lis3: fix regression of HP DriveGuard with 8bit chip
[linux-btrfs-devel.git] / drivers / md / md.c
blob5404b229582021c9c3811934ea73c6fa4efa1eca
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
60 #ifndef MODULE
61 static void autostart_arrays(int part);
62 #endif
64 static LIST_HEAD(pers_list);
65 static DEFINE_SPINLOCK(pers_lock);
67 static void md_print_devices(void);
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76 * Default number of read corrections we'll attempt on an rdev
77 * before ejecting it from the array. We divide the read error
78 * count by 2 for every hour elapsed between read errors.
80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83 * is 1000 KB/sec, so the extra system load does not show up that much.
84 * Increase it if you want to have more _guaranteed_ speed. Note that
85 * the RAID driver will use the maximum available bandwidth if the IO
86 * subsystem is idle. There is also an 'absolute maximum' reconstruction
87 * speed limit - in case reconstruction slows down your system despite
88 * idle IO detection.
90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91 * or /sys/block/mdX/md/sync_speed_{min,max}
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
98 return mddev->sync_speed_min ?
99 mddev->sync_speed_min : sysctl_speed_limit_min;
102 static inline int speed_max(mddev_t *mddev)
104 return mddev->sync_speed_max ?
105 mddev->sync_speed_max : sysctl_speed_limit_max;
108 static struct ctl_table_header *raid_table_header;
110 static ctl_table raid_table[] = {
112 .procname = "speed_limit_min",
113 .data = &sysctl_speed_limit_min,
114 .maxlen = sizeof(int),
115 .mode = S_IRUGO|S_IWUSR,
116 .proc_handler = proc_dointvec,
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = proc_dointvec,
128 static ctl_table raid_dir_table[] = {
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = S_IRUGO|S_IXUGO,
133 .child = raid_table,
138 static ctl_table raid_root_table[] = {
140 .procname = "dev",
141 .maxlen = 0,
142 .mode = 0555,
143 .child = raid_dir_table,
148 static const struct block_device_operations md_fops;
150 static int start_readonly;
152 /* bio_clone_mddev
153 * like bio_clone, but with a local bio set
156 static void mddev_bio_destructor(struct bio *bio)
158 mddev_t *mddev, **mddevp;
160 mddevp = (void*)bio;
161 mddev = mddevp[-1];
163 bio_free(bio, mddev->bio_set);
166 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
167 mddev_t *mddev)
169 struct bio *b;
170 mddev_t **mddevp;
172 if (!mddev || !mddev->bio_set)
173 return bio_alloc(gfp_mask, nr_iovecs);
175 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
176 mddev->bio_set);
177 if (!b)
178 return NULL;
179 mddevp = (void*)b;
180 mddevp[-1] = mddev;
181 b->bi_destructor = mddev_bio_destructor;
182 return b;
184 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
186 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
187 mddev_t *mddev)
189 struct bio *b;
190 mddev_t **mddevp;
192 if (!mddev || !mddev->bio_set)
193 return bio_clone(bio, gfp_mask);
195 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
196 mddev->bio_set);
197 if (!b)
198 return NULL;
199 mddevp = (void*)b;
200 mddevp[-1] = mddev;
201 b->bi_destructor = mddev_bio_destructor;
202 __bio_clone(b, bio);
203 if (bio_integrity(bio)) {
204 int ret;
206 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
208 if (ret < 0) {
209 bio_put(b);
210 return NULL;
214 return b;
216 EXPORT_SYMBOL_GPL(bio_clone_mddev);
218 void md_trim_bio(struct bio *bio, int offset, int size)
220 /* 'bio' is a cloned bio which we need to trim to match
221 * the given offset and size.
222 * This requires adjusting bi_sector, bi_size, and bi_io_vec
224 int i;
225 struct bio_vec *bvec;
226 int sofar = 0;
228 size <<= 9;
229 if (offset == 0 && size == bio->bi_size)
230 return;
232 bio->bi_sector += offset;
233 bio->bi_size = size;
234 offset <<= 9;
235 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
237 while (bio->bi_idx < bio->bi_vcnt &&
238 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
239 /* remove this whole bio_vec */
240 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
241 bio->bi_idx++;
243 if (bio->bi_idx < bio->bi_vcnt) {
244 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
245 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
247 /* avoid any complications with bi_idx being non-zero*/
248 if (bio->bi_idx) {
249 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
250 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
251 bio->bi_vcnt -= bio->bi_idx;
252 bio->bi_idx = 0;
254 /* Make sure vcnt and last bv are not too big */
255 bio_for_each_segment(bvec, bio, i) {
256 if (sofar + bvec->bv_len > size)
257 bvec->bv_len = size - sofar;
258 if (bvec->bv_len == 0) {
259 bio->bi_vcnt = i;
260 break;
262 sofar += bvec->bv_len;
265 EXPORT_SYMBOL_GPL(md_trim_bio);
268 * We have a system wide 'event count' that is incremented
269 * on any 'interesting' event, and readers of /proc/mdstat
270 * can use 'poll' or 'select' to find out when the event
271 * count increases.
273 * Events are:
274 * start array, stop array, error, add device, remove device,
275 * start build, activate spare
277 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
278 static atomic_t md_event_count;
279 void md_new_event(mddev_t *mddev)
281 atomic_inc(&md_event_count);
282 wake_up(&md_event_waiters);
284 EXPORT_SYMBOL_GPL(md_new_event);
286 /* Alternate version that can be called from interrupts
287 * when calling sysfs_notify isn't needed.
289 static void md_new_event_inintr(mddev_t *mddev)
291 atomic_inc(&md_event_count);
292 wake_up(&md_event_waiters);
296 * Enables to iterate over all existing md arrays
297 * all_mddevs_lock protects this list.
299 static LIST_HEAD(all_mddevs);
300 static DEFINE_SPINLOCK(all_mddevs_lock);
304 * iterates through all used mddevs in the system.
305 * We take care to grab the all_mddevs_lock whenever navigating
306 * the list, and to always hold a refcount when unlocked.
307 * Any code which breaks out of this loop while own
308 * a reference to the current mddev and must mddev_put it.
310 #define for_each_mddev(mddev,tmp) \
312 for (({ spin_lock(&all_mddevs_lock); \
313 tmp = all_mddevs.next; \
314 mddev = NULL;}); \
315 ({ if (tmp != &all_mddevs) \
316 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
317 spin_unlock(&all_mddevs_lock); \
318 if (mddev) mddev_put(mddev); \
319 mddev = list_entry(tmp, mddev_t, all_mddevs); \
320 tmp != &all_mddevs;}); \
321 ({ spin_lock(&all_mddevs_lock); \
322 tmp = tmp->next;}) \
326 /* Rather than calling directly into the personality make_request function,
327 * IO requests come here first so that we can check if the device is
328 * being suspended pending a reconfiguration.
329 * We hold a refcount over the call to ->make_request. By the time that
330 * call has finished, the bio has been linked into some internal structure
331 * and so is visible to ->quiesce(), so we don't need the refcount any more.
333 static int md_make_request(struct request_queue *q, struct bio *bio)
335 const int rw = bio_data_dir(bio);
336 mddev_t *mddev = q->queuedata;
337 int rv;
338 int cpu;
339 unsigned int sectors;
341 if (mddev == NULL || mddev->pers == NULL
342 || !mddev->ready) {
343 bio_io_error(bio);
344 return 0;
346 smp_rmb(); /* Ensure implications of 'active' are visible */
347 rcu_read_lock();
348 if (mddev->suspended) {
349 DEFINE_WAIT(__wait);
350 for (;;) {
351 prepare_to_wait(&mddev->sb_wait, &__wait,
352 TASK_UNINTERRUPTIBLE);
353 if (!mddev->suspended)
354 break;
355 rcu_read_unlock();
356 schedule();
357 rcu_read_lock();
359 finish_wait(&mddev->sb_wait, &__wait);
361 atomic_inc(&mddev->active_io);
362 rcu_read_unlock();
365 * save the sectors now since our bio can
366 * go away inside make_request
368 sectors = bio_sectors(bio);
369 rv = mddev->pers->make_request(mddev, bio);
371 cpu = part_stat_lock();
372 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
373 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
374 part_stat_unlock();
376 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
377 wake_up(&mddev->sb_wait);
379 return rv;
382 /* mddev_suspend makes sure no new requests are submitted
383 * to the device, and that any requests that have been submitted
384 * are completely handled.
385 * Once ->stop is called and completes, the module will be completely
386 * unused.
388 void mddev_suspend(mddev_t *mddev)
390 BUG_ON(mddev->suspended);
391 mddev->suspended = 1;
392 synchronize_rcu();
393 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
394 mddev->pers->quiesce(mddev, 1);
396 EXPORT_SYMBOL_GPL(mddev_suspend);
398 void mddev_resume(mddev_t *mddev)
400 mddev->suspended = 0;
401 wake_up(&mddev->sb_wait);
402 mddev->pers->quiesce(mddev, 0);
404 md_wakeup_thread(mddev->thread);
405 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
407 EXPORT_SYMBOL_GPL(mddev_resume);
409 int mddev_congested(mddev_t *mddev, int bits)
411 return mddev->suspended;
413 EXPORT_SYMBOL(mddev_congested);
416 * Generic flush handling for md
419 static void md_end_flush(struct bio *bio, int err)
421 mdk_rdev_t *rdev = bio->bi_private;
422 mddev_t *mddev = rdev->mddev;
424 rdev_dec_pending(rdev, mddev);
426 if (atomic_dec_and_test(&mddev->flush_pending)) {
427 /* The pre-request flush has finished */
428 queue_work(md_wq, &mddev->flush_work);
430 bio_put(bio);
433 static void md_submit_flush_data(struct work_struct *ws);
435 static void submit_flushes(struct work_struct *ws)
437 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
438 mdk_rdev_t *rdev;
440 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
441 atomic_set(&mddev->flush_pending, 1);
442 rcu_read_lock();
443 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
444 if (rdev->raid_disk >= 0 &&
445 !test_bit(Faulty, &rdev->flags)) {
446 /* Take two references, one is dropped
447 * when request finishes, one after
448 * we reclaim rcu_read_lock
450 struct bio *bi;
451 atomic_inc(&rdev->nr_pending);
452 atomic_inc(&rdev->nr_pending);
453 rcu_read_unlock();
454 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
455 bi->bi_end_io = md_end_flush;
456 bi->bi_private = rdev;
457 bi->bi_bdev = rdev->bdev;
458 atomic_inc(&mddev->flush_pending);
459 submit_bio(WRITE_FLUSH, bi);
460 rcu_read_lock();
461 rdev_dec_pending(rdev, mddev);
463 rcu_read_unlock();
464 if (atomic_dec_and_test(&mddev->flush_pending))
465 queue_work(md_wq, &mddev->flush_work);
468 static void md_submit_flush_data(struct work_struct *ws)
470 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
471 struct bio *bio = mddev->flush_bio;
473 if (bio->bi_size == 0)
474 /* an empty barrier - all done */
475 bio_endio(bio, 0);
476 else {
477 bio->bi_rw &= ~REQ_FLUSH;
478 if (mddev->pers->make_request(mddev, bio))
479 generic_make_request(bio);
482 mddev->flush_bio = NULL;
483 wake_up(&mddev->sb_wait);
486 void md_flush_request(mddev_t *mddev, struct bio *bio)
488 spin_lock_irq(&mddev->write_lock);
489 wait_event_lock_irq(mddev->sb_wait,
490 !mddev->flush_bio,
491 mddev->write_lock, /*nothing*/);
492 mddev->flush_bio = bio;
493 spin_unlock_irq(&mddev->write_lock);
495 INIT_WORK(&mddev->flush_work, submit_flushes);
496 queue_work(md_wq, &mddev->flush_work);
498 EXPORT_SYMBOL(md_flush_request);
500 /* Support for plugging.
501 * This mirrors the plugging support in request_queue, but does not
502 * require having a whole queue or request structures.
503 * We allocate an md_plug_cb for each md device and each thread it gets
504 * plugged on. This links tot the private plug_handle structure in the
505 * personality data where we keep a count of the number of outstanding
506 * plugs so other code can see if a plug is active.
508 struct md_plug_cb {
509 struct blk_plug_cb cb;
510 mddev_t *mddev;
513 static void plugger_unplug(struct blk_plug_cb *cb)
515 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
516 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
517 md_wakeup_thread(mdcb->mddev->thread);
518 kfree(mdcb);
521 /* Check that an unplug wakeup will come shortly.
522 * If not, wakeup the md thread immediately
524 int mddev_check_plugged(mddev_t *mddev)
526 struct blk_plug *plug = current->plug;
527 struct md_plug_cb *mdcb;
529 if (!plug)
530 return 0;
532 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
533 if (mdcb->cb.callback == plugger_unplug &&
534 mdcb->mddev == mddev) {
535 /* Already on the list, move to top */
536 if (mdcb != list_first_entry(&plug->cb_list,
537 struct md_plug_cb,
538 cb.list))
539 list_move(&mdcb->cb.list, &plug->cb_list);
540 return 1;
543 /* Not currently on the callback list */
544 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
545 if (!mdcb)
546 return 0;
548 mdcb->mddev = mddev;
549 mdcb->cb.callback = plugger_unplug;
550 atomic_inc(&mddev->plug_cnt);
551 list_add(&mdcb->cb.list, &plug->cb_list);
552 return 1;
554 EXPORT_SYMBOL_GPL(mddev_check_plugged);
556 static inline mddev_t *mddev_get(mddev_t *mddev)
558 atomic_inc(&mddev->active);
559 return mddev;
562 static void mddev_delayed_delete(struct work_struct *ws);
564 static void mddev_put(mddev_t *mddev)
566 struct bio_set *bs = NULL;
568 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
569 return;
570 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
571 mddev->ctime == 0 && !mddev->hold_active) {
572 /* Array is not configured at all, and not held active,
573 * so destroy it */
574 list_del(&mddev->all_mddevs);
575 bs = mddev->bio_set;
576 mddev->bio_set = NULL;
577 if (mddev->gendisk) {
578 /* We did a probe so need to clean up. Call
579 * queue_work inside the spinlock so that
580 * flush_workqueue() after mddev_find will
581 * succeed in waiting for the work to be done.
583 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
584 queue_work(md_misc_wq, &mddev->del_work);
585 } else
586 kfree(mddev);
588 spin_unlock(&all_mddevs_lock);
589 if (bs)
590 bioset_free(bs);
593 void mddev_init(mddev_t *mddev)
595 mutex_init(&mddev->open_mutex);
596 mutex_init(&mddev->reconfig_mutex);
597 mutex_init(&mddev->bitmap_info.mutex);
598 INIT_LIST_HEAD(&mddev->disks);
599 INIT_LIST_HEAD(&mddev->all_mddevs);
600 init_timer(&mddev->safemode_timer);
601 atomic_set(&mddev->active, 1);
602 atomic_set(&mddev->openers, 0);
603 atomic_set(&mddev->active_io, 0);
604 atomic_set(&mddev->plug_cnt, 0);
605 spin_lock_init(&mddev->write_lock);
606 atomic_set(&mddev->flush_pending, 0);
607 init_waitqueue_head(&mddev->sb_wait);
608 init_waitqueue_head(&mddev->recovery_wait);
609 mddev->reshape_position = MaxSector;
610 mddev->resync_min = 0;
611 mddev->resync_max = MaxSector;
612 mddev->level = LEVEL_NONE;
614 EXPORT_SYMBOL_GPL(mddev_init);
616 static mddev_t * mddev_find(dev_t unit)
618 mddev_t *mddev, *new = NULL;
620 if (unit && MAJOR(unit) != MD_MAJOR)
621 unit &= ~((1<<MdpMinorShift)-1);
623 retry:
624 spin_lock(&all_mddevs_lock);
626 if (unit) {
627 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
628 if (mddev->unit == unit) {
629 mddev_get(mddev);
630 spin_unlock(&all_mddevs_lock);
631 kfree(new);
632 return mddev;
635 if (new) {
636 list_add(&new->all_mddevs, &all_mddevs);
637 spin_unlock(&all_mddevs_lock);
638 new->hold_active = UNTIL_IOCTL;
639 return new;
641 } else if (new) {
642 /* find an unused unit number */
643 static int next_minor = 512;
644 int start = next_minor;
645 int is_free = 0;
646 int dev = 0;
647 while (!is_free) {
648 dev = MKDEV(MD_MAJOR, next_minor);
649 next_minor++;
650 if (next_minor > MINORMASK)
651 next_minor = 0;
652 if (next_minor == start) {
653 /* Oh dear, all in use. */
654 spin_unlock(&all_mddevs_lock);
655 kfree(new);
656 return NULL;
659 is_free = 1;
660 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
661 if (mddev->unit == dev) {
662 is_free = 0;
663 break;
666 new->unit = dev;
667 new->md_minor = MINOR(dev);
668 new->hold_active = UNTIL_STOP;
669 list_add(&new->all_mddevs, &all_mddevs);
670 spin_unlock(&all_mddevs_lock);
671 return new;
673 spin_unlock(&all_mddevs_lock);
675 new = kzalloc(sizeof(*new), GFP_KERNEL);
676 if (!new)
677 return NULL;
679 new->unit = unit;
680 if (MAJOR(unit) == MD_MAJOR)
681 new->md_minor = MINOR(unit);
682 else
683 new->md_minor = MINOR(unit) >> MdpMinorShift;
685 mddev_init(new);
687 goto retry;
690 static inline int mddev_lock(mddev_t * mddev)
692 return mutex_lock_interruptible(&mddev->reconfig_mutex);
695 static inline int mddev_is_locked(mddev_t *mddev)
697 return mutex_is_locked(&mddev->reconfig_mutex);
700 static inline int mddev_trylock(mddev_t * mddev)
702 return mutex_trylock(&mddev->reconfig_mutex);
705 static struct attribute_group md_redundancy_group;
707 static void mddev_unlock(mddev_t * mddev)
709 if (mddev->to_remove) {
710 /* These cannot be removed under reconfig_mutex as
711 * an access to the files will try to take reconfig_mutex
712 * while holding the file unremovable, which leads to
713 * a deadlock.
714 * So hold set sysfs_active while the remove in happeing,
715 * and anything else which might set ->to_remove or my
716 * otherwise change the sysfs namespace will fail with
717 * -EBUSY if sysfs_active is still set.
718 * We set sysfs_active under reconfig_mutex and elsewhere
719 * test it under the same mutex to ensure its correct value
720 * is seen.
722 struct attribute_group *to_remove = mddev->to_remove;
723 mddev->to_remove = NULL;
724 mddev->sysfs_active = 1;
725 mutex_unlock(&mddev->reconfig_mutex);
727 if (mddev->kobj.sd) {
728 if (to_remove != &md_redundancy_group)
729 sysfs_remove_group(&mddev->kobj, to_remove);
730 if (mddev->pers == NULL ||
731 mddev->pers->sync_request == NULL) {
732 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
733 if (mddev->sysfs_action)
734 sysfs_put(mddev->sysfs_action);
735 mddev->sysfs_action = NULL;
738 mddev->sysfs_active = 0;
739 } else
740 mutex_unlock(&mddev->reconfig_mutex);
742 md_wakeup_thread(mddev->thread);
745 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
747 mdk_rdev_t *rdev;
749 list_for_each_entry(rdev, &mddev->disks, same_set)
750 if (rdev->desc_nr == nr)
751 return rdev;
753 return NULL;
756 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
758 mdk_rdev_t *rdev;
760 list_for_each_entry(rdev, &mddev->disks, same_set)
761 if (rdev->bdev->bd_dev == dev)
762 return rdev;
764 return NULL;
767 static struct mdk_personality *find_pers(int level, char *clevel)
769 struct mdk_personality *pers;
770 list_for_each_entry(pers, &pers_list, list) {
771 if (level != LEVEL_NONE && pers->level == level)
772 return pers;
773 if (strcmp(pers->name, clevel)==0)
774 return pers;
776 return NULL;
779 /* return the offset of the super block in 512byte sectors */
780 static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
782 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
783 return MD_NEW_SIZE_SECTORS(num_sectors);
786 static int alloc_disk_sb(mdk_rdev_t * rdev)
788 if (rdev->sb_page)
789 MD_BUG();
791 rdev->sb_page = alloc_page(GFP_KERNEL);
792 if (!rdev->sb_page) {
793 printk(KERN_ALERT "md: out of memory.\n");
794 return -ENOMEM;
797 return 0;
800 static void free_disk_sb(mdk_rdev_t * rdev)
802 if (rdev->sb_page) {
803 put_page(rdev->sb_page);
804 rdev->sb_loaded = 0;
805 rdev->sb_page = NULL;
806 rdev->sb_start = 0;
807 rdev->sectors = 0;
809 if (rdev->bb_page) {
810 put_page(rdev->bb_page);
811 rdev->bb_page = NULL;
816 static void super_written(struct bio *bio, int error)
818 mdk_rdev_t *rdev = bio->bi_private;
819 mddev_t *mddev = rdev->mddev;
821 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
822 printk("md: super_written gets error=%d, uptodate=%d\n",
823 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
824 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
825 md_error(mddev, rdev);
828 if (atomic_dec_and_test(&mddev->pending_writes))
829 wake_up(&mddev->sb_wait);
830 bio_put(bio);
833 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
834 sector_t sector, int size, struct page *page)
836 /* write first size bytes of page to sector of rdev
837 * Increment mddev->pending_writes before returning
838 * and decrement it on completion, waking up sb_wait
839 * if zero is reached.
840 * If an error occurred, call md_error
842 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
844 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
845 bio->bi_sector = sector;
846 bio_add_page(bio, page, size, 0);
847 bio->bi_private = rdev;
848 bio->bi_end_io = super_written;
850 atomic_inc(&mddev->pending_writes);
851 submit_bio(WRITE_FLUSH_FUA, bio);
854 void md_super_wait(mddev_t *mddev)
856 /* wait for all superblock writes that were scheduled to complete */
857 DEFINE_WAIT(wq);
858 for(;;) {
859 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
860 if (atomic_read(&mddev->pending_writes)==0)
861 break;
862 schedule();
864 finish_wait(&mddev->sb_wait, &wq);
867 static void bi_complete(struct bio *bio, int error)
869 complete((struct completion*)bio->bi_private);
872 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
873 struct page *page, int rw, bool metadata_op)
875 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
876 struct completion event;
877 int ret;
879 rw |= REQ_SYNC;
881 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
882 rdev->meta_bdev : rdev->bdev;
883 if (metadata_op)
884 bio->bi_sector = sector + rdev->sb_start;
885 else
886 bio->bi_sector = sector + rdev->data_offset;
887 bio_add_page(bio, page, size, 0);
888 init_completion(&event);
889 bio->bi_private = &event;
890 bio->bi_end_io = bi_complete;
891 submit_bio(rw, bio);
892 wait_for_completion(&event);
894 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
895 bio_put(bio);
896 return ret;
898 EXPORT_SYMBOL_GPL(sync_page_io);
900 static int read_disk_sb(mdk_rdev_t * rdev, int size)
902 char b[BDEVNAME_SIZE];
903 if (!rdev->sb_page) {
904 MD_BUG();
905 return -EINVAL;
907 if (rdev->sb_loaded)
908 return 0;
911 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
912 goto fail;
913 rdev->sb_loaded = 1;
914 return 0;
916 fail:
917 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
918 bdevname(rdev->bdev,b));
919 return -EINVAL;
922 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
924 return sb1->set_uuid0 == sb2->set_uuid0 &&
925 sb1->set_uuid1 == sb2->set_uuid1 &&
926 sb1->set_uuid2 == sb2->set_uuid2 &&
927 sb1->set_uuid3 == sb2->set_uuid3;
930 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
932 int ret;
933 mdp_super_t *tmp1, *tmp2;
935 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
936 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
938 if (!tmp1 || !tmp2) {
939 ret = 0;
940 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
941 goto abort;
944 *tmp1 = *sb1;
945 *tmp2 = *sb2;
948 * nr_disks is not constant
950 tmp1->nr_disks = 0;
951 tmp2->nr_disks = 0;
953 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
954 abort:
955 kfree(tmp1);
956 kfree(tmp2);
957 return ret;
961 static u32 md_csum_fold(u32 csum)
963 csum = (csum & 0xffff) + (csum >> 16);
964 return (csum & 0xffff) + (csum >> 16);
967 static unsigned int calc_sb_csum(mdp_super_t * sb)
969 u64 newcsum = 0;
970 u32 *sb32 = (u32*)sb;
971 int i;
972 unsigned int disk_csum, csum;
974 disk_csum = sb->sb_csum;
975 sb->sb_csum = 0;
977 for (i = 0; i < MD_SB_BYTES/4 ; i++)
978 newcsum += sb32[i];
979 csum = (newcsum & 0xffffffff) + (newcsum>>32);
982 #ifdef CONFIG_ALPHA
983 /* This used to use csum_partial, which was wrong for several
984 * reasons including that different results are returned on
985 * different architectures. It isn't critical that we get exactly
986 * the same return value as before (we always csum_fold before
987 * testing, and that removes any differences). However as we
988 * know that csum_partial always returned a 16bit value on
989 * alphas, do a fold to maximise conformity to previous behaviour.
991 sb->sb_csum = md_csum_fold(disk_csum);
992 #else
993 sb->sb_csum = disk_csum;
994 #endif
995 return csum;
1000 * Handle superblock details.
1001 * We want to be able to handle multiple superblock formats
1002 * so we have a common interface to them all, and an array of
1003 * different handlers.
1004 * We rely on user-space to write the initial superblock, and support
1005 * reading and updating of superblocks.
1006 * Interface methods are:
1007 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
1008 * loads and validates a superblock on dev.
1009 * if refdev != NULL, compare superblocks on both devices
1010 * Return:
1011 * 0 - dev has a superblock that is compatible with refdev
1012 * 1 - dev has a superblock that is compatible and newer than refdev
1013 * so dev should be used as the refdev in future
1014 * -EINVAL superblock incompatible or invalid
1015 * -othererror e.g. -EIO
1017 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
1018 * Verify that dev is acceptable into mddev.
1019 * The first time, mddev->raid_disks will be 0, and data from
1020 * dev should be merged in. Subsequent calls check that dev
1021 * is new enough. Return 0 or -EINVAL
1023 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
1024 * Update the superblock for rdev with data in mddev
1025 * This does not write to disc.
1029 struct super_type {
1030 char *name;
1031 struct module *owner;
1032 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
1033 int minor_version);
1034 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
1035 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
1036 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
1037 sector_t num_sectors);
1041 * Check that the given mddev has no bitmap.
1043 * This function is called from the run method of all personalities that do not
1044 * support bitmaps. It prints an error message and returns non-zero if mddev
1045 * has a bitmap. Otherwise, it returns 0.
1048 int md_check_no_bitmap(mddev_t *mddev)
1050 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1051 return 0;
1052 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1053 mdname(mddev), mddev->pers->name);
1054 return 1;
1056 EXPORT_SYMBOL(md_check_no_bitmap);
1059 * load_super for 0.90.0
1061 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1063 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1064 mdp_super_t *sb;
1065 int ret;
1068 * Calculate the position of the superblock (512byte sectors),
1069 * it's at the end of the disk.
1071 * It also happens to be a multiple of 4Kb.
1073 rdev->sb_start = calc_dev_sboffset(rdev);
1075 ret = read_disk_sb(rdev, MD_SB_BYTES);
1076 if (ret) return ret;
1078 ret = -EINVAL;
1080 bdevname(rdev->bdev, b);
1081 sb = page_address(rdev->sb_page);
1083 if (sb->md_magic != MD_SB_MAGIC) {
1084 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1086 goto abort;
1089 if (sb->major_version != 0 ||
1090 sb->minor_version < 90 ||
1091 sb->minor_version > 91) {
1092 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1093 sb->major_version, sb->minor_version,
1095 goto abort;
1098 if (sb->raid_disks <= 0)
1099 goto abort;
1101 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1102 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1104 goto abort;
1107 rdev->preferred_minor = sb->md_minor;
1108 rdev->data_offset = 0;
1109 rdev->sb_size = MD_SB_BYTES;
1110 rdev->badblocks.shift = -1;
1112 if (sb->level == LEVEL_MULTIPATH)
1113 rdev->desc_nr = -1;
1114 else
1115 rdev->desc_nr = sb->this_disk.number;
1117 if (!refdev) {
1118 ret = 1;
1119 } else {
1120 __u64 ev1, ev2;
1121 mdp_super_t *refsb = page_address(refdev->sb_page);
1122 if (!uuid_equal(refsb, sb)) {
1123 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1124 b, bdevname(refdev->bdev,b2));
1125 goto abort;
1127 if (!sb_equal(refsb, sb)) {
1128 printk(KERN_WARNING "md: %s has same UUID"
1129 " but different superblock to %s\n",
1130 b, bdevname(refdev->bdev, b2));
1131 goto abort;
1133 ev1 = md_event(sb);
1134 ev2 = md_event(refsb);
1135 if (ev1 > ev2)
1136 ret = 1;
1137 else
1138 ret = 0;
1140 rdev->sectors = rdev->sb_start;
1141 /* Limit to 4TB as metadata cannot record more than that */
1142 if (rdev->sectors >= (2ULL << 32))
1143 rdev->sectors = (2ULL << 32) - 2;
1145 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1146 /* "this cannot possibly happen" ... */
1147 ret = -EINVAL;
1149 abort:
1150 return ret;
1154 * validate_super for 0.90.0
1156 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1158 mdp_disk_t *desc;
1159 mdp_super_t *sb = page_address(rdev->sb_page);
1160 __u64 ev1 = md_event(sb);
1162 rdev->raid_disk = -1;
1163 clear_bit(Faulty, &rdev->flags);
1164 clear_bit(In_sync, &rdev->flags);
1165 clear_bit(WriteMostly, &rdev->flags);
1167 if (mddev->raid_disks == 0) {
1168 mddev->major_version = 0;
1169 mddev->minor_version = sb->minor_version;
1170 mddev->patch_version = sb->patch_version;
1171 mddev->external = 0;
1172 mddev->chunk_sectors = sb->chunk_size >> 9;
1173 mddev->ctime = sb->ctime;
1174 mddev->utime = sb->utime;
1175 mddev->level = sb->level;
1176 mddev->clevel[0] = 0;
1177 mddev->layout = sb->layout;
1178 mddev->raid_disks = sb->raid_disks;
1179 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1180 mddev->events = ev1;
1181 mddev->bitmap_info.offset = 0;
1182 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1184 if (mddev->minor_version >= 91) {
1185 mddev->reshape_position = sb->reshape_position;
1186 mddev->delta_disks = sb->delta_disks;
1187 mddev->new_level = sb->new_level;
1188 mddev->new_layout = sb->new_layout;
1189 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1190 } else {
1191 mddev->reshape_position = MaxSector;
1192 mddev->delta_disks = 0;
1193 mddev->new_level = mddev->level;
1194 mddev->new_layout = mddev->layout;
1195 mddev->new_chunk_sectors = mddev->chunk_sectors;
1198 if (sb->state & (1<<MD_SB_CLEAN))
1199 mddev->recovery_cp = MaxSector;
1200 else {
1201 if (sb->events_hi == sb->cp_events_hi &&
1202 sb->events_lo == sb->cp_events_lo) {
1203 mddev->recovery_cp = sb->recovery_cp;
1204 } else
1205 mddev->recovery_cp = 0;
1208 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1209 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1210 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1211 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1213 mddev->max_disks = MD_SB_DISKS;
1215 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1216 mddev->bitmap_info.file == NULL)
1217 mddev->bitmap_info.offset =
1218 mddev->bitmap_info.default_offset;
1220 } else if (mddev->pers == NULL) {
1221 /* Insist on good event counter while assembling, except
1222 * for spares (which don't need an event count) */
1223 ++ev1;
1224 if (sb->disks[rdev->desc_nr].state & (
1225 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1226 if (ev1 < mddev->events)
1227 return -EINVAL;
1228 } else if (mddev->bitmap) {
1229 /* if adding to array with a bitmap, then we can accept an
1230 * older device ... but not too old.
1232 if (ev1 < mddev->bitmap->events_cleared)
1233 return 0;
1234 } else {
1235 if (ev1 < mddev->events)
1236 /* just a hot-add of a new device, leave raid_disk at -1 */
1237 return 0;
1240 if (mddev->level != LEVEL_MULTIPATH) {
1241 desc = sb->disks + rdev->desc_nr;
1243 if (desc->state & (1<<MD_DISK_FAULTY))
1244 set_bit(Faulty, &rdev->flags);
1245 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1246 desc->raid_disk < mddev->raid_disks */) {
1247 set_bit(In_sync, &rdev->flags);
1248 rdev->raid_disk = desc->raid_disk;
1249 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1250 /* active but not in sync implies recovery up to
1251 * reshape position. We don't know exactly where
1252 * that is, so set to zero for now */
1253 if (mddev->minor_version >= 91) {
1254 rdev->recovery_offset = 0;
1255 rdev->raid_disk = desc->raid_disk;
1258 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1259 set_bit(WriteMostly, &rdev->flags);
1260 } else /* MULTIPATH are always insync */
1261 set_bit(In_sync, &rdev->flags);
1262 return 0;
1266 * sync_super for 0.90.0
1268 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1270 mdp_super_t *sb;
1271 mdk_rdev_t *rdev2;
1272 int next_spare = mddev->raid_disks;
1275 /* make rdev->sb match mddev data..
1277 * 1/ zero out disks
1278 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1279 * 3/ any empty disks < next_spare become removed
1281 * disks[0] gets initialised to REMOVED because
1282 * we cannot be sure from other fields if it has
1283 * been initialised or not.
1285 int i;
1286 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1288 rdev->sb_size = MD_SB_BYTES;
1290 sb = page_address(rdev->sb_page);
1292 memset(sb, 0, sizeof(*sb));
1294 sb->md_magic = MD_SB_MAGIC;
1295 sb->major_version = mddev->major_version;
1296 sb->patch_version = mddev->patch_version;
1297 sb->gvalid_words = 0; /* ignored */
1298 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1299 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1300 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1301 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1303 sb->ctime = mddev->ctime;
1304 sb->level = mddev->level;
1305 sb->size = mddev->dev_sectors / 2;
1306 sb->raid_disks = mddev->raid_disks;
1307 sb->md_minor = mddev->md_minor;
1308 sb->not_persistent = 0;
1309 sb->utime = mddev->utime;
1310 sb->state = 0;
1311 sb->events_hi = (mddev->events>>32);
1312 sb->events_lo = (u32)mddev->events;
1314 if (mddev->reshape_position == MaxSector)
1315 sb->minor_version = 90;
1316 else {
1317 sb->minor_version = 91;
1318 sb->reshape_position = mddev->reshape_position;
1319 sb->new_level = mddev->new_level;
1320 sb->delta_disks = mddev->delta_disks;
1321 sb->new_layout = mddev->new_layout;
1322 sb->new_chunk = mddev->new_chunk_sectors << 9;
1324 mddev->minor_version = sb->minor_version;
1325 if (mddev->in_sync)
1327 sb->recovery_cp = mddev->recovery_cp;
1328 sb->cp_events_hi = (mddev->events>>32);
1329 sb->cp_events_lo = (u32)mddev->events;
1330 if (mddev->recovery_cp == MaxSector)
1331 sb->state = (1<< MD_SB_CLEAN);
1332 } else
1333 sb->recovery_cp = 0;
1335 sb->layout = mddev->layout;
1336 sb->chunk_size = mddev->chunk_sectors << 9;
1338 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1339 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1341 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1342 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1343 mdp_disk_t *d;
1344 int desc_nr;
1345 int is_active = test_bit(In_sync, &rdev2->flags);
1347 if (rdev2->raid_disk >= 0 &&
1348 sb->minor_version >= 91)
1349 /* we have nowhere to store the recovery_offset,
1350 * but if it is not below the reshape_position,
1351 * we can piggy-back on that.
1353 is_active = 1;
1354 if (rdev2->raid_disk < 0 ||
1355 test_bit(Faulty, &rdev2->flags))
1356 is_active = 0;
1357 if (is_active)
1358 desc_nr = rdev2->raid_disk;
1359 else
1360 desc_nr = next_spare++;
1361 rdev2->desc_nr = desc_nr;
1362 d = &sb->disks[rdev2->desc_nr];
1363 nr_disks++;
1364 d->number = rdev2->desc_nr;
1365 d->major = MAJOR(rdev2->bdev->bd_dev);
1366 d->minor = MINOR(rdev2->bdev->bd_dev);
1367 if (is_active)
1368 d->raid_disk = rdev2->raid_disk;
1369 else
1370 d->raid_disk = rdev2->desc_nr; /* compatibility */
1371 if (test_bit(Faulty, &rdev2->flags))
1372 d->state = (1<<MD_DISK_FAULTY);
1373 else if (is_active) {
1374 d->state = (1<<MD_DISK_ACTIVE);
1375 if (test_bit(In_sync, &rdev2->flags))
1376 d->state |= (1<<MD_DISK_SYNC);
1377 active++;
1378 working++;
1379 } else {
1380 d->state = 0;
1381 spare++;
1382 working++;
1384 if (test_bit(WriteMostly, &rdev2->flags))
1385 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1387 /* now set the "removed" and "faulty" bits on any missing devices */
1388 for (i=0 ; i < mddev->raid_disks ; i++) {
1389 mdp_disk_t *d = &sb->disks[i];
1390 if (d->state == 0 && d->number == 0) {
1391 d->number = i;
1392 d->raid_disk = i;
1393 d->state = (1<<MD_DISK_REMOVED);
1394 d->state |= (1<<MD_DISK_FAULTY);
1395 failed++;
1398 sb->nr_disks = nr_disks;
1399 sb->active_disks = active;
1400 sb->working_disks = working;
1401 sb->failed_disks = failed;
1402 sb->spare_disks = spare;
1404 sb->this_disk = sb->disks[rdev->desc_nr];
1405 sb->sb_csum = calc_sb_csum(sb);
1409 * rdev_size_change for 0.90.0
1411 static unsigned long long
1412 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1414 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1415 return 0; /* component must fit device */
1416 if (rdev->mddev->bitmap_info.offset)
1417 return 0; /* can't move bitmap */
1418 rdev->sb_start = calc_dev_sboffset(rdev);
1419 if (!num_sectors || num_sectors > rdev->sb_start)
1420 num_sectors = rdev->sb_start;
1421 /* Limit to 4TB as metadata cannot record more than that.
1422 * 4TB == 2^32 KB, or 2*2^32 sectors.
1424 if (num_sectors >= (2ULL << 32))
1425 num_sectors = (2ULL << 32) - 2;
1426 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1427 rdev->sb_page);
1428 md_super_wait(rdev->mddev);
1429 return num_sectors;
1434 * version 1 superblock
1437 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1439 __le32 disk_csum;
1440 u32 csum;
1441 unsigned long long newcsum;
1442 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1443 __le32 *isuper = (__le32*)sb;
1444 int i;
1446 disk_csum = sb->sb_csum;
1447 sb->sb_csum = 0;
1448 newcsum = 0;
1449 for (i=0; size>=4; size -= 4 )
1450 newcsum += le32_to_cpu(*isuper++);
1452 if (size == 2)
1453 newcsum += le16_to_cpu(*(__le16*) isuper);
1455 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1456 sb->sb_csum = disk_csum;
1457 return cpu_to_le32(csum);
1460 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1461 int acknowledged);
1462 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1464 struct mdp_superblock_1 *sb;
1465 int ret;
1466 sector_t sb_start;
1467 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1468 int bmask;
1471 * Calculate the position of the superblock in 512byte sectors.
1472 * It is always aligned to a 4K boundary and
1473 * depeding on minor_version, it can be:
1474 * 0: At least 8K, but less than 12K, from end of device
1475 * 1: At start of device
1476 * 2: 4K from start of device.
1478 switch(minor_version) {
1479 case 0:
1480 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1481 sb_start -= 8*2;
1482 sb_start &= ~(sector_t)(4*2-1);
1483 break;
1484 case 1:
1485 sb_start = 0;
1486 break;
1487 case 2:
1488 sb_start = 8;
1489 break;
1490 default:
1491 return -EINVAL;
1493 rdev->sb_start = sb_start;
1495 /* superblock is rarely larger than 1K, but it can be larger,
1496 * and it is safe to read 4k, so we do that
1498 ret = read_disk_sb(rdev, 4096);
1499 if (ret) return ret;
1502 sb = page_address(rdev->sb_page);
1504 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1505 sb->major_version != cpu_to_le32(1) ||
1506 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1507 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1508 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1509 return -EINVAL;
1511 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1512 printk("md: invalid superblock checksum on %s\n",
1513 bdevname(rdev->bdev,b));
1514 return -EINVAL;
1516 if (le64_to_cpu(sb->data_size) < 10) {
1517 printk("md: data_size too small on %s\n",
1518 bdevname(rdev->bdev,b));
1519 return -EINVAL;
1522 rdev->preferred_minor = 0xffff;
1523 rdev->data_offset = le64_to_cpu(sb->data_offset);
1524 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1526 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1527 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1528 if (rdev->sb_size & bmask)
1529 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1531 if (minor_version
1532 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1533 return -EINVAL;
1535 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1536 rdev->desc_nr = -1;
1537 else
1538 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1540 if (!rdev->bb_page) {
1541 rdev->bb_page = alloc_page(GFP_KERNEL);
1542 if (!rdev->bb_page)
1543 return -ENOMEM;
1545 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1546 rdev->badblocks.count == 0) {
1547 /* need to load the bad block list.
1548 * Currently we limit it to one page.
1550 s32 offset;
1551 sector_t bb_sector;
1552 u64 *bbp;
1553 int i;
1554 int sectors = le16_to_cpu(sb->bblog_size);
1555 if (sectors > (PAGE_SIZE / 512))
1556 return -EINVAL;
1557 offset = le32_to_cpu(sb->bblog_offset);
1558 if (offset == 0)
1559 return -EINVAL;
1560 bb_sector = (long long)offset;
1561 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1562 rdev->bb_page, READ, true))
1563 return -EIO;
1564 bbp = (u64 *)page_address(rdev->bb_page);
1565 rdev->badblocks.shift = sb->bblog_shift;
1566 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1567 u64 bb = le64_to_cpu(*bbp);
1568 int count = bb & (0x3ff);
1569 u64 sector = bb >> 10;
1570 sector <<= sb->bblog_shift;
1571 count <<= sb->bblog_shift;
1572 if (bb + 1 == 0)
1573 break;
1574 if (md_set_badblocks(&rdev->badblocks,
1575 sector, count, 1) == 0)
1576 return -EINVAL;
1578 } else if (sb->bblog_offset == 0)
1579 rdev->badblocks.shift = -1;
1581 if (!refdev) {
1582 ret = 1;
1583 } else {
1584 __u64 ev1, ev2;
1585 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1587 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1588 sb->level != refsb->level ||
1589 sb->layout != refsb->layout ||
1590 sb->chunksize != refsb->chunksize) {
1591 printk(KERN_WARNING "md: %s has strangely different"
1592 " superblock to %s\n",
1593 bdevname(rdev->bdev,b),
1594 bdevname(refdev->bdev,b2));
1595 return -EINVAL;
1597 ev1 = le64_to_cpu(sb->events);
1598 ev2 = le64_to_cpu(refsb->events);
1600 if (ev1 > ev2)
1601 ret = 1;
1602 else
1603 ret = 0;
1605 if (minor_version)
1606 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1607 le64_to_cpu(sb->data_offset);
1608 else
1609 rdev->sectors = rdev->sb_start;
1610 if (rdev->sectors < le64_to_cpu(sb->data_size))
1611 return -EINVAL;
1612 rdev->sectors = le64_to_cpu(sb->data_size);
1613 if (le64_to_cpu(sb->size) > rdev->sectors)
1614 return -EINVAL;
1615 return ret;
1618 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1620 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1621 __u64 ev1 = le64_to_cpu(sb->events);
1623 rdev->raid_disk = -1;
1624 clear_bit(Faulty, &rdev->flags);
1625 clear_bit(In_sync, &rdev->flags);
1626 clear_bit(WriteMostly, &rdev->flags);
1628 if (mddev->raid_disks == 0) {
1629 mddev->major_version = 1;
1630 mddev->patch_version = 0;
1631 mddev->external = 0;
1632 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1633 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1634 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1635 mddev->level = le32_to_cpu(sb->level);
1636 mddev->clevel[0] = 0;
1637 mddev->layout = le32_to_cpu(sb->layout);
1638 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1639 mddev->dev_sectors = le64_to_cpu(sb->size);
1640 mddev->events = ev1;
1641 mddev->bitmap_info.offset = 0;
1642 mddev->bitmap_info.default_offset = 1024 >> 9;
1644 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1645 memcpy(mddev->uuid, sb->set_uuid, 16);
1647 mddev->max_disks = (4096-256)/2;
1649 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1650 mddev->bitmap_info.file == NULL )
1651 mddev->bitmap_info.offset =
1652 (__s32)le32_to_cpu(sb->bitmap_offset);
1654 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1655 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1656 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1657 mddev->new_level = le32_to_cpu(sb->new_level);
1658 mddev->new_layout = le32_to_cpu(sb->new_layout);
1659 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1660 } else {
1661 mddev->reshape_position = MaxSector;
1662 mddev->delta_disks = 0;
1663 mddev->new_level = mddev->level;
1664 mddev->new_layout = mddev->layout;
1665 mddev->new_chunk_sectors = mddev->chunk_sectors;
1668 } else if (mddev->pers == NULL) {
1669 /* Insist of good event counter while assembling, except for
1670 * spares (which don't need an event count) */
1671 ++ev1;
1672 if (rdev->desc_nr >= 0 &&
1673 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1674 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1675 if (ev1 < mddev->events)
1676 return -EINVAL;
1677 } else if (mddev->bitmap) {
1678 /* If adding to array with a bitmap, then we can accept an
1679 * older device, but not too old.
1681 if (ev1 < mddev->bitmap->events_cleared)
1682 return 0;
1683 } else {
1684 if (ev1 < mddev->events)
1685 /* just a hot-add of a new device, leave raid_disk at -1 */
1686 return 0;
1688 if (mddev->level != LEVEL_MULTIPATH) {
1689 int role;
1690 if (rdev->desc_nr < 0 ||
1691 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1692 role = 0xffff;
1693 rdev->desc_nr = -1;
1694 } else
1695 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1696 switch(role) {
1697 case 0xffff: /* spare */
1698 break;
1699 case 0xfffe: /* faulty */
1700 set_bit(Faulty, &rdev->flags);
1701 break;
1702 default:
1703 if ((le32_to_cpu(sb->feature_map) &
1704 MD_FEATURE_RECOVERY_OFFSET))
1705 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1706 else
1707 set_bit(In_sync, &rdev->flags);
1708 rdev->raid_disk = role;
1709 break;
1711 if (sb->devflags & WriteMostly1)
1712 set_bit(WriteMostly, &rdev->flags);
1713 } else /* MULTIPATH are always insync */
1714 set_bit(In_sync, &rdev->flags);
1716 return 0;
1719 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1721 struct mdp_superblock_1 *sb;
1722 mdk_rdev_t *rdev2;
1723 int max_dev, i;
1724 /* make rdev->sb match mddev and rdev data. */
1726 sb = page_address(rdev->sb_page);
1728 sb->feature_map = 0;
1729 sb->pad0 = 0;
1730 sb->recovery_offset = cpu_to_le64(0);
1731 memset(sb->pad1, 0, sizeof(sb->pad1));
1732 memset(sb->pad3, 0, sizeof(sb->pad3));
1734 sb->utime = cpu_to_le64((__u64)mddev->utime);
1735 sb->events = cpu_to_le64(mddev->events);
1736 if (mddev->in_sync)
1737 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1738 else
1739 sb->resync_offset = cpu_to_le64(0);
1741 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1743 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1744 sb->size = cpu_to_le64(mddev->dev_sectors);
1745 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1746 sb->level = cpu_to_le32(mddev->level);
1747 sb->layout = cpu_to_le32(mddev->layout);
1749 if (test_bit(WriteMostly, &rdev->flags))
1750 sb->devflags |= WriteMostly1;
1751 else
1752 sb->devflags &= ~WriteMostly1;
1754 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1755 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1756 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1759 if (rdev->raid_disk >= 0 &&
1760 !test_bit(In_sync, &rdev->flags)) {
1761 sb->feature_map |=
1762 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1763 sb->recovery_offset =
1764 cpu_to_le64(rdev->recovery_offset);
1767 if (mddev->reshape_position != MaxSector) {
1768 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1769 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1770 sb->new_layout = cpu_to_le32(mddev->new_layout);
1771 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1772 sb->new_level = cpu_to_le32(mddev->new_level);
1773 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1776 if (rdev->badblocks.count == 0)
1777 /* Nothing to do for bad blocks*/ ;
1778 else if (sb->bblog_offset == 0)
1779 /* Cannot record bad blocks on this device */
1780 md_error(mddev, rdev);
1781 else {
1782 struct badblocks *bb = &rdev->badblocks;
1783 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1784 u64 *p = bb->page;
1785 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1786 if (bb->changed) {
1787 unsigned seq;
1789 retry:
1790 seq = read_seqbegin(&bb->lock);
1792 memset(bbp, 0xff, PAGE_SIZE);
1794 for (i = 0 ; i < bb->count ; i++) {
1795 u64 internal_bb = *p++;
1796 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1797 | BB_LEN(internal_bb));
1798 *bbp++ = cpu_to_le64(store_bb);
1800 if (read_seqretry(&bb->lock, seq))
1801 goto retry;
1803 bb->sector = (rdev->sb_start +
1804 (int)le32_to_cpu(sb->bblog_offset));
1805 bb->size = le16_to_cpu(sb->bblog_size);
1806 bb->changed = 0;
1810 max_dev = 0;
1811 list_for_each_entry(rdev2, &mddev->disks, same_set)
1812 if (rdev2->desc_nr+1 > max_dev)
1813 max_dev = rdev2->desc_nr+1;
1815 if (max_dev > le32_to_cpu(sb->max_dev)) {
1816 int bmask;
1817 sb->max_dev = cpu_to_le32(max_dev);
1818 rdev->sb_size = max_dev * 2 + 256;
1819 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1820 if (rdev->sb_size & bmask)
1821 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1822 } else
1823 max_dev = le32_to_cpu(sb->max_dev);
1825 for (i=0; i<max_dev;i++)
1826 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1828 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1829 i = rdev2->desc_nr;
1830 if (test_bit(Faulty, &rdev2->flags))
1831 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1832 else if (test_bit(In_sync, &rdev2->flags))
1833 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1834 else if (rdev2->raid_disk >= 0)
1835 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1836 else
1837 sb->dev_roles[i] = cpu_to_le16(0xffff);
1840 sb->sb_csum = calc_sb_1_csum(sb);
1843 static unsigned long long
1844 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1846 struct mdp_superblock_1 *sb;
1847 sector_t max_sectors;
1848 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1849 return 0; /* component must fit device */
1850 if (rdev->sb_start < rdev->data_offset) {
1851 /* minor versions 1 and 2; superblock before data */
1852 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1853 max_sectors -= rdev->data_offset;
1854 if (!num_sectors || num_sectors > max_sectors)
1855 num_sectors = max_sectors;
1856 } else if (rdev->mddev->bitmap_info.offset) {
1857 /* minor version 0 with bitmap we can't move */
1858 return 0;
1859 } else {
1860 /* minor version 0; superblock after data */
1861 sector_t sb_start;
1862 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1863 sb_start &= ~(sector_t)(4*2 - 1);
1864 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1865 if (!num_sectors || num_sectors > max_sectors)
1866 num_sectors = max_sectors;
1867 rdev->sb_start = sb_start;
1869 sb = page_address(rdev->sb_page);
1870 sb->data_size = cpu_to_le64(num_sectors);
1871 sb->super_offset = rdev->sb_start;
1872 sb->sb_csum = calc_sb_1_csum(sb);
1873 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1874 rdev->sb_page);
1875 md_super_wait(rdev->mddev);
1876 return num_sectors;
1879 static struct super_type super_types[] = {
1880 [0] = {
1881 .name = "0.90.0",
1882 .owner = THIS_MODULE,
1883 .load_super = super_90_load,
1884 .validate_super = super_90_validate,
1885 .sync_super = super_90_sync,
1886 .rdev_size_change = super_90_rdev_size_change,
1888 [1] = {
1889 .name = "md-1",
1890 .owner = THIS_MODULE,
1891 .load_super = super_1_load,
1892 .validate_super = super_1_validate,
1893 .sync_super = super_1_sync,
1894 .rdev_size_change = super_1_rdev_size_change,
1898 static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev)
1900 if (mddev->sync_super) {
1901 mddev->sync_super(mddev, rdev);
1902 return;
1905 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1907 super_types[mddev->major_version].sync_super(mddev, rdev);
1910 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1912 mdk_rdev_t *rdev, *rdev2;
1914 rcu_read_lock();
1915 rdev_for_each_rcu(rdev, mddev1)
1916 rdev_for_each_rcu(rdev2, mddev2)
1917 if (rdev->bdev->bd_contains ==
1918 rdev2->bdev->bd_contains) {
1919 rcu_read_unlock();
1920 return 1;
1922 rcu_read_unlock();
1923 return 0;
1926 static LIST_HEAD(pending_raid_disks);
1929 * Try to register data integrity profile for an mddev
1931 * This is called when an array is started and after a disk has been kicked
1932 * from the array. It only succeeds if all working and active component devices
1933 * are integrity capable with matching profiles.
1935 int md_integrity_register(mddev_t *mddev)
1937 mdk_rdev_t *rdev, *reference = NULL;
1939 if (list_empty(&mddev->disks))
1940 return 0; /* nothing to do */
1941 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1942 return 0; /* shouldn't register, or already is */
1943 list_for_each_entry(rdev, &mddev->disks, same_set) {
1944 /* skip spares and non-functional disks */
1945 if (test_bit(Faulty, &rdev->flags))
1946 continue;
1947 if (rdev->raid_disk < 0)
1948 continue;
1949 if (!reference) {
1950 /* Use the first rdev as the reference */
1951 reference = rdev;
1952 continue;
1954 /* does this rdev's profile match the reference profile? */
1955 if (blk_integrity_compare(reference->bdev->bd_disk,
1956 rdev->bdev->bd_disk) < 0)
1957 return -EINVAL;
1959 if (!reference || !bdev_get_integrity(reference->bdev))
1960 return 0;
1962 * All component devices are integrity capable and have matching
1963 * profiles, register the common profile for the md device.
1965 if (blk_integrity_register(mddev->gendisk,
1966 bdev_get_integrity(reference->bdev)) != 0) {
1967 printk(KERN_ERR "md: failed to register integrity for %s\n",
1968 mdname(mddev));
1969 return -EINVAL;
1971 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1972 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1973 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1974 mdname(mddev));
1975 return -EINVAL;
1977 return 0;
1979 EXPORT_SYMBOL(md_integrity_register);
1981 /* Disable data integrity if non-capable/non-matching disk is being added */
1982 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1984 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1985 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1987 if (!bi_mddev) /* nothing to do */
1988 return;
1989 if (rdev->raid_disk < 0) /* skip spares */
1990 return;
1991 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1992 rdev->bdev->bd_disk) >= 0)
1993 return;
1994 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1995 blk_integrity_unregister(mddev->gendisk);
1997 EXPORT_SYMBOL(md_integrity_add_rdev);
1999 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
2001 char b[BDEVNAME_SIZE];
2002 struct kobject *ko;
2003 char *s;
2004 int err;
2006 if (rdev->mddev) {
2007 MD_BUG();
2008 return -EINVAL;
2011 /* prevent duplicates */
2012 if (find_rdev(mddev, rdev->bdev->bd_dev))
2013 return -EEXIST;
2015 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2016 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2017 rdev->sectors < mddev->dev_sectors)) {
2018 if (mddev->pers) {
2019 /* Cannot change size, so fail
2020 * If mddev->level <= 0, then we don't care
2021 * about aligning sizes (e.g. linear)
2023 if (mddev->level > 0)
2024 return -ENOSPC;
2025 } else
2026 mddev->dev_sectors = rdev->sectors;
2029 /* Verify rdev->desc_nr is unique.
2030 * If it is -1, assign a free number, else
2031 * check number is not in use
2033 if (rdev->desc_nr < 0) {
2034 int choice = 0;
2035 if (mddev->pers) choice = mddev->raid_disks;
2036 while (find_rdev_nr(mddev, choice))
2037 choice++;
2038 rdev->desc_nr = choice;
2039 } else {
2040 if (find_rdev_nr(mddev, rdev->desc_nr))
2041 return -EBUSY;
2043 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2044 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2045 mdname(mddev), mddev->max_disks);
2046 return -EBUSY;
2048 bdevname(rdev->bdev,b);
2049 while ( (s=strchr(b, '/')) != NULL)
2050 *s = '!';
2052 rdev->mddev = mddev;
2053 printk(KERN_INFO "md: bind<%s>\n", b);
2055 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2056 goto fail;
2058 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2059 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2060 /* failure here is OK */;
2061 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2063 list_add_rcu(&rdev->same_set, &mddev->disks);
2064 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2066 /* May as well allow recovery to be retried once */
2067 mddev->recovery_disabled++;
2069 return 0;
2071 fail:
2072 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2073 b, mdname(mddev));
2074 return err;
2077 static void md_delayed_delete(struct work_struct *ws)
2079 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
2080 kobject_del(&rdev->kobj);
2081 kobject_put(&rdev->kobj);
2084 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
2086 char b[BDEVNAME_SIZE];
2087 if (!rdev->mddev) {
2088 MD_BUG();
2089 return;
2091 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2092 list_del_rcu(&rdev->same_set);
2093 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2094 rdev->mddev = NULL;
2095 sysfs_remove_link(&rdev->kobj, "block");
2096 sysfs_put(rdev->sysfs_state);
2097 rdev->sysfs_state = NULL;
2098 kfree(rdev->badblocks.page);
2099 rdev->badblocks.count = 0;
2100 rdev->badblocks.page = NULL;
2101 /* We need to delay this, otherwise we can deadlock when
2102 * writing to 'remove' to "dev/state". We also need
2103 * to delay it due to rcu usage.
2105 synchronize_rcu();
2106 INIT_WORK(&rdev->del_work, md_delayed_delete);
2107 kobject_get(&rdev->kobj);
2108 queue_work(md_misc_wq, &rdev->del_work);
2112 * prevent the device from being mounted, repartitioned or
2113 * otherwise reused by a RAID array (or any other kernel
2114 * subsystem), by bd_claiming the device.
2116 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
2118 int err = 0;
2119 struct block_device *bdev;
2120 char b[BDEVNAME_SIZE];
2122 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2123 shared ? (mdk_rdev_t *)lock_rdev : rdev);
2124 if (IS_ERR(bdev)) {
2125 printk(KERN_ERR "md: could not open %s.\n",
2126 __bdevname(dev, b));
2127 return PTR_ERR(bdev);
2129 rdev->bdev = bdev;
2130 return err;
2133 static void unlock_rdev(mdk_rdev_t *rdev)
2135 struct block_device *bdev = rdev->bdev;
2136 rdev->bdev = NULL;
2137 if (!bdev)
2138 MD_BUG();
2139 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2142 void md_autodetect_dev(dev_t dev);
2144 static void export_rdev(mdk_rdev_t * rdev)
2146 char b[BDEVNAME_SIZE];
2147 printk(KERN_INFO "md: export_rdev(%s)\n",
2148 bdevname(rdev->bdev,b));
2149 if (rdev->mddev)
2150 MD_BUG();
2151 free_disk_sb(rdev);
2152 #ifndef MODULE
2153 if (test_bit(AutoDetected, &rdev->flags))
2154 md_autodetect_dev(rdev->bdev->bd_dev);
2155 #endif
2156 unlock_rdev(rdev);
2157 kobject_put(&rdev->kobj);
2160 static void kick_rdev_from_array(mdk_rdev_t * rdev)
2162 unbind_rdev_from_array(rdev);
2163 export_rdev(rdev);
2166 static void export_array(mddev_t *mddev)
2168 mdk_rdev_t *rdev, *tmp;
2170 rdev_for_each(rdev, tmp, mddev) {
2171 if (!rdev->mddev) {
2172 MD_BUG();
2173 continue;
2175 kick_rdev_from_array(rdev);
2177 if (!list_empty(&mddev->disks))
2178 MD_BUG();
2179 mddev->raid_disks = 0;
2180 mddev->major_version = 0;
2183 static void print_desc(mdp_disk_t *desc)
2185 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2186 desc->major,desc->minor,desc->raid_disk,desc->state);
2189 static void print_sb_90(mdp_super_t *sb)
2191 int i;
2193 printk(KERN_INFO
2194 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2195 sb->major_version, sb->minor_version, sb->patch_version,
2196 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2197 sb->ctime);
2198 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2199 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2200 sb->md_minor, sb->layout, sb->chunk_size);
2201 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2202 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2203 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2204 sb->failed_disks, sb->spare_disks,
2205 sb->sb_csum, (unsigned long)sb->events_lo);
2207 printk(KERN_INFO);
2208 for (i = 0; i < MD_SB_DISKS; i++) {
2209 mdp_disk_t *desc;
2211 desc = sb->disks + i;
2212 if (desc->number || desc->major || desc->minor ||
2213 desc->raid_disk || (desc->state && (desc->state != 4))) {
2214 printk(" D %2d: ", i);
2215 print_desc(desc);
2218 printk(KERN_INFO "md: THIS: ");
2219 print_desc(&sb->this_disk);
2222 static void print_sb_1(struct mdp_superblock_1 *sb)
2224 __u8 *uuid;
2226 uuid = sb->set_uuid;
2227 printk(KERN_INFO
2228 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2229 "md: Name: \"%s\" CT:%llu\n",
2230 le32_to_cpu(sb->major_version),
2231 le32_to_cpu(sb->feature_map),
2232 uuid,
2233 sb->set_name,
2234 (unsigned long long)le64_to_cpu(sb->ctime)
2235 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2237 uuid = sb->device_uuid;
2238 printk(KERN_INFO
2239 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2240 " RO:%llu\n"
2241 "md: Dev:%08x UUID: %pU\n"
2242 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2243 "md: (MaxDev:%u) \n",
2244 le32_to_cpu(sb->level),
2245 (unsigned long long)le64_to_cpu(sb->size),
2246 le32_to_cpu(sb->raid_disks),
2247 le32_to_cpu(sb->layout),
2248 le32_to_cpu(sb->chunksize),
2249 (unsigned long long)le64_to_cpu(sb->data_offset),
2250 (unsigned long long)le64_to_cpu(sb->data_size),
2251 (unsigned long long)le64_to_cpu(sb->super_offset),
2252 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2253 le32_to_cpu(sb->dev_number),
2254 uuid,
2255 sb->devflags,
2256 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2257 (unsigned long long)le64_to_cpu(sb->events),
2258 (unsigned long long)le64_to_cpu(sb->resync_offset),
2259 le32_to_cpu(sb->sb_csum),
2260 le32_to_cpu(sb->max_dev)
2264 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2266 char b[BDEVNAME_SIZE];
2267 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2268 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2269 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2270 rdev->desc_nr);
2271 if (rdev->sb_loaded) {
2272 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2273 switch (major_version) {
2274 case 0:
2275 print_sb_90(page_address(rdev->sb_page));
2276 break;
2277 case 1:
2278 print_sb_1(page_address(rdev->sb_page));
2279 break;
2281 } else
2282 printk(KERN_INFO "md: no rdev superblock!\n");
2285 static void md_print_devices(void)
2287 struct list_head *tmp;
2288 mdk_rdev_t *rdev;
2289 mddev_t *mddev;
2290 char b[BDEVNAME_SIZE];
2292 printk("\n");
2293 printk("md: **********************************\n");
2294 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2295 printk("md: **********************************\n");
2296 for_each_mddev(mddev, tmp) {
2298 if (mddev->bitmap)
2299 bitmap_print_sb(mddev->bitmap);
2300 else
2301 printk("%s: ", mdname(mddev));
2302 list_for_each_entry(rdev, &mddev->disks, same_set)
2303 printk("<%s>", bdevname(rdev->bdev,b));
2304 printk("\n");
2306 list_for_each_entry(rdev, &mddev->disks, same_set)
2307 print_rdev(rdev, mddev->major_version);
2309 printk("md: **********************************\n");
2310 printk("\n");
2314 static void sync_sbs(mddev_t * mddev, int nospares)
2316 /* Update each superblock (in-memory image), but
2317 * if we are allowed to, skip spares which already
2318 * have the right event counter, or have one earlier
2319 * (which would mean they aren't being marked as dirty
2320 * with the rest of the array)
2322 mdk_rdev_t *rdev;
2323 list_for_each_entry(rdev, &mddev->disks, same_set) {
2324 if (rdev->sb_events == mddev->events ||
2325 (nospares &&
2326 rdev->raid_disk < 0 &&
2327 rdev->sb_events+1 == mddev->events)) {
2328 /* Don't update this superblock */
2329 rdev->sb_loaded = 2;
2330 } else {
2331 sync_super(mddev, rdev);
2332 rdev->sb_loaded = 1;
2337 static void md_update_sb(mddev_t * mddev, int force_change)
2339 mdk_rdev_t *rdev;
2340 int sync_req;
2341 int nospares = 0;
2342 int any_badblocks_changed = 0;
2344 repeat:
2345 /* First make sure individual recovery_offsets are correct */
2346 list_for_each_entry(rdev, &mddev->disks, same_set) {
2347 if (rdev->raid_disk >= 0 &&
2348 mddev->delta_disks >= 0 &&
2349 !test_bit(In_sync, &rdev->flags) &&
2350 mddev->curr_resync_completed > rdev->recovery_offset)
2351 rdev->recovery_offset = mddev->curr_resync_completed;
2354 if (!mddev->persistent) {
2355 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2356 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2357 if (!mddev->external) {
2358 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2359 list_for_each_entry(rdev, &mddev->disks, same_set) {
2360 if (rdev->badblocks.changed) {
2361 md_ack_all_badblocks(&rdev->badblocks);
2362 md_error(mddev, rdev);
2364 clear_bit(Blocked, &rdev->flags);
2365 clear_bit(BlockedBadBlocks, &rdev->flags);
2366 wake_up(&rdev->blocked_wait);
2369 wake_up(&mddev->sb_wait);
2370 return;
2373 spin_lock_irq(&mddev->write_lock);
2375 mddev->utime = get_seconds();
2377 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2378 force_change = 1;
2379 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2380 /* just a clean<-> dirty transition, possibly leave spares alone,
2381 * though if events isn't the right even/odd, we will have to do
2382 * spares after all
2384 nospares = 1;
2385 if (force_change)
2386 nospares = 0;
2387 if (mddev->degraded)
2388 /* If the array is degraded, then skipping spares is both
2389 * dangerous and fairly pointless.
2390 * Dangerous because a device that was removed from the array
2391 * might have a event_count that still looks up-to-date,
2392 * so it can be re-added without a resync.
2393 * Pointless because if there are any spares to skip,
2394 * then a recovery will happen and soon that array won't
2395 * be degraded any more and the spare can go back to sleep then.
2397 nospares = 0;
2399 sync_req = mddev->in_sync;
2401 /* If this is just a dirty<->clean transition, and the array is clean
2402 * and 'events' is odd, we can roll back to the previous clean state */
2403 if (nospares
2404 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2405 && mddev->can_decrease_events
2406 && mddev->events != 1) {
2407 mddev->events--;
2408 mddev->can_decrease_events = 0;
2409 } else {
2410 /* otherwise we have to go forward and ... */
2411 mddev->events ++;
2412 mddev->can_decrease_events = nospares;
2415 if (!mddev->events) {
2417 * oops, this 64-bit counter should never wrap.
2418 * Either we are in around ~1 trillion A.C., assuming
2419 * 1 reboot per second, or we have a bug:
2421 MD_BUG();
2422 mddev->events --;
2425 list_for_each_entry(rdev, &mddev->disks, same_set) {
2426 if (rdev->badblocks.changed)
2427 any_badblocks_changed++;
2428 if (test_bit(Faulty, &rdev->flags))
2429 set_bit(FaultRecorded, &rdev->flags);
2432 sync_sbs(mddev, nospares);
2433 spin_unlock_irq(&mddev->write_lock);
2435 dprintk(KERN_INFO
2436 "md: updating %s RAID superblock on device (in sync %d)\n",
2437 mdname(mddev),mddev->in_sync);
2439 bitmap_update_sb(mddev->bitmap);
2440 list_for_each_entry(rdev, &mddev->disks, same_set) {
2441 char b[BDEVNAME_SIZE];
2442 dprintk(KERN_INFO "md: ");
2443 if (rdev->sb_loaded != 1)
2444 continue; /* no noise on spare devices */
2445 if (test_bit(Faulty, &rdev->flags))
2446 dprintk("(skipping faulty ");
2448 dprintk("%s ", bdevname(rdev->bdev,b));
2449 if (!test_bit(Faulty, &rdev->flags)) {
2450 md_super_write(mddev,rdev,
2451 rdev->sb_start, rdev->sb_size,
2452 rdev->sb_page);
2453 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2454 bdevname(rdev->bdev,b),
2455 (unsigned long long)rdev->sb_start);
2456 rdev->sb_events = mddev->events;
2457 if (rdev->badblocks.size) {
2458 md_super_write(mddev, rdev,
2459 rdev->badblocks.sector,
2460 rdev->badblocks.size << 9,
2461 rdev->bb_page);
2462 rdev->badblocks.size = 0;
2465 } else
2466 dprintk(")\n");
2467 if (mddev->level == LEVEL_MULTIPATH)
2468 /* only need to write one superblock... */
2469 break;
2471 md_super_wait(mddev);
2472 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2474 spin_lock_irq(&mddev->write_lock);
2475 if (mddev->in_sync != sync_req ||
2476 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2477 /* have to write it out again */
2478 spin_unlock_irq(&mddev->write_lock);
2479 goto repeat;
2481 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2482 spin_unlock_irq(&mddev->write_lock);
2483 wake_up(&mddev->sb_wait);
2484 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2485 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2487 list_for_each_entry(rdev, &mddev->disks, same_set) {
2488 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2489 clear_bit(Blocked, &rdev->flags);
2491 if (any_badblocks_changed)
2492 md_ack_all_badblocks(&rdev->badblocks);
2493 clear_bit(BlockedBadBlocks, &rdev->flags);
2494 wake_up(&rdev->blocked_wait);
2498 /* words written to sysfs files may, or may not, be \n terminated.
2499 * We want to accept with case. For this we use cmd_match.
2501 static int cmd_match(const char *cmd, const char *str)
2503 /* See if cmd, written into a sysfs file, matches
2504 * str. They must either be the same, or cmd can
2505 * have a trailing newline
2507 while (*cmd && *str && *cmd == *str) {
2508 cmd++;
2509 str++;
2511 if (*cmd == '\n')
2512 cmd++;
2513 if (*str || *cmd)
2514 return 0;
2515 return 1;
2518 struct rdev_sysfs_entry {
2519 struct attribute attr;
2520 ssize_t (*show)(mdk_rdev_t *, char *);
2521 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2524 static ssize_t
2525 state_show(mdk_rdev_t *rdev, char *page)
2527 char *sep = "";
2528 size_t len = 0;
2530 if (test_bit(Faulty, &rdev->flags) ||
2531 rdev->badblocks.unacked_exist) {
2532 len+= sprintf(page+len, "%sfaulty",sep);
2533 sep = ",";
2535 if (test_bit(In_sync, &rdev->flags)) {
2536 len += sprintf(page+len, "%sin_sync",sep);
2537 sep = ",";
2539 if (test_bit(WriteMostly, &rdev->flags)) {
2540 len += sprintf(page+len, "%swrite_mostly",sep);
2541 sep = ",";
2543 if (test_bit(Blocked, &rdev->flags) ||
2544 rdev->badblocks.unacked_exist) {
2545 len += sprintf(page+len, "%sblocked", sep);
2546 sep = ",";
2548 if (!test_bit(Faulty, &rdev->flags) &&
2549 !test_bit(In_sync, &rdev->flags)) {
2550 len += sprintf(page+len, "%sspare", sep);
2551 sep = ",";
2553 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2554 len += sprintf(page+len, "%swrite_error", sep);
2555 sep = ",";
2557 return len+sprintf(page+len, "\n");
2560 static ssize_t
2561 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2563 /* can write
2564 * faulty - simulates an error
2565 * remove - disconnects the device
2566 * writemostly - sets write_mostly
2567 * -writemostly - clears write_mostly
2568 * blocked - sets the Blocked flags
2569 * -blocked - clears the Blocked and possibly simulates an error
2570 * insync - sets Insync providing device isn't active
2571 * write_error - sets WriteErrorSeen
2572 * -write_error - clears WriteErrorSeen
2574 int err = -EINVAL;
2575 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2576 md_error(rdev->mddev, rdev);
2577 if (test_bit(Faulty, &rdev->flags))
2578 err = 0;
2579 else
2580 err = -EBUSY;
2581 } else if (cmd_match(buf, "remove")) {
2582 if (rdev->raid_disk >= 0)
2583 err = -EBUSY;
2584 else {
2585 mddev_t *mddev = rdev->mddev;
2586 kick_rdev_from_array(rdev);
2587 if (mddev->pers)
2588 md_update_sb(mddev, 1);
2589 md_new_event(mddev);
2590 err = 0;
2592 } else if (cmd_match(buf, "writemostly")) {
2593 set_bit(WriteMostly, &rdev->flags);
2594 err = 0;
2595 } else if (cmd_match(buf, "-writemostly")) {
2596 clear_bit(WriteMostly, &rdev->flags);
2597 err = 0;
2598 } else if (cmd_match(buf, "blocked")) {
2599 set_bit(Blocked, &rdev->flags);
2600 err = 0;
2601 } else if (cmd_match(buf, "-blocked")) {
2602 if (!test_bit(Faulty, &rdev->flags) &&
2603 rdev->badblocks.unacked_exist) {
2604 /* metadata handler doesn't understand badblocks,
2605 * so we need to fail the device
2607 md_error(rdev->mddev, rdev);
2609 clear_bit(Blocked, &rdev->flags);
2610 clear_bit(BlockedBadBlocks, &rdev->flags);
2611 wake_up(&rdev->blocked_wait);
2612 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2613 md_wakeup_thread(rdev->mddev->thread);
2615 err = 0;
2616 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2617 set_bit(In_sync, &rdev->flags);
2618 err = 0;
2619 } else if (cmd_match(buf, "write_error")) {
2620 set_bit(WriteErrorSeen, &rdev->flags);
2621 err = 0;
2622 } else if (cmd_match(buf, "-write_error")) {
2623 clear_bit(WriteErrorSeen, &rdev->flags);
2624 err = 0;
2626 if (!err)
2627 sysfs_notify_dirent_safe(rdev->sysfs_state);
2628 return err ? err : len;
2630 static struct rdev_sysfs_entry rdev_state =
2631 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2633 static ssize_t
2634 errors_show(mdk_rdev_t *rdev, char *page)
2636 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2639 static ssize_t
2640 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2642 char *e;
2643 unsigned long n = simple_strtoul(buf, &e, 10);
2644 if (*buf && (*e == 0 || *e == '\n')) {
2645 atomic_set(&rdev->corrected_errors, n);
2646 return len;
2648 return -EINVAL;
2650 static struct rdev_sysfs_entry rdev_errors =
2651 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2653 static ssize_t
2654 slot_show(mdk_rdev_t *rdev, char *page)
2656 if (rdev->raid_disk < 0)
2657 return sprintf(page, "none\n");
2658 else
2659 return sprintf(page, "%d\n", rdev->raid_disk);
2662 static ssize_t
2663 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2665 char *e;
2666 int err;
2667 int slot = simple_strtoul(buf, &e, 10);
2668 if (strncmp(buf, "none", 4)==0)
2669 slot = -1;
2670 else if (e==buf || (*e && *e!= '\n'))
2671 return -EINVAL;
2672 if (rdev->mddev->pers && slot == -1) {
2673 /* Setting 'slot' on an active array requires also
2674 * updating the 'rd%d' link, and communicating
2675 * with the personality with ->hot_*_disk.
2676 * For now we only support removing
2677 * failed/spare devices. This normally happens automatically,
2678 * but not when the metadata is externally managed.
2680 if (rdev->raid_disk == -1)
2681 return -EEXIST;
2682 /* personality does all needed checks */
2683 if (rdev->mddev->pers->hot_remove_disk == NULL)
2684 return -EINVAL;
2685 err = rdev->mddev->pers->
2686 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2687 if (err)
2688 return err;
2689 sysfs_unlink_rdev(rdev->mddev, rdev);
2690 rdev->raid_disk = -1;
2691 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2692 md_wakeup_thread(rdev->mddev->thread);
2693 } else if (rdev->mddev->pers) {
2694 mdk_rdev_t *rdev2;
2695 /* Activating a spare .. or possibly reactivating
2696 * if we ever get bitmaps working here.
2699 if (rdev->raid_disk != -1)
2700 return -EBUSY;
2702 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2703 return -EBUSY;
2705 if (rdev->mddev->pers->hot_add_disk == NULL)
2706 return -EINVAL;
2708 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2709 if (rdev2->raid_disk == slot)
2710 return -EEXIST;
2712 if (slot >= rdev->mddev->raid_disks &&
2713 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2714 return -ENOSPC;
2716 rdev->raid_disk = slot;
2717 if (test_bit(In_sync, &rdev->flags))
2718 rdev->saved_raid_disk = slot;
2719 else
2720 rdev->saved_raid_disk = -1;
2721 err = rdev->mddev->pers->
2722 hot_add_disk(rdev->mddev, rdev);
2723 if (err) {
2724 rdev->raid_disk = -1;
2725 return err;
2726 } else
2727 sysfs_notify_dirent_safe(rdev->sysfs_state);
2728 if (sysfs_link_rdev(rdev->mddev, rdev))
2729 /* failure here is OK */;
2730 /* don't wakeup anyone, leave that to userspace. */
2731 } else {
2732 if (slot >= rdev->mddev->raid_disks &&
2733 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2734 return -ENOSPC;
2735 rdev->raid_disk = slot;
2736 /* assume it is working */
2737 clear_bit(Faulty, &rdev->flags);
2738 clear_bit(WriteMostly, &rdev->flags);
2739 set_bit(In_sync, &rdev->flags);
2740 sysfs_notify_dirent_safe(rdev->sysfs_state);
2742 return len;
2746 static struct rdev_sysfs_entry rdev_slot =
2747 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2749 static ssize_t
2750 offset_show(mdk_rdev_t *rdev, char *page)
2752 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2755 static ssize_t
2756 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2758 char *e;
2759 unsigned long long offset = simple_strtoull(buf, &e, 10);
2760 if (e==buf || (*e && *e != '\n'))
2761 return -EINVAL;
2762 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2763 return -EBUSY;
2764 if (rdev->sectors && rdev->mddev->external)
2765 /* Must set offset before size, so overlap checks
2766 * can be sane */
2767 return -EBUSY;
2768 rdev->data_offset = offset;
2769 return len;
2772 static struct rdev_sysfs_entry rdev_offset =
2773 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2775 static ssize_t
2776 rdev_size_show(mdk_rdev_t *rdev, char *page)
2778 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2781 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2783 /* check if two start/length pairs overlap */
2784 if (s1+l1 <= s2)
2785 return 0;
2786 if (s2+l2 <= s1)
2787 return 0;
2788 return 1;
2791 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2793 unsigned long long blocks;
2794 sector_t new;
2796 if (strict_strtoull(buf, 10, &blocks) < 0)
2797 return -EINVAL;
2799 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2800 return -EINVAL; /* sector conversion overflow */
2802 new = blocks * 2;
2803 if (new != blocks * 2)
2804 return -EINVAL; /* unsigned long long to sector_t overflow */
2806 *sectors = new;
2807 return 0;
2810 static ssize_t
2811 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2813 mddev_t *my_mddev = rdev->mddev;
2814 sector_t oldsectors = rdev->sectors;
2815 sector_t sectors;
2817 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2818 return -EINVAL;
2819 if (my_mddev->pers && rdev->raid_disk >= 0) {
2820 if (my_mddev->persistent) {
2821 sectors = super_types[my_mddev->major_version].
2822 rdev_size_change(rdev, sectors);
2823 if (!sectors)
2824 return -EBUSY;
2825 } else if (!sectors)
2826 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2827 rdev->data_offset;
2829 if (sectors < my_mddev->dev_sectors)
2830 return -EINVAL; /* component must fit device */
2832 rdev->sectors = sectors;
2833 if (sectors > oldsectors && my_mddev->external) {
2834 /* need to check that all other rdevs with the same ->bdev
2835 * do not overlap. We need to unlock the mddev to avoid
2836 * a deadlock. We have already changed rdev->sectors, and if
2837 * we have to change it back, we will have the lock again.
2839 mddev_t *mddev;
2840 int overlap = 0;
2841 struct list_head *tmp;
2843 mddev_unlock(my_mddev);
2844 for_each_mddev(mddev, tmp) {
2845 mdk_rdev_t *rdev2;
2847 mddev_lock(mddev);
2848 list_for_each_entry(rdev2, &mddev->disks, same_set)
2849 if (rdev->bdev == rdev2->bdev &&
2850 rdev != rdev2 &&
2851 overlaps(rdev->data_offset, rdev->sectors,
2852 rdev2->data_offset,
2853 rdev2->sectors)) {
2854 overlap = 1;
2855 break;
2857 mddev_unlock(mddev);
2858 if (overlap) {
2859 mddev_put(mddev);
2860 break;
2863 mddev_lock(my_mddev);
2864 if (overlap) {
2865 /* Someone else could have slipped in a size
2866 * change here, but doing so is just silly.
2867 * We put oldsectors back because we *know* it is
2868 * safe, and trust userspace not to race with
2869 * itself
2871 rdev->sectors = oldsectors;
2872 return -EBUSY;
2875 return len;
2878 static struct rdev_sysfs_entry rdev_size =
2879 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2882 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2884 unsigned long long recovery_start = rdev->recovery_offset;
2886 if (test_bit(In_sync, &rdev->flags) ||
2887 recovery_start == MaxSector)
2888 return sprintf(page, "none\n");
2890 return sprintf(page, "%llu\n", recovery_start);
2893 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2895 unsigned long long recovery_start;
2897 if (cmd_match(buf, "none"))
2898 recovery_start = MaxSector;
2899 else if (strict_strtoull(buf, 10, &recovery_start))
2900 return -EINVAL;
2902 if (rdev->mddev->pers &&
2903 rdev->raid_disk >= 0)
2904 return -EBUSY;
2906 rdev->recovery_offset = recovery_start;
2907 if (recovery_start == MaxSector)
2908 set_bit(In_sync, &rdev->flags);
2909 else
2910 clear_bit(In_sync, &rdev->flags);
2911 return len;
2914 static struct rdev_sysfs_entry rdev_recovery_start =
2915 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2918 static ssize_t
2919 badblocks_show(struct badblocks *bb, char *page, int unack);
2920 static ssize_t
2921 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2923 static ssize_t bb_show(mdk_rdev_t *rdev, char *page)
2925 return badblocks_show(&rdev->badblocks, page, 0);
2927 static ssize_t bb_store(mdk_rdev_t *rdev, const char *page, size_t len)
2929 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2930 /* Maybe that ack was all we needed */
2931 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2932 wake_up(&rdev->blocked_wait);
2933 return rv;
2935 static struct rdev_sysfs_entry rdev_bad_blocks =
2936 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2939 static ssize_t ubb_show(mdk_rdev_t *rdev, char *page)
2941 return badblocks_show(&rdev->badblocks, page, 1);
2943 static ssize_t ubb_store(mdk_rdev_t *rdev, const char *page, size_t len)
2945 return badblocks_store(&rdev->badblocks, page, len, 1);
2947 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2948 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2950 static struct attribute *rdev_default_attrs[] = {
2951 &rdev_state.attr,
2952 &rdev_errors.attr,
2953 &rdev_slot.attr,
2954 &rdev_offset.attr,
2955 &rdev_size.attr,
2956 &rdev_recovery_start.attr,
2957 &rdev_bad_blocks.attr,
2958 &rdev_unack_bad_blocks.attr,
2959 NULL,
2961 static ssize_t
2962 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2964 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2965 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2966 mddev_t *mddev = rdev->mddev;
2967 ssize_t rv;
2969 if (!entry->show)
2970 return -EIO;
2972 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2973 if (!rv) {
2974 if (rdev->mddev == NULL)
2975 rv = -EBUSY;
2976 else
2977 rv = entry->show(rdev, page);
2978 mddev_unlock(mddev);
2980 return rv;
2983 static ssize_t
2984 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2985 const char *page, size_t length)
2987 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2988 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2989 ssize_t rv;
2990 mddev_t *mddev = rdev->mddev;
2992 if (!entry->store)
2993 return -EIO;
2994 if (!capable(CAP_SYS_ADMIN))
2995 return -EACCES;
2996 rv = mddev ? mddev_lock(mddev): -EBUSY;
2997 if (!rv) {
2998 if (rdev->mddev == NULL)
2999 rv = -EBUSY;
3000 else
3001 rv = entry->store(rdev, page, length);
3002 mddev_unlock(mddev);
3004 return rv;
3007 static void rdev_free(struct kobject *ko)
3009 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
3010 kfree(rdev);
3012 static const struct sysfs_ops rdev_sysfs_ops = {
3013 .show = rdev_attr_show,
3014 .store = rdev_attr_store,
3016 static struct kobj_type rdev_ktype = {
3017 .release = rdev_free,
3018 .sysfs_ops = &rdev_sysfs_ops,
3019 .default_attrs = rdev_default_attrs,
3022 int md_rdev_init(mdk_rdev_t *rdev)
3024 rdev->desc_nr = -1;
3025 rdev->saved_raid_disk = -1;
3026 rdev->raid_disk = -1;
3027 rdev->flags = 0;
3028 rdev->data_offset = 0;
3029 rdev->sb_events = 0;
3030 rdev->last_read_error.tv_sec = 0;
3031 rdev->last_read_error.tv_nsec = 0;
3032 rdev->sb_loaded = 0;
3033 rdev->bb_page = NULL;
3034 atomic_set(&rdev->nr_pending, 0);
3035 atomic_set(&rdev->read_errors, 0);
3036 atomic_set(&rdev->corrected_errors, 0);
3038 INIT_LIST_HEAD(&rdev->same_set);
3039 init_waitqueue_head(&rdev->blocked_wait);
3041 /* Add space to store bad block list.
3042 * This reserves the space even on arrays where it cannot
3043 * be used - I wonder if that matters
3045 rdev->badblocks.count = 0;
3046 rdev->badblocks.shift = 0;
3047 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3048 seqlock_init(&rdev->badblocks.lock);
3049 if (rdev->badblocks.page == NULL)
3050 return -ENOMEM;
3052 return 0;
3054 EXPORT_SYMBOL_GPL(md_rdev_init);
3056 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3058 * mark the device faulty if:
3060 * - the device is nonexistent (zero size)
3061 * - the device has no valid superblock
3063 * a faulty rdev _never_ has rdev->sb set.
3065 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
3067 char b[BDEVNAME_SIZE];
3068 int err;
3069 mdk_rdev_t *rdev;
3070 sector_t size;
3072 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3073 if (!rdev) {
3074 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3075 return ERR_PTR(-ENOMEM);
3078 err = md_rdev_init(rdev);
3079 if (err)
3080 goto abort_free;
3081 err = alloc_disk_sb(rdev);
3082 if (err)
3083 goto abort_free;
3085 err = lock_rdev(rdev, newdev, super_format == -2);
3086 if (err)
3087 goto abort_free;
3089 kobject_init(&rdev->kobj, &rdev_ktype);
3091 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3092 if (!size) {
3093 printk(KERN_WARNING
3094 "md: %s has zero or unknown size, marking faulty!\n",
3095 bdevname(rdev->bdev,b));
3096 err = -EINVAL;
3097 goto abort_free;
3100 if (super_format >= 0) {
3101 err = super_types[super_format].
3102 load_super(rdev, NULL, super_minor);
3103 if (err == -EINVAL) {
3104 printk(KERN_WARNING
3105 "md: %s does not have a valid v%d.%d "
3106 "superblock, not importing!\n",
3107 bdevname(rdev->bdev,b),
3108 super_format, super_minor);
3109 goto abort_free;
3111 if (err < 0) {
3112 printk(KERN_WARNING
3113 "md: could not read %s's sb, not importing!\n",
3114 bdevname(rdev->bdev,b));
3115 goto abort_free;
3118 if (super_format == -1)
3119 /* hot-add for 0.90, or non-persistent: so no badblocks */
3120 rdev->badblocks.shift = -1;
3122 return rdev;
3124 abort_free:
3125 if (rdev->bdev)
3126 unlock_rdev(rdev);
3127 free_disk_sb(rdev);
3128 kfree(rdev->badblocks.page);
3129 kfree(rdev);
3130 return ERR_PTR(err);
3134 * Check a full RAID array for plausibility
3138 static void analyze_sbs(mddev_t * mddev)
3140 int i;
3141 mdk_rdev_t *rdev, *freshest, *tmp;
3142 char b[BDEVNAME_SIZE];
3144 freshest = NULL;
3145 rdev_for_each(rdev, tmp, mddev)
3146 switch (super_types[mddev->major_version].
3147 load_super(rdev, freshest, mddev->minor_version)) {
3148 case 1:
3149 freshest = rdev;
3150 break;
3151 case 0:
3152 break;
3153 default:
3154 printk( KERN_ERR \
3155 "md: fatal superblock inconsistency in %s"
3156 " -- removing from array\n",
3157 bdevname(rdev->bdev,b));
3158 kick_rdev_from_array(rdev);
3162 super_types[mddev->major_version].
3163 validate_super(mddev, freshest);
3165 i = 0;
3166 rdev_for_each(rdev, tmp, mddev) {
3167 if (mddev->max_disks &&
3168 (rdev->desc_nr >= mddev->max_disks ||
3169 i > mddev->max_disks)) {
3170 printk(KERN_WARNING
3171 "md: %s: %s: only %d devices permitted\n",
3172 mdname(mddev), bdevname(rdev->bdev, b),
3173 mddev->max_disks);
3174 kick_rdev_from_array(rdev);
3175 continue;
3177 if (rdev != freshest)
3178 if (super_types[mddev->major_version].
3179 validate_super(mddev, rdev)) {
3180 printk(KERN_WARNING "md: kicking non-fresh %s"
3181 " from array!\n",
3182 bdevname(rdev->bdev,b));
3183 kick_rdev_from_array(rdev);
3184 continue;
3186 if (mddev->level == LEVEL_MULTIPATH) {
3187 rdev->desc_nr = i++;
3188 rdev->raid_disk = rdev->desc_nr;
3189 set_bit(In_sync, &rdev->flags);
3190 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3191 rdev->raid_disk = -1;
3192 clear_bit(In_sync, &rdev->flags);
3197 /* Read a fixed-point number.
3198 * Numbers in sysfs attributes should be in "standard" units where
3199 * possible, so time should be in seconds.
3200 * However we internally use a a much smaller unit such as
3201 * milliseconds or jiffies.
3202 * This function takes a decimal number with a possible fractional
3203 * component, and produces an integer which is the result of
3204 * multiplying that number by 10^'scale'.
3205 * all without any floating-point arithmetic.
3207 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3209 unsigned long result = 0;
3210 long decimals = -1;
3211 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3212 if (*cp == '.')
3213 decimals = 0;
3214 else if (decimals < scale) {
3215 unsigned int value;
3216 value = *cp - '0';
3217 result = result * 10 + value;
3218 if (decimals >= 0)
3219 decimals++;
3221 cp++;
3223 if (*cp == '\n')
3224 cp++;
3225 if (*cp)
3226 return -EINVAL;
3227 if (decimals < 0)
3228 decimals = 0;
3229 while (decimals < scale) {
3230 result *= 10;
3231 decimals ++;
3233 *res = result;
3234 return 0;
3238 static void md_safemode_timeout(unsigned long data);
3240 static ssize_t
3241 safe_delay_show(mddev_t *mddev, char *page)
3243 int msec = (mddev->safemode_delay*1000)/HZ;
3244 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3246 static ssize_t
3247 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
3249 unsigned long msec;
3251 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3252 return -EINVAL;
3253 if (msec == 0)
3254 mddev->safemode_delay = 0;
3255 else {
3256 unsigned long old_delay = mddev->safemode_delay;
3257 mddev->safemode_delay = (msec*HZ)/1000;
3258 if (mddev->safemode_delay == 0)
3259 mddev->safemode_delay = 1;
3260 if (mddev->safemode_delay < old_delay)
3261 md_safemode_timeout((unsigned long)mddev);
3263 return len;
3265 static struct md_sysfs_entry md_safe_delay =
3266 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3268 static ssize_t
3269 level_show(mddev_t *mddev, char *page)
3271 struct mdk_personality *p = mddev->pers;
3272 if (p)
3273 return sprintf(page, "%s\n", p->name);
3274 else if (mddev->clevel[0])
3275 return sprintf(page, "%s\n", mddev->clevel);
3276 else if (mddev->level != LEVEL_NONE)
3277 return sprintf(page, "%d\n", mddev->level);
3278 else
3279 return 0;
3282 static ssize_t
3283 level_store(mddev_t *mddev, const char *buf, size_t len)
3285 char clevel[16];
3286 ssize_t rv = len;
3287 struct mdk_personality *pers;
3288 long level;
3289 void *priv;
3290 mdk_rdev_t *rdev;
3292 if (mddev->pers == NULL) {
3293 if (len == 0)
3294 return 0;
3295 if (len >= sizeof(mddev->clevel))
3296 return -ENOSPC;
3297 strncpy(mddev->clevel, buf, len);
3298 if (mddev->clevel[len-1] == '\n')
3299 len--;
3300 mddev->clevel[len] = 0;
3301 mddev->level = LEVEL_NONE;
3302 return rv;
3305 /* request to change the personality. Need to ensure:
3306 * - array is not engaged in resync/recovery/reshape
3307 * - old personality can be suspended
3308 * - new personality will access other array.
3311 if (mddev->sync_thread ||
3312 mddev->reshape_position != MaxSector ||
3313 mddev->sysfs_active)
3314 return -EBUSY;
3316 if (!mddev->pers->quiesce) {
3317 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3318 mdname(mddev), mddev->pers->name);
3319 return -EINVAL;
3322 /* Now find the new personality */
3323 if (len == 0 || len >= sizeof(clevel))
3324 return -EINVAL;
3325 strncpy(clevel, buf, len);
3326 if (clevel[len-1] == '\n')
3327 len--;
3328 clevel[len] = 0;
3329 if (strict_strtol(clevel, 10, &level))
3330 level = LEVEL_NONE;
3332 if (request_module("md-%s", clevel) != 0)
3333 request_module("md-level-%s", clevel);
3334 spin_lock(&pers_lock);
3335 pers = find_pers(level, clevel);
3336 if (!pers || !try_module_get(pers->owner)) {
3337 spin_unlock(&pers_lock);
3338 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3339 return -EINVAL;
3341 spin_unlock(&pers_lock);
3343 if (pers == mddev->pers) {
3344 /* Nothing to do! */
3345 module_put(pers->owner);
3346 return rv;
3348 if (!pers->takeover) {
3349 module_put(pers->owner);
3350 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3351 mdname(mddev), clevel);
3352 return -EINVAL;
3355 list_for_each_entry(rdev, &mddev->disks, same_set)
3356 rdev->new_raid_disk = rdev->raid_disk;
3358 /* ->takeover must set new_* and/or delta_disks
3359 * if it succeeds, and may set them when it fails.
3361 priv = pers->takeover(mddev);
3362 if (IS_ERR(priv)) {
3363 mddev->new_level = mddev->level;
3364 mddev->new_layout = mddev->layout;
3365 mddev->new_chunk_sectors = mddev->chunk_sectors;
3366 mddev->raid_disks -= mddev->delta_disks;
3367 mddev->delta_disks = 0;
3368 module_put(pers->owner);
3369 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3370 mdname(mddev), clevel);
3371 return PTR_ERR(priv);
3374 /* Looks like we have a winner */
3375 mddev_suspend(mddev);
3376 mddev->pers->stop(mddev);
3378 if (mddev->pers->sync_request == NULL &&
3379 pers->sync_request != NULL) {
3380 /* need to add the md_redundancy_group */
3381 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3382 printk(KERN_WARNING
3383 "md: cannot register extra attributes for %s\n",
3384 mdname(mddev));
3385 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3387 if (mddev->pers->sync_request != NULL &&
3388 pers->sync_request == NULL) {
3389 /* need to remove the md_redundancy_group */
3390 if (mddev->to_remove == NULL)
3391 mddev->to_remove = &md_redundancy_group;
3394 if (mddev->pers->sync_request == NULL &&
3395 mddev->external) {
3396 /* We are converting from a no-redundancy array
3397 * to a redundancy array and metadata is managed
3398 * externally so we need to be sure that writes
3399 * won't block due to a need to transition
3400 * clean->dirty
3401 * until external management is started.
3403 mddev->in_sync = 0;
3404 mddev->safemode_delay = 0;
3405 mddev->safemode = 0;
3408 list_for_each_entry(rdev, &mddev->disks, same_set) {
3409 if (rdev->raid_disk < 0)
3410 continue;
3411 if (rdev->new_raid_disk >= mddev->raid_disks)
3412 rdev->new_raid_disk = -1;
3413 if (rdev->new_raid_disk == rdev->raid_disk)
3414 continue;
3415 sysfs_unlink_rdev(mddev, rdev);
3417 list_for_each_entry(rdev, &mddev->disks, same_set) {
3418 if (rdev->raid_disk < 0)
3419 continue;
3420 if (rdev->new_raid_disk == rdev->raid_disk)
3421 continue;
3422 rdev->raid_disk = rdev->new_raid_disk;
3423 if (rdev->raid_disk < 0)
3424 clear_bit(In_sync, &rdev->flags);
3425 else {
3426 if (sysfs_link_rdev(mddev, rdev))
3427 printk(KERN_WARNING "md: cannot register rd%d"
3428 " for %s after level change\n",
3429 rdev->raid_disk, mdname(mddev));
3433 module_put(mddev->pers->owner);
3434 mddev->pers = pers;
3435 mddev->private = priv;
3436 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3437 mddev->level = mddev->new_level;
3438 mddev->layout = mddev->new_layout;
3439 mddev->chunk_sectors = mddev->new_chunk_sectors;
3440 mddev->delta_disks = 0;
3441 mddev->degraded = 0;
3442 if (mddev->pers->sync_request == NULL) {
3443 /* this is now an array without redundancy, so
3444 * it must always be in_sync
3446 mddev->in_sync = 1;
3447 del_timer_sync(&mddev->safemode_timer);
3449 pers->run(mddev);
3450 mddev_resume(mddev);
3451 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3452 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3453 md_wakeup_thread(mddev->thread);
3454 sysfs_notify(&mddev->kobj, NULL, "level");
3455 md_new_event(mddev);
3456 return rv;
3459 static struct md_sysfs_entry md_level =
3460 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3463 static ssize_t
3464 layout_show(mddev_t *mddev, char *page)
3466 /* just a number, not meaningful for all levels */
3467 if (mddev->reshape_position != MaxSector &&
3468 mddev->layout != mddev->new_layout)
3469 return sprintf(page, "%d (%d)\n",
3470 mddev->new_layout, mddev->layout);
3471 return sprintf(page, "%d\n", mddev->layout);
3474 static ssize_t
3475 layout_store(mddev_t *mddev, const char *buf, size_t len)
3477 char *e;
3478 unsigned long n = simple_strtoul(buf, &e, 10);
3480 if (!*buf || (*e && *e != '\n'))
3481 return -EINVAL;
3483 if (mddev->pers) {
3484 int err;
3485 if (mddev->pers->check_reshape == NULL)
3486 return -EBUSY;
3487 mddev->new_layout = n;
3488 err = mddev->pers->check_reshape(mddev);
3489 if (err) {
3490 mddev->new_layout = mddev->layout;
3491 return err;
3493 } else {
3494 mddev->new_layout = n;
3495 if (mddev->reshape_position == MaxSector)
3496 mddev->layout = n;
3498 return len;
3500 static struct md_sysfs_entry md_layout =
3501 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3504 static ssize_t
3505 raid_disks_show(mddev_t *mddev, char *page)
3507 if (mddev->raid_disks == 0)
3508 return 0;
3509 if (mddev->reshape_position != MaxSector &&
3510 mddev->delta_disks != 0)
3511 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3512 mddev->raid_disks - mddev->delta_disks);
3513 return sprintf(page, "%d\n", mddev->raid_disks);
3516 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3518 static ssize_t
3519 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3521 char *e;
3522 int rv = 0;
3523 unsigned long n = simple_strtoul(buf, &e, 10);
3525 if (!*buf || (*e && *e != '\n'))
3526 return -EINVAL;
3528 if (mddev->pers)
3529 rv = update_raid_disks(mddev, n);
3530 else if (mddev->reshape_position != MaxSector) {
3531 int olddisks = mddev->raid_disks - mddev->delta_disks;
3532 mddev->delta_disks = n - olddisks;
3533 mddev->raid_disks = n;
3534 } else
3535 mddev->raid_disks = n;
3536 return rv ? rv : len;
3538 static struct md_sysfs_entry md_raid_disks =
3539 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3541 static ssize_t
3542 chunk_size_show(mddev_t *mddev, char *page)
3544 if (mddev->reshape_position != MaxSector &&
3545 mddev->chunk_sectors != mddev->new_chunk_sectors)
3546 return sprintf(page, "%d (%d)\n",
3547 mddev->new_chunk_sectors << 9,
3548 mddev->chunk_sectors << 9);
3549 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3552 static ssize_t
3553 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3555 char *e;
3556 unsigned long n = simple_strtoul(buf, &e, 10);
3558 if (!*buf || (*e && *e != '\n'))
3559 return -EINVAL;
3561 if (mddev->pers) {
3562 int err;
3563 if (mddev->pers->check_reshape == NULL)
3564 return -EBUSY;
3565 mddev->new_chunk_sectors = n >> 9;
3566 err = mddev->pers->check_reshape(mddev);
3567 if (err) {
3568 mddev->new_chunk_sectors = mddev->chunk_sectors;
3569 return err;
3571 } else {
3572 mddev->new_chunk_sectors = n >> 9;
3573 if (mddev->reshape_position == MaxSector)
3574 mddev->chunk_sectors = n >> 9;
3576 return len;
3578 static struct md_sysfs_entry md_chunk_size =
3579 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3581 static ssize_t
3582 resync_start_show(mddev_t *mddev, char *page)
3584 if (mddev->recovery_cp == MaxSector)
3585 return sprintf(page, "none\n");
3586 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3589 static ssize_t
3590 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3592 char *e;
3593 unsigned long long n = simple_strtoull(buf, &e, 10);
3595 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3596 return -EBUSY;
3597 if (cmd_match(buf, "none"))
3598 n = MaxSector;
3599 else if (!*buf || (*e && *e != '\n'))
3600 return -EINVAL;
3602 mddev->recovery_cp = n;
3603 return len;
3605 static struct md_sysfs_entry md_resync_start =
3606 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3609 * The array state can be:
3611 * clear
3612 * No devices, no size, no level
3613 * Equivalent to STOP_ARRAY ioctl
3614 * inactive
3615 * May have some settings, but array is not active
3616 * all IO results in error
3617 * When written, doesn't tear down array, but just stops it
3618 * suspended (not supported yet)
3619 * All IO requests will block. The array can be reconfigured.
3620 * Writing this, if accepted, will block until array is quiescent
3621 * readonly
3622 * no resync can happen. no superblocks get written.
3623 * write requests fail
3624 * read-auto
3625 * like readonly, but behaves like 'clean' on a write request.
3627 * clean - no pending writes, but otherwise active.
3628 * When written to inactive array, starts without resync
3629 * If a write request arrives then
3630 * if metadata is known, mark 'dirty' and switch to 'active'.
3631 * if not known, block and switch to write-pending
3632 * If written to an active array that has pending writes, then fails.
3633 * active
3634 * fully active: IO and resync can be happening.
3635 * When written to inactive array, starts with resync
3637 * write-pending
3638 * clean, but writes are blocked waiting for 'active' to be written.
3640 * active-idle
3641 * like active, but no writes have been seen for a while (100msec).
3644 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3645 write_pending, active_idle, bad_word};
3646 static char *array_states[] = {
3647 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3648 "write-pending", "active-idle", NULL };
3650 static int match_word(const char *word, char **list)
3652 int n;
3653 for (n=0; list[n]; n++)
3654 if (cmd_match(word, list[n]))
3655 break;
3656 return n;
3659 static ssize_t
3660 array_state_show(mddev_t *mddev, char *page)
3662 enum array_state st = inactive;
3664 if (mddev->pers)
3665 switch(mddev->ro) {
3666 case 1:
3667 st = readonly;
3668 break;
3669 case 2:
3670 st = read_auto;
3671 break;
3672 case 0:
3673 if (mddev->in_sync)
3674 st = clean;
3675 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3676 st = write_pending;
3677 else if (mddev->safemode)
3678 st = active_idle;
3679 else
3680 st = active;
3682 else {
3683 if (list_empty(&mddev->disks) &&
3684 mddev->raid_disks == 0 &&
3685 mddev->dev_sectors == 0)
3686 st = clear;
3687 else
3688 st = inactive;
3690 return sprintf(page, "%s\n", array_states[st]);
3693 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3694 static int md_set_readonly(mddev_t * mddev, int is_open);
3695 static int do_md_run(mddev_t * mddev);
3696 static int restart_array(mddev_t *mddev);
3698 static ssize_t
3699 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3701 int err = -EINVAL;
3702 enum array_state st = match_word(buf, array_states);
3703 switch(st) {
3704 case bad_word:
3705 break;
3706 case clear:
3707 /* stopping an active array */
3708 if (atomic_read(&mddev->openers) > 0)
3709 return -EBUSY;
3710 err = do_md_stop(mddev, 0, 0);
3711 break;
3712 case inactive:
3713 /* stopping an active array */
3714 if (mddev->pers) {
3715 if (atomic_read(&mddev->openers) > 0)
3716 return -EBUSY;
3717 err = do_md_stop(mddev, 2, 0);
3718 } else
3719 err = 0; /* already inactive */
3720 break;
3721 case suspended:
3722 break; /* not supported yet */
3723 case readonly:
3724 if (mddev->pers)
3725 err = md_set_readonly(mddev, 0);
3726 else {
3727 mddev->ro = 1;
3728 set_disk_ro(mddev->gendisk, 1);
3729 err = do_md_run(mddev);
3731 break;
3732 case read_auto:
3733 if (mddev->pers) {
3734 if (mddev->ro == 0)
3735 err = md_set_readonly(mddev, 0);
3736 else if (mddev->ro == 1)
3737 err = restart_array(mddev);
3738 if (err == 0) {
3739 mddev->ro = 2;
3740 set_disk_ro(mddev->gendisk, 0);
3742 } else {
3743 mddev->ro = 2;
3744 err = do_md_run(mddev);
3746 break;
3747 case clean:
3748 if (mddev->pers) {
3749 restart_array(mddev);
3750 spin_lock_irq(&mddev->write_lock);
3751 if (atomic_read(&mddev->writes_pending) == 0) {
3752 if (mddev->in_sync == 0) {
3753 mddev->in_sync = 1;
3754 if (mddev->safemode == 1)
3755 mddev->safemode = 0;
3756 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3758 err = 0;
3759 } else
3760 err = -EBUSY;
3761 spin_unlock_irq(&mddev->write_lock);
3762 } else
3763 err = -EINVAL;
3764 break;
3765 case active:
3766 if (mddev->pers) {
3767 restart_array(mddev);
3768 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3769 wake_up(&mddev->sb_wait);
3770 err = 0;
3771 } else {
3772 mddev->ro = 0;
3773 set_disk_ro(mddev->gendisk, 0);
3774 err = do_md_run(mddev);
3776 break;
3777 case write_pending:
3778 case active_idle:
3779 /* these cannot be set */
3780 break;
3782 if (err)
3783 return err;
3784 else {
3785 sysfs_notify_dirent_safe(mddev->sysfs_state);
3786 return len;
3789 static struct md_sysfs_entry md_array_state =
3790 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3792 static ssize_t
3793 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3794 return sprintf(page, "%d\n",
3795 atomic_read(&mddev->max_corr_read_errors));
3798 static ssize_t
3799 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3801 char *e;
3802 unsigned long n = simple_strtoul(buf, &e, 10);
3804 if (*buf && (*e == 0 || *e == '\n')) {
3805 atomic_set(&mddev->max_corr_read_errors, n);
3806 return len;
3808 return -EINVAL;
3811 static struct md_sysfs_entry max_corr_read_errors =
3812 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3813 max_corrected_read_errors_store);
3815 static ssize_t
3816 null_show(mddev_t *mddev, char *page)
3818 return -EINVAL;
3821 static ssize_t
3822 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3824 /* buf must be %d:%d\n? giving major and minor numbers */
3825 /* The new device is added to the array.
3826 * If the array has a persistent superblock, we read the
3827 * superblock to initialise info and check validity.
3828 * Otherwise, only checking done is that in bind_rdev_to_array,
3829 * which mainly checks size.
3831 char *e;
3832 int major = simple_strtoul(buf, &e, 10);
3833 int minor;
3834 dev_t dev;
3835 mdk_rdev_t *rdev;
3836 int err;
3838 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3839 return -EINVAL;
3840 minor = simple_strtoul(e+1, &e, 10);
3841 if (*e && *e != '\n')
3842 return -EINVAL;
3843 dev = MKDEV(major, minor);
3844 if (major != MAJOR(dev) ||
3845 minor != MINOR(dev))
3846 return -EOVERFLOW;
3849 if (mddev->persistent) {
3850 rdev = md_import_device(dev, mddev->major_version,
3851 mddev->minor_version);
3852 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3853 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3854 mdk_rdev_t, same_set);
3855 err = super_types[mddev->major_version]
3856 .load_super(rdev, rdev0, mddev->minor_version);
3857 if (err < 0)
3858 goto out;
3860 } else if (mddev->external)
3861 rdev = md_import_device(dev, -2, -1);
3862 else
3863 rdev = md_import_device(dev, -1, -1);
3865 if (IS_ERR(rdev))
3866 return PTR_ERR(rdev);
3867 err = bind_rdev_to_array(rdev, mddev);
3868 out:
3869 if (err)
3870 export_rdev(rdev);
3871 return err ? err : len;
3874 static struct md_sysfs_entry md_new_device =
3875 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3877 static ssize_t
3878 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3880 char *end;
3881 unsigned long chunk, end_chunk;
3883 if (!mddev->bitmap)
3884 goto out;
3885 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3886 while (*buf) {
3887 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3888 if (buf == end) break;
3889 if (*end == '-') { /* range */
3890 buf = end + 1;
3891 end_chunk = simple_strtoul(buf, &end, 0);
3892 if (buf == end) break;
3894 if (*end && !isspace(*end)) break;
3895 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3896 buf = skip_spaces(end);
3898 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3899 out:
3900 return len;
3903 static struct md_sysfs_entry md_bitmap =
3904 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3906 static ssize_t
3907 size_show(mddev_t *mddev, char *page)
3909 return sprintf(page, "%llu\n",
3910 (unsigned long long)mddev->dev_sectors / 2);
3913 static int update_size(mddev_t *mddev, sector_t num_sectors);
3915 static ssize_t
3916 size_store(mddev_t *mddev, const char *buf, size_t len)
3918 /* If array is inactive, we can reduce the component size, but
3919 * not increase it (except from 0).
3920 * If array is active, we can try an on-line resize
3922 sector_t sectors;
3923 int err = strict_blocks_to_sectors(buf, &sectors);
3925 if (err < 0)
3926 return err;
3927 if (mddev->pers) {
3928 err = update_size(mddev, sectors);
3929 md_update_sb(mddev, 1);
3930 } else {
3931 if (mddev->dev_sectors == 0 ||
3932 mddev->dev_sectors > sectors)
3933 mddev->dev_sectors = sectors;
3934 else
3935 err = -ENOSPC;
3937 return err ? err : len;
3940 static struct md_sysfs_entry md_size =
3941 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3944 /* Metdata version.
3945 * This is one of
3946 * 'none' for arrays with no metadata (good luck...)
3947 * 'external' for arrays with externally managed metadata,
3948 * or N.M for internally known formats
3950 static ssize_t
3951 metadata_show(mddev_t *mddev, char *page)
3953 if (mddev->persistent)
3954 return sprintf(page, "%d.%d\n",
3955 mddev->major_version, mddev->minor_version);
3956 else if (mddev->external)
3957 return sprintf(page, "external:%s\n", mddev->metadata_type);
3958 else
3959 return sprintf(page, "none\n");
3962 static ssize_t
3963 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3965 int major, minor;
3966 char *e;
3967 /* Changing the details of 'external' metadata is
3968 * always permitted. Otherwise there must be
3969 * no devices attached to the array.
3971 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3973 else if (!list_empty(&mddev->disks))
3974 return -EBUSY;
3976 if (cmd_match(buf, "none")) {
3977 mddev->persistent = 0;
3978 mddev->external = 0;
3979 mddev->major_version = 0;
3980 mddev->minor_version = 90;
3981 return len;
3983 if (strncmp(buf, "external:", 9) == 0) {
3984 size_t namelen = len-9;
3985 if (namelen >= sizeof(mddev->metadata_type))
3986 namelen = sizeof(mddev->metadata_type)-1;
3987 strncpy(mddev->metadata_type, buf+9, namelen);
3988 mddev->metadata_type[namelen] = 0;
3989 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3990 mddev->metadata_type[--namelen] = 0;
3991 mddev->persistent = 0;
3992 mddev->external = 1;
3993 mddev->major_version = 0;
3994 mddev->minor_version = 90;
3995 return len;
3997 major = simple_strtoul(buf, &e, 10);
3998 if (e==buf || *e != '.')
3999 return -EINVAL;
4000 buf = e+1;
4001 minor = simple_strtoul(buf, &e, 10);
4002 if (e==buf || (*e && *e != '\n') )
4003 return -EINVAL;
4004 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4005 return -ENOENT;
4006 mddev->major_version = major;
4007 mddev->minor_version = minor;
4008 mddev->persistent = 1;
4009 mddev->external = 0;
4010 return len;
4013 static struct md_sysfs_entry md_metadata =
4014 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4016 static ssize_t
4017 action_show(mddev_t *mddev, char *page)
4019 char *type = "idle";
4020 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4021 type = "frozen";
4022 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4023 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4024 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4025 type = "reshape";
4026 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4027 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4028 type = "resync";
4029 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4030 type = "check";
4031 else
4032 type = "repair";
4033 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4034 type = "recover";
4036 return sprintf(page, "%s\n", type);
4039 static void reap_sync_thread(mddev_t *mddev);
4041 static ssize_t
4042 action_store(mddev_t *mddev, const char *page, size_t len)
4044 if (!mddev->pers || !mddev->pers->sync_request)
4045 return -EINVAL;
4047 if (cmd_match(page, "frozen"))
4048 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4049 else
4050 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4052 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4053 if (mddev->sync_thread) {
4054 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4055 reap_sync_thread(mddev);
4057 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4058 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4059 return -EBUSY;
4060 else if (cmd_match(page, "resync"))
4061 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4062 else if (cmd_match(page, "recover")) {
4063 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4064 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4065 } else if (cmd_match(page, "reshape")) {
4066 int err;
4067 if (mddev->pers->start_reshape == NULL)
4068 return -EINVAL;
4069 err = mddev->pers->start_reshape(mddev);
4070 if (err)
4071 return err;
4072 sysfs_notify(&mddev->kobj, NULL, "degraded");
4073 } else {
4074 if (cmd_match(page, "check"))
4075 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4076 else if (!cmd_match(page, "repair"))
4077 return -EINVAL;
4078 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4079 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4081 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4082 md_wakeup_thread(mddev->thread);
4083 sysfs_notify_dirent_safe(mddev->sysfs_action);
4084 return len;
4087 static ssize_t
4088 mismatch_cnt_show(mddev_t *mddev, char *page)
4090 return sprintf(page, "%llu\n",
4091 (unsigned long long) mddev->resync_mismatches);
4094 static struct md_sysfs_entry md_scan_mode =
4095 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4098 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4100 static ssize_t
4101 sync_min_show(mddev_t *mddev, char *page)
4103 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4104 mddev->sync_speed_min ? "local": "system");
4107 static ssize_t
4108 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
4110 int min;
4111 char *e;
4112 if (strncmp(buf, "system", 6)==0) {
4113 mddev->sync_speed_min = 0;
4114 return len;
4116 min = simple_strtoul(buf, &e, 10);
4117 if (buf == e || (*e && *e != '\n') || min <= 0)
4118 return -EINVAL;
4119 mddev->sync_speed_min = min;
4120 return len;
4123 static struct md_sysfs_entry md_sync_min =
4124 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4126 static ssize_t
4127 sync_max_show(mddev_t *mddev, char *page)
4129 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4130 mddev->sync_speed_max ? "local": "system");
4133 static ssize_t
4134 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
4136 int max;
4137 char *e;
4138 if (strncmp(buf, "system", 6)==0) {
4139 mddev->sync_speed_max = 0;
4140 return len;
4142 max = simple_strtoul(buf, &e, 10);
4143 if (buf == e || (*e && *e != '\n') || max <= 0)
4144 return -EINVAL;
4145 mddev->sync_speed_max = max;
4146 return len;
4149 static struct md_sysfs_entry md_sync_max =
4150 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4152 static ssize_t
4153 degraded_show(mddev_t *mddev, char *page)
4155 return sprintf(page, "%d\n", mddev->degraded);
4157 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4159 static ssize_t
4160 sync_force_parallel_show(mddev_t *mddev, char *page)
4162 return sprintf(page, "%d\n", mddev->parallel_resync);
4165 static ssize_t
4166 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
4168 long n;
4170 if (strict_strtol(buf, 10, &n))
4171 return -EINVAL;
4173 if (n != 0 && n != 1)
4174 return -EINVAL;
4176 mddev->parallel_resync = n;
4178 if (mddev->sync_thread)
4179 wake_up(&resync_wait);
4181 return len;
4184 /* force parallel resync, even with shared block devices */
4185 static struct md_sysfs_entry md_sync_force_parallel =
4186 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4187 sync_force_parallel_show, sync_force_parallel_store);
4189 static ssize_t
4190 sync_speed_show(mddev_t *mddev, char *page)
4192 unsigned long resync, dt, db;
4193 if (mddev->curr_resync == 0)
4194 return sprintf(page, "none\n");
4195 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4196 dt = (jiffies - mddev->resync_mark) / HZ;
4197 if (!dt) dt++;
4198 db = resync - mddev->resync_mark_cnt;
4199 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4202 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4204 static ssize_t
4205 sync_completed_show(mddev_t *mddev, char *page)
4207 unsigned long long max_sectors, resync;
4209 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4210 return sprintf(page, "none\n");
4212 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4213 max_sectors = mddev->resync_max_sectors;
4214 else
4215 max_sectors = mddev->dev_sectors;
4217 resync = mddev->curr_resync_completed;
4218 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4221 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4223 static ssize_t
4224 min_sync_show(mddev_t *mddev, char *page)
4226 return sprintf(page, "%llu\n",
4227 (unsigned long long)mddev->resync_min);
4229 static ssize_t
4230 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
4232 unsigned long long min;
4233 if (strict_strtoull(buf, 10, &min))
4234 return -EINVAL;
4235 if (min > mddev->resync_max)
4236 return -EINVAL;
4237 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4238 return -EBUSY;
4240 /* Must be a multiple of chunk_size */
4241 if (mddev->chunk_sectors) {
4242 sector_t temp = min;
4243 if (sector_div(temp, mddev->chunk_sectors))
4244 return -EINVAL;
4246 mddev->resync_min = min;
4248 return len;
4251 static struct md_sysfs_entry md_min_sync =
4252 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4254 static ssize_t
4255 max_sync_show(mddev_t *mddev, char *page)
4257 if (mddev->resync_max == MaxSector)
4258 return sprintf(page, "max\n");
4259 else
4260 return sprintf(page, "%llu\n",
4261 (unsigned long long)mddev->resync_max);
4263 static ssize_t
4264 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
4266 if (strncmp(buf, "max", 3) == 0)
4267 mddev->resync_max = MaxSector;
4268 else {
4269 unsigned long long max;
4270 if (strict_strtoull(buf, 10, &max))
4271 return -EINVAL;
4272 if (max < mddev->resync_min)
4273 return -EINVAL;
4274 if (max < mddev->resync_max &&
4275 mddev->ro == 0 &&
4276 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4277 return -EBUSY;
4279 /* Must be a multiple of chunk_size */
4280 if (mddev->chunk_sectors) {
4281 sector_t temp = max;
4282 if (sector_div(temp, mddev->chunk_sectors))
4283 return -EINVAL;
4285 mddev->resync_max = max;
4287 wake_up(&mddev->recovery_wait);
4288 return len;
4291 static struct md_sysfs_entry md_max_sync =
4292 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4294 static ssize_t
4295 suspend_lo_show(mddev_t *mddev, char *page)
4297 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4300 static ssize_t
4301 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4303 char *e;
4304 unsigned long long new = simple_strtoull(buf, &e, 10);
4305 unsigned long long old = mddev->suspend_lo;
4307 if (mddev->pers == NULL ||
4308 mddev->pers->quiesce == NULL)
4309 return -EINVAL;
4310 if (buf == e || (*e && *e != '\n'))
4311 return -EINVAL;
4313 mddev->suspend_lo = new;
4314 if (new >= old)
4315 /* Shrinking suspended region */
4316 mddev->pers->quiesce(mddev, 2);
4317 else {
4318 /* Expanding suspended region - need to wait */
4319 mddev->pers->quiesce(mddev, 1);
4320 mddev->pers->quiesce(mddev, 0);
4322 return len;
4324 static struct md_sysfs_entry md_suspend_lo =
4325 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4328 static ssize_t
4329 suspend_hi_show(mddev_t *mddev, char *page)
4331 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4334 static ssize_t
4335 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4337 char *e;
4338 unsigned long long new = simple_strtoull(buf, &e, 10);
4339 unsigned long long old = mddev->suspend_hi;
4341 if (mddev->pers == NULL ||
4342 mddev->pers->quiesce == NULL)
4343 return -EINVAL;
4344 if (buf == e || (*e && *e != '\n'))
4345 return -EINVAL;
4347 mddev->suspend_hi = new;
4348 if (new <= old)
4349 /* Shrinking suspended region */
4350 mddev->pers->quiesce(mddev, 2);
4351 else {
4352 /* Expanding suspended region - need to wait */
4353 mddev->pers->quiesce(mddev, 1);
4354 mddev->pers->quiesce(mddev, 0);
4356 return len;
4358 static struct md_sysfs_entry md_suspend_hi =
4359 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4361 static ssize_t
4362 reshape_position_show(mddev_t *mddev, char *page)
4364 if (mddev->reshape_position != MaxSector)
4365 return sprintf(page, "%llu\n",
4366 (unsigned long long)mddev->reshape_position);
4367 strcpy(page, "none\n");
4368 return 5;
4371 static ssize_t
4372 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4374 char *e;
4375 unsigned long long new = simple_strtoull(buf, &e, 10);
4376 if (mddev->pers)
4377 return -EBUSY;
4378 if (buf == e || (*e && *e != '\n'))
4379 return -EINVAL;
4380 mddev->reshape_position = new;
4381 mddev->delta_disks = 0;
4382 mddev->new_level = mddev->level;
4383 mddev->new_layout = mddev->layout;
4384 mddev->new_chunk_sectors = mddev->chunk_sectors;
4385 return len;
4388 static struct md_sysfs_entry md_reshape_position =
4389 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4390 reshape_position_store);
4392 static ssize_t
4393 array_size_show(mddev_t *mddev, char *page)
4395 if (mddev->external_size)
4396 return sprintf(page, "%llu\n",
4397 (unsigned long long)mddev->array_sectors/2);
4398 else
4399 return sprintf(page, "default\n");
4402 static ssize_t
4403 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4405 sector_t sectors;
4407 if (strncmp(buf, "default", 7) == 0) {
4408 if (mddev->pers)
4409 sectors = mddev->pers->size(mddev, 0, 0);
4410 else
4411 sectors = mddev->array_sectors;
4413 mddev->external_size = 0;
4414 } else {
4415 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4416 return -EINVAL;
4417 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4418 return -E2BIG;
4420 mddev->external_size = 1;
4423 mddev->array_sectors = sectors;
4424 if (mddev->pers) {
4425 set_capacity(mddev->gendisk, mddev->array_sectors);
4426 revalidate_disk(mddev->gendisk);
4428 return len;
4431 static struct md_sysfs_entry md_array_size =
4432 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4433 array_size_store);
4435 static struct attribute *md_default_attrs[] = {
4436 &md_level.attr,
4437 &md_layout.attr,
4438 &md_raid_disks.attr,
4439 &md_chunk_size.attr,
4440 &md_size.attr,
4441 &md_resync_start.attr,
4442 &md_metadata.attr,
4443 &md_new_device.attr,
4444 &md_safe_delay.attr,
4445 &md_array_state.attr,
4446 &md_reshape_position.attr,
4447 &md_array_size.attr,
4448 &max_corr_read_errors.attr,
4449 NULL,
4452 static struct attribute *md_redundancy_attrs[] = {
4453 &md_scan_mode.attr,
4454 &md_mismatches.attr,
4455 &md_sync_min.attr,
4456 &md_sync_max.attr,
4457 &md_sync_speed.attr,
4458 &md_sync_force_parallel.attr,
4459 &md_sync_completed.attr,
4460 &md_min_sync.attr,
4461 &md_max_sync.attr,
4462 &md_suspend_lo.attr,
4463 &md_suspend_hi.attr,
4464 &md_bitmap.attr,
4465 &md_degraded.attr,
4466 NULL,
4468 static struct attribute_group md_redundancy_group = {
4469 .name = NULL,
4470 .attrs = md_redundancy_attrs,
4474 static ssize_t
4475 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4477 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4478 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4479 ssize_t rv;
4481 if (!entry->show)
4482 return -EIO;
4483 rv = mddev_lock(mddev);
4484 if (!rv) {
4485 rv = entry->show(mddev, page);
4486 mddev_unlock(mddev);
4488 return rv;
4491 static ssize_t
4492 md_attr_store(struct kobject *kobj, struct attribute *attr,
4493 const char *page, size_t length)
4495 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4496 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4497 ssize_t rv;
4499 if (!entry->store)
4500 return -EIO;
4501 if (!capable(CAP_SYS_ADMIN))
4502 return -EACCES;
4503 rv = mddev_lock(mddev);
4504 if (mddev->hold_active == UNTIL_IOCTL)
4505 mddev->hold_active = 0;
4506 if (!rv) {
4507 rv = entry->store(mddev, page, length);
4508 mddev_unlock(mddev);
4510 return rv;
4513 static void md_free(struct kobject *ko)
4515 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4517 if (mddev->sysfs_state)
4518 sysfs_put(mddev->sysfs_state);
4520 if (mddev->gendisk) {
4521 del_gendisk(mddev->gendisk);
4522 put_disk(mddev->gendisk);
4524 if (mddev->queue)
4525 blk_cleanup_queue(mddev->queue);
4527 kfree(mddev);
4530 static const struct sysfs_ops md_sysfs_ops = {
4531 .show = md_attr_show,
4532 .store = md_attr_store,
4534 static struct kobj_type md_ktype = {
4535 .release = md_free,
4536 .sysfs_ops = &md_sysfs_ops,
4537 .default_attrs = md_default_attrs,
4540 int mdp_major = 0;
4542 static void mddev_delayed_delete(struct work_struct *ws)
4544 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4546 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4547 kobject_del(&mddev->kobj);
4548 kobject_put(&mddev->kobj);
4551 static int md_alloc(dev_t dev, char *name)
4553 static DEFINE_MUTEX(disks_mutex);
4554 mddev_t *mddev = mddev_find(dev);
4555 struct gendisk *disk;
4556 int partitioned;
4557 int shift;
4558 int unit;
4559 int error;
4561 if (!mddev)
4562 return -ENODEV;
4564 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4565 shift = partitioned ? MdpMinorShift : 0;
4566 unit = MINOR(mddev->unit) >> shift;
4568 /* wait for any previous instance of this device to be
4569 * completely removed (mddev_delayed_delete).
4571 flush_workqueue(md_misc_wq);
4573 mutex_lock(&disks_mutex);
4574 error = -EEXIST;
4575 if (mddev->gendisk)
4576 goto abort;
4578 if (name) {
4579 /* Need to ensure that 'name' is not a duplicate.
4581 mddev_t *mddev2;
4582 spin_lock(&all_mddevs_lock);
4584 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4585 if (mddev2->gendisk &&
4586 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4587 spin_unlock(&all_mddevs_lock);
4588 goto abort;
4590 spin_unlock(&all_mddevs_lock);
4593 error = -ENOMEM;
4594 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4595 if (!mddev->queue)
4596 goto abort;
4597 mddev->queue->queuedata = mddev;
4599 blk_queue_make_request(mddev->queue, md_make_request);
4601 disk = alloc_disk(1 << shift);
4602 if (!disk) {
4603 blk_cleanup_queue(mddev->queue);
4604 mddev->queue = NULL;
4605 goto abort;
4607 disk->major = MAJOR(mddev->unit);
4608 disk->first_minor = unit << shift;
4609 if (name)
4610 strcpy(disk->disk_name, name);
4611 else if (partitioned)
4612 sprintf(disk->disk_name, "md_d%d", unit);
4613 else
4614 sprintf(disk->disk_name, "md%d", unit);
4615 disk->fops = &md_fops;
4616 disk->private_data = mddev;
4617 disk->queue = mddev->queue;
4618 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4619 /* Allow extended partitions. This makes the
4620 * 'mdp' device redundant, but we can't really
4621 * remove it now.
4623 disk->flags |= GENHD_FL_EXT_DEVT;
4624 mddev->gendisk = disk;
4625 /* As soon as we call add_disk(), another thread could get
4626 * through to md_open, so make sure it doesn't get too far
4628 mutex_lock(&mddev->open_mutex);
4629 add_disk(disk);
4631 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4632 &disk_to_dev(disk)->kobj, "%s", "md");
4633 if (error) {
4634 /* This isn't possible, but as kobject_init_and_add is marked
4635 * __must_check, we must do something with the result
4637 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4638 disk->disk_name);
4639 error = 0;
4641 if (mddev->kobj.sd &&
4642 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4643 printk(KERN_DEBUG "pointless warning\n");
4644 mutex_unlock(&mddev->open_mutex);
4645 abort:
4646 mutex_unlock(&disks_mutex);
4647 if (!error && mddev->kobj.sd) {
4648 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4649 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4651 mddev_put(mddev);
4652 return error;
4655 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4657 md_alloc(dev, NULL);
4658 return NULL;
4661 static int add_named_array(const char *val, struct kernel_param *kp)
4663 /* val must be "md_*" where * is not all digits.
4664 * We allocate an array with a large free minor number, and
4665 * set the name to val. val must not already be an active name.
4667 int len = strlen(val);
4668 char buf[DISK_NAME_LEN];
4670 while (len && val[len-1] == '\n')
4671 len--;
4672 if (len >= DISK_NAME_LEN)
4673 return -E2BIG;
4674 strlcpy(buf, val, len+1);
4675 if (strncmp(buf, "md_", 3) != 0)
4676 return -EINVAL;
4677 return md_alloc(0, buf);
4680 static void md_safemode_timeout(unsigned long data)
4682 mddev_t *mddev = (mddev_t *) data;
4684 if (!atomic_read(&mddev->writes_pending)) {
4685 mddev->safemode = 1;
4686 if (mddev->external)
4687 sysfs_notify_dirent_safe(mddev->sysfs_state);
4689 md_wakeup_thread(mddev->thread);
4692 static int start_dirty_degraded;
4694 int md_run(mddev_t *mddev)
4696 int err;
4697 mdk_rdev_t *rdev;
4698 struct mdk_personality *pers;
4700 if (list_empty(&mddev->disks))
4701 /* cannot run an array with no devices.. */
4702 return -EINVAL;
4704 if (mddev->pers)
4705 return -EBUSY;
4706 /* Cannot run until previous stop completes properly */
4707 if (mddev->sysfs_active)
4708 return -EBUSY;
4711 * Analyze all RAID superblock(s)
4713 if (!mddev->raid_disks) {
4714 if (!mddev->persistent)
4715 return -EINVAL;
4716 analyze_sbs(mddev);
4719 if (mddev->level != LEVEL_NONE)
4720 request_module("md-level-%d", mddev->level);
4721 else if (mddev->clevel[0])
4722 request_module("md-%s", mddev->clevel);
4725 * Drop all container device buffers, from now on
4726 * the only valid external interface is through the md
4727 * device.
4729 list_for_each_entry(rdev, &mddev->disks, same_set) {
4730 if (test_bit(Faulty, &rdev->flags))
4731 continue;
4732 sync_blockdev(rdev->bdev);
4733 invalidate_bdev(rdev->bdev);
4735 /* perform some consistency tests on the device.
4736 * We don't want the data to overlap the metadata,
4737 * Internal Bitmap issues have been handled elsewhere.
4739 if (rdev->meta_bdev) {
4740 /* Nothing to check */;
4741 } else if (rdev->data_offset < rdev->sb_start) {
4742 if (mddev->dev_sectors &&
4743 rdev->data_offset + mddev->dev_sectors
4744 > rdev->sb_start) {
4745 printk("md: %s: data overlaps metadata\n",
4746 mdname(mddev));
4747 return -EINVAL;
4749 } else {
4750 if (rdev->sb_start + rdev->sb_size/512
4751 > rdev->data_offset) {
4752 printk("md: %s: metadata overlaps data\n",
4753 mdname(mddev));
4754 return -EINVAL;
4757 sysfs_notify_dirent_safe(rdev->sysfs_state);
4760 if (mddev->bio_set == NULL)
4761 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4762 sizeof(mddev_t *));
4764 spin_lock(&pers_lock);
4765 pers = find_pers(mddev->level, mddev->clevel);
4766 if (!pers || !try_module_get(pers->owner)) {
4767 spin_unlock(&pers_lock);
4768 if (mddev->level != LEVEL_NONE)
4769 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4770 mddev->level);
4771 else
4772 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4773 mddev->clevel);
4774 return -EINVAL;
4776 mddev->pers = pers;
4777 spin_unlock(&pers_lock);
4778 if (mddev->level != pers->level) {
4779 mddev->level = pers->level;
4780 mddev->new_level = pers->level;
4782 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4784 if (mddev->reshape_position != MaxSector &&
4785 pers->start_reshape == NULL) {
4786 /* This personality cannot handle reshaping... */
4787 mddev->pers = NULL;
4788 module_put(pers->owner);
4789 return -EINVAL;
4792 if (pers->sync_request) {
4793 /* Warn if this is a potentially silly
4794 * configuration.
4796 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4797 mdk_rdev_t *rdev2;
4798 int warned = 0;
4800 list_for_each_entry(rdev, &mddev->disks, same_set)
4801 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4802 if (rdev < rdev2 &&
4803 rdev->bdev->bd_contains ==
4804 rdev2->bdev->bd_contains) {
4805 printk(KERN_WARNING
4806 "%s: WARNING: %s appears to be"
4807 " on the same physical disk as"
4808 " %s.\n",
4809 mdname(mddev),
4810 bdevname(rdev->bdev,b),
4811 bdevname(rdev2->bdev,b2));
4812 warned = 1;
4816 if (warned)
4817 printk(KERN_WARNING
4818 "True protection against single-disk"
4819 " failure might be compromised.\n");
4822 mddev->recovery = 0;
4823 /* may be over-ridden by personality */
4824 mddev->resync_max_sectors = mddev->dev_sectors;
4826 mddev->ok_start_degraded = start_dirty_degraded;
4828 if (start_readonly && mddev->ro == 0)
4829 mddev->ro = 2; /* read-only, but switch on first write */
4831 err = mddev->pers->run(mddev);
4832 if (err)
4833 printk(KERN_ERR "md: pers->run() failed ...\n");
4834 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4835 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4836 " but 'external_size' not in effect?\n", __func__);
4837 printk(KERN_ERR
4838 "md: invalid array_size %llu > default size %llu\n",
4839 (unsigned long long)mddev->array_sectors / 2,
4840 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4841 err = -EINVAL;
4842 mddev->pers->stop(mddev);
4844 if (err == 0 && mddev->pers->sync_request) {
4845 err = bitmap_create(mddev);
4846 if (err) {
4847 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4848 mdname(mddev), err);
4849 mddev->pers->stop(mddev);
4852 if (err) {
4853 module_put(mddev->pers->owner);
4854 mddev->pers = NULL;
4855 bitmap_destroy(mddev);
4856 return err;
4858 if (mddev->pers->sync_request) {
4859 if (mddev->kobj.sd &&
4860 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4861 printk(KERN_WARNING
4862 "md: cannot register extra attributes for %s\n",
4863 mdname(mddev));
4864 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4865 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4866 mddev->ro = 0;
4868 atomic_set(&mddev->writes_pending,0);
4869 atomic_set(&mddev->max_corr_read_errors,
4870 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4871 mddev->safemode = 0;
4872 mddev->safemode_timer.function = md_safemode_timeout;
4873 mddev->safemode_timer.data = (unsigned long) mddev;
4874 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4875 mddev->in_sync = 1;
4876 smp_wmb();
4877 mddev->ready = 1;
4878 list_for_each_entry(rdev, &mddev->disks, same_set)
4879 if (rdev->raid_disk >= 0)
4880 if (sysfs_link_rdev(mddev, rdev))
4881 /* failure here is OK */;
4883 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4885 if (mddev->flags)
4886 md_update_sb(mddev, 0);
4888 md_new_event(mddev);
4889 sysfs_notify_dirent_safe(mddev->sysfs_state);
4890 sysfs_notify_dirent_safe(mddev->sysfs_action);
4891 sysfs_notify(&mddev->kobj, NULL, "degraded");
4892 return 0;
4894 EXPORT_SYMBOL_GPL(md_run);
4896 static int do_md_run(mddev_t *mddev)
4898 int err;
4900 err = md_run(mddev);
4901 if (err)
4902 goto out;
4903 err = bitmap_load(mddev);
4904 if (err) {
4905 bitmap_destroy(mddev);
4906 goto out;
4909 md_wakeup_thread(mddev->thread);
4910 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4912 set_capacity(mddev->gendisk, mddev->array_sectors);
4913 revalidate_disk(mddev->gendisk);
4914 mddev->changed = 1;
4915 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4916 out:
4917 return err;
4920 static int restart_array(mddev_t *mddev)
4922 struct gendisk *disk = mddev->gendisk;
4924 /* Complain if it has no devices */
4925 if (list_empty(&mddev->disks))
4926 return -ENXIO;
4927 if (!mddev->pers)
4928 return -EINVAL;
4929 if (!mddev->ro)
4930 return -EBUSY;
4931 mddev->safemode = 0;
4932 mddev->ro = 0;
4933 set_disk_ro(disk, 0);
4934 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4935 mdname(mddev));
4936 /* Kick recovery or resync if necessary */
4937 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4938 md_wakeup_thread(mddev->thread);
4939 md_wakeup_thread(mddev->sync_thread);
4940 sysfs_notify_dirent_safe(mddev->sysfs_state);
4941 return 0;
4944 /* similar to deny_write_access, but accounts for our holding a reference
4945 * to the file ourselves */
4946 static int deny_bitmap_write_access(struct file * file)
4948 struct inode *inode = file->f_mapping->host;
4950 spin_lock(&inode->i_lock);
4951 if (atomic_read(&inode->i_writecount) > 1) {
4952 spin_unlock(&inode->i_lock);
4953 return -ETXTBSY;
4955 atomic_set(&inode->i_writecount, -1);
4956 spin_unlock(&inode->i_lock);
4958 return 0;
4961 void restore_bitmap_write_access(struct file *file)
4963 struct inode *inode = file->f_mapping->host;
4965 spin_lock(&inode->i_lock);
4966 atomic_set(&inode->i_writecount, 1);
4967 spin_unlock(&inode->i_lock);
4970 static void md_clean(mddev_t *mddev)
4972 mddev->array_sectors = 0;
4973 mddev->external_size = 0;
4974 mddev->dev_sectors = 0;
4975 mddev->raid_disks = 0;
4976 mddev->recovery_cp = 0;
4977 mddev->resync_min = 0;
4978 mddev->resync_max = MaxSector;
4979 mddev->reshape_position = MaxSector;
4980 mddev->external = 0;
4981 mddev->persistent = 0;
4982 mddev->level = LEVEL_NONE;
4983 mddev->clevel[0] = 0;
4984 mddev->flags = 0;
4985 mddev->ro = 0;
4986 mddev->metadata_type[0] = 0;
4987 mddev->chunk_sectors = 0;
4988 mddev->ctime = mddev->utime = 0;
4989 mddev->layout = 0;
4990 mddev->max_disks = 0;
4991 mddev->events = 0;
4992 mddev->can_decrease_events = 0;
4993 mddev->delta_disks = 0;
4994 mddev->new_level = LEVEL_NONE;
4995 mddev->new_layout = 0;
4996 mddev->new_chunk_sectors = 0;
4997 mddev->curr_resync = 0;
4998 mddev->resync_mismatches = 0;
4999 mddev->suspend_lo = mddev->suspend_hi = 0;
5000 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5001 mddev->recovery = 0;
5002 mddev->in_sync = 0;
5003 mddev->changed = 0;
5004 mddev->degraded = 0;
5005 mddev->safemode = 0;
5006 mddev->bitmap_info.offset = 0;
5007 mddev->bitmap_info.default_offset = 0;
5008 mddev->bitmap_info.chunksize = 0;
5009 mddev->bitmap_info.daemon_sleep = 0;
5010 mddev->bitmap_info.max_write_behind = 0;
5013 static void __md_stop_writes(mddev_t *mddev)
5015 if (mddev->sync_thread) {
5016 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5017 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5018 reap_sync_thread(mddev);
5021 del_timer_sync(&mddev->safemode_timer);
5023 bitmap_flush(mddev);
5024 md_super_wait(mddev);
5026 if (!mddev->in_sync || mddev->flags) {
5027 /* mark array as shutdown cleanly */
5028 mddev->in_sync = 1;
5029 md_update_sb(mddev, 1);
5033 void md_stop_writes(mddev_t *mddev)
5035 mddev_lock(mddev);
5036 __md_stop_writes(mddev);
5037 mddev_unlock(mddev);
5039 EXPORT_SYMBOL_GPL(md_stop_writes);
5041 void md_stop(mddev_t *mddev)
5043 mddev->ready = 0;
5044 mddev->pers->stop(mddev);
5045 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5046 mddev->to_remove = &md_redundancy_group;
5047 module_put(mddev->pers->owner);
5048 mddev->pers = NULL;
5049 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5051 EXPORT_SYMBOL_GPL(md_stop);
5053 static int md_set_readonly(mddev_t *mddev, int is_open)
5055 int err = 0;
5056 mutex_lock(&mddev->open_mutex);
5057 if (atomic_read(&mddev->openers) > is_open) {
5058 printk("md: %s still in use.\n",mdname(mddev));
5059 err = -EBUSY;
5060 goto out;
5062 if (mddev->pers) {
5063 __md_stop_writes(mddev);
5065 err = -ENXIO;
5066 if (mddev->ro==1)
5067 goto out;
5068 mddev->ro = 1;
5069 set_disk_ro(mddev->gendisk, 1);
5070 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5071 sysfs_notify_dirent_safe(mddev->sysfs_state);
5072 err = 0;
5074 out:
5075 mutex_unlock(&mddev->open_mutex);
5076 return err;
5079 /* mode:
5080 * 0 - completely stop and dis-assemble array
5081 * 2 - stop but do not disassemble array
5083 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
5085 struct gendisk *disk = mddev->gendisk;
5086 mdk_rdev_t *rdev;
5088 mutex_lock(&mddev->open_mutex);
5089 if (atomic_read(&mddev->openers) > is_open ||
5090 mddev->sysfs_active) {
5091 printk("md: %s still in use.\n",mdname(mddev));
5092 mutex_unlock(&mddev->open_mutex);
5093 return -EBUSY;
5096 if (mddev->pers) {
5097 if (mddev->ro)
5098 set_disk_ro(disk, 0);
5100 __md_stop_writes(mddev);
5101 md_stop(mddev);
5102 mddev->queue->merge_bvec_fn = NULL;
5103 mddev->queue->backing_dev_info.congested_fn = NULL;
5105 /* tell userspace to handle 'inactive' */
5106 sysfs_notify_dirent_safe(mddev->sysfs_state);
5108 list_for_each_entry(rdev, &mddev->disks, same_set)
5109 if (rdev->raid_disk >= 0)
5110 sysfs_unlink_rdev(mddev, rdev);
5112 set_capacity(disk, 0);
5113 mutex_unlock(&mddev->open_mutex);
5114 mddev->changed = 1;
5115 revalidate_disk(disk);
5117 if (mddev->ro)
5118 mddev->ro = 0;
5119 } else
5120 mutex_unlock(&mddev->open_mutex);
5122 * Free resources if final stop
5124 if (mode == 0) {
5125 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5127 bitmap_destroy(mddev);
5128 if (mddev->bitmap_info.file) {
5129 restore_bitmap_write_access(mddev->bitmap_info.file);
5130 fput(mddev->bitmap_info.file);
5131 mddev->bitmap_info.file = NULL;
5133 mddev->bitmap_info.offset = 0;
5135 export_array(mddev);
5137 md_clean(mddev);
5138 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5139 if (mddev->hold_active == UNTIL_STOP)
5140 mddev->hold_active = 0;
5142 blk_integrity_unregister(disk);
5143 md_new_event(mddev);
5144 sysfs_notify_dirent_safe(mddev->sysfs_state);
5145 return 0;
5148 #ifndef MODULE
5149 static void autorun_array(mddev_t *mddev)
5151 mdk_rdev_t *rdev;
5152 int err;
5154 if (list_empty(&mddev->disks))
5155 return;
5157 printk(KERN_INFO "md: running: ");
5159 list_for_each_entry(rdev, &mddev->disks, same_set) {
5160 char b[BDEVNAME_SIZE];
5161 printk("<%s>", bdevname(rdev->bdev,b));
5163 printk("\n");
5165 err = do_md_run(mddev);
5166 if (err) {
5167 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5168 do_md_stop(mddev, 0, 0);
5173 * lets try to run arrays based on all disks that have arrived
5174 * until now. (those are in pending_raid_disks)
5176 * the method: pick the first pending disk, collect all disks with
5177 * the same UUID, remove all from the pending list and put them into
5178 * the 'same_array' list. Then order this list based on superblock
5179 * update time (freshest comes first), kick out 'old' disks and
5180 * compare superblocks. If everything's fine then run it.
5182 * If "unit" is allocated, then bump its reference count
5184 static void autorun_devices(int part)
5186 mdk_rdev_t *rdev0, *rdev, *tmp;
5187 mddev_t *mddev;
5188 char b[BDEVNAME_SIZE];
5190 printk(KERN_INFO "md: autorun ...\n");
5191 while (!list_empty(&pending_raid_disks)) {
5192 int unit;
5193 dev_t dev;
5194 LIST_HEAD(candidates);
5195 rdev0 = list_entry(pending_raid_disks.next,
5196 mdk_rdev_t, same_set);
5198 printk(KERN_INFO "md: considering %s ...\n",
5199 bdevname(rdev0->bdev,b));
5200 INIT_LIST_HEAD(&candidates);
5201 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5202 if (super_90_load(rdev, rdev0, 0) >= 0) {
5203 printk(KERN_INFO "md: adding %s ...\n",
5204 bdevname(rdev->bdev,b));
5205 list_move(&rdev->same_set, &candidates);
5208 * now we have a set of devices, with all of them having
5209 * mostly sane superblocks. It's time to allocate the
5210 * mddev.
5212 if (part) {
5213 dev = MKDEV(mdp_major,
5214 rdev0->preferred_minor << MdpMinorShift);
5215 unit = MINOR(dev) >> MdpMinorShift;
5216 } else {
5217 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5218 unit = MINOR(dev);
5220 if (rdev0->preferred_minor != unit) {
5221 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5222 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5223 break;
5226 md_probe(dev, NULL, NULL);
5227 mddev = mddev_find(dev);
5228 if (!mddev || !mddev->gendisk) {
5229 if (mddev)
5230 mddev_put(mddev);
5231 printk(KERN_ERR
5232 "md: cannot allocate memory for md drive.\n");
5233 break;
5235 if (mddev_lock(mddev))
5236 printk(KERN_WARNING "md: %s locked, cannot run\n",
5237 mdname(mddev));
5238 else if (mddev->raid_disks || mddev->major_version
5239 || !list_empty(&mddev->disks)) {
5240 printk(KERN_WARNING
5241 "md: %s already running, cannot run %s\n",
5242 mdname(mddev), bdevname(rdev0->bdev,b));
5243 mddev_unlock(mddev);
5244 } else {
5245 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5246 mddev->persistent = 1;
5247 rdev_for_each_list(rdev, tmp, &candidates) {
5248 list_del_init(&rdev->same_set);
5249 if (bind_rdev_to_array(rdev, mddev))
5250 export_rdev(rdev);
5252 autorun_array(mddev);
5253 mddev_unlock(mddev);
5255 /* on success, candidates will be empty, on error
5256 * it won't...
5258 rdev_for_each_list(rdev, tmp, &candidates) {
5259 list_del_init(&rdev->same_set);
5260 export_rdev(rdev);
5262 mddev_put(mddev);
5264 printk(KERN_INFO "md: ... autorun DONE.\n");
5266 #endif /* !MODULE */
5268 static int get_version(void __user * arg)
5270 mdu_version_t ver;
5272 ver.major = MD_MAJOR_VERSION;
5273 ver.minor = MD_MINOR_VERSION;
5274 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5276 if (copy_to_user(arg, &ver, sizeof(ver)))
5277 return -EFAULT;
5279 return 0;
5282 static int get_array_info(mddev_t * mddev, void __user * arg)
5284 mdu_array_info_t info;
5285 int nr,working,insync,failed,spare;
5286 mdk_rdev_t *rdev;
5288 nr=working=insync=failed=spare=0;
5289 list_for_each_entry(rdev, &mddev->disks, same_set) {
5290 nr++;
5291 if (test_bit(Faulty, &rdev->flags))
5292 failed++;
5293 else {
5294 working++;
5295 if (test_bit(In_sync, &rdev->flags))
5296 insync++;
5297 else
5298 spare++;
5302 info.major_version = mddev->major_version;
5303 info.minor_version = mddev->minor_version;
5304 info.patch_version = MD_PATCHLEVEL_VERSION;
5305 info.ctime = mddev->ctime;
5306 info.level = mddev->level;
5307 info.size = mddev->dev_sectors / 2;
5308 if (info.size != mddev->dev_sectors / 2) /* overflow */
5309 info.size = -1;
5310 info.nr_disks = nr;
5311 info.raid_disks = mddev->raid_disks;
5312 info.md_minor = mddev->md_minor;
5313 info.not_persistent= !mddev->persistent;
5315 info.utime = mddev->utime;
5316 info.state = 0;
5317 if (mddev->in_sync)
5318 info.state = (1<<MD_SB_CLEAN);
5319 if (mddev->bitmap && mddev->bitmap_info.offset)
5320 info.state = (1<<MD_SB_BITMAP_PRESENT);
5321 info.active_disks = insync;
5322 info.working_disks = working;
5323 info.failed_disks = failed;
5324 info.spare_disks = spare;
5326 info.layout = mddev->layout;
5327 info.chunk_size = mddev->chunk_sectors << 9;
5329 if (copy_to_user(arg, &info, sizeof(info)))
5330 return -EFAULT;
5332 return 0;
5335 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5337 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5338 char *ptr, *buf = NULL;
5339 int err = -ENOMEM;
5341 if (md_allow_write(mddev))
5342 file = kmalloc(sizeof(*file), GFP_NOIO);
5343 else
5344 file = kmalloc(sizeof(*file), GFP_KERNEL);
5346 if (!file)
5347 goto out;
5349 /* bitmap disabled, zero the first byte and copy out */
5350 if (!mddev->bitmap || !mddev->bitmap->file) {
5351 file->pathname[0] = '\0';
5352 goto copy_out;
5355 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5356 if (!buf)
5357 goto out;
5359 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5360 if (IS_ERR(ptr))
5361 goto out;
5363 strcpy(file->pathname, ptr);
5365 copy_out:
5366 err = 0;
5367 if (copy_to_user(arg, file, sizeof(*file)))
5368 err = -EFAULT;
5369 out:
5370 kfree(buf);
5371 kfree(file);
5372 return err;
5375 static int get_disk_info(mddev_t * mddev, void __user * arg)
5377 mdu_disk_info_t info;
5378 mdk_rdev_t *rdev;
5380 if (copy_from_user(&info, arg, sizeof(info)))
5381 return -EFAULT;
5383 rdev = find_rdev_nr(mddev, info.number);
5384 if (rdev) {
5385 info.major = MAJOR(rdev->bdev->bd_dev);
5386 info.minor = MINOR(rdev->bdev->bd_dev);
5387 info.raid_disk = rdev->raid_disk;
5388 info.state = 0;
5389 if (test_bit(Faulty, &rdev->flags))
5390 info.state |= (1<<MD_DISK_FAULTY);
5391 else if (test_bit(In_sync, &rdev->flags)) {
5392 info.state |= (1<<MD_DISK_ACTIVE);
5393 info.state |= (1<<MD_DISK_SYNC);
5395 if (test_bit(WriteMostly, &rdev->flags))
5396 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5397 } else {
5398 info.major = info.minor = 0;
5399 info.raid_disk = -1;
5400 info.state = (1<<MD_DISK_REMOVED);
5403 if (copy_to_user(arg, &info, sizeof(info)))
5404 return -EFAULT;
5406 return 0;
5409 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5411 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5412 mdk_rdev_t *rdev;
5413 dev_t dev = MKDEV(info->major,info->minor);
5415 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5416 return -EOVERFLOW;
5418 if (!mddev->raid_disks) {
5419 int err;
5420 /* expecting a device which has a superblock */
5421 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5422 if (IS_ERR(rdev)) {
5423 printk(KERN_WARNING
5424 "md: md_import_device returned %ld\n",
5425 PTR_ERR(rdev));
5426 return PTR_ERR(rdev);
5428 if (!list_empty(&mddev->disks)) {
5429 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5430 mdk_rdev_t, same_set);
5431 err = super_types[mddev->major_version]
5432 .load_super(rdev, rdev0, mddev->minor_version);
5433 if (err < 0) {
5434 printk(KERN_WARNING
5435 "md: %s has different UUID to %s\n",
5436 bdevname(rdev->bdev,b),
5437 bdevname(rdev0->bdev,b2));
5438 export_rdev(rdev);
5439 return -EINVAL;
5442 err = bind_rdev_to_array(rdev, mddev);
5443 if (err)
5444 export_rdev(rdev);
5445 return err;
5449 * add_new_disk can be used once the array is assembled
5450 * to add "hot spares". They must already have a superblock
5451 * written
5453 if (mddev->pers) {
5454 int err;
5455 if (!mddev->pers->hot_add_disk) {
5456 printk(KERN_WARNING
5457 "%s: personality does not support diskops!\n",
5458 mdname(mddev));
5459 return -EINVAL;
5461 if (mddev->persistent)
5462 rdev = md_import_device(dev, mddev->major_version,
5463 mddev->minor_version);
5464 else
5465 rdev = md_import_device(dev, -1, -1);
5466 if (IS_ERR(rdev)) {
5467 printk(KERN_WARNING
5468 "md: md_import_device returned %ld\n",
5469 PTR_ERR(rdev));
5470 return PTR_ERR(rdev);
5472 /* set saved_raid_disk if appropriate */
5473 if (!mddev->persistent) {
5474 if (info->state & (1<<MD_DISK_SYNC) &&
5475 info->raid_disk < mddev->raid_disks) {
5476 rdev->raid_disk = info->raid_disk;
5477 set_bit(In_sync, &rdev->flags);
5478 } else
5479 rdev->raid_disk = -1;
5480 } else
5481 super_types[mddev->major_version].
5482 validate_super(mddev, rdev);
5483 if ((info->state & (1<<MD_DISK_SYNC)) &&
5484 (!test_bit(In_sync, &rdev->flags) ||
5485 rdev->raid_disk != info->raid_disk)) {
5486 /* This was a hot-add request, but events doesn't
5487 * match, so reject it.
5489 export_rdev(rdev);
5490 return -EINVAL;
5493 if (test_bit(In_sync, &rdev->flags))
5494 rdev->saved_raid_disk = rdev->raid_disk;
5495 else
5496 rdev->saved_raid_disk = -1;
5498 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5499 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5500 set_bit(WriteMostly, &rdev->flags);
5501 else
5502 clear_bit(WriteMostly, &rdev->flags);
5504 rdev->raid_disk = -1;
5505 err = bind_rdev_to_array(rdev, mddev);
5506 if (!err && !mddev->pers->hot_remove_disk) {
5507 /* If there is hot_add_disk but no hot_remove_disk
5508 * then added disks for geometry changes,
5509 * and should be added immediately.
5511 super_types[mddev->major_version].
5512 validate_super(mddev, rdev);
5513 err = mddev->pers->hot_add_disk(mddev, rdev);
5514 if (err)
5515 unbind_rdev_from_array(rdev);
5517 if (err)
5518 export_rdev(rdev);
5519 else
5520 sysfs_notify_dirent_safe(rdev->sysfs_state);
5522 md_update_sb(mddev, 1);
5523 if (mddev->degraded)
5524 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5525 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5526 if (!err)
5527 md_new_event(mddev);
5528 md_wakeup_thread(mddev->thread);
5529 return err;
5532 /* otherwise, add_new_disk is only allowed
5533 * for major_version==0 superblocks
5535 if (mddev->major_version != 0) {
5536 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5537 mdname(mddev));
5538 return -EINVAL;
5541 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5542 int err;
5543 rdev = md_import_device(dev, -1, 0);
5544 if (IS_ERR(rdev)) {
5545 printk(KERN_WARNING
5546 "md: error, md_import_device() returned %ld\n",
5547 PTR_ERR(rdev));
5548 return PTR_ERR(rdev);
5550 rdev->desc_nr = info->number;
5551 if (info->raid_disk < mddev->raid_disks)
5552 rdev->raid_disk = info->raid_disk;
5553 else
5554 rdev->raid_disk = -1;
5556 if (rdev->raid_disk < mddev->raid_disks)
5557 if (info->state & (1<<MD_DISK_SYNC))
5558 set_bit(In_sync, &rdev->flags);
5560 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5561 set_bit(WriteMostly, &rdev->flags);
5563 if (!mddev->persistent) {
5564 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5565 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5566 } else
5567 rdev->sb_start = calc_dev_sboffset(rdev);
5568 rdev->sectors = rdev->sb_start;
5570 err = bind_rdev_to_array(rdev, mddev);
5571 if (err) {
5572 export_rdev(rdev);
5573 return err;
5577 return 0;
5580 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5582 char b[BDEVNAME_SIZE];
5583 mdk_rdev_t *rdev;
5585 rdev = find_rdev(mddev, dev);
5586 if (!rdev)
5587 return -ENXIO;
5589 if (rdev->raid_disk >= 0)
5590 goto busy;
5592 kick_rdev_from_array(rdev);
5593 md_update_sb(mddev, 1);
5594 md_new_event(mddev);
5596 return 0;
5597 busy:
5598 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5599 bdevname(rdev->bdev,b), mdname(mddev));
5600 return -EBUSY;
5603 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5605 char b[BDEVNAME_SIZE];
5606 int err;
5607 mdk_rdev_t *rdev;
5609 if (!mddev->pers)
5610 return -ENODEV;
5612 if (mddev->major_version != 0) {
5613 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5614 " version-0 superblocks.\n",
5615 mdname(mddev));
5616 return -EINVAL;
5618 if (!mddev->pers->hot_add_disk) {
5619 printk(KERN_WARNING
5620 "%s: personality does not support diskops!\n",
5621 mdname(mddev));
5622 return -EINVAL;
5625 rdev = md_import_device(dev, -1, 0);
5626 if (IS_ERR(rdev)) {
5627 printk(KERN_WARNING
5628 "md: error, md_import_device() returned %ld\n",
5629 PTR_ERR(rdev));
5630 return -EINVAL;
5633 if (mddev->persistent)
5634 rdev->sb_start = calc_dev_sboffset(rdev);
5635 else
5636 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5638 rdev->sectors = rdev->sb_start;
5640 if (test_bit(Faulty, &rdev->flags)) {
5641 printk(KERN_WARNING
5642 "md: can not hot-add faulty %s disk to %s!\n",
5643 bdevname(rdev->bdev,b), mdname(mddev));
5644 err = -EINVAL;
5645 goto abort_export;
5647 clear_bit(In_sync, &rdev->flags);
5648 rdev->desc_nr = -1;
5649 rdev->saved_raid_disk = -1;
5650 err = bind_rdev_to_array(rdev, mddev);
5651 if (err)
5652 goto abort_export;
5655 * The rest should better be atomic, we can have disk failures
5656 * noticed in interrupt contexts ...
5659 rdev->raid_disk = -1;
5661 md_update_sb(mddev, 1);
5664 * Kick recovery, maybe this spare has to be added to the
5665 * array immediately.
5667 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5668 md_wakeup_thread(mddev->thread);
5669 md_new_event(mddev);
5670 return 0;
5672 abort_export:
5673 export_rdev(rdev);
5674 return err;
5677 static int set_bitmap_file(mddev_t *mddev, int fd)
5679 int err;
5681 if (mddev->pers) {
5682 if (!mddev->pers->quiesce)
5683 return -EBUSY;
5684 if (mddev->recovery || mddev->sync_thread)
5685 return -EBUSY;
5686 /* we should be able to change the bitmap.. */
5690 if (fd >= 0) {
5691 if (mddev->bitmap)
5692 return -EEXIST; /* cannot add when bitmap is present */
5693 mddev->bitmap_info.file = fget(fd);
5695 if (mddev->bitmap_info.file == NULL) {
5696 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5697 mdname(mddev));
5698 return -EBADF;
5701 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5702 if (err) {
5703 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5704 mdname(mddev));
5705 fput(mddev->bitmap_info.file);
5706 mddev->bitmap_info.file = NULL;
5707 return err;
5709 mddev->bitmap_info.offset = 0; /* file overrides offset */
5710 } else if (mddev->bitmap == NULL)
5711 return -ENOENT; /* cannot remove what isn't there */
5712 err = 0;
5713 if (mddev->pers) {
5714 mddev->pers->quiesce(mddev, 1);
5715 if (fd >= 0) {
5716 err = bitmap_create(mddev);
5717 if (!err)
5718 err = bitmap_load(mddev);
5720 if (fd < 0 || err) {
5721 bitmap_destroy(mddev);
5722 fd = -1; /* make sure to put the file */
5724 mddev->pers->quiesce(mddev, 0);
5726 if (fd < 0) {
5727 if (mddev->bitmap_info.file) {
5728 restore_bitmap_write_access(mddev->bitmap_info.file);
5729 fput(mddev->bitmap_info.file);
5731 mddev->bitmap_info.file = NULL;
5734 return err;
5738 * set_array_info is used two different ways
5739 * The original usage is when creating a new array.
5740 * In this usage, raid_disks is > 0 and it together with
5741 * level, size, not_persistent,layout,chunksize determine the
5742 * shape of the array.
5743 * This will always create an array with a type-0.90.0 superblock.
5744 * The newer usage is when assembling an array.
5745 * In this case raid_disks will be 0, and the major_version field is
5746 * use to determine which style super-blocks are to be found on the devices.
5747 * The minor and patch _version numbers are also kept incase the
5748 * super_block handler wishes to interpret them.
5750 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5753 if (info->raid_disks == 0) {
5754 /* just setting version number for superblock loading */
5755 if (info->major_version < 0 ||
5756 info->major_version >= ARRAY_SIZE(super_types) ||
5757 super_types[info->major_version].name == NULL) {
5758 /* maybe try to auto-load a module? */
5759 printk(KERN_INFO
5760 "md: superblock version %d not known\n",
5761 info->major_version);
5762 return -EINVAL;
5764 mddev->major_version = info->major_version;
5765 mddev->minor_version = info->minor_version;
5766 mddev->patch_version = info->patch_version;
5767 mddev->persistent = !info->not_persistent;
5768 /* ensure mddev_put doesn't delete this now that there
5769 * is some minimal configuration.
5771 mddev->ctime = get_seconds();
5772 return 0;
5774 mddev->major_version = MD_MAJOR_VERSION;
5775 mddev->minor_version = MD_MINOR_VERSION;
5776 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5777 mddev->ctime = get_seconds();
5779 mddev->level = info->level;
5780 mddev->clevel[0] = 0;
5781 mddev->dev_sectors = 2 * (sector_t)info->size;
5782 mddev->raid_disks = info->raid_disks;
5783 /* don't set md_minor, it is determined by which /dev/md* was
5784 * openned
5786 if (info->state & (1<<MD_SB_CLEAN))
5787 mddev->recovery_cp = MaxSector;
5788 else
5789 mddev->recovery_cp = 0;
5790 mddev->persistent = ! info->not_persistent;
5791 mddev->external = 0;
5793 mddev->layout = info->layout;
5794 mddev->chunk_sectors = info->chunk_size >> 9;
5796 mddev->max_disks = MD_SB_DISKS;
5798 if (mddev->persistent)
5799 mddev->flags = 0;
5800 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5802 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5803 mddev->bitmap_info.offset = 0;
5805 mddev->reshape_position = MaxSector;
5808 * Generate a 128 bit UUID
5810 get_random_bytes(mddev->uuid, 16);
5812 mddev->new_level = mddev->level;
5813 mddev->new_chunk_sectors = mddev->chunk_sectors;
5814 mddev->new_layout = mddev->layout;
5815 mddev->delta_disks = 0;
5817 return 0;
5820 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5822 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5824 if (mddev->external_size)
5825 return;
5827 mddev->array_sectors = array_sectors;
5829 EXPORT_SYMBOL(md_set_array_sectors);
5831 static int update_size(mddev_t *mddev, sector_t num_sectors)
5833 mdk_rdev_t *rdev;
5834 int rv;
5835 int fit = (num_sectors == 0);
5837 if (mddev->pers->resize == NULL)
5838 return -EINVAL;
5839 /* The "num_sectors" is the number of sectors of each device that
5840 * is used. This can only make sense for arrays with redundancy.
5841 * linear and raid0 always use whatever space is available. We can only
5842 * consider changing this number if no resync or reconstruction is
5843 * happening, and if the new size is acceptable. It must fit before the
5844 * sb_start or, if that is <data_offset, it must fit before the size
5845 * of each device. If num_sectors is zero, we find the largest size
5846 * that fits.
5848 if (mddev->sync_thread)
5849 return -EBUSY;
5850 if (mddev->bitmap)
5851 /* Sorry, cannot grow a bitmap yet, just remove it,
5852 * grow, and re-add.
5854 return -EBUSY;
5855 list_for_each_entry(rdev, &mddev->disks, same_set) {
5856 sector_t avail = rdev->sectors;
5858 if (fit && (num_sectors == 0 || num_sectors > avail))
5859 num_sectors = avail;
5860 if (avail < num_sectors)
5861 return -ENOSPC;
5863 rv = mddev->pers->resize(mddev, num_sectors);
5864 if (!rv)
5865 revalidate_disk(mddev->gendisk);
5866 return rv;
5869 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5871 int rv;
5872 /* change the number of raid disks */
5873 if (mddev->pers->check_reshape == NULL)
5874 return -EINVAL;
5875 if (raid_disks <= 0 ||
5876 (mddev->max_disks && raid_disks >= mddev->max_disks))
5877 return -EINVAL;
5878 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5879 return -EBUSY;
5880 mddev->delta_disks = raid_disks - mddev->raid_disks;
5882 rv = mddev->pers->check_reshape(mddev);
5883 if (rv < 0)
5884 mddev->delta_disks = 0;
5885 return rv;
5890 * update_array_info is used to change the configuration of an
5891 * on-line array.
5892 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5893 * fields in the info are checked against the array.
5894 * Any differences that cannot be handled will cause an error.
5895 * Normally, only one change can be managed at a time.
5897 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5899 int rv = 0;
5900 int cnt = 0;
5901 int state = 0;
5903 /* calculate expected state,ignoring low bits */
5904 if (mddev->bitmap && mddev->bitmap_info.offset)
5905 state |= (1 << MD_SB_BITMAP_PRESENT);
5907 if (mddev->major_version != info->major_version ||
5908 mddev->minor_version != info->minor_version ||
5909 /* mddev->patch_version != info->patch_version || */
5910 mddev->ctime != info->ctime ||
5911 mddev->level != info->level ||
5912 /* mddev->layout != info->layout || */
5913 !mddev->persistent != info->not_persistent||
5914 mddev->chunk_sectors != info->chunk_size >> 9 ||
5915 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5916 ((state^info->state) & 0xfffffe00)
5918 return -EINVAL;
5919 /* Check there is only one change */
5920 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5921 cnt++;
5922 if (mddev->raid_disks != info->raid_disks)
5923 cnt++;
5924 if (mddev->layout != info->layout)
5925 cnt++;
5926 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5927 cnt++;
5928 if (cnt == 0)
5929 return 0;
5930 if (cnt > 1)
5931 return -EINVAL;
5933 if (mddev->layout != info->layout) {
5934 /* Change layout
5935 * we don't need to do anything at the md level, the
5936 * personality will take care of it all.
5938 if (mddev->pers->check_reshape == NULL)
5939 return -EINVAL;
5940 else {
5941 mddev->new_layout = info->layout;
5942 rv = mddev->pers->check_reshape(mddev);
5943 if (rv)
5944 mddev->new_layout = mddev->layout;
5945 return rv;
5948 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5949 rv = update_size(mddev, (sector_t)info->size * 2);
5951 if (mddev->raid_disks != info->raid_disks)
5952 rv = update_raid_disks(mddev, info->raid_disks);
5954 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5955 if (mddev->pers->quiesce == NULL)
5956 return -EINVAL;
5957 if (mddev->recovery || mddev->sync_thread)
5958 return -EBUSY;
5959 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5960 /* add the bitmap */
5961 if (mddev->bitmap)
5962 return -EEXIST;
5963 if (mddev->bitmap_info.default_offset == 0)
5964 return -EINVAL;
5965 mddev->bitmap_info.offset =
5966 mddev->bitmap_info.default_offset;
5967 mddev->pers->quiesce(mddev, 1);
5968 rv = bitmap_create(mddev);
5969 if (!rv)
5970 rv = bitmap_load(mddev);
5971 if (rv)
5972 bitmap_destroy(mddev);
5973 mddev->pers->quiesce(mddev, 0);
5974 } else {
5975 /* remove the bitmap */
5976 if (!mddev->bitmap)
5977 return -ENOENT;
5978 if (mddev->bitmap->file)
5979 return -EINVAL;
5980 mddev->pers->quiesce(mddev, 1);
5981 bitmap_destroy(mddev);
5982 mddev->pers->quiesce(mddev, 0);
5983 mddev->bitmap_info.offset = 0;
5986 md_update_sb(mddev, 1);
5987 return rv;
5990 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5992 mdk_rdev_t *rdev;
5994 if (mddev->pers == NULL)
5995 return -ENODEV;
5997 rdev = find_rdev(mddev, dev);
5998 if (!rdev)
5999 return -ENODEV;
6001 md_error(mddev, rdev);
6002 if (!test_bit(Faulty, &rdev->flags))
6003 return -EBUSY;
6004 return 0;
6008 * We have a problem here : there is no easy way to give a CHS
6009 * virtual geometry. We currently pretend that we have a 2 heads
6010 * 4 sectors (with a BIG number of cylinders...). This drives
6011 * dosfs just mad... ;-)
6013 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6015 mddev_t *mddev = bdev->bd_disk->private_data;
6017 geo->heads = 2;
6018 geo->sectors = 4;
6019 geo->cylinders = mddev->array_sectors / 8;
6020 return 0;
6023 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6024 unsigned int cmd, unsigned long arg)
6026 int err = 0;
6027 void __user *argp = (void __user *)arg;
6028 mddev_t *mddev = NULL;
6029 int ro;
6031 if (!capable(CAP_SYS_ADMIN))
6032 return -EACCES;
6035 * Commands dealing with the RAID driver but not any
6036 * particular array:
6038 switch (cmd)
6040 case RAID_VERSION:
6041 err = get_version(argp);
6042 goto done;
6044 case PRINT_RAID_DEBUG:
6045 err = 0;
6046 md_print_devices();
6047 goto done;
6049 #ifndef MODULE
6050 case RAID_AUTORUN:
6051 err = 0;
6052 autostart_arrays(arg);
6053 goto done;
6054 #endif
6055 default:;
6059 * Commands creating/starting a new array:
6062 mddev = bdev->bd_disk->private_data;
6064 if (!mddev) {
6065 BUG();
6066 goto abort;
6069 err = mddev_lock(mddev);
6070 if (err) {
6071 printk(KERN_INFO
6072 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6073 err, cmd);
6074 goto abort;
6077 switch (cmd)
6079 case SET_ARRAY_INFO:
6081 mdu_array_info_t info;
6082 if (!arg)
6083 memset(&info, 0, sizeof(info));
6084 else if (copy_from_user(&info, argp, sizeof(info))) {
6085 err = -EFAULT;
6086 goto abort_unlock;
6088 if (mddev->pers) {
6089 err = update_array_info(mddev, &info);
6090 if (err) {
6091 printk(KERN_WARNING "md: couldn't update"
6092 " array info. %d\n", err);
6093 goto abort_unlock;
6095 goto done_unlock;
6097 if (!list_empty(&mddev->disks)) {
6098 printk(KERN_WARNING
6099 "md: array %s already has disks!\n",
6100 mdname(mddev));
6101 err = -EBUSY;
6102 goto abort_unlock;
6104 if (mddev->raid_disks) {
6105 printk(KERN_WARNING
6106 "md: array %s already initialised!\n",
6107 mdname(mddev));
6108 err = -EBUSY;
6109 goto abort_unlock;
6111 err = set_array_info(mddev, &info);
6112 if (err) {
6113 printk(KERN_WARNING "md: couldn't set"
6114 " array info. %d\n", err);
6115 goto abort_unlock;
6118 goto done_unlock;
6120 default:;
6124 * Commands querying/configuring an existing array:
6126 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6127 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6128 if ((!mddev->raid_disks && !mddev->external)
6129 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6130 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6131 && cmd != GET_BITMAP_FILE) {
6132 err = -ENODEV;
6133 goto abort_unlock;
6137 * Commands even a read-only array can execute:
6139 switch (cmd)
6141 case GET_ARRAY_INFO:
6142 err = get_array_info(mddev, argp);
6143 goto done_unlock;
6145 case GET_BITMAP_FILE:
6146 err = get_bitmap_file(mddev, argp);
6147 goto done_unlock;
6149 case GET_DISK_INFO:
6150 err = get_disk_info(mddev, argp);
6151 goto done_unlock;
6153 case RESTART_ARRAY_RW:
6154 err = restart_array(mddev);
6155 goto done_unlock;
6157 case STOP_ARRAY:
6158 err = do_md_stop(mddev, 0, 1);
6159 goto done_unlock;
6161 case STOP_ARRAY_RO:
6162 err = md_set_readonly(mddev, 1);
6163 goto done_unlock;
6165 case BLKROSET:
6166 if (get_user(ro, (int __user *)(arg))) {
6167 err = -EFAULT;
6168 goto done_unlock;
6170 err = -EINVAL;
6172 /* if the bdev is going readonly the value of mddev->ro
6173 * does not matter, no writes are coming
6175 if (ro)
6176 goto done_unlock;
6178 /* are we are already prepared for writes? */
6179 if (mddev->ro != 1)
6180 goto done_unlock;
6182 /* transitioning to readauto need only happen for
6183 * arrays that call md_write_start
6185 if (mddev->pers) {
6186 err = restart_array(mddev);
6187 if (err == 0) {
6188 mddev->ro = 2;
6189 set_disk_ro(mddev->gendisk, 0);
6192 goto done_unlock;
6196 * The remaining ioctls are changing the state of the
6197 * superblock, so we do not allow them on read-only arrays.
6198 * However non-MD ioctls (e.g. get-size) will still come through
6199 * here and hit the 'default' below, so only disallow
6200 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6202 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6203 if (mddev->ro == 2) {
6204 mddev->ro = 0;
6205 sysfs_notify_dirent_safe(mddev->sysfs_state);
6206 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6207 md_wakeup_thread(mddev->thread);
6208 } else {
6209 err = -EROFS;
6210 goto abort_unlock;
6214 switch (cmd)
6216 case ADD_NEW_DISK:
6218 mdu_disk_info_t info;
6219 if (copy_from_user(&info, argp, sizeof(info)))
6220 err = -EFAULT;
6221 else
6222 err = add_new_disk(mddev, &info);
6223 goto done_unlock;
6226 case HOT_REMOVE_DISK:
6227 err = hot_remove_disk(mddev, new_decode_dev(arg));
6228 goto done_unlock;
6230 case HOT_ADD_DISK:
6231 err = hot_add_disk(mddev, new_decode_dev(arg));
6232 goto done_unlock;
6234 case SET_DISK_FAULTY:
6235 err = set_disk_faulty(mddev, new_decode_dev(arg));
6236 goto done_unlock;
6238 case RUN_ARRAY:
6239 err = do_md_run(mddev);
6240 goto done_unlock;
6242 case SET_BITMAP_FILE:
6243 err = set_bitmap_file(mddev, (int)arg);
6244 goto done_unlock;
6246 default:
6247 err = -EINVAL;
6248 goto abort_unlock;
6251 done_unlock:
6252 abort_unlock:
6253 if (mddev->hold_active == UNTIL_IOCTL &&
6254 err != -EINVAL)
6255 mddev->hold_active = 0;
6256 mddev_unlock(mddev);
6258 return err;
6259 done:
6260 if (err)
6261 MD_BUG();
6262 abort:
6263 return err;
6265 #ifdef CONFIG_COMPAT
6266 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6267 unsigned int cmd, unsigned long arg)
6269 switch (cmd) {
6270 case HOT_REMOVE_DISK:
6271 case HOT_ADD_DISK:
6272 case SET_DISK_FAULTY:
6273 case SET_BITMAP_FILE:
6274 /* These take in integer arg, do not convert */
6275 break;
6276 default:
6277 arg = (unsigned long)compat_ptr(arg);
6278 break;
6281 return md_ioctl(bdev, mode, cmd, arg);
6283 #endif /* CONFIG_COMPAT */
6285 static int md_open(struct block_device *bdev, fmode_t mode)
6288 * Succeed if we can lock the mddev, which confirms that
6289 * it isn't being stopped right now.
6291 mddev_t *mddev = mddev_find(bdev->bd_dev);
6292 int err;
6294 if (mddev->gendisk != bdev->bd_disk) {
6295 /* we are racing with mddev_put which is discarding this
6296 * bd_disk.
6298 mddev_put(mddev);
6299 /* Wait until bdev->bd_disk is definitely gone */
6300 flush_workqueue(md_misc_wq);
6301 /* Then retry the open from the top */
6302 return -ERESTARTSYS;
6304 BUG_ON(mddev != bdev->bd_disk->private_data);
6306 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6307 goto out;
6309 err = 0;
6310 atomic_inc(&mddev->openers);
6311 mutex_unlock(&mddev->open_mutex);
6313 check_disk_change(bdev);
6314 out:
6315 return err;
6318 static int md_release(struct gendisk *disk, fmode_t mode)
6320 mddev_t *mddev = disk->private_data;
6322 BUG_ON(!mddev);
6323 atomic_dec(&mddev->openers);
6324 mddev_put(mddev);
6326 return 0;
6329 static int md_media_changed(struct gendisk *disk)
6331 mddev_t *mddev = disk->private_data;
6333 return mddev->changed;
6336 static int md_revalidate(struct gendisk *disk)
6338 mddev_t *mddev = disk->private_data;
6340 mddev->changed = 0;
6341 return 0;
6343 static const struct block_device_operations md_fops =
6345 .owner = THIS_MODULE,
6346 .open = md_open,
6347 .release = md_release,
6348 .ioctl = md_ioctl,
6349 #ifdef CONFIG_COMPAT
6350 .compat_ioctl = md_compat_ioctl,
6351 #endif
6352 .getgeo = md_getgeo,
6353 .media_changed = md_media_changed,
6354 .revalidate_disk= md_revalidate,
6357 static int md_thread(void * arg)
6359 mdk_thread_t *thread = arg;
6362 * md_thread is a 'system-thread', it's priority should be very
6363 * high. We avoid resource deadlocks individually in each
6364 * raid personality. (RAID5 does preallocation) We also use RR and
6365 * the very same RT priority as kswapd, thus we will never get
6366 * into a priority inversion deadlock.
6368 * we definitely have to have equal or higher priority than
6369 * bdflush, otherwise bdflush will deadlock if there are too
6370 * many dirty RAID5 blocks.
6373 allow_signal(SIGKILL);
6374 while (!kthread_should_stop()) {
6376 /* We need to wait INTERRUPTIBLE so that
6377 * we don't add to the load-average.
6378 * That means we need to be sure no signals are
6379 * pending
6381 if (signal_pending(current))
6382 flush_signals(current);
6384 wait_event_interruptible_timeout
6385 (thread->wqueue,
6386 test_bit(THREAD_WAKEUP, &thread->flags)
6387 || kthread_should_stop(),
6388 thread->timeout);
6390 clear_bit(THREAD_WAKEUP, &thread->flags);
6391 if (!kthread_should_stop())
6392 thread->run(thread->mddev);
6395 return 0;
6398 void md_wakeup_thread(mdk_thread_t *thread)
6400 if (thread) {
6401 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6402 set_bit(THREAD_WAKEUP, &thread->flags);
6403 wake_up(&thread->wqueue);
6407 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6408 const char *name)
6410 mdk_thread_t *thread;
6412 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6413 if (!thread)
6414 return NULL;
6416 init_waitqueue_head(&thread->wqueue);
6418 thread->run = run;
6419 thread->mddev = mddev;
6420 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6421 thread->tsk = kthread_run(md_thread, thread,
6422 "%s_%s",
6423 mdname(thread->mddev),
6424 name ?: mddev->pers->name);
6425 if (IS_ERR(thread->tsk)) {
6426 kfree(thread);
6427 return NULL;
6429 return thread;
6432 void md_unregister_thread(mdk_thread_t *thread)
6434 if (!thread)
6435 return;
6436 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6438 kthread_stop(thread->tsk);
6439 kfree(thread);
6442 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6444 if (!mddev) {
6445 MD_BUG();
6446 return;
6449 if (!rdev || test_bit(Faulty, &rdev->flags))
6450 return;
6452 if (!mddev->pers || !mddev->pers->error_handler)
6453 return;
6454 mddev->pers->error_handler(mddev,rdev);
6455 if (mddev->degraded)
6456 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6457 sysfs_notify_dirent_safe(rdev->sysfs_state);
6458 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6459 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6460 md_wakeup_thread(mddev->thread);
6461 if (mddev->event_work.func)
6462 queue_work(md_misc_wq, &mddev->event_work);
6463 md_new_event_inintr(mddev);
6466 /* seq_file implementation /proc/mdstat */
6468 static void status_unused(struct seq_file *seq)
6470 int i = 0;
6471 mdk_rdev_t *rdev;
6473 seq_printf(seq, "unused devices: ");
6475 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6476 char b[BDEVNAME_SIZE];
6477 i++;
6478 seq_printf(seq, "%s ",
6479 bdevname(rdev->bdev,b));
6481 if (!i)
6482 seq_printf(seq, "<none>");
6484 seq_printf(seq, "\n");
6488 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6490 sector_t max_sectors, resync, res;
6491 unsigned long dt, db;
6492 sector_t rt;
6493 int scale;
6494 unsigned int per_milli;
6496 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6498 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6499 max_sectors = mddev->resync_max_sectors;
6500 else
6501 max_sectors = mddev->dev_sectors;
6504 * Should not happen.
6506 if (!max_sectors) {
6507 MD_BUG();
6508 return;
6510 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6511 * in a sector_t, and (max_sectors>>scale) will fit in a
6512 * u32, as those are the requirements for sector_div.
6513 * Thus 'scale' must be at least 10
6515 scale = 10;
6516 if (sizeof(sector_t) > sizeof(unsigned long)) {
6517 while ( max_sectors/2 > (1ULL<<(scale+32)))
6518 scale++;
6520 res = (resync>>scale)*1000;
6521 sector_div(res, (u32)((max_sectors>>scale)+1));
6523 per_milli = res;
6525 int i, x = per_milli/50, y = 20-x;
6526 seq_printf(seq, "[");
6527 for (i = 0; i < x; i++)
6528 seq_printf(seq, "=");
6529 seq_printf(seq, ">");
6530 for (i = 0; i < y; i++)
6531 seq_printf(seq, ".");
6532 seq_printf(seq, "] ");
6534 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6535 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6536 "reshape" :
6537 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6538 "check" :
6539 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6540 "resync" : "recovery"))),
6541 per_milli/10, per_milli % 10,
6542 (unsigned long long) resync/2,
6543 (unsigned long long) max_sectors/2);
6546 * dt: time from mark until now
6547 * db: blocks written from mark until now
6548 * rt: remaining time
6550 * rt is a sector_t, so could be 32bit or 64bit.
6551 * So we divide before multiply in case it is 32bit and close
6552 * to the limit.
6553 * We scale the divisor (db) by 32 to avoid losing precision
6554 * near the end of resync when the number of remaining sectors
6555 * is close to 'db'.
6556 * We then divide rt by 32 after multiplying by db to compensate.
6557 * The '+1' avoids division by zero if db is very small.
6559 dt = ((jiffies - mddev->resync_mark) / HZ);
6560 if (!dt) dt++;
6561 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6562 - mddev->resync_mark_cnt;
6564 rt = max_sectors - resync; /* number of remaining sectors */
6565 sector_div(rt, db/32+1);
6566 rt *= dt;
6567 rt >>= 5;
6569 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6570 ((unsigned long)rt % 60)/6);
6572 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6575 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6577 struct list_head *tmp;
6578 loff_t l = *pos;
6579 mddev_t *mddev;
6581 if (l >= 0x10000)
6582 return NULL;
6583 if (!l--)
6584 /* header */
6585 return (void*)1;
6587 spin_lock(&all_mddevs_lock);
6588 list_for_each(tmp,&all_mddevs)
6589 if (!l--) {
6590 mddev = list_entry(tmp, mddev_t, all_mddevs);
6591 mddev_get(mddev);
6592 spin_unlock(&all_mddevs_lock);
6593 return mddev;
6595 spin_unlock(&all_mddevs_lock);
6596 if (!l--)
6597 return (void*)2;/* tail */
6598 return NULL;
6601 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6603 struct list_head *tmp;
6604 mddev_t *next_mddev, *mddev = v;
6606 ++*pos;
6607 if (v == (void*)2)
6608 return NULL;
6610 spin_lock(&all_mddevs_lock);
6611 if (v == (void*)1)
6612 tmp = all_mddevs.next;
6613 else
6614 tmp = mddev->all_mddevs.next;
6615 if (tmp != &all_mddevs)
6616 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6617 else {
6618 next_mddev = (void*)2;
6619 *pos = 0x10000;
6621 spin_unlock(&all_mddevs_lock);
6623 if (v != (void*)1)
6624 mddev_put(mddev);
6625 return next_mddev;
6629 static void md_seq_stop(struct seq_file *seq, void *v)
6631 mddev_t *mddev = v;
6633 if (mddev && v != (void*)1 && v != (void*)2)
6634 mddev_put(mddev);
6637 static int md_seq_show(struct seq_file *seq, void *v)
6639 mddev_t *mddev = v;
6640 sector_t sectors;
6641 mdk_rdev_t *rdev;
6642 struct bitmap *bitmap;
6644 if (v == (void*)1) {
6645 struct mdk_personality *pers;
6646 seq_printf(seq, "Personalities : ");
6647 spin_lock(&pers_lock);
6648 list_for_each_entry(pers, &pers_list, list)
6649 seq_printf(seq, "[%s] ", pers->name);
6651 spin_unlock(&pers_lock);
6652 seq_printf(seq, "\n");
6653 seq->poll_event = atomic_read(&md_event_count);
6654 return 0;
6656 if (v == (void*)2) {
6657 status_unused(seq);
6658 return 0;
6661 if (mddev_lock(mddev) < 0)
6662 return -EINTR;
6664 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6665 seq_printf(seq, "%s : %sactive", mdname(mddev),
6666 mddev->pers ? "" : "in");
6667 if (mddev->pers) {
6668 if (mddev->ro==1)
6669 seq_printf(seq, " (read-only)");
6670 if (mddev->ro==2)
6671 seq_printf(seq, " (auto-read-only)");
6672 seq_printf(seq, " %s", mddev->pers->name);
6675 sectors = 0;
6676 list_for_each_entry(rdev, &mddev->disks, same_set) {
6677 char b[BDEVNAME_SIZE];
6678 seq_printf(seq, " %s[%d]",
6679 bdevname(rdev->bdev,b), rdev->desc_nr);
6680 if (test_bit(WriteMostly, &rdev->flags))
6681 seq_printf(seq, "(W)");
6682 if (test_bit(Faulty, &rdev->flags)) {
6683 seq_printf(seq, "(F)");
6684 continue;
6685 } else if (rdev->raid_disk < 0)
6686 seq_printf(seq, "(S)"); /* spare */
6687 sectors += rdev->sectors;
6690 if (!list_empty(&mddev->disks)) {
6691 if (mddev->pers)
6692 seq_printf(seq, "\n %llu blocks",
6693 (unsigned long long)
6694 mddev->array_sectors / 2);
6695 else
6696 seq_printf(seq, "\n %llu blocks",
6697 (unsigned long long)sectors / 2);
6699 if (mddev->persistent) {
6700 if (mddev->major_version != 0 ||
6701 mddev->minor_version != 90) {
6702 seq_printf(seq," super %d.%d",
6703 mddev->major_version,
6704 mddev->minor_version);
6706 } else if (mddev->external)
6707 seq_printf(seq, " super external:%s",
6708 mddev->metadata_type);
6709 else
6710 seq_printf(seq, " super non-persistent");
6712 if (mddev->pers) {
6713 mddev->pers->status(seq, mddev);
6714 seq_printf(seq, "\n ");
6715 if (mddev->pers->sync_request) {
6716 if (mddev->curr_resync > 2) {
6717 status_resync(seq, mddev);
6718 seq_printf(seq, "\n ");
6719 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6720 seq_printf(seq, "\tresync=DELAYED\n ");
6721 else if (mddev->recovery_cp < MaxSector)
6722 seq_printf(seq, "\tresync=PENDING\n ");
6724 } else
6725 seq_printf(seq, "\n ");
6727 if ((bitmap = mddev->bitmap)) {
6728 unsigned long chunk_kb;
6729 unsigned long flags;
6730 spin_lock_irqsave(&bitmap->lock, flags);
6731 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6732 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6733 "%lu%s chunk",
6734 bitmap->pages - bitmap->missing_pages,
6735 bitmap->pages,
6736 (bitmap->pages - bitmap->missing_pages)
6737 << (PAGE_SHIFT - 10),
6738 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6739 chunk_kb ? "KB" : "B");
6740 if (bitmap->file) {
6741 seq_printf(seq, ", file: ");
6742 seq_path(seq, &bitmap->file->f_path, " \t\n");
6745 seq_printf(seq, "\n");
6746 spin_unlock_irqrestore(&bitmap->lock, flags);
6749 seq_printf(seq, "\n");
6751 mddev_unlock(mddev);
6753 return 0;
6756 static const struct seq_operations md_seq_ops = {
6757 .start = md_seq_start,
6758 .next = md_seq_next,
6759 .stop = md_seq_stop,
6760 .show = md_seq_show,
6763 static int md_seq_open(struct inode *inode, struct file *file)
6765 struct seq_file *seq;
6766 int error;
6768 error = seq_open(file, &md_seq_ops);
6769 if (error)
6770 return error;
6772 seq = file->private_data;
6773 seq->poll_event = atomic_read(&md_event_count);
6774 return error;
6777 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6779 struct seq_file *seq = filp->private_data;
6780 int mask;
6782 poll_wait(filp, &md_event_waiters, wait);
6784 /* always allow read */
6785 mask = POLLIN | POLLRDNORM;
6787 if (seq->poll_event != atomic_read(&md_event_count))
6788 mask |= POLLERR | POLLPRI;
6789 return mask;
6792 static const struct file_operations md_seq_fops = {
6793 .owner = THIS_MODULE,
6794 .open = md_seq_open,
6795 .read = seq_read,
6796 .llseek = seq_lseek,
6797 .release = seq_release_private,
6798 .poll = mdstat_poll,
6801 int register_md_personality(struct mdk_personality *p)
6803 spin_lock(&pers_lock);
6804 list_add_tail(&p->list, &pers_list);
6805 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6806 spin_unlock(&pers_lock);
6807 return 0;
6810 int unregister_md_personality(struct mdk_personality *p)
6812 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6813 spin_lock(&pers_lock);
6814 list_del_init(&p->list);
6815 spin_unlock(&pers_lock);
6816 return 0;
6819 static int is_mddev_idle(mddev_t *mddev, int init)
6821 mdk_rdev_t * rdev;
6822 int idle;
6823 int curr_events;
6825 idle = 1;
6826 rcu_read_lock();
6827 rdev_for_each_rcu(rdev, mddev) {
6828 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6829 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6830 (int)part_stat_read(&disk->part0, sectors[1]) -
6831 atomic_read(&disk->sync_io);
6832 /* sync IO will cause sync_io to increase before the disk_stats
6833 * as sync_io is counted when a request starts, and
6834 * disk_stats is counted when it completes.
6835 * So resync activity will cause curr_events to be smaller than
6836 * when there was no such activity.
6837 * non-sync IO will cause disk_stat to increase without
6838 * increasing sync_io so curr_events will (eventually)
6839 * be larger than it was before. Once it becomes
6840 * substantially larger, the test below will cause
6841 * the array to appear non-idle, and resync will slow
6842 * down.
6843 * If there is a lot of outstanding resync activity when
6844 * we set last_event to curr_events, then all that activity
6845 * completing might cause the array to appear non-idle
6846 * and resync will be slowed down even though there might
6847 * not have been non-resync activity. This will only
6848 * happen once though. 'last_events' will soon reflect
6849 * the state where there is little or no outstanding
6850 * resync requests, and further resync activity will
6851 * always make curr_events less than last_events.
6854 if (init || curr_events - rdev->last_events > 64) {
6855 rdev->last_events = curr_events;
6856 idle = 0;
6859 rcu_read_unlock();
6860 return idle;
6863 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6865 /* another "blocks" (512byte) blocks have been synced */
6866 atomic_sub(blocks, &mddev->recovery_active);
6867 wake_up(&mddev->recovery_wait);
6868 if (!ok) {
6869 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6870 md_wakeup_thread(mddev->thread);
6871 // stop recovery, signal do_sync ....
6876 /* md_write_start(mddev, bi)
6877 * If we need to update some array metadata (e.g. 'active' flag
6878 * in superblock) before writing, schedule a superblock update
6879 * and wait for it to complete.
6881 void md_write_start(mddev_t *mddev, struct bio *bi)
6883 int did_change = 0;
6884 if (bio_data_dir(bi) != WRITE)
6885 return;
6887 BUG_ON(mddev->ro == 1);
6888 if (mddev->ro == 2) {
6889 /* need to switch to read/write */
6890 mddev->ro = 0;
6891 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6892 md_wakeup_thread(mddev->thread);
6893 md_wakeup_thread(mddev->sync_thread);
6894 did_change = 1;
6896 atomic_inc(&mddev->writes_pending);
6897 if (mddev->safemode == 1)
6898 mddev->safemode = 0;
6899 if (mddev->in_sync) {
6900 spin_lock_irq(&mddev->write_lock);
6901 if (mddev->in_sync) {
6902 mddev->in_sync = 0;
6903 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6904 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6905 md_wakeup_thread(mddev->thread);
6906 did_change = 1;
6908 spin_unlock_irq(&mddev->write_lock);
6910 if (did_change)
6911 sysfs_notify_dirent_safe(mddev->sysfs_state);
6912 wait_event(mddev->sb_wait,
6913 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6916 void md_write_end(mddev_t *mddev)
6918 if (atomic_dec_and_test(&mddev->writes_pending)) {
6919 if (mddev->safemode == 2)
6920 md_wakeup_thread(mddev->thread);
6921 else if (mddev->safemode_delay)
6922 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6926 /* md_allow_write(mddev)
6927 * Calling this ensures that the array is marked 'active' so that writes
6928 * may proceed without blocking. It is important to call this before
6929 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6930 * Must be called with mddev_lock held.
6932 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6933 * is dropped, so return -EAGAIN after notifying userspace.
6935 int md_allow_write(mddev_t *mddev)
6937 if (!mddev->pers)
6938 return 0;
6939 if (mddev->ro)
6940 return 0;
6941 if (!mddev->pers->sync_request)
6942 return 0;
6944 spin_lock_irq(&mddev->write_lock);
6945 if (mddev->in_sync) {
6946 mddev->in_sync = 0;
6947 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6948 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6949 if (mddev->safemode_delay &&
6950 mddev->safemode == 0)
6951 mddev->safemode = 1;
6952 spin_unlock_irq(&mddev->write_lock);
6953 md_update_sb(mddev, 0);
6954 sysfs_notify_dirent_safe(mddev->sysfs_state);
6955 } else
6956 spin_unlock_irq(&mddev->write_lock);
6958 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6959 return -EAGAIN;
6960 else
6961 return 0;
6963 EXPORT_SYMBOL_GPL(md_allow_write);
6965 #define SYNC_MARKS 10
6966 #define SYNC_MARK_STEP (3*HZ)
6967 void md_do_sync(mddev_t *mddev)
6969 mddev_t *mddev2;
6970 unsigned int currspeed = 0,
6971 window;
6972 sector_t max_sectors,j, io_sectors;
6973 unsigned long mark[SYNC_MARKS];
6974 sector_t mark_cnt[SYNC_MARKS];
6975 int last_mark,m;
6976 struct list_head *tmp;
6977 sector_t last_check;
6978 int skipped = 0;
6979 mdk_rdev_t *rdev;
6980 char *desc;
6982 /* just incase thread restarts... */
6983 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6984 return;
6985 if (mddev->ro) /* never try to sync a read-only array */
6986 return;
6988 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6989 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6990 desc = "data-check";
6991 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6992 desc = "requested-resync";
6993 else
6994 desc = "resync";
6995 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6996 desc = "reshape";
6997 else
6998 desc = "recovery";
7000 /* we overload curr_resync somewhat here.
7001 * 0 == not engaged in resync at all
7002 * 2 == checking that there is no conflict with another sync
7003 * 1 == like 2, but have yielded to allow conflicting resync to
7004 * commense
7005 * other == active in resync - this many blocks
7007 * Before starting a resync we must have set curr_resync to
7008 * 2, and then checked that every "conflicting" array has curr_resync
7009 * less than ours. When we find one that is the same or higher
7010 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7011 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7012 * This will mean we have to start checking from the beginning again.
7016 do {
7017 mddev->curr_resync = 2;
7019 try_again:
7020 if (kthread_should_stop())
7021 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7023 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7024 goto skip;
7025 for_each_mddev(mddev2, tmp) {
7026 if (mddev2 == mddev)
7027 continue;
7028 if (!mddev->parallel_resync
7029 && mddev2->curr_resync
7030 && match_mddev_units(mddev, mddev2)) {
7031 DEFINE_WAIT(wq);
7032 if (mddev < mddev2 && mddev->curr_resync == 2) {
7033 /* arbitrarily yield */
7034 mddev->curr_resync = 1;
7035 wake_up(&resync_wait);
7037 if (mddev > mddev2 && mddev->curr_resync == 1)
7038 /* no need to wait here, we can wait the next
7039 * time 'round when curr_resync == 2
7041 continue;
7042 /* We need to wait 'interruptible' so as not to
7043 * contribute to the load average, and not to
7044 * be caught by 'softlockup'
7046 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7047 if (!kthread_should_stop() &&
7048 mddev2->curr_resync >= mddev->curr_resync) {
7049 printk(KERN_INFO "md: delaying %s of %s"
7050 " until %s has finished (they"
7051 " share one or more physical units)\n",
7052 desc, mdname(mddev), mdname(mddev2));
7053 mddev_put(mddev2);
7054 if (signal_pending(current))
7055 flush_signals(current);
7056 schedule();
7057 finish_wait(&resync_wait, &wq);
7058 goto try_again;
7060 finish_wait(&resync_wait, &wq);
7063 } while (mddev->curr_resync < 2);
7065 j = 0;
7066 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7067 /* resync follows the size requested by the personality,
7068 * which defaults to physical size, but can be virtual size
7070 max_sectors = mddev->resync_max_sectors;
7071 mddev->resync_mismatches = 0;
7072 /* we don't use the checkpoint if there's a bitmap */
7073 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7074 j = mddev->resync_min;
7075 else if (!mddev->bitmap)
7076 j = mddev->recovery_cp;
7078 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7079 max_sectors = mddev->dev_sectors;
7080 else {
7081 /* recovery follows the physical size of devices */
7082 max_sectors = mddev->dev_sectors;
7083 j = MaxSector;
7084 rcu_read_lock();
7085 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7086 if (rdev->raid_disk >= 0 &&
7087 !test_bit(Faulty, &rdev->flags) &&
7088 !test_bit(In_sync, &rdev->flags) &&
7089 rdev->recovery_offset < j)
7090 j = rdev->recovery_offset;
7091 rcu_read_unlock();
7094 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7095 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7096 " %d KB/sec/disk.\n", speed_min(mddev));
7097 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7098 "(but not more than %d KB/sec) for %s.\n",
7099 speed_max(mddev), desc);
7101 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7103 io_sectors = 0;
7104 for (m = 0; m < SYNC_MARKS; m++) {
7105 mark[m] = jiffies;
7106 mark_cnt[m] = io_sectors;
7108 last_mark = 0;
7109 mddev->resync_mark = mark[last_mark];
7110 mddev->resync_mark_cnt = mark_cnt[last_mark];
7113 * Tune reconstruction:
7115 window = 32*(PAGE_SIZE/512);
7116 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7117 window/2, (unsigned long long)max_sectors/2);
7119 atomic_set(&mddev->recovery_active, 0);
7120 last_check = 0;
7122 if (j>2) {
7123 printk(KERN_INFO
7124 "md: resuming %s of %s from checkpoint.\n",
7125 desc, mdname(mddev));
7126 mddev->curr_resync = j;
7128 mddev->curr_resync_completed = j;
7130 while (j < max_sectors) {
7131 sector_t sectors;
7133 skipped = 0;
7135 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7136 ((mddev->curr_resync > mddev->curr_resync_completed &&
7137 (mddev->curr_resync - mddev->curr_resync_completed)
7138 > (max_sectors >> 4)) ||
7139 (j - mddev->curr_resync_completed)*2
7140 >= mddev->resync_max - mddev->curr_resync_completed
7141 )) {
7142 /* time to update curr_resync_completed */
7143 wait_event(mddev->recovery_wait,
7144 atomic_read(&mddev->recovery_active) == 0);
7145 mddev->curr_resync_completed = j;
7146 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7147 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7150 while (j >= mddev->resync_max && !kthread_should_stop()) {
7151 /* As this condition is controlled by user-space,
7152 * we can block indefinitely, so use '_interruptible'
7153 * to avoid triggering warnings.
7155 flush_signals(current); /* just in case */
7156 wait_event_interruptible(mddev->recovery_wait,
7157 mddev->resync_max > j
7158 || kthread_should_stop());
7161 if (kthread_should_stop())
7162 goto interrupted;
7164 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7165 currspeed < speed_min(mddev));
7166 if (sectors == 0) {
7167 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7168 goto out;
7171 if (!skipped) { /* actual IO requested */
7172 io_sectors += sectors;
7173 atomic_add(sectors, &mddev->recovery_active);
7176 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7177 break;
7179 j += sectors;
7180 if (j>1) mddev->curr_resync = j;
7181 mddev->curr_mark_cnt = io_sectors;
7182 if (last_check == 0)
7183 /* this is the earliest that rebuild will be
7184 * visible in /proc/mdstat
7186 md_new_event(mddev);
7188 if (last_check + window > io_sectors || j == max_sectors)
7189 continue;
7191 last_check = io_sectors;
7192 repeat:
7193 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7194 /* step marks */
7195 int next = (last_mark+1) % SYNC_MARKS;
7197 mddev->resync_mark = mark[next];
7198 mddev->resync_mark_cnt = mark_cnt[next];
7199 mark[next] = jiffies;
7200 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7201 last_mark = next;
7205 if (kthread_should_stop())
7206 goto interrupted;
7210 * this loop exits only if either when we are slower than
7211 * the 'hard' speed limit, or the system was IO-idle for
7212 * a jiffy.
7213 * the system might be non-idle CPU-wise, but we only care
7214 * about not overloading the IO subsystem. (things like an
7215 * e2fsck being done on the RAID array should execute fast)
7217 cond_resched();
7219 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7220 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7222 if (currspeed > speed_min(mddev)) {
7223 if ((currspeed > speed_max(mddev)) ||
7224 !is_mddev_idle(mddev, 0)) {
7225 msleep(500);
7226 goto repeat;
7230 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7232 * this also signals 'finished resyncing' to md_stop
7234 out:
7235 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7237 /* tell personality that we are finished */
7238 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7240 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7241 mddev->curr_resync > 2) {
7242 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7243 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7244 if (mddev->curr_resync >= mddev->recovery_cp) {
7245 printk(KERN_INFO
7246 "md: checkpointing %s of %s.\n",
7247 desc, mdname(mddev));
7248 mddev->recovery_cp = mddev->curr_resync;
7250 } else
7251 mddev->recovery_cp = MaxSector;
7252 } else {
7253 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7254 mddev->curr_resync = MaxSector;
7255 rcu_read_lock();
7256 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7257 if (rdev->raid_disk >= 0 &&
7258 mddev->delta_disks >= 0 &&
7259 !test_bit(Faulty, &rdev->flags) &&
7260 !test_bit(In_sync, &rdev->flags) &&
7261 rdev->recovery_offset < mddev->curr_resync)
7262 rdev->recovery_offset = mddev->curr_resync;
7263 rcu_read_unlock();
7266 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7268 skip:
7269 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7270 /* We completed so min/max setting can be forgotten if used. */
7271 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7272 mddev->resync_min = 0;
7273 mddev->resync_max = MaxSector;
7274 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7275 mddev->resync_min = mddev->curr_resync_completed;
7276 mddev->curr_resync = 0;
7277 wake_up(&resync_wait);
7278 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7279 md_wakeup_thread(mddev->thread);
7280 return;
7282 interrupted:
7284 * got a signal, exit.
7286 printk(KERN_INFO
7287 "md: md_do_sync() got signal ... exiting\n");
7288 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7289 goto out;
7292 EXPORT_SYMBOL_GPL(md_do_sync);
7294 static int remove_and_add_spares(mddev_t *mddev)
7296 mdk_rdev_t *rdev;
7297 int spares = 0;
7299 mddev->curr_resync_completed = 0;
7301 list_for_each_entry(rdev, &mddev->disks, same_set)
7302 if (rdev->raid_disk >= 0 &&
7303 !test_bit(Blocked, &rdev->flags) &&
7304 (test_bit(Faulty, &rdev->flags) ||
7305 ! test_bit(In_sync, &rdev->flags)) &&
7306 atomic_read(&rdev->nr_pending)==0) {
7307 if (mddev->pers->hot_remove_disk(
7308 mddev, rdev->raid_disk)==0) {
7309 sysfs_unlink_rdev(mddev, rdev);
7310 rdev->raid_disk = -1;
7314 if (mddev->degraded) {
7315 list_for_each_entry(rdev, &mddev->disks, same_set) {
7316 if (rdev->raid_disk >= 0 &&
7317 !test_bit(In_sync, &rdev->flags) &&
7318 !test_bit(Faulty, &rdev->flags))
7319 spares++;
7320 if (rdev->raid_disk < 0
7321 && !test_bit(Faulty, &rdev->flags)) {
7322 rdev->recovery_offset = 0;
7323 if (mddev->pers->
7324 hot_add_disk(mddev, rdev) == 0) {
7325 if (sysfs_link_rdev(mddev, rdev))
7326 /* failure here is OK */;
7327 spares++;
7328 md_new_event(mddev);
7329 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7330 } else
7331 break;
7335 return spares;
7338 static void reap_sync_thread(mddev_t *mddev)
7340 mdk_rdev_t *rdev;
7342 /* resync has finished, collect result */
7343 md_unregister_thread(mddev->sync_thread);
7344 mddev->sync_thread = NULL;
7345 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7346 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7347 /* success...*/
7348 /* activate any spares */
7349 if (mddev->pers->spare_active(mddev))
7350 sysfs_notify(&mddev->kobj, NULL,
7351 "degraded");
7353 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7354 mddev->pers->finish_reshape)
7355 mddev->pers->finish_reshape(mddev);
7356 md_update_sb(mddev, 1);
7358 /* if array is no-longer degraded, then any saved_raid_disk
7359 * information must be scrapped
7361 if (!mddev->degraded)
7362 list_for_each_entry(rdev, &mddev->disks, same_set)
7363 rdev->saved_raid_disk = -1;
7365 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7366 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7367 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7368 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7369 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7370 /* flag recovery needed just to double check */
7371 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7372 sysfs_notify_dirent_safe(mddev->sysfs_action);
7373 md_new_event(mddev);
7374 if (mddev->event_work.func)
7375 queue_work(md_misc_wq, &mddev->event_work);
7379 * This routine is regularly called by all per-raid-array threads to
7380 * deal with generic issues like resync and super-block update.
7381 * Raid personalities that don't have a thread (linear/raid0) do not
7382 * need this as they never do any recovery or update the superblock.
7384 * It does not do any resync itself, but rather "forks" off other threads
7385 * to do that as needed.
7386 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7387 * "->recovery" and create a thread at ->sync_thread.
7388 * When the thread finishes it sets MD_RECOVERY_DONE
7389 * and wakeups up this thread which will reap the thread and finish up.
7390 * This thread also removes any faulty devices (with nr_pending == 0).
7392 * The overall approach is:
7393 * 1/ if the superblock needs updating, update it.
7394 * 2/ If a recovery thread is running, don't do anything else.
7395 * 3/ If recovery has finished, clean up, possibly marking spares active.
7396 * 4/ If there are any faulty devices, remove them.
7397 * 5/ If array is degraded, try to add spares devices
7398 * 6/ If array has spares or is not in-sync, start a resync thread.
7400 void md_check_recovery(mddev_t *mddev)
7402 if (mddev->suspended)
7403 return;
7405 if (mddev->bitmap)
7406 bitmap_daemon_work(mddev);
7408 if (signal_pending(current)) {
7409 if (mddev->pers->sync_request && !mddev->external) {
7410 printk(KERN_INFO "md: %s in immediate safe mode\n",
7411 mdname(mddev));
7412 mddev->safemode = 2;
7414 flush_signals(current);
7417 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7418 return;
7419 if ( ! (
7420 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7421 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7422 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7423 (mddev->external == 0 && mddev->safemode == 1) ||
7424 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7425 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7427 return;
7429 if (mddev_trylock(mddev)) {
7430 int spares = 0;
7432 if (mddev->ro) {
7433 /* Only thing we do on a ro array is remove
7434 * failed devices.
7436 mdk_rdev_t *rdev;
7437 list_for_each_entry(rdev, &mddev->disks, same_set)
7438 if (rdev->raid_disk >= 0 &&
7439 !test_bit(Blocked, &rdev->flags) &&
7440 test_bit(Faulty, &rdev->flags) &&
7441 atomic_read(&rdev->nr_pending)==0) {
7442 if (mddev->pers->hot_remove_disk(
7443 mddev, rdev->raid_disk)==0) {
7444 sysfs_unlink_rdev(mddev, rdev);
7445 rdev->raid_disk = -1;
7448 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7449 goto unlock;
7452 if (!mddev->external) {
7453 int did_change = 0;
7454 spin_lock_irq(&mddev->write_lock);
7455 if (mddev->safemode &&
7456 !atomic_read(&mddev->writes_pending) &&
7457 !mddev->in_sync &&
7458 mddev->recovery_cp == MaxSector) {
7459 mddev->in_sync = 1;
7460 did_change = 1;
7461 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7463 if (mddev->safemode == 1)
7464 mddev->safemode = 0;
7465 spin_unlock_irq(&mddev->write_lock);
7466 if (did_change)
7467 sysfs_notify_dirent_safe(mddev->sysfs_state);
7470 if (mddev->flags)
7471 md_update_sb(mddev, 0);
7473 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7474 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7475 /* resync/recovery still happening */
7476 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7477 goto unlock;
7479 if (mddev->sync_thread) {
7480 reap_sync_thread(mddev);
7481 goto unlock;
7483 /* Set RUNNING before clearing NEEDED to avoid
7484 * any transients in the value of "sync_action".
7486 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7487 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7488 /* Clear some bits that don't mean anything, but
7489 * might be left set
7491 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7492 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7494 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7495 goto unlock;
7496 /* no recovery is running.
7497 * remove any failed drives, then
7498 * add spares if possible.
7499 * Spare are also removed and re-added, to allow
7500 * the personality to fail the re-add.
7503 if (mddev->reshape_position != MaxSector) {
7504 if (mddev->pers->check_reshape == NULL ||
7505 mddev->pers->check_reshape(mddev) != 0)
7506 /* Cannot proceed */
7507 goto unlock;
7508 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7509 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7510 } else if ((spares = remove_and_add_spares(mddev))) {
7511 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7512 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7513 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7514 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7515 } else if (mddev->recovery_cp < MaxSector) {
7516 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7517 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7518 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7519 /* nothing to be done ... */
7520 goto unlock;
7522 if (mddev->pers->sync_request) {
7523 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7524 /* We are adding a device or devices to an array
7525 * which has the bitmap stored on all devices.
7526 * So make sure all bitmap pages get written
7528 bitmap_write_all(mddev->bitmap);
7530 mddev->sync_thread = md_register_thread(md_do_sync,
7531 mddev,
7532 "resync");
7533 if (!mddev->sync_thread) {
7534 printk(KERN_ERR "%s: could not start resync"
7535 " thread...\n",
7536 mdname(mddev));
7537 /* leave the spares where they are, it shouldn't hurt */
7538 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7539 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7540 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7541 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7542 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7543 } else
7544 md_wakeup_thread(mddev->sync_thread);
7545 sysfs_notify_dirent_safe(mddev->sysfs_action);
7546 md_new_event(mddev);
7548 unlock:
7549 if (!mddev->sync_thread) {
7550 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7551 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7552 &mddev->recovery))
7553 if (mddev->sysfs_action)
7554 sysfs_notify_dirent_safe(mddev->sysfs_action);
7556 mddev_unlock(mddev);
7560 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7562 sysfs_notify_dirent_safe(rdev->sysfs_state);
7563 wait_event_timeout(rdev->blocked_wait,
7564 !test_bit(Blocked, &rdev->flags) &&
7565 !test_bit(BlockedBadBlocks, &rdev->flags),
7566 msecs_to_jiffies(5000));
7567 rdev_dec_pending(rdev, mddev);
7569 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7572 /* Bad block management.
7573 * We can record which blocks on each device are 'bad' and so just
7574 * fail those blocks, or that stripe, rather than the whole device.
7575 * Entries in the bad-block table are 64bits wide. This comprises:
7576 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7577 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7578 * A 'shift' can be set so that larger blocks are tracked and
7579 * consequently larger devices can be covered.
7580 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7582 * Locking of the bad-block table uses a seqlock so md_is_badblock
7583 * might need to retry if it is very unlucky.
7584 * We will sometimes want to check for bad blocks in a bi_end_io function,
7585 * so we use the write_seqlock_irq variant.
7587 * When looking for a bad block we specify a range and want to
7588 * know if any block in the range is bad. So we binary-search
7589 * to the last range that starts at-or-before the given endpoint,
7590 * (or "before the sector after the target range")
7591 * then see if it ends after the given start.
7592 * We return
7593 * 0 if there are no known bad blocks in the range
7594 * 1 if there are known bad block which are all acknowledged
7595 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7596 * plus the start/length of the first bad section we overlap.
7598 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7599 sector_t *first_bad, int *bad_sectors)
7601 int hi;
7602 int lo = 0;
7603 u64 *p = bb->page;
7604 int rv = 0;
7605 sector_t target = s + sectors;
7606 unsigned seq;
7608 if (bb->shift > 0) {
7609 /* round the start down, and the end up */
7610 s >>= bb->shift;
7611 target += (1<<bb->shift) - 1;
7612 target >>= bb->shift;
7613 sectors = target - s;
7615 /* 'target' is now the first block after the bad range */
7617 retry:
7618 seq = read_seqbegin(&bb->lock);
7620 hi = bb->count;
7622 /* Binary search between lo and hi for 'target'
7623 * i.e. for the last range that starts before 'target'
7625 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7626 * are known not to be the last range before target.
7627 * VARIANT: hi-lo is the number of possible
7628 * ranges, and decreases until it reaches 1
7630 while (hi - lo > 1) {
7631 int mid = (lo + hi) / 2;
7632 sector_t a = BB_OFFSET(p[mid]);
7633 if (a < target)
7634 /* This could still be the one, earlier ranges
7635 * could not. */
7636 lo = mid;
7637 else
7638 /* This and later ranges are definitely out. */
7639 hi = mid;
7641 /* 'lo' might be the last that started before target, but 'hi' isn't */
7642 if (hi > lo) {
7643 /* need to check all range that end after 's' to see if
7644 * any are unacknowledged.
7646 while (lo >= 0 &&
7647 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7648 if (BB_OFFSET(p[lo]) < target) {
7649 /* starts before the end, and finishes after
7650 * the start, so they must overlap
7652 if (rv != -1 && BB_ACK(p[lo]))
7653 rv = 1;
7654 else
7655 rv = -1;
7656 *first_bad = BB_OFFSET(p[lo]);
7657 *bad_sectors = BB_LEN(p[lo]);
7659 lo--;
7663 if (read_seqretry(&bb->lock, seq))
7664 goto retry;
7666 return rv;
7668 EXPORT_SYMBOL_GPL(md_is_badblock);
7671 * Add a range of bad blocks to the table.
7672 * This might extend the table, or might contract it
7673 * if two adjacent ranges can be merged.
7674 * We binary-search to find the 'insertion' point, then
7675 * decide how best to handle it.
7677 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7678 int acknowledged)
7680 u64 *p;
7681 int lo, hi;
7682 int rv = 1;
7684 if (bb->shift < 0)
7685 /* badblocks are disabled */
7686 return 0;
7688 if (bb->shift) {
7689 /* round the start down, and the end up */
7690 sector_t next = s + sectors;
7691 s >>= bb->shift;
7692 next += (1<<bb->shift) - 1;
7693 next >>= bb->shift;
7694 sectors = next - s;
7697 write_seqlock_irq(&bb->lock);
7699 p = bb->page;
7700 lo = 0;
7701 hi = bb->count;
7702 /* Find the last range that starts at-or-before 's' */
7703 while (hi - lo > 1) {
7704 int mid = (lo + hi) / 2;
7705 sector_t a = BB_OFFSET(p[mid]);
7706 if (a <= s)
7707 lo = mid;
7708 else
7709 hi = mid;
7711 if (hi > lo && BB_OFFSET(p[lo]) > s)
7712 hi = lo;
7714 if (hi > lo) {
7715 /* we found a range that might merge with the start
7716 * of our new range
7718 sector_t a = BB_OFFSET(p[lo]);
7719 sector_t e = a + BB_LEN(p[lo]);
7720 int ack = BB_ACK(p[lo]);
7721 if (e >= s) {
7722 /* Yes, we can merge with a previous range */
7723 if (s == a && s + sectors >= e)
7724 /* new range covers old */
7725 ack = acknowledged;
7726 else
7727 ack = ack && acknowledged;
7729 if (e < s + sectors)
7730 e = s + sectors;
7731 if (e - a <= BB_MAX_LEN) {
7732 p[lo] = BB_MAKE(a, e-a, ack);
7733 s = e;
7734 } else {
7735 /* does not all fit in one range,
7736 * make p[lo] maximal
7738 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7739 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7740 s = a + BB_MAX_LEN;
7742 sectors = e - s;
7745 if (sectors && hi < bb->count) {
7746 /* 'hi' points to the first range that starts after 's'.
7747 * Maybe we can merge with the start of that range */
7748 sector_t a = BB_OFFSET(p[hi]);
7749 sector_t e = a + BB_LEN(p[hi]);
7750 int ack = BB_ACK(p[hi]);
7751 if (a <= s + sectors) {
7752 /* merging is possible */
7753 if (e <= s + sectors) {
7754 /* full overlap */
7755 e = s + sectors;
7756 ack = acknowledged;
7757 } else
7758 ack = ack && acknowledged;
7760 a = s;
7761 if (e - a <= BB_MAX_LEN) {
7762 p[hi] = BB_MAKE(a, e-a, ack);
7763 s = e;
7764 } else {
7765 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7766 s = a + BB_MAX_LEN;
7768 sectors = e - s;
7769 lo = hi;
7770 hi++;
7773 if (sectors == 0 && hi < bb->count) {
7774 /* we might be able to combine lo and hi */
7775 /* Note: 's' is at the end of 'lo' */
7776 sector_t a = BB_OFFSET(p[hi]);
7777 int lolen = BB_LEN(p[lo]);
7778 int hilen = BB_LEN(p[hi]);
7779 int newlen = lolen + hilen - (s - a);
7780 if (s >= a && newlen < BB_MAX_LEN) {
7781 /* yes, we can combine them */
7782 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7783 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7784 memmove(p + hi, p + hi + 1,
7785 (bb->count - hi - 1) * 8);
7786 bb->count--;
7789 while (sectors) {
7790 /* didn't merge (it all).
7791 * Need to add a range just before 'hi' */
7792 if (bb->count >= MD_MAX_BADBLOCKS) {
7793 /* No room for more */
7794 rv = 0;
7795 break;
7796 } else {
7797 int this_sectors = sectors;
7798 memmove(p + hi + 1, p + hi,
7799 (bb->count - hi) * 8);
7800 bb->count++;
7802 if (this_sectors > BB_MAX_LEN)
7803 this_sectors = BB_MAX_LEN;
7804 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7805 sectors -= this_sectors;
7806 s += this_sectors;
7810 bb->changed = 1;
7811 if (!acknowledged)
7812 bb->unacked_exist = 1;
7813 write_sequnlock_irq(&bb->lock);
7815 return rv;
7818 int rdev_set_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors,
7819 int acknowledged)
7821 int rv = md_set_badblocks(&rdev->badblocks,
7822 s + rdev->data_offset, sectors, acknowledged);
7823 if (rv) {
7824 /* Make sure they get written out promptly */
7825 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7826 md_wakeup_thread(rdev->mddev->thread);
7828 return rv;
7830 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7833 * Remove a range of bad blocks from the table.
7834 * This may involve extending the table if we spilt a region,
7835 * but it must not fail. So if the table becomes full, we just
7836 * drop the remove request.
7838 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7840 u64 *p;
7841 int lo, hi;
7842 sector_t target = s + sectors;
7843 int rv = 0;
7845 if (bb->shift > 0) {
7846 /* When clearing we round the start up and the end down.
7847 * This should not matter as the shift should align with
7848 * the block size and no rounding should ever be needed.
7849 * However it is better the think a block is bad when it
7850 * isn't than to think a block is not bad when it is.
7852 s += (1<<bb->shift) - 1;
7853 s >>= bb->shift;
7854 target >>= bb->shift;
7855 sectors = target - s;
7858 write_seqlock_irq(&bb->lock);
7860 p = bb->page;
7861 lo = 0;
7862 hi = bb->count;
7863 /* Find the last range that starts before 'target' */
7864 while (hi - lo > 1) {
7865 int mid = (lo + hi) / 2;
7866 sector_t a = BB_OFFSET(p[mid]);
7867 if (a < target)
7868 lo = mid;
7869 else
7870 hi = mid;
7872 if (hi > lo) {
7873 /* p[lo] is the last range that could overlap the
7874 * current range. Earlier ranges could also overlap,
7875 * but only this one can overlap the end of the range.
7877 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7878 /* Partial overlap, leave the tail of this range */
7879 int ack = BB_ACK(p[lo]);
7880 sector_t a = BB_OFFSET(p[lo]);
7881 sector_t end = a + BB_LEN(p[lo]);
7883 if (a < s) {
7884 /* we need to split this range */
7885 if (bb->count >= MD_MAX_BADBLOCKS) {
7886 rv = 0;
7887 goto out;
7889 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7890 bb->count++;
7891 p[lo] = BB_MAKE(a, s-a, ack);
7892 lo++;
7894 p[lo] = BB_MAKE(target, end - target, ack);
7895 /* there is no longer an overlap */
7896 hi = lo;
7897 lo--;
7899 while (lo >= 0 &&
7900 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7901 /* This range does overlap */
7902 if (BB_OFFSET(p[lo]) < s) {
7903 /* Keep the early parts of this range. */
7904 int ack = BB_ACK(p[lo]);
7905 sector_t start = BB_OFFSET(p[lo]);
7906 p[lo] = BB_MAKE(start, s - start, ack);
7907 /* now low doesn't overlap, so.. */
7908 break;
7910 lo--;
7912 /* 'lo' is strictly before, 'hi' is strictly after,
7913 * anything between needs to be discarded
7915 if (hi - lo > 1) {
7916 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7917 bb->count -= (hi - lo - 1);
7921 bb->changed = 1;
7922 out:
7923 write_sequnlock_irq(&bb->lock);
7924 return rv;
7927 int rdev_clear_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors)
7929 return md_clear_badblocks(&rdev->badblocks,
7930 s + rdev->data_offset,
7931 sectors);
7933 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7936 * Acknowledge all bad blocks in a list.
7937 * This only succeeds if ->changed is clear. It is used by
7938 * in-kernel metadata updates
7940 void md_ack_all_badblocks(struct badblocks *bb)
7942 if (bb->page == NULL || bb->changed)
7943 /* no point even trying */
7944 return;
7945 write_seqlock_irq(&bb->lock);
7947 if (bb->changed == 0) {
7948 u64 *p = bb->page;
7949 int i;
7950 for (i = 0; i < bb->count ; i++) {
7951 if (!BB_ACK(p[i])) {
7952 sector_t start = BB_OFFSET(p[i]);
7953 int len = BB_LEN(p[i]);
7954 p[i] = BB_MAKE(start, len, 1);
7957 bb->unacked_exist = 0;
7959 write_sequnlock_irq(&bb->lock);
7961 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7963 /* sysfs access to bad-blocks list.
7964 * We present two files.
7965 * 'bad-blocks' lists sector numbers and lengths of ranges that
7966 * are recorded as bad. The list is truncated to fit within
7967 * the one-page limit of sysfs.
7968 * Writing "sector length" to this file adds an acknowledged
7969 * bad block list.
7970 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7971 * been acknowledged. Writing to this file adds bad blocks
7972 * without acknowledging them. This is largely for testing.
7975 static ssize_t
7976 badblocks_show(struct badblocks *bb, char *page, int unack)
7978 size_t len;
7979 int i;
7980 u64 *p = bb->page;
7981 unsigned seq;
7983 if (bb->shift < 0)
7984 return 0;
7986 retry:
7987 seq = read_seqbegin(&bb->lock);
7989 len = 0;
7990 i = 0;
7992 while (len < PAGE_SIZE && i < bb->count) {
7993 sector_t s = BB_OFFSET(p[i]);
7994 unsigned int length = BB_LEN(p[i]);
7995 int ack = BB_ACK(p[i]);
7996 i++;
7998 if (unack && ack)
7999 continue;
8001 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8002 (unsigned long long)s << bb->shift,
8003 length << bb->shift);
8005 if (unack && len == 0)
8006 bb->unacked_exist = 0;
8008 if (read_seqretry(&bb->lock, seq))
8009 goto retry;
8011 return len;
8014 #define DO_DEBUG 1
8016 static ssize_t
8017 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8019 unsigned long long sector;
8020 int length;
8021 char newline;
8022 #ifdef DO_DEBUG
8023 /* Allow clearing via sysfs *only* for testing/debugging.
8024 * Normally only a successful write may clear a badblock
8026 int clear = 0;
8027 if (page[0] == '-') {
8028 clear = 1;
8029 page++;
8031 #endif /* DO_DEBUG */
8033 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8034 case 3:
8035 if (newline != '\n')
8036 return -EINVAL;
8037 case 2:
8038 if (length <= 0)
8039 return -EINVAL;
8040 break;
8041 default:
8042 return -EINVAL;
8045 #ifdef DO_DEBUG
8046 if (clear) {
8047 md_clear_badblocks(bb, sector, length);
8048 return len;
8050 #endif /* DO_DEBUG */
8051 if (md_set_badblocks(bb, sector, length, !unack))
8052 return len;
8053 else
8054 return -ENOSPC;
8057 static int md_notify_reboot(struct notifier_block *this,
8058 unsigned long code, void *x)
8060 struct list_head *tmp;
8061 mddev_t *mddev;
8063 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8065 printk(KERN_INFO "md: stopping all md devices.\n");
8067 for_each_mddev(mddev, tmp)
8068 if (mddev_trylock(mddev)) {
8069 /* Force a switch to readonly even array
8070 * appears to still be in use. Hence
8071 * the '100'.
8073 md_set_readonly(mddev, 100);
8074 mddev_unlock(mddev);
8077 * certain more exotic SCSI devices are known to be
8078 * volatile wrt too early system reboots. While the
8079 * right place to handle this issue is the given
8080 * driver, we do want to have a safe RAID driver ...
8082 mdelay(1000*1);
8084 return NOTIFY_DONE;
8087 static struct notifier_block md_notifier = {
8088 .notifier_call = md_notify_reboot,
8089 .next = NULL,
8090 .priority = INT_MAX, /* before any real devices */
8093 static void md_geninit(void)
8095 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8097 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8100 static int __init md_init(void)
8102 int ret = -ENOMEM;
8104 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8105 if (!md_wq)
8106 goto err_wq;
8108 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8109 if (!md_misc_wq)
8110 goto err_misc_wq;
8112 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8113 goto err_md;
8115 if ((ret = register_blkdev(0, "mdp")) < 0)
8116 goto err_mdp;
8117 mdp_major = ret;
8119 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8120 md_probe, NULL, NULL);
8121 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8122 md_probe, NULL, NULL);
8124 register_reboot_notifier(&md_notifier);
8125 raid_table_header = register_sysctl_table(raid_root_table);
8127 md_geninit();
8128 return 0;
8130 err_mdp:
8131 unregister_blkdev(MD_MAJOR, "md");
8132 err_md:
8133 destroy_workqueue(md_misc_wq);
8134 err_misc_wq:
8135 destroy_workqueue(md_wq);
8136 err_wq:
8137 return ret;
8140 #ifndef MODULE
8143 * Searches all registered partitions for autorun RAID arrays
8144 * at boot time.
8147 static LIST_HEAD(all_detected_devices);
8148 struct detected_devices_node {
8149 struct list_head list;
8150 dev_t dev;
8153 void md_autodetect_dev(dev_t dev)
8155 struct detected_devices_node *node_detected_dev;
8157 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8158 if (node_detected_dev) {
8159 node_detected_dev->dev = dev;
8160 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8161 } else {
8162 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8163 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8168 static void autostart_arrays(int part)
8170 mdk_rdev_t *rdev;
8171 struct detected_devices_node *node_detected_dev;
8172 dev_t dev;
8173 int i_scanned, i_passed;
8175 i_scanned = 0;
8176 i_passed = 0;
8178 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8180 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8181 i_scanned++;
8182 node_detected_dev = list_entry(all_detected_devices.next,
8183 struct detected_devices_node, list);
8184 list_del(&node_detected_dev->list);
8185 dev = node_detected_dev->dev;
8186 kfree(node_detected_dev);
8187 rdev = md_import_device(dev,0, 90);
8188 if (IS_ERR(rdev))
8189 continue;
8191 if (test_bit(Faulty, &rdev->flags)) {
8192 MD_BUG();
8193 continue;
8195 set_bit(AutoDetected, &rdev->flags);
8196 list_add(&rdev->same_set, &pending_raid_disks);
8197 i_passed++;
8200 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8201 i_scanned, i_passed);
8203 autorun_devices(part);
8206 #endif /* !MODULE */
8208 static __exit void md_exit(void)
8210 mddev_t *mddev;
8211 struct list_head *tmp;
8213 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8214 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8216 unregister_blkdev(MD_MAJOR,"md");
8217 unregister_blkdev(mdp_major, "mdp");
8218 unregister_reboot_notifier(&md_notifier);
8219 unregister_sysctl_table(raid_table_header);
8220 remove_proc_entry("mdstat", NULL);
8221 for_each_mddev(mddev, tmp) {
8222 export_array(mddev);
8223 mddev->hold_active = 0;
8225 destroy_workqueue(md_misc_wq);
8226 destroy_workqueue(md_wq);
8229 subsys_initcall(md_init);
8230 module_exit(md_exit)
8232 static int get_ro(char *buffer, struct kernel_param *kp)
8234 return sprintf(buffer, "%d", start_readonly);
8236 static int set_ro(const char *val, struct kernel_param *kp)
8238 char *e;
8239 int num = simple_strtoul(val, &e, 10);
8240 if (*val && (*e == '\0' || *e == '\n')) {
8241 start_readonly = num;
8242 return 0;
8244 return -EINVAL;
8247 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8248 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8250 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8252 EXPORT_SYMBOL(register_md_personality);
8253 EXPORT_SYMBOL(unregister_md_personality);
8254 EXPORT_SYMBOL(md_error);
8255 EXPORT_SYMBOL(md_done_sync);
8256 EXPORT_SYMBOL(md_write_start);
8257 EXPORT_SYMBOL(md_write_end);
8258 EXPORT_SYMBOL(md_register_thread);
8259 EXPORT_SYMBOL(md_unregister_thread);
8260 EXPORT_SYMBOL(md_wakeup_thread);
8261 EXPORT_SYMBOL(md_check_recovery);
8262 MODULE_LICENSE("GPL");
8263 MODULE_DESCRIPTION("MD RAID framework");
8264 MODULE_ALIAS("md");
8265 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);