Merge branch 'for-linus' of git://git390.marist.edu/pub/scm/linux-2.6
[linux-btrfs-devel.git] / arch / x86 / kernel / hpet.c
blob4aecc54236a947941397f2e5d407221fd395ebd4
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
15 #include <asm/fixmap.h>
16 #include <asm/hpet.h>
17 #include <asm/time.h>
19 #define HPET_MASK CLOCKSOURCE_MASK(32)
21 /* FSEC = 10^-15
22 NSEC = 10^-9 */
23 #define FSEC_PER_NSEC 1000000L
25 #define HPET_DEV_USED_BIT 2
26 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
27 #define HPET_DEV_VALID 0x8
28 #define HPET_DEV_FSB_CAP 0x1000
29 #define HPET_DEV_PERI_CAP 0x2000
31 #define HPET_MIN_CYCLES 128
32 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
34 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
39 unsigned long hpet_address;
40 u8 hpet_blockid; /* OS timer block num */
41 u8 hpet_msi_disable;
43 #ifdef CONFIG_PCI_MSI
44 static unsigned long hpet_num_timers;
45 #endif
46 static void __iomem *hpet_virt_address;
48 struct hpet_dev {
49 struct clock_event_device evt;
50 unsigned int num;
51 int cpu;
52 unsigned int irq;
53 unsigned int flags;
54 char name[10];
57 inline unsigned int hpet_readl(unsigned int a)
59 return readl(hpet_virt_address + a);
62 static inline void hpet_writel(unsigned int d, unsigned int a)
64 writel(d, hpet_virt_address + a);
67 #ifdef CONFIG_X86_64
68 #include <asm/pgtable.h>
69 #endif
71 static inline void hpet_set_mapping(void)
73 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
74 #ifdef CONFIG_X86_64
75 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
76 #endif
79 static inline void hpet_clear_mapping(void)
81 iounmap(hpet_virt_address);
82 hpet_virt_address = NULL;
86 * HPET command line enable / disable
88 static int boot_hpet_disable;
89 int hpet_force_user;
90 static int hpet_verbose;
92 static int __init hpet_setup(char *str)
94 if (str) {
95 if (!strncmp("disable", str, 7))
96 boot_hpet_disable = 1;
97 if (!strncmp("force", str, 5))
98 hpet_force_user = 1;
99 if (!strncmp("verbose", str, 7))
100 hpet_verbose = 1;
102 return 1;
104 __setup("hpet=", hpet_setup);
106 static int __init disable_hpet(char *str)
108 boot_hpet_disable = 1;
109 return 1;
111 __setup("nohpet", disable_hpet);
113 static inline int is_hpet_capable(void)
115 return !boot_hpet_disable && hpet_address;
119 * HPET timer interrupt enable / disable
121 static int hpet_legacy_int_enabled;
124 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
126 int is_hpet_enabled(void)
128 return is_hpet_capable() && hpet_legacy_int_enabled;
130 EXPORT_SYMBOL_GPL(is_hpet_enabled);
132 static void _hpet_print_config(const char *function, int line)
134 u32 i, timers, l, h;
135 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
136 l = hpet_readl(HPET_ID);
137 h = hpet_readl(HPET_PERIOD);
138 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
139 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
140 l = hpet_readl(HPET_CFG);
141 h = hpet_readl(HPET_STATUS);
142 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
143 l = hpet_readl(HPET_COUNTER);
144 h = hpet_readl(HPET_COUNTER+4);
145 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
147 for (i = 0; i < timers; i++) {
148 l = hpet_readl(HPET_Tn_CFG(i));
149 h = hpet_readl(HPET_Tn_CFG(i)+4);
150 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
151 i, l, h);
152 l = hpet_readl(HPET_Tn_CMP(i));
153 h = hpet_readl(HPET_Tn_CMP(i)+4);
154 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
155 i, l, h);
156 l = hpet_readl(HPET_Tn_ROUTE(i));
157 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
158 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
159 i, l, h);
163 #define hpet_print_config() \
164 do { \
165 if (hpet_verbose) \
166 _hpet_print_config(__FUNCTION__, __LINE__); \
167 } while (0)
170 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
171 * timer 0 and timer 1 in case of RTC emulation.
173 #ifdef CONFIG_HPET
175 static void hpet_reserve_msi_timers(struct hpet_data *hd);
177 static void hpet_reserve_platform_timers(unsigned int id)
179 struct hpet __iomem *hpet = hpet_virt_address;
180 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
181 unsigned int nrtimers, i;
182 struct hpet_data hd;
184 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
186 memset(&hd, 0, sizeof(hd));
187 hd.hd_phys_address = hpet_address;
188 hd.hd_address = hpet;
189 hd.hd_nirqs = nrtimers;
190 hpet_reserve_timer(&hd, 0);
192 #ifdef CONFIG_HPET_EMULATE_RTC
193 hpet_reserve_timer(&hd, 1);
194 #endif
197 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
198 * is wrong for i8259!) not the output IRQ. Many BIOS writers
199 * don't bother configuring *any* comparator interrupts.
201 hd.hd_irq[0] = HPET_LEGACY_8254;
202 hd.hd_irq[1] = HPET_LEGACY_RTC;
204 for (i = 2; i < nrtimers; timer++, i++) {
205 hd.hd_irq[i] = (readl(&timer->hpet_config) &
206 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
209 hpet_reserve_msi_timers(&hd);
211 hpet_alloc(&hd);
214 #else
215 static void hpet_reserve_platform_timers(unsigned int id) { }
216 #endif
219 * Common hpet info
221 static unsigned long hpet_freq;
223 static void hpet_legacy_set_mode(enum clock_event_mode mode,
224 struct clock_event_device *evt);
225 static int hpet_legacy_next_event(unsigned long delta,
226 struct clock_event_device *evt);
229 * The hpet clock event device
231 static struct clock_event_device hpet_clockevent = {
232 .name = "hpet",
233 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
234 .set_mode = hpet_legacy_set_mode,
235 .set_next_event = hpet_legacy_next_event,
236 .irq = 0,
237 .rating = 50,
240 static void hpet_stop_counter(void)
242 unsigned long cfg = hpet_readl(HPET_CFG);
243 cfg &= ~HPET_CFG_ENABLE;
244 hpet_writel(cfg, HPET_CFG);
247 static void hpet_reset_counter(void)
249 hpet_writel(0, HPET_COUNTER);
250 hpet_writel(0, HPET_COUNTER + 4);
253 static void hpet_start_counter(void)
255 unsigned int cfg = hpet_readl(HPET_CFG);
256 cfg |= HPET_CFG_ENABLE;
257 hpet_writel(cfg, HPET_CFG);
260 static void hpet_restart_counter(void)
262 hpet_stop_counter();
263 hpet_reset_counter();
264 hpet_start_counter();
267 static void hpet_resume_device(void)
269 force_hpet_resume();
272 static void hpet_resume_counter(struct clocksource *cs)
274 hpet_resume_device();
275 hpet_restart_counter();
278 static void hpet_enable_legacy_int(void)
280 unsigned int cfg = hpet_readl(HPET_CFG);
282 cfg |= HPET_CFG_LEGACY;
283 hpet_writel(cfg, HPET_CFG);
284 hpet_legacy_int_enabled = 1;
287 static void hpet_legacy_clockevent_register(void)
289 /* Start HPET legacy interrupts */
290 hpet_enable_legacy_int();
293 * Start hpet with the boot cpu mask and make it
294 * global after the IO_APIC has been initialized.
296 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
297 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
298 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
299 global_clock_event = &hpet_clockevent;
300 printk(KERN_DEBUG "hpet clockevent registered\n");
303 static int hpet_setup_msi_irq(unsigned int irq);
305 static void hpet_set_mode(enum clock_event_mode mode,
306 struct clock_event_device *evt, int timer)
308 unsigned int cfg, cmp, now;
309 uint64_t delta;
311 switch (mode) {
312 case CLOCK_EVT_MODE_PERIODIC:
313 hpet_stop_counter();
314 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
315 delta >>= evt->shift;
316 now = hpet_readl(HPET_COUNTER);
317 cmp = now + (unsigned int) delta;
318 cfg = hpet_readl(HPET_Tn_CFG(timer));
319 /* Make sure we use edge triggered interrupts */
320 cfg &= ~HPET_TN_LEVEL;
321 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
322 HPET_TN_SETVAL | HPET_TN_32BIT;
323 hpet_writel(cfg, HPET_Tn_CFG(timer));
324 hpet_writel(cmp, HPET_Tn_CMP(timer));
325 udelay(1);
327 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
328 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
329 * bit is automatically cleared after the first write.
330 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
331 * Publication # 24674)
333 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
334 hpet_start_counter();
335 hpet_print_config();
336 break;
338 case CLOCK_EVT_MODE_ONESHOT:
339 cfg = hpet_readl(HPET_Tn_CFG(timer));
340 cfg &= ~HPET_TN_PERIODIC;
341 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
342 hpet_writel(cfg, HPET_Tn_CFG(timer));
343 break;
345 case CLOCK_EVT_MODE_UNUSED:
346 case CLOCK_EVT_MODE_SHUTDOWN:
347 cfg = hpet_readl(HPET_Tn_CFG(timer));
348 cfg &= ~HPET_TN_ENABLE;
349 hpet_writel(cfg, HPET_Tn_CFG(timer));
350 break;
352 case CLOCK_EVT_MODE_RESUME:
353 if (timer == 0) {
354 hpet_enable_legacy_int();
355 } else {
356 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
357 hpet_setup_msi_irq(hdev->irq);
358 disable_irq(hdev->irq);
359 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
360 enable_irq(hdev->irq);
362 hpet_print_config();
363 break;
367 static int hpet_next_event(unsigned long delta,
368 struct clock_event_device *evt, int timer)
370 u32 cnt;
371 s32 res;
373 cnt = hpet_readl(HPET_COUNTER);
374 cnt += (u32) delta;
375 hpet_writel(cnt, HPET_Tn_CMP(timer));
378 * HPETs are a complete disaster. The compare register is
379 * based on a equal comparison and neither provides a less
380 * than or equal functionality (which would require to take
381 * the wraparound into account) nor a simple count down event
382 * mode. Further the write to the comparator register is
383 * delayed internally up to two HPET clock cycles in certain
384 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
385 * longer delays. We worked around that by reading back the
386 * compare register, but that required another workaround for
387 * ICH9,10 chips where the first readout after write can
388 * return the old stale value. We already had a minimum
389 * programming delta of 5us enforced, but a NMI or SMI hitting
390 * between the counter readout and the comparator write can
391 * move us behind that point easily. Now instead of reading
392 * the compare register back several times, we make the ETIME
393 * decision based on the following: Return ETIME if the
394 * counter value after the write is less than HPET_MIN_CYCLES
395 * away from the event or if the counter is already ahead of
396 * the event. The minimum programming delta for the generic
397 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
399 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
401 return res < HPET_MIN_CYCLES ? -ETIME : 0;
404 static void hpet_legacy_set_mode(enum clock_event_mode mode,
405 struct clock_event_device *evt)
407 hpet_set_mode(mode, evt, 0);
410 static int hpet_legacy_next_event(unsigned long delta,
411 struct clock_event_device *evt)
413 return hpet_next_event(delta, evt, 0);
417 * HPET MSI Support
419 #ifdef CONFIG_PCI_MSI
421 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
422 static struct hpet_dev *hpet_devs;
424 void hpet_msi_unmask(struct irq_data *data)
426 struct hpet_dev *hdev = data->handler_data;
427 unsigned int cfg;
429 /* unmask it */
430 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
431 cfg |= HPET_TN_FSB;
432 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
435 void hpet_msi_mask(struct irq_data *data)
437 struct hpet_dev *hdev = data->handler_data;
438 unsigned int cfg;
440 /* mask it */
441 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
442 cfg &= ~HPET_TN_FSB;
443 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
446 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
448 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
449 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
452 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
454 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
455 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
456 msg->address_hi = 0;
459 static void hpet_msi_set_mode(enum clock_event_mode mode,
460 struct clock_event_device *evt)
462 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
463 hpet_set_mode(mode, evt, hdev->num);
466 static int hpet_msi_next_event(unsigned long delta,
467 struct clock_event_device *evt)
469 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
470 return hpet_next_event(delta, evt, hdev->num);
473 static int hpet_setup_msi_irq(unsigned int irq)
475 if (arch_setup_hpet_msi(irq, hpet_blockid)) {
476 destroy_irq(irq);
477 return -EINVAL;
479 return 0;
482 static int hpet_assign_irq(struct hpet_dev *dev)
484 unsigned int irq;
486 irq = create_irq_nr(0, -1);
487 if (!irq)
488 return -EINVAL;
490 irq_set_handler_data(irq, dev);
492 if (hpet_setup_msi_irq(irq))
493 return -EINVAL;
495 dev->irq = irq;
496 return 0;
499 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
501 struct hpet_dev *dev = (struct hpet_dev *)data;
502 struct clock_event_device *hevt = &dev->evt;
504 if (!hevt->event_handler) {
505 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
506 dev->num);
507 return IRQ_HANDLED;
510 hevt->event_handler(hevt);
511 return IRQ_HANDLED;
514 static int hpet_setup_irq(struct hpet_dev *dev)
517 if (request_irq(dev->irq, hpet_interrupt_handler,
518 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
519 dev->name, dev))
520 return -1;
522 disable_irq(dev->irq);
523 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
524 enable_irq(dev->irq);
526 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
527 dev->name, dev->irq);
529 return 0;
532 /* This should be called in specific @cpu */
533 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
535 struct clock_event_device *evt = &hdev->evt;
537 WARN_ON(cpu != smp_processor_id());
538 if (!(hdev->flags & HPET_DEV_VALID))
539 return;
541 if (hpet_setup_msi_irq(hdev->irq))
542 return;
544 hdev->cpu = cpu;
545 per_cpu(cpu_hpet_dev, cpu) = hdev;
546 evt->name = hdev->name;
547 hpet_setup_irq(hdev);
548 evt->irq = hdev->irq;
550 evt->rating = 110;
551 evt->features = CLOCK_EVT_FEAT_ONESHOT;
552 if (hdev->flags & HPET_DEV_PERI_CAP)
553 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
555 evt->set_mode = hpet_msi_set_mode;
556 evt->set_next_event = hpet_msi_next_event;
557 evt->cpumask = cpumask_of(hdev->cpu);
559 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
560 0x7FFFFFFF);
563 #ifdef CONFIG_HPET
564 /* Reserve at least one timer for userspace (/dev/hpet) */
565 #define RESERVE_TIMERS 1
566 #else
567 #define RESERVE_TIMERS 0
568 #endif
570 static void hpet_msi_capability_lookup(unsigned int start_timer)
572 unsigned int id;
573 unsigned int num_timers;
574 unsigned int num_timers_used = 0;
575 int i;
577 if (hpet_msi_disable)
578 return;
580 if (boot_cpu_has(X86_FEATURE_ARAT))
581 return;
582 id = hpet_readl(HPET_ID);
584 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
585 num_timers++; /* Value read out starts from 0 */
586 hpet_print_config();
588 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
589 if (!hpet_devs)
590 return;
592 hpet_num_timers = num_timers;
594 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
595 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
596 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
598 /* Only consider HPET timer with MSI support */
599 if (!(cfg & HPET_TN_FSB_CAP))
600 continue;
602 hdev->flags = 0;
603 if (cfg & HPET_TN_PERIODIC_CAP)
604 hdev->flags |= HPET_DEV_PERI_CAP;
605 hdev->num = i;
607 sprintf(hdev->name, "hpet%d", i);
608 if (hpet_assign_irq(hdev))
609 continue;
611 hdev->flags |= HPET_DEV_FSB_CAP;
612 hdev->flags |= HPET_DEV_VALID;
613 num_timers_used++;
614 if (num_timers_used == num_possible_cpus())
615 break;
618 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
619 num_timers, num_timers_used);
622 #ifdef CONFIG_HPET
623 static void hpet_reserve_msi_timers(struct hpet_data *hd)
625 int i;
627 if (!hpet_devs)
628 return;
630 for (i = 0; i < hpet_num_timers; i++) {
631 struct hpet_dev *hdev = &hpet_devs[i];
633 if (!(hdev->flags & HPET_DEV_VALID))
634 continue;
636 hd->hd_irq[hdev->num] = hdev->irq;
637 hpet_reserve_timer(hd, hdev->num);
640 #endif
642 static struct hpet_dev *hpet_get_unused_timer(void)
644 int i;
646 if (!hpet_devs)
647 return NULL;
649 for (i = 0; i < hpet_num_timers; i++) {
650 struct hpet_dev *hdev = &hpet_devs[i];
652 if (!(hdev->flags & HPET_DEV_VALID))
653 continue;
654 if (test_and_set_bit(HPET_DEV_USED_BIT,
655 (unsigned long *)&hdev->flags))
656 continue;
657 return hdev;
659 return NULL;
662 struct hpet_work_struct {
663 struct delayed_work work;
664 struct completion complete;
667 static void hpet_work(struct work_struct *w)
669 struct hpet_dev *hdev;
670 int cpu = smp_processor_id();
671 struct hpet_work_struct *hpet_work;
673 hpet_work = container_of(w, struct hpet_work_struct, work.work);
675 hdev = hpet_get_unused_timer();
676 if (hdev)
677 init_one_hpet_msi_clockevent(hdev, cpu);
679 complete(&hpet_work->complete);
682 static int hpet_cpuhp_notify(struct notifier_block *n,
683 unsigned long action, void *hcpu)
685 unsigned long cpu = (unsigned long)hcpu;
686 struct hpet_work_struct work;
687 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
689 switch (action & 0xf) {
690 case CPU_ONLINE:
691 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
692 init_completion(&work.complete);
693 /* FIXME: add schedule_work_on() */
694 schedule_delayed_work_on(cpu, &work.work, 0);
695 wait_for_completion(&work.complete);
696 destroy_timer_on_stack(&work.work.timer);
697 break;
698 case CPU_DEAD:
699 if (hdev) {
700 free_irq(hdev->irq, hdev);
701 hdev->flags &= ~HPET_DEV_USED;
702 per_cpu(cpu_hpet_dev, cpu) = NULL;
704 break;
706 return NOTIFY_OK;
708 #else
710 static int hpet_setup_msi_irq(unsigned int irq)
712 return 0;
714 static void hpet_msi_capability_lookup(unsigned int start_timer)
716 return;
719 #ifdef CONFIG_HPET
720 static void hpet_reserve_msi_timers(struct hpet_data *hd)
722 return;
724 #endif
726 static int hpet_cpuhp_notify(struct notifier_block *n,
727 unsigned long action, void *hcpu)
729 return NOTIFY_OK;
732 #endif
735 * Clock source related code
737 static cycle_t read_hpet(struct clocksource *cs)
739 return (cycle_t)hpet_readl(HPET_COUNTER);
742 static struct clocksource clocksource_hpet = {
743 .name = "hpet",
744 .rating = 250,
745 .read = read_hpet,
746 .mask = HPET_MASK,
747 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
748 .resume = hpet_resume_counter,
749 #ifdef CONFIG_X86_64
750 .archdata = { .vclock_mode = VCLOCK_HPET },
751 #endif
754 static int hpet_clocksource_register(void)
756 u64 start, now;
757 cycle_t t1;
759 /* Start the counter */
760 hpet_restart_counter();
762 /* Verify whether hpet counter works */
763 t1 = hpet_readl(HPET_COUNTER);
764 rdtscll(start);
767 * We don't know the TSC frequency yet, but waiting for
768 * 200000 TSC cycles is safe:
769 * 4 GHz == 50us
770 * 1 GHz == 200us
772 do {
773 rep_nop();
774 rdtscll(now);
775 } while ((now - start) < 200000UL);
777 if (t1 == hpet_readl(HPET_COUNTER)) {
778 printk(KERN_WARNING
779 "HPET counter not counting. HPET disabled\n");
780 return -ENODEV;
783 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
784 return 0;
788 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
790 int __init hpet_enable(void)
792 unsigned long hpet_period;
793 unsigned int id;
794 u64 freq;
795 int i;
797 if (!is_hpet_capable())
798 return 0;
800 hpet_set_mapping();
803 * Read the period and check for a sane value:
805 hpet_period = hpet_readl(HPET_PERIOD);
808 * AMD SB700 based systems with spread spectrum enabled use a
809 * SMM based HPET emulation to provide proper frequency
810 * setting. The SMM code is initialized with the first HPET
811 * register access and takes some time to complete. During
812 * this time the config register reads 0xffffffff. We check
813 * for max. 1000 loops whether the config register reads a non
814 * 0xffffffff value to make sure that HPET is up and running
815 * before we go further. A counting loop is safe, as the HPET
816 * access takes thousands of CPU cycles. On non SB700 based
817 * machines this check is only done once and has no side
818 * effects.
820 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
821 if (i == 1000) {
822 printk(KERN_WARNING
823 "HPET config register value = 0xFFFFFFFF. "
824 "Disabling HPET\n");
825 goto out_nohpet;
829 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
830 goto out_nohpet;
833 * The period is a femto seconds value. Convert it to a
834 * frequency.
836 freq = FSEC_PER_SEC;
837 do_div(freq, hpet_period);
838 hpet_freq = freq;
841 * Read the HPET ID register to retrieve the IRQ routing
842 * information and the number of channels
844 id = hpet_readl(HPET_ID);
845 hpet_print_config();
847 #ifdef CONFIG_HPET_EMULATE_RTC
849 * The legacy routing mode needs at least two channels, tick timer
850 * and the rtc emulation channel.
852 if (!(id & HPET_ID_NUMBER))
853 goto out_nohpet;
854 #endif
856 if (hpet_clocksource_register())
857 goto out_nohpet;
859 if (id & HPET_ID_LEGSUP) {
860 hpet_legacy_clockevent_register();
861 return 1;
863 return 0;
865 out_nohpet:
866 hpet_clear_mapping();
867 hpet_address = 0;
868 return 0;
872 * Needs to be late, as the reserve_timer code calls kalloc !
874 * Not a problem on i386 as hpet_enable is called from late_time_init,
875 * but on x86_64 it is necessary !
877 static __init int hpet_late_init(void)
879 int cpu;
881 if (boot_hpet_disable)
882 return -ENODEV;
884 if (!hpet_address) {
885 if (!force_hpet_address)
886 return -ENODEV;
888 hpet_address = force_hpet_address;
889 hpet_enable();
892 if (!hpet_virt_address)
893 return -ENODEV;
895 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
896 hpet_msi_capability_lookup(2);
897 else
898 hpet_msi_capability_lookup(0);
900 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
901 hpet_print_config();
903 if (hpet_msi_disable)
904 return 0;
906 if (boot_cpu_has(X86_FEATURE_ARAT))
907 return 0;
909 for_each_online_cpu(cpu) {
910 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
913 /* This notifier should be called after workqueue is ready */
914 hotcpu_notifier(hpet_cpuhp_notify, -20);
916 return 0;
918 fs_initcall(hpet_late_init);
920 void hpet_disable(void)
922 if (is_hpet_capable() && hpet_virt_address) {
923 unsigned int cfg = hpet_readl(HPET_CFG);
925 if (hpet_legacy_int_enabled) {
926 cfg &= ~HPET_CFG_LEGACY;
927 hpet_legacy_int_enabled = 0;
929 cfg &= ~HPET_CFG_ENABLE;
930 hpet_writel(cfg, HPET_CFG);
934 #ifdef CONFIG_HPET_EMULATE_RTC
936 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
937 * is enabled, we support RTC interrupt functionality in software.
938 * RTC has 3 kinds of interrupts:
939 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
940 * is updated
941 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
942 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
943 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
944 * (1) and (2) above are implemented using polling at a frequency of
945 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
946 * overhead. (DEFAULT_RTC_INT_FREQ)
947 * For (3), we use interrupts at 64Hz or user specified periodic
948 * frequency, whichever is higher.
950 #include <linux/mc146818rtc.h>
951 #include <linux/rtc.h>
952 #include <asm/rtc.h>
954 #define DEFAULT_RTC_INT_FREQ 64
955 #define DEFAULT_RTC_SHIFT 6
956 #define RTC_NUM_INTS 1
958 static unsigned long hpet_rtc_flags;
959 static int hpet_prev_update_sec;
960 static struct rtc_time hpet_alarm_time;
961 static unsigned long hpet_pie_count;
962 static u32 hpet_t1_cmp;
963 static u32 hpet_default_delta;
964 static u32 hpet_pie_delta;
965 static unsigned long hpet_pie_limit;
967 static rtc_irq_handler irq_handler;
970 * Check that the hpet counter c1 is ahead of the c2
972 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
974 return (s32)(c2 - c1) < 0;
978 * Registers a IRQ handler.
980 int hpet_register_irq_handler(rtc_irq_handler handler)
982 if (!is_hpet_enabled())
983 return -ENODEV;
984 if (irq_handler)
985 return -EBUSY;
987 irq_handler = handler;
989 return 0;
991 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
994 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
995 * and does cleanup.
997 void hpet_unregister_irq_handler(rtc_irq_handler handler)
999 if (!is_hpet_enabled())
1000 return;
1002 irq_handler = NULL;
1003 hpet_rtc_flags = 0;
1005 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1008 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1009 * is not supported by all HPET implementations for timer 1.
1011 * hpet_rtc_timer_init() is called when the rtc is initialized.
1013 int hpet_rtc_timer_init(void)
1015 unsigned int cfg, cnt, delta;
1016 unsigned long flags;
1018 if (!is_hpet_enabled())
1019 return 0;
1021 if (!hpet_default_delta) {
1022 uint64_t clc;
1024 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1025 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1026 hpet_default_delta = clc;
1029 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1030 delta = hpet_default_delta;
1031 else
1032 delta = hpet_pie_delta;
1034 local_irq_save(flags);
1036 cnt = delta + hpet_readl(HPET_COUNTER);
1037 hpet_writel(cnt, HPET_T1_CMP);
1038 hpet_t1_cmp = cnt;
1040 cfg = hpet_readl(HPET_T1_CFG);
1041 cfg &= ~HPET_TN_PERIODIC;
1042 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1043 hpet_writel(cfg, HPET_T1_CFG);
1045 local_irq_restore(flags);
1047 return 1;
1049 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1052 * The functions below are called from rtc driver.
1053 * Return 0 if HPET is not being used.
1054 * Otherwise do the necessary changes and return 1.
1056 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1058 if (!is_hpet_enabled())
1059 return 0;
1061 hpet_rtc_flags &= ~bit_mask;
1062 return 1;
1064 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1066 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1068 unsigned long oldbits = hpet_rtc_flags;
1070 if (!is_hpet_enabled())
1071 return 0;
1073 hpet_rtc_flags |= bit_mask;
1075 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1076 hpet_prev_update_sec = -1;
1078 if (!oldbits)
1079 hpet_rtc_timer_init();
1081 return 1;
1083 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1085 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1086 unsigned char sec)
1088 if (!is_hpet_enabled())
1089 return 0;
1091 hpet_alarm_time.tm_hour = hrs;
1092 hpet_alarm_time.tm_min = min;
1093 hpet_alarm_time.tm_sec = sec;
1095 return 1;
1097 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1099 int hpet_set_periodic_freq(unsigned long freq)
1101 uint64_t clc;
1103 if (!is_hpet_enabled())
1104 return 0;
1106 if (freq <= DEFAULT_RTC_INT_FREQ)
1107 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1108 else {
1109 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1110 do_div(clc, freq);
1111 clc >>= hpet_clockevent.shift;
1112 hpet_pie_delta = clc;
1113 hpet_pie_limit = 0;
1115 return 1;
1117 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1119 int hpet_rtc_dropped_irq(void)
1121 return is_hpet_enabled();
1123 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1125 static void hpet_rtc_timer_reinit(void)
1127 unsigned int cfg, delta;
1128 int lost_ints = -1;
1130 if (unlikely(!hpet_rtc_flags)) {
1131 cfg = hpet_readl(HPET_T1_CFG);
1132 cfg &= ~HPET_TN_ENABLE;
1133 hpet_writel(cfg, HPET_T1_CFG);
1134 return;
1137 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1138 delta = hpet_default_delta;
1139 else
1140 delta = hpet_pie_delta;
1143 * Increment the comparator value until we are ahead of the
1144 * current count.
1146 do {
1147 hpet_t1_cmp += delta;
1148 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1149 lost_ints++;
1150 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1152 if (lost_ints) {
1153 if (hpet_rtc_flags & RTC_PIE)
1154 hpet_pie_count += lost_ints;
1155 if (printk_ratelimit())
1156 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1157 lost_ints);
1161 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1163 struct rtc_time curr_time;
1164 unsigned long rtc_int_flag = 0;
1166 hpet_rtc_timer_reinit();
1167 memset(&curr_time, 0, sizeof(struct rtc_time));
1169 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1170 get_rtc_time(&curr_time);
1172 if (hpet_rtc_flags & RTC_UIE &&
1173 curr_time.tm_sec != hpet_prev_update_sec) {
1174 if (hpet_prev_update_sec >= 0)
1175 rtc_int_flag = RTC_UF;
1176 hpet_prev_update_sec = curr_time.tm_sec;
1179 if (hpet_rtc_flags & RTC_PIE &&
1180 ++hpet_pie_count >= hpet_pie_limit) {
1181 rtc_int_flag |= RTC_PF;
1182 hpet_pie_count = 0;
1185 if (hpet_rtc_flags & RTC_AIE &&
1186 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1187 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1188 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1189 rtc_int_flag |= RTC_AF;
1191 if (rtc_int_flag) {
1192 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1193 if (irq_handler)
1194 irq_handler(rtc_int_flag, dev_id);
1196 return IRQ_HANDLED;
1198 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1199 #endif