
2345 range
= (unsigned long)batch
<< PAGE_SHIFT
;
2347 rmd
.mmu_update
= mmu_update
;
2348 err
= apply_to_page_range(vma
->vm_mm
, addr
, range
,
2349 remap_area_mfn_pte_fn
, &rmd
);
2354 if (HYPERVISOR_mmu_update(mmu_update
, batch
, NULL
, domid
) < 0)
2368 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range
);