lis3: fix regression of HP DriveGuard with 8bit chip
[linux-btrfs-devel.git] / drivers / dma / intel_mid_dma.c
blob8a3fdd87db97a462ed4738f1c294276ca0817367
1 /*
2 * intel_mid_dma.c - Intel Langwell DMA Drivers
4 * Copyright (C) 2008-10 Intel Corp
5 * Author: Vinod Koul <vinod.koul@intel.com>
6 * The driver design is based on dw_dmac driver
7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 #include <linux/pci.h>
27 #include <linux/interrupt.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/intel_mid_dma.h>
31 #define MAX_CHAN 4 /*max ch across controllers*/
32 #include "intel_mid_dma_regs.h"
34 #define INTEL_MID_DMAC1_ID 0x0814
35 #define INTEL_MID_DMAC2_ID 0x0813
36 #define INTEL_MID_GP_DMAC2_ID 0x0827
37 #define INTEL_MFLD_DMAC1_ID 0x0830
38 #define LNW_PERIPHRAL_MASK_BASE 0xFFAE8008
39 #define LNW_PERIPHRAL_MASK_SIZE 0x10
40 #define LNW_PERIPHRAL_STATUS 0x0
41 #define LNW_PERIPHRAL_MASK 0x8
43 struct intel_mid_dma_probe_info {
44 u8 max_chan;
45 u8 ch_base;
46 u16 block_size;
47 u32 pimr_mask;
50 #define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
51 ((kernel_ulong_t)&(struct intel_mid_dma_probe_info) { \
52 .max_chan = (_max_chan), \
53 .ch_base = (_ch_base), \
54 .block_size = (_block_size), \
55 .pimr_mask = (_pimr_mask), \
58 /*****************************************************************************
59 Utility Functions*/
60 /**
61 * get_ch_index - convert status to channel
62 * @status: status mask
63 * @base: dma ch base value
65 * Modify the status mask and return the channel index needing
66 * attention (or -1 if neither)
68 static int get_ch_index(int *status, unsigned int base)
70 int i;
71 for (i = 0; i < MAX_CHAN; i++) {
72 if (*status & (1 << (i + base))) {
73 *status = *status & ~(1 << (i + base));
74 pr_debug("MDMA: index %d New status %x\n", i, *status);
75 return i;
78 return -1;
81 /**
82 * get_block_ts - calculates dma transaction length
83 * @len: dma transfer length
84 * @tx_width: dma transfer src width
85 * @block_size: dma controller max block size
87 * Based on src width calculate the DMA trsaction length in data items
88 * return data items or FFFF if exceeds max length for block
90 static int get_block_ts(int len, int tx_width, int block_size)
92 int byte_width = 0, block_ts = 0;
94 switch (tx_width) {
95 case DMA_SLAVE_BUSWIDTH_1_BYTE:
96 byte_width = 1;
97 break;
98 case DMA_SLAVE_BUSWIDTH_2_BYTES:
99 byte_width = 2;
100 break;
101 case DMA_SLAVE_BUSWIDTH_4_BYTES:
102 default:
103 byte_width = 4;
104 break;
107 block_ts = len/byte_width;
108 if (block_ts > block_size)
109 block_ts = 0xFFFF;
110 return block_ts;
113 /*****************************************************************************
114 DMAC1 interrupt Functions*/
117 * dmac1_mask_periphral_intr - mask the periphral interrupt
118 * @midc: dma channel for which masking is required
120 * Masks the DMA periphral interrupt
121 * this is valid for DMAC1 family controllers only
122 * This controller should have periphral mask registers already mapped
124 static void dmac1_mask_periphral_intr(struct intel_mid_dma_chan *midc)
126 u32 pimr;
127 struct middma_device *mid = to_middma_device(midc->chan.device);
129 if (mid->pimr_mask) {
130 pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
131 pimr |= mid->pimr_mask;
132 writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
134 return;
138 * dmac1_unmask_periphral_intr - unmask the periphral interrupt
139 * @midc: dma channel for which masking is required
141 * UnMasks the DMA periphral interrupt,
142 * this is valid for DMAC1 family controllers only
143 * This controller should have periphral mask registers already mapped
145 static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
147 u32 pimr;
148 struct middma_device *mid = to_middma_device(midc->chan.device);
150 if (mid->pimr_mask) {
151 pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
152 pimr &= ~mid->pimr_mask;
153 writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
155 return;
159 * enable_dma_interrupt - enable the periphral interrupt
160 * @midc: dma channel for which enable interrupt is required
162 * Enable the DMA periphral interrupt,
163 * this is valid for DMAC1 family controllers only
164 * This controller should have periphral mask registers already mapped
166 static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
168 dmac1_unmask_periphral_intr(midc);
170 /*en ch interrupts*/
171 iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
172 iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
173 return;
177 * disable_dma_interrupt - disable the periphral interrupt
178 * @midc: dma channel for which disable interrupt is required
180 * Disable the DMA periphral interrupt,
181 * this is valid for DMAC1 family controllers only
182 * This controller should have periphral mask registers already mapped
184 static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
186 /*Check LPE PISR, make sure fwd is disabled*/
187 dmac1_mask_periphral_intr(midc);
188 iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
189 iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
190 iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
191 return;
194 /*****************************************************************************
195 DMA channel helper Functions*/
197 * mid_desc_get - get a descriptor
198 * @midc: dma channel for which descriptor is required
200 * Obtain a descriptor for the channel. Returns NULL if none are free.
201 * Once the descriptor is returned it is private until put on another
202 * list or freed
204 static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
206 struct intel_mid_dma_desc *desc, *_desc;
207 struct intel_mid_dma_desc *ret = NULL;
209 spin_lock_bh(&midc->lock);
210 list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
211 if (async_tx_test_ack(&desc->txd)) {
212 list_del(&desc->desc_node);
213 ret = desc;
214 break;
217 spin_unlock_bh(&midc->lock);
218 return ret;
222 * mid_desc_put - put a descriptor
223 * @midc: dma channel for which descriptor is required
224 * @desc: descriptor to put
226 * Return a descriptor from lwn_desc_get back to the free pool
228 static void midc_desc_put(struct intel_mid_dma_chan *midc,
229 struct intel_mid_dma_desc *desc)
231 if (desc) {
232 spin_lock_bh(&midc->lock);
233 list_add_tail(&desc->desc_node, &midc->free_list);
234 spin_unlock_bh(&midc->lock);
238 * midc_dostart - begin a DMA transaction
239 * @midc: channel for which txn is to be started
240 * @first: first descriptor of series
242 * Load a transaction into the engine. This must be called with midc->lock
243 * held and bh disabled.
245 static void midc_dostart(struct intel_mid_dma_chan *midc,
246 struct intel_mid_dma_desc *first)
248 struct middma_device *mid = to_middma_device(midc->chan.device);
250 /* channel is idle */
251 if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
252 /*error*/
253 pr_err("ERR_MDMA: channel is busy in start\n");
254 /* The tasklet will hopefully advance the queue... */
255 return;
257 midc->busy = true;
258 /*write registers and en*/
259 iowrite32(first->sar, midc->ch_regs + SAR);
260 iowrite32(first->dar, midc->ch_regs + DAR);
261 iowrite32(first->lli_phys, midc->ch_regs + LLP);
262 iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
263 iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
264 iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
265 iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
266 pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
267 (int)first->sar, (int)first->dar, first->cfg_hi,
268 first->cfg_lo, first->ctl_hi, first->ctl_lo);
269 first->status = DMA_IN_PROGRESS;
271 iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
275 * midc_descriptor_complete - process completed descriptor
276 * @midc: channel owning the descriptor
277 * @desc: the descriptor itself
279 * Process a completed descriptor and perform any callbacks upon
280 * the completion. The completion handling drops the lock during the
281 * callbacks but must be called with the lock held.
283 static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
284 struct intel_mid_dma_desc *desc)
286 struct dma_async_tx_descriptor *txd = &desc->txd;
287 dma_async_tx_callback callback_txd = NULL;
288 struct intel_mid_dma_lli *llitem;
289 void *param_txd = NULL;
291 midc->completed = txd->cookie;
292 callback_txd = txd->callback;
293 param_txd = txd->callback_param;
295 if (desc->lli != NULL) {
296 /*clear the DONE bit of completed LLI in memory*/
297 llitem = desc->lli + desc->current_lli;
298 llitem->ctl_hi &= CLEAR_DONE;
299 if (desc->current_lli < desc->lli_length-1)
300 (desc->current_lli)++;
301 else
302 desc->current_lli = 0;
304 spin_unlock_bh(&midc->lock);
305 if (callback_txd) {
306 pr_debug("MDMA: TXD callback set ... calling\n");
307 callback_txd(param_txd);
309 if (midc->raw_tfr) {
310 desc->status = DMA_SUCCESS;
311 if (desc->lli != NULL) {
312 pci_pool_free(desc->lli_pool, desc->lli,
313 desc->lli_phys);
314 pci_pool_destroy(desc->lli_pool);
316 list_move(&desc->desc_node, &midc->free_list);
317 midc->busy = false;
319 spin_lock_bh(&midc->lock);
323 * midc_scan_descriptors - check the descriptors in channel
324 * mark completed when tx is completete
325 * @mid: device
326 * @midc: channel to scan
328 * Walk the descriptor chain for the device and process any entries
329 * that are complete.
331 static void midc_scan_descriptors(struct middma_device *mid,
332 struct intel_mid_dma_chan *midc)
334 struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
336 /*tx is complete*/
337 list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
338 if (desc->status == DMA_IN_PROGRESS)
339 midc_descriptor_complete(midc, desc);
341 return;
344 * midc_lli_fill_sg - Helper function to convert
345 * SG list to Linked List Items.
346 *@midc: Channel
347 *@desc: DMA descriptor
348 *@sglist: Pointer to SG list
349 *@sglen: SG list length
350 *@flags: DMA transaction flags
352 * Walk through the SG list and convert the SG list into Linked
353 * List Items (LLI).
355 static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
356 struct intel_mid_dma_desc *desc,
357 struct scatterlist *sglist,
358 unsigned int sglen,
359 unsigned int flags)
361 struct intel_mid_dma_slave *mids;
362 struct scatterlist *sg;
363 dma_addr_t lli_next, sg_phy_addr;
364 struct intel_mid_dma_lli *lli_bloc_desc;
365 union intel_mid_dma_ctl_lo ctl_lo;
366 union intel_mid_dma_ctl_hi ctl_hi;
367 int i;
369 pr_debug("MDMA: Entered midc_lli_fill_sg\n");
370 mids = midc->mid_slave;
372 lli_bloc_desc = desc->lli;
373 lli_next = desc->lli_phys;
375 ctl_lo.ctl_lo = desc->ctl_lo;
376 ctl_hi.ctl_hi = desc->ctl_hi;
377 for_each_sg(sglist, sg, sglen, i) {
378 /*Populate CTL_LOW and LLI values*/
379 if (i != sglen - 1) {
380 lli_next = lli_next +
381 sizeof(struct intel_mid_dma_lli);
382 } else {
383 /*Check for circular list, otherwise terminate LLI to ZERO*/
384 if (flags & DMA_PREP_CIRCULAR_LIST) {
385 pr_debug("MDMA: LLI is configured in circular mode\n");
386 lli_next = desc->lli_phys;
387 } else {
388 lli_next = 0;
389 ctl_lo.ctlx.llp_dst_en = 0;
390 ctl_lo.ctlx.llp_src_en = 0;
393 /*Populate CTL_HI values*/
394 ctl_hi.ctlx.block_ts = get_block_ts(sg->length,
395 desc->width,
396 midc->dma->block_size);
397 /*Populate SAR and DAR values*/
398 sg_phy_addr = sg_phys(sg);
399 if (desc->dirn == DMA_TO_DEVICE) {
400 lli_bloc_desc->sar = sg_phy_addr;
401 lli_bloc_desc->dar = mids->dma_slave.dst_addr;
402 } else if (desc->dirn == DMA_FROM_DEVICE) {
403 lli_bloc_desc->sar = mids->dma_slave.src_addr;
404 lli_bloc_desc->dar = sg_phy_addr;
406 /*Copy values into block descriptor in system memroy*/
407 lli_bloc_desc->llp = lli_next;
408 lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
409 lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
411 lli_bloc_desc++;
413 /*Copy very first LLI values to descriptor*/
414 desc->ctl_lo = desc->lli->ctl_lo;
415 desc->ctl_hi = desc->lli->ctl_hi;
416 desc->sar = desc->lli->sar;
417 desc->dar = desc->lli->dar;
419 return 0;
421 /*****************************************************************************
422 DMA engine callback Functions*/
424 * intel_mid_dma_tx_submit - callback to submit DMA transaction
425 * @tx: dma engine descriptor
427 * Submit the DMA trasaction for this descriptor, start if ch idle
429 static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
431 struct intel_mid_dma_desc *desc = to_intel_mid_dma_desc(tx);
432 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(tx->chan);
433 dma_cookie_t cookie;
435 spin_lock_bh(&midc->lock);
436 cookie = midc->chan.cookie;
438 if (++cookie < 0)
439 cookie = 1;
441 midc->chan.cookie = cookie;
442 desc->txd.cookie = cookie;
445 if (list_empty(&midc->active_list))
446 list_add_tail(&desc->desc_node, &midc->active_list);
447 else
448 list_add_tail(&desc->desc_node, &midc->queue);
450 midc_dostart(midc, desc);
451 spin_unlock_bh(&midc->lock);
453 return cookie;
457 * intel_mid_dma_issue_pending - callback to issue pending txn
458 * @chan: chan where pending trascation needs to be checked and submitted
460 * Call for scan to issue pending descriptors
462 static void intel_mid_dma_issue_pending(struct dma_chan *chan)
464 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
466 spin_lock_bh(&midc->lock);
467 if (!list_empty(&midc->queue))
468 midc_scan_descriptors(to_middma_device(chan->device), midc);
469 spin_unlock_bh(&midc->lock);
473 * intel_mid_dma_tx_status - Return status of txn
474 * @chan: chan for where status needs to be checked
475 * @cookie: cookie for txn
476 * @txstate: DMA txn state
478 * Return status of DMA txn
480 static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
481 dma_cookie_t cookie,
482 struct dma_tx_state *txstate)
484 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
485 dma_cookie_t last_used;
486 dma_cookie_t last_complete;
487 int ret;
489 last_complete = midc->completed;
490 last_used = chan->cookie;
492 ret = dma_async_is_complete(cookie, last_complete, last_used);
493 if (ret != DMA_SUCCESS) {
494 midc_scan_descriptors(to_middma_device(chan->device), midc);
496 last_complete = midc->completed;
497 last_used = chan->cookie;
499 ret = dma_async_is_complete(cookie, last_complete, last_used);
502 if (txstate) {
503 txstate->last = last_complete;
504 txstate->used = last_used;
505 txstate->residue = 0;
507 return ret;
510 static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
512 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
513 struct dma_slave_config *slave = (struct dma_slave_config *)arg;
514 struct intel_mid_dma_slave *mid_slave;
516 BUG_ON(!midc);
517 BUG_ON(!slave);
518 pr_debug("MDMA: slave control called\n");
520 mid_slave = to_intel_mid_dma_slave(slave);
522 BUG_ON(!mid_slave);
524 midc->mid_slave = mid_slave;
525 return 0;
528 * intel_mid_dma_device_control - DMA device control
529 * @chan: chan for DMA control
530 * @cmd: control cmd
531 * @arg: cmd arg value
533 * Perform DMA control command
535 static int intel_mid_dma_device_control(struct dma_chan *chan,
536 enum dma_ctrl_cmd cmd, unsigned long arg)
538 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
539 struct middma_device *mid = to_middma_device(chan->device);
540 struct intel_mid_dma_desc *desc, *_desc;
541 union intel_mid_dma_cfg_lo cfg_lo;
543 if (cmd == DMA_SLAVE_CONFIG)
544 return dma_slave_control(chan, arg);
546 if (cmd != DMA_TERMINATE_ALL)
547 return -ENXIO;
549 spin_lock_bh(&midc->lock);
550 if (midc->busy == false) {
551 spin_unlock_bh(&midc->lock);
552 return 0;
554 /*Suspend and disable the channel*/
555 cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
556 cfg_lo.cfgx.ch_susp = 1;
557 iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
558 iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
559 midc->busy = false;
560 /* Disable interrupts */
561 disable_dma_interrupt(midc);
562 midc->descs_allocated = 0;
564 spin_unlock_bh(&midc->lock);
565 list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
566 if (desc->lli != NULL) {
567 pci_pool_free(desc->lli_pool, desc->lli,
568 desc->lli_phys);
569 pci_pool_destroy(desc->lli_pool);
571 list_move(&desc->desc_node, &midc->free_list);
573 return 0;
578 * intel_mid_dma_prep_memcpy - Prep memcpy txn
579 * @chan: chan for DMA transfer
580 * @dest: destn address
581 * @src: src address
582 * @len: DMA transfer len
583 * @flags: DMA flags
585 * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
586 * The periphral txn details should be filled in slave structure properly
587 * Returns the descriptor for this txn
589 static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
590 struct dma_chan *chan, dma_addr_t dest,
591 dma_addr_t src, size_t len, unsigned long flags)
593 struct intel_mid_dma_chan *midc;
594 struct intel_mid_dma_desc *desc = NULL;
595 struct intel_mid_dma_slave *mids;
596 union intel_mid_dma_ctl_lo ctl_lo;
597 union intel_mid_dma_ctl_hi ctl_hi;
598 union intel_mid_dma_cfg_lo cfg_lo;
599 union intel_mid_dma_cfg_hi cfg_hi;
600 enum dma_slave_buswidth width;
602 pr_debug("MDMA: Prep for memcpy\n");
603 BUG_ON(!chan);
604 if (!len)
605 return NULL;
607 midc = to_intel_mid_dma_chan(chan);
608 BUG_ON(!midc);
610 mids = midc->mid_slave;
611 BUG_ON(!mids);
613 pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
614 midc->dma->pci_id, midc->ch_id, len);
615 pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
616 mids->cfg_mode, mids->dma_slave.direction,
617 mids->hs_mode, mids->dma_slave.src_addr_width);
619 /*calculate CFG_LO*/
620 if (mids->hs_mode == LNW_DMA_SW_HS) {
621 cfg_lo.cfg_lo = 0;
622 cfg_lo.cfgx.hs_sel_dst = 1;
623 cfg_lo.cfgx.hs_sel_src = 1;
624 } else if (mids->hs_mode == LNW_DMA_HW_HS)
625 cfg_lo.cfg_lo = 0x00000;
627 /*calculate CFG_HI*/
628 if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
629 /*SW HS only*/
630 cfg_hi.cfg_hi = 0;
631 } else {
632 cfg_hi.cfg_hi = 0;
633 if (midc->dma->pimr_mask) {
634 cfg_hi.cfgx.protctl = 0x0; /*default value*/
635 cfg_hi.cfgx.fifo_mode = 1;
636 if (mids->dma_slave.direction == DMA_TO_DEVICE) {
637 cfg_hi.cfgx.src_per = 0;
638 if (mids->device_instance == 0)
639 cfg_hi.cfgx.dst_per = 3;
640 if (mids->device_instance == 1)
641 cfg_hi.cfgx.dst_per = 1;
642 } else if (mids->dma_slave.direction == DMA_FROM_DEVICE) {
643 if (mids->device_instance == 0)
644 cfg_hi.cfgx.src_per = 2;
645 if (mids->device_instance == 1)
646 cfg_hi.cfgx.src_per = 0;
647 cfg_hi.cfgx.dst_per = 0;
649 } else {
650 cfg_hi.cfgx.protctl = 0x1; /*default value*/
651 cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
652 midc->ch_id - midc->dma->chan_base;
656 /*calculate CTL_HI*/
657 ctl_hi.ctlx.reser = 0;
658 ctl_hi.ctlx.done = 0;
659 width = mids->dma_slave.src_addr_width;
661 ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
662 pr_debug("MDMA:calc len %d for block size %d\n",
663 ctl_hi.ctlx.block_ts, midc->dma->block_size);
664 /*calculate CTL_LO*/
665 ctl_lo.ctl_lo = 0;
666 ctl_lo.ctlx.int_en = 1;
667 ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
668 ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
671 * Here we need some translation from "enum dma_slave_buswidth"
672 * to the format for our dma controller
673 * standard intel_mid_dmac's format
674 * 1 Byte 0b000
675 * 2 Bytes 0b001
676 * 4 Bytes 0b010
678 ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
679 ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
681 if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
682 ctl_lo.ctlx.tt_fc = 0;
683 ctl_lo.ctlx.sinc = 0;
684 ctl_lo.ctlx.dinc = 0;
685 } else {
686 if (mids->dma_slave.direction == DMA_TO_DEVICE) {
687 ctl_lo.ctlx.sinc = 0;
688 ctl_lo.ctlx.dinc = 2;
689 ctl_lo.ctlx.tt_fc = 1;
690 } else if (mids->dma_slave.direction == DMA_FROM_DEVICE) {
691 ctl_lo.ctlx.sinc = 2;
692 ctl_lo.ctlx.dinc = 0;
693 ctl_lo.ctlx.tt_fc = 2;
697 pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
698 ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
700 enable_dma_interrupt(midc);
702 desc = midc_desc_get(midc);
703 if (desc == NULL)
704 goto err_desc_get;
705 desc->sar = src;
706 desc->dar = dest ;
707 desc->len = len;
708 desc->cfg_hi = cfg_hi.cfg_hi;
709 desc->cfg_lo = cfg_lo.cfg_lo;
710 desc->ctl_lo = ctl_lo.ctl_lo;
711 desc->ctl_hi = ctl_hi.ctl_hi;
712 desc->width = width;
713 desc->dirn = mids->dma_slave.direction;
714 desc->lli_phys = 0;
715 desc->lli = NULL;
716 desc->lli_pool = NULL;
717 return &desc->txd;
719 err_desc_get:
720 pr_err("ERR_MDMA: Failed to get desc\n");
721 midc_desc_put(midc, desc);
722 return NULL;
725 * intel_mid_dma_prep_slave_sg - Prep slave sg txn
726 * @chan: chan for DMA transfer
727 * @sgl: scatter gather list
728 * @sg_len: length of sg txn
729 * @direction: DMA transfer dirtn
730 * @flags: DMA flags
732 * Prepares LLI based periphral transfer
734 static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
735 struct dma_chan *chan, struct scatterlist *sgl,
736 unsigned int sg_len, enum dma_data_direction direction,
737 unsigned long flags)
739 struct intel_mid_dma_chan *midc = NULL;
740 struct intel_mid_dma_slave *mids = NULL;
741 struct intel_mid_dma_desc *desc = NULL;
742 struct dma_async_tx_descriptor *txd = NULL;
743 union intel_mid_dma_ctl_lo ctl_lo;
745 pr_debug("MDMA: Prep for slave SG\n");
747 if (!sg_len) {
748 pr_err("MDMA: Invalid SG length\n");
749 return NULL;
751 midc = to_intel_mid_dma_chan(chan);
752 BUG_ON(!midc);
754 mids = midc->mid_slave;
755 BUG_ON(!mids);
757 if (!midc->dma->pimr_mask) {
758 /* We can still handle sg list with only one item */
759 if (sg_len == 1) {
760 txd = intel_mid_dma_prep_memcpy(chan,
761 mids->dma_slave.dst_addr,
762 mids->dma_slave.src_addr,
763 sgl->length,
764 flags);
765 return txd;
766 } else {
767 pr_warn("MDMA: SG list is not supported by this controller\n");
768 return NULL;
772 pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
773 sg_len, direction, flags);
775 txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sgl->length, flags);
776 if (NULL == txd) {
777 pr_err("MDMA: Prep memcpy failed\n");
778 return NULL;
781 desc = to_intel_mid_dma_desc(txd);
782 desc->dirn = direction;
783 ctl_lo.ctl_lo = desc->ctl_lo;
784 ctl_lo.ctlx.llp_dst_en = 1;
785 ctl_lo.ctlx.llp_src_en = 1;
786 desc->ctl_lo = ctl_lo.ctl_lo;
787 desc->lli_length = sg_len;
788 desc->current_lli = 0;
789 /* DMA coherent memory pool for LLI descriptors*/
790 desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
791 midc->dma->pdev,
792 (sizeof(struct intel_mid_dma_lli)*sg_len),
793 32, 0);
794 if (NULL == desc->lli_pool) {
795 pr_err("MID_DMA:LLI pool create failed\n");
796 return NULL;
799 desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
800 if (!desc->lli) {
801 pr_err("MID_DMA: LLI alloc failed\n");
802 pci_pool_destroy(desc->lli_pool);
803 return NULL;
806 midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
807 if (flags & DMA_PREP_INTERRUPT) {
808 iowrite32(UNMASK_INTR_REG(midc->ch_id),
809 midc->dma_base + MASK_BLOCK);
810 pr_debug("MDMA:Enabled Block interrupt\n");
812 return &desc->txd;
816 * intel_mid_dma_free_chan_resources - Frees dma resources
817 * @chan: chan requiring attention
819 * Frees the allocated resources on this DMA chan
821 static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
823 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
824 struct middma_device *mid = to_middma_device(chan->device);
825 struct intel_mid_dma_desc *desc, *_desc;
827 if (true == midc->busy) {
828 /*trying to free ch in use!!!!!*/
829 pr_err("ERR_MDMA: trying to free ch in use\n");
831 pm_runtime_put(&mid->pdev->dev);
832 spin_lock_bh(&midc->lock);
833 midc->descs_allocated = 0;
834 list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
835 list_del(&desc->desc_node);
836 pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
838 list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
839 list_del(&desc->desc_node);
840 pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
842 list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
843 list_del(&desc->desc_node);
844 pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
846 spin_unlock_bh(&midc->lock);
847 midc->in_use = false;
848 midc->busy = false;
849 /* Disable CH interrupts */
850 iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
851 iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
855 * intel_mid_dma_alloc_chan_resources - Allocate dma resources
856 * @chan: chan requiring attention
858 * Allocates DMA resources on this chan
859 * Return the descriptors allocated
861 static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
863 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
864 struct middma_device *mid = to_middma_device(chan->device);
865 struct intel_mid_dma_desc *desc;
866 dma_addr_t phys;
867 int i = 0;
869 pm_runtime_get_sync(&mid->pdev->dev);
871 if (mid->state == SUSPENDED) {
872 if (dma_resume(mid->pdev)) {
873 pr_err("ERR_MDMA: resume failed");
874 return -EFAULT;
878 /* ASSERT: channel is idle */
879 if (test_ch_en(mid->dma_base, midc->ch_id)) {
880 /*ch is not idle*/
881 pr_err("ERR_MDMA: ch not idle\n");
882 pm_runtime_put(&mid->pdev->dev);
883 return -EIO;
885 midc->completed = chan->cookie = 1;
887 spin_lock_bh(&midc->lock);
888 while (midc->descs_allocated < DESCS_PER_CHANNEL) {
889 spin_unlock_bh(&midc->lock);
890 desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
891 if (!desc) {
892 pr_err("ERR_MDMA: desc failed\n");
893 pm_runtime_put(&mid->pdev->dev);
894 return -ENOMEM;
895 /*check*/
897 dma_async_tx_descriptor_init(&desc->txd, chan);
898 desc->txd.tx_submit = intel_mid_dma_tx_submit;
899 desc->txd.flags = DMA_CTRL_ACK;
900 desc->txd.phys = phys;
901 spin_lock_bh(&midc->lock);
902 i = ++midc->descs_allocated;
903 list_add_tail(&desc->desc_node, &midc->free_list);
905 spin_unlock_bh(&midc->lock);
906 midc->in_use = true;
907 midc->busy = false;
908 pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
909 return i;
913 * midc_handle_error - Handle DMA txn error
914 * @mid: controller where error occurred
915 * @midc: chan where error occurred
917 * Scan the descriptor for error
919 static void midc_handle_error(struct middma_device *mid,
920 struct intel_mid_dma_chan *midc)
922 midc_scan_descriptors(mid, midc);
926 * dma_tasklet - DMA interrupt tasklet
927 * @data: tasklet arg (the controller structure)
929 * Scan the controller for interrupts for completion/error
930 * Clear the interrupt and call for handling completion/error
932 static void dma_tasklet(unsigned long data)
934 struct middma_device *mid = NULL;
935 struct intel_mid_dma_chan *midc = NULL;
936 u32 status, raw_tfr, raw_block;
937 int i;
939 mid = (struct middma_device *)data;
940 if (mid == NULL) {
941 pr_err("ERR_MDMA: tasklet Null param\n");
942 return;
944 pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
945 raw_tfr = ioread32(mid->dma_base + RAW_TFR);
946 raw_block = ioread32(mid->dma_base + RAW_BLOCK);
947 status = raw_tfr | raw_block;
948 status &= mid->intr_mask;
949 while (status) {
950 /*txn interrupt*/
951 i = get_ch_index(&status, mid->chan_base);
952 if (i < 0) {
953 pr_err("ERR_MDMA:Invalid ch index %x\n", i);
954 return;
956 midc = &mid->ch[i];
957 if (midc == NULL) {
958 pr_err("ERR_MDMA:Null param midc\n");
959 return;
961 pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
962 status, midc->ch_id, i);
963 midc->raw_tfr = raw_tfr;
964 midc->raw_block = raw_block;
965 spin_lock_bh(&midc->lock);
966 /*clearing this interrupts first*/
967 iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
968 if (raw_block) {
969 iowrite32((1 << midc->ch_id),
970 mid->dma_base + CLEAR_BLOCK);
972 midc_scan_descriptors(mid, midc);
973 pr_debug("MDMA:Scan of desc... complete, unmasking\n");
974 iowrite32(UNMASK_INTR_REG(midc->ch_id),
975 mid->dma_base + MASK_TFR);
976 if (raw_block) {
977 iowrite32(UNMASK_INTR_REG(midc->ch_id),
978 mid->dma_base + MASK_BLOCK);
980 spin_unlock_bh(&midc->lock);
983 status = ioread32(mid->dma_base + RAW_ERR);
984 status &= mid->intr_mask;
985 while (status) {
986 /*err interrupt*/
987 i = get_ch_index(&status, mid->chan_base);
988 if (i < 0) {
989 pr_err("ERR_MDMA:Invalid ch index %x\n", i);
990 return;
992 midc = &mid->ch[i];
993 if (midc == NULL) {
994 pr_err("ERR_MDMA:Null param midc\n");
995 return;
997 pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
998 status, midc->ch_id, i);
1000 iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
1001 spin_lock_bh(&midc->lock);
1002 midc_handle_error(mid, midc);
1003 iowrite32(UNMASK_INTR_REG(midc->ch_id),
1004 mid->dma_base + MASK_ERR);
1005 spin_unlock_bh(&midc->lock);
1007 pr_debug("MDMA:Exiting takslet...\n");
1008 return;
1011 static void dma_tasklet1(unsigned long data)
1013 pr_debug("MDMA:in takslet1...\n");
1014 return dma_tasklet(data);
1017 static void dma_tasklet2(unsigned long data)
1019 pr_debug("MDMA:in takslet2...\n");
1020 return dma_tasklet(data);
1024 * intel_mid_dma_interrupt - DMA ISR
1025 * @irq: IRQ where interrupt occurred
1026 * @data: ISR cllback data (the controller structure)
1028 * See if this is our interrupt if so then schedule the tasklet
1029 * otherwise ignore
1031 static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
1033 struct middma_device *mid = data;
1034 u32 tfr_status, err_status;
1035 int call_tasklet = 0;
1037 tfr_status = ioread32(mid->dma_base + RAW_TFR);
1038 err_status = ioread32(mid->dma_base + RAW_ERR);
1039 if (!tfr_status && !err_status)
1040 return IRQ_NONE;
1042 /*DMA Interrupt*/
1043 pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
1044 pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
1045 tfr_status &= mid->intr_mask;
1046 if (tfr_status) {
1047 /*need to disable intr*/
1048 iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
1049 iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1050 pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
1051 call_tasklet = 1;
1053 err_status &= mid->intr_mask;
1054 if (err_status) {
1055 iowrite32(MASK_INTR_REG(err_status), mid->dma_base + MASK_ERR);
1056 call_tasklet = 1;
1058 if (call_tasklet)
1059 tasklet_schedule(&mid->tasklet);
1061 return IRQ_HANDLED;
1064 static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
1066 return intel_mid_dma_interrupt(irq, data);
1069 static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
1071 return intel_mid_dma_interrupt(irq, data);
1075 * mid_setup_dma - Setup the DMA controller
1076 * @pdev: Controller PCI device structure
1078 * Initialize the DMA controller, channels, registers with DMA engine,
1079 * ISR. Initialize DMA controller channels.
1081 static int mid_setup_dma(struct pci_dev *pdev)
1083 struct middma_device *dma = pci_get_drvdata(pdev);
1084 int err, i;
1086 /* DMA coherent memory pool for DMA descriptor allocations */
1087 dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
1088 sizeof(struct intel_mid_dma_desc),
1089 32, 0);
1090 if (NULL == dma->dma_pool) {
1091 pr_err("ERR_MDMA:pci_pool_create failed\n");
1092 err = -ENOMEM;
1093 goto err_dma_pool;
1096 INIT_LIST_HEAD(&dma->common.channels);
1097 dma->pci_id = pdev->device;
1098 if (dma->pimr_mask) {
1099 dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
1100 LNW_PERIPHRAL_MASK_SIZE);
1101 if (dma->mask_reg == NULL) {
1102 pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
1103 return -ENOMEM;
1105 } else
1106 dma->mask_reg = NULL;
1108 pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
1109 /*init CH structures*/
1110 dma->intr_mask = 0;
1111 dma->state = RUNNING;
1112 for (i = 0; i < dma->max_chan; i++) {
1113 struct intel_mid_dma_chan *midch = &dma->ch[i];
1115 midch->chan.device = &dma->common;
1116 midch->chan.cookie = 1;
1117 midch->chan.chan_id = i;
1118 midch->ch_id = dma->chan_base + i;
1119 pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
1121 midch->dma_base = dma->dma_base;
1122 midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
1123 midch->dma = dma;
1124 dma->intr_mask |= 1 << (dma->chan_base + i);
1125 spin_lock_init(&midch->lock);
1127 INIT_LIST_HEAD(&midch->active_list);
1128 INIT_LIST_HEAD(&midch->queue);
1129 INIT_LIST_HEAD(&midch->free_list);
1130 /*mask interrupts*/
1131 iowrite32(MASK_INTR_REG(midch->ch_id),
1132 dma->dma_base + MASK_BLOCK);
1133 iowrite32(MASK_INTR_REG(midch->ch_id),
1134 dma->dma_base + MASK_SRC_TRAN);
1135 iowrite32(MASK_INTR_REG(midch->ch_id),
1136 dma->dma_base + MASK_DST_TRAN);
1137 iowrite32(MASK_INTR_REG(midch->ch_id),
1138 dma->dma_base + MASK_ERR);
1139 iowrite32(MASK_INTR_REG(midch->ch_id),
1140 dma->dma_base + MASK_TFR);
1142 disable_dma_interrupt(midch);
1143 list_add_tail(&midch->chan.device_node, &dma->common.channels);
1145 pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
1147 /*init dma structure*/
1148 dma_cap_zero(dma->common.cap_mask);
1149 dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
1150 dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
1151 dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
1152 dma->common.dev = &pdev->dev;
1153 dma->common.chancnt = dma->max_chan;
1155 dma->common.device_alloc_chan_resources =
1156 intel_mid_dma_alloc_chan_resources;
1157 dma->common.device_free_chan_resources =
1158 intel_mid_dma_free_chan_resources;
1160 dma->common.device_tx_status = intel_mid_dma_tx_status;
1161 dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
1162 dma->common.device_issue_pending = intel_mid_dma_issue_pending;
1163 dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
1164 dma->common.device_control = intel_mid_dma_device_control;
1166 /*enable dma cntrl*/
1167 iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
1169 /*register irq */
1170 if (dma->pimr_mask) {
1171 pr_debug("MDMA:Requesting irq shared for DMAC1\n");
1172 err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
1173 IRQF_SHARED, "INTEL_MID_DMAC1", dma);
1174 if (0 != err)
1175 goto err_irq;
1176 } else {
1177 dma->intr_mask = 0x03;
1178 pr_debug("MDMA:Requesting irq for DMAC2\n");
1179 err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
1180 IRQF_SHARED, "INTEL_MID_DMAC2", dma);
1181 if (0 != err)
1182 goto err_irq;
1184 /*register device w/ engine*/
1185 err = dma_async_device_register(&dma->common);
1186 if (0 != err) {
1187 pr_err("ERR_MDMA:device_register failed: %d\n", err);
1188 goto err_engine;
1190 if (dma->pimr_mask) {
1191 pr_debug("setting up tasklet1 for DMAC1\n");
1192 tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
1193 } else {
1194 pr_debug("setting up tasklet2 for DMAC2\n");
1195 tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
1197 return 0;
1199 err_engine:
1200 free_irq(pdev->irq, dma);
1201 err_irq:
1202 pci_pool_destroy(dma->dma_pool);
1203 err_dma_pool:
1204 pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
1205 return err;
1210 * middma_shutdown - Shutdown the DMA controller
1211 * @pdev: Controller PCI device structure
1213 * Called by remove
1214 * Unregister DMa controller, clear all structures and free interrupt
1216 static void middma_shutdown(struct pci_dev *pdev)
1218 struct middma_device *device = pci_get_drvdata(pdev);
1220 dma_async_device_unregister(&device->common);
1221 pci_pool_destroy(device->dma_pool);
1222 if (device->mask_reg)
1223 iounmap(device->mask_reg);
1224 if (device->dma_base)
1225 iounmap(device->dma_base);
1226 free_irq(pdev->irq, device);
1227 return;
1231 * intel_mid_dma_probe - PCI Probe
1232 * @pdev: Controller PCI device structure
1233 * @id: pci device id structure
1235 * Initialize the PCI device, map BARs, query driver data.
1236 * Call setup_dma to complete contoller and chan initilzation
1238 static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
1239 const struct pci_device_id *id)
1241 struct middma_device *device;
1242 u32 base_addr, bar_size;
1243 struct intel_mid_dma_probe_info *info;
1244 int err;
1246 pr_debug("MDMA: probe for %x\n", pdev->device);
1247 info = (void *)id->driver_data;
1248 pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
1249 info->max_chan, info->ch_base,
1250 info->block_size, info->pimr_mask);
1252 err = pci_enable_device(pdev);
1253 if (err)
1254 goto err_enable_device;
1256 err = pci_request_regions(pdev, "intel_mid_dmac");
1257 if (err)
1258 goto err_request_regions;
1260 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1261 if (err)
1262 goto err_set_dma_mask;
1264 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1265 if (err)
1266 goto err_set_dma_mask;
1268 device = kzalloc(sizeof(*device), GFP_KERNEL);
1269 if (!device) {
1270 pr_err("ERR_MDMA:kzalloc failed probe\n");
1271 err = -ENOMEM;
1272 goto err_kzalloc;
1274 device->pdev = pci_dev_get(pdev);
1276 base_addr = pci_resource_start(pdev, 0);
1277 bar_size = pci_resource_len(pdev, 0);
1278 device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
1279 if (!device->dma_base) {
1280 pr_err("ERR_MDMA:ioremap failed\n");
1281 err = -ENOMEM;
1282 goto err_ioremap;
1284 pci_set_drvdata(pdev, device);
1285 pci_set_master(pdev);
1286 device->max_chan = info->max_chan;
1287 device->chan_base = info->ch_base;
1288 device->block_size = info->block_size;
1289 device->pimr_mask = info->pimr_mask;
1291 err = mid_setup_dma(pdev);
1292 if (err)
1293 goto err_dma;
1295 pm_runtime_put_noidle(&pdev->dev);
1296 pm_runtime_allow(&pdev->dev);
1297 return 0;
1299 err_dma:
1300 iounmap(device->dma_base);
1301 err_ioremap:
1302 pci_dev_put(pdev);
1303 kfree(device);
1304 err_kzalloc:
1305 err_set_dma_mask:
1306 pci_release_regions(pdev);
1307 pci_disable_device(pdev);
1308 err_request_regions:
1309 err_enable_device:
1310 pr_err("ERR_MDMA:Probe failed %d\n", err);
1311 return err;
1315 * intel_mid_dma_remove - PCI remove
1316 * @pdev: Controller PCI device structure
1318 * Free up all resources and data
1319 * Call shutdown_dma to complete contoller and chan cleanup
1321 static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
1323 struct middma_device *device = pci_get_drvdata(pdev);
1325 pm_runtime_get_noresume(&pdev->dev);
1326 pm_runtime_forbid(&pdev->dev);
1327 middma_shutdown(pdev);
1328 pci_dev_put(pdev);
1329 kfree(device);
1330 pci_release_regions(pdev);
1331 pci_disable_device(pdev);
1334 /* Power Management */
1336 * dma_suspend - PCI suspend function
1338 * @pci: PCI device structure
1339 * @state: PM message
1341 * This function is called by OS when a power event occurs
1343 int dma_suspend(struct pci_dev *pci, pm_message_t state)
1345 int i;
1346 struct middma_device *device = pci_get_drvdata(pci);
1347 pr_debug("MDMA: dma_suspend called\n");
1349 for (i = 0; i < device->max_chan; i++) {
1350 if (device->ch[i].in_use)
1351 return -EAGAIN;
1353 device->state = SUSPENDED;
1354 pci_save_state(pci);
1355 pci_disable_device(pci);
1356 pci_set_power_state(pci, PCI_D3hot);
1357 return 0;
1361 * dma_resume - PCI resume function
1363 * @pci: PCI device structure
1365 * This function is called by OS when a power event occurs
1367 int dma_resume(struct pci_dev *pci)
1369 int ret;
1370 struct middma_device *device = pci_get_drvdata(pci);
1372 pr_debug("MDMA: dma_resume called\n");
1373 pci_set_power_state(pci, PCI_D0);
1374 pci_restore_state(pci);
1375 ret = pci_enable_device(pci);
1376 if (ret) {
1377 pr_err("MDMA: device can't be enabled for %x\n", pci->device);
1378 return ret;
1380 device->state = RUNNING;
1381 iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1382 return 0;
1385 static int dma_runtime_suspend(struct device *dev)
1387 struct pci_dev *pci_dev = to_pci_dev(dev);
1388 struct middma_device *device = pci_get_drvdata(pci_dev);
1390 device->state = SUSPENDED;
1391 return 0;
1394 static int dma_runtime_resume(struct device *dev)
1396 struct pci_dev *pci_dev = to_pci_dev(dev);
1397 struct middma_device *device = pci_get_drvdata(pci_dev);
1399 device->state = RUNNING;
1400 iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1401 return 0;
1404 static int dma_runtime_idle(struct device *dev)
1406 struct pci_dev *pdev = to_pci_dev(dev);
1407 struct middma_device *device = pci_get_drvdata(pdev);
1408 int i;
1410 for (i = 0; i < device->max_chan; i++) {
1411 if (device->ch[i].in_use)
1412 return -EAGAIN;
1415 return pm_schedule_suspend(dev, 0);
1418 /******************************************************************************
1419 * PCI stuff
1421 static struct pci_device_id intel_mid_dma_ids[] = {
1422 { PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID), INFO(2, 6, 4095, 0x200020)},
1423 { PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID), INFO(2, 0, 2047, 0)},
1424 { PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID), INFO(2, 0, 2047, 0)},
1425 { PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID), INFO(4, 0, 4095, 0x400040)},
1426 { 0, }
1428 MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1430 static const struct dev_pm_ops intel_mid_dma_pm = {
1431 .runtime_suspend = dma_runtime_suspend,
1432 .runtime_resume = dma_runtime_resume,
1433 .runtime_idle = dma_runtime_idle,
1436 static struct pci_driver intel_mid_dma_pci_driver = {
1437 .name = "Intel MID DMA",
1438 .id_table = intel_mid_dma_ids,
1439 .probe = intel_mid_dma_probe,
1440 .remove = __devexit_p(intel_mid_dma_remove),
1441 #ifdef CONFIG_PM
1442 .suspend = dma_suspend,
1443 .resume = dma_resume,
1444 .driver = {
1445 .pm = &intel_mid_dma_pm,
1447 #endif
1450 static int __init intel_mid_dma_init(void)
1452 pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
1453 INTEL_MID_DMA_DRIVER_VERSION);
1454 return pci_register_driver(&intel_mid_dma_pci_driver);
1456 fs_initcall(intel_mid_dma_init);
1458 static void __exit intel_mid_dma_exit(void)
1460 pci_unregister_driver(&intel_mid_dma_pci_driver);
1462 module_exit(intel_mid_dma_exit);
1464 MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
1465 MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
1466 MODULE_LICENSE("GPL v2");
1467 MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);