x86, mrst: use a temporary variable for SFI irq
[linux-btrfs-devel.git] / drivers / ata / libata-core.c
blob4a3a5ae7bb45edaf0e115add80b0d76dfda6ff2e
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
70 #include "libata.h"
71 #include "libata-transport.h"
73 /* debounce timing parameters in msecs { interval, duration, timeout } */
74 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
75 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
76 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
78 const struct ata_port_operations ata_base_port_ops = {
79 .prereset = ata_std_prereset,
80 .postreset = ata_std_postreset,
81 .error_handler = ata_std_error_handler,
84 const struct ata_port_operations sata_port_ops = {
85 .inherits = &ata_base_port_ops,
87 .qc_defer = ata_std_qc_defer,
88 .hardreset = sata_std_hardreset,
91 static unsigned int ata_dev_init_params(struct ata_device *dev,
92 u16 heads, u16 sectors);
93 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
94 static void ata_dev_xfermask(struct ata_device *dev);
95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
97 unsigned int ata_print_id = 1;
99 struct ata_force_param {
100 const char *name;
101 unsigned int cbl;
102 int spd_limit;
103 unsigned long xfer_mask;
104 unsigned int horkage_on;
105 unsigned int horkage_off;
106 unsigned int lflags;
109 struct ata_force_ent {
110 int port;
111 int device;
112 struct ata_force_param param;
115 static struct ata_force_ent *ata_force_tbl;
116 static int ata_force_tbl_size;
118 static char ata_force_param_buf[PAGE_SIZE] __initdata;
119 /* param_buf is thrown away after initialization, disallow read */
120 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
121 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
123 static int atapi_enabled = 1;
124 module_param(atapi_enabled, int, 0444);
125 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
127 static int atapi_dmadir = 0;
128 module_param(atapi_dmadir, int, 0444);
129 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
131 int atapi_passthru16 = 1;
132 module_param(atapi_passthru16, int, 0444);
133 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
135 int libata_fua = 0;
136 module_param_named(fua, libata_fua, int, 0444);
137 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
139 static int ata_ignore_hpa;
140 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
141 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
143 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
144 module_param_named(dma, libata_dma_mask, int, 0444);
145 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
147 static int ata_probe_timeout;
148 module_param(ata_probe_timeout, int, 0444);
149 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
151 int libata_noacpi = 0;
152 module_param_named(noacpi, libata_noacpi, int, 0444);
153 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
155 int libata_allow_tpm = 0;
156 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
157 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
159 static int atapi_an;
160 module_param(atapi_an, int, 0444);
161 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
163 MODULE_AUTHOR("Jeff Garzik");
164 MODULE_DESCRIPTION("Library module for ATA devices");
165 MODULE_LICENSE("GPL");
166 MODULE_VERSION(DRV_VERSION);
169 static bool ata_sstatus_online(u32 sstatus)
171 return (sstatus & 0xf) == 0x3;
175 * ata_link_next - link iteration helper
176 * @link: the previous link, NULL to start
177 * @ap: ATA port containing links to iterate
178 * @mode: iteration mode, one of ATA_LITER_*
180 * LOCKING:
181 * Host lock or EH context.
183 * RETURNS:
184 * Pointer to the next link.
186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 enum ata_link_iter_mode mode)
189 BUG_ON(mode != ATA_LITER_EDGE &&
190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192 /* NULL link indicates start of iteration */
193 if (!link)
194 switch (mode) {
195 case ATA_LITER_EDGE:
196 case ATA_LITER_PMP_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 /* fall through */
200 case ATA_LITER_HOST_FIRST:
201 return &ap->link;
204 /* we just iterated over the host link, what's next? */
205 if (link == &ap->link)
206 switch (mode) {
207 case ATA_LITER_HOST_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_PMP_FIRST:
212 if (unlikely(ap->slave_link))
213 return ap->slave_link;
214 /* fall through */
215 case ATA_LITER_EDGE:
216 return NULL;
219 /* slave_link excludes PMP */
220 if (unlikely(link == ap->slave_link))
221 return NULL;
223 /* we were over a PMP link */
224 if (++link < ap->pmp_link + ap->nr_pmp_links)
225 return link;
227 if (mode == ATA_LITER_PMP_FIRST)
228 return &ap->link;
230 return NULL;
234 * ata_dev_next - device iteration helper
235 * @dev: the previous device, NULL to start
236 * @link: ATA link containing devices to iterate
237 * @mode: iteration mode, one of ATA_DITER_*
239 * LOCKING:
240 * Host lock or EH context.
242 * RETURNS:
243 * Pointer to the next device.
245 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
246 enum ata_dev_iter_mode mode)
248 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
249 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251 /* NULL dev indicates start of iteration */
252 if (!dev)
253 switch (mode) {
254 case ATA_DITER_ENABLED:
255 case ATA_DITER_ALL:
256 dev = link->device;
257 goto check;
258 case ATA_DITER_ENABLED_REVERSE:
259 case ATA_DITER_ALL_REVERSE:
260 dev = link->device + ata_link_max_devices(link) - 1;
261 goto check;
264 next:
265 /* move to the next one */
266 switch (mode) {
267 case ATA_DITER_ENABLED:
268 case ATA_DITER_ALL:
269 if (++dev < link->device + ata_link_max_devices(link))
270 goto check;
271 return NULL;
272 case ATA_DITER_ENABLED_REVERSE:
273 case ATA_DITER_ALL_REVERSE:
274 if (--dev >= link->device)
275 goto check;
276 return NULL;
279 check:
280 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
281 !ata_dev_enabled(dev))
282 goto next;
283 return dev;
287 * ata_dev_phys_link - find physical link for a device
288 * @dev: ATA device to look up physical link for
290 * Look up physical link which @dev is attached to. Note that
291 * this is different from @dev->link only when @dev is on slave
292 * link. For all other cases, it's the same as @dev->link.
294 * LOCKING:
295 * Don't care.
297 * RETURNS:
298 * Pointer to the found physical link.
300 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
302 struct ata_port *ap = dev->link->ap;
304 if (!ap->slave_link)
305 return dev->link;
306 if (!dev->devno)
307 return &ap->link;
308 return ap->slave_link;
312 * ata_force_cbl - force cable type according to libata.force
313 * @ap: ATA port of interest
315 * Force cable type according to libata.force and whine about it.
316 * The last entry which has matching port number is used, so it
317 * can be specified as part of device force parameters. For
318 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
319 * same effect.
321 * LOCKING:
322 * EH context.
324 void ata_force_cbl(struct ata_port *ap)
326 int i;
328 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
329 const struct ata_force_ent *fe = &ata_force_tbl[i];
331 if (fe->port != -1 && fe->port != ap->print_id)
332 continue;
334 if (fe->param.cbl == ATA_CBL_NONE)
335 continue;
337 ap->cbl = fe->param.cbl;
338 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
339 return;
344 * ata_force_link_limits - force link limits according to libata.force
345 * @link: ATA link of interest
347 * Force link flags and SATA spd limit according to libata.force
348 * and whine about it. When only the port part is specified
349 * (e.g. 1:), the limit applies to all links connected to both
350 * the host link and all fan-out ports connected via PMP. If the
351 * device part is specified as 0 (e.g. 1.00:), it specifies the
352 * first fan-out link not the host link. Device number 15 always
353 * points to the host link whether PMP is attached or not. If the
354 * controller has slave link, device number 16 points to it.
356 * LOCKING:
357 * EH context.
359 static void ata_force_link_limits(struct ata_link *link)
361 bool did_spd = false;
362 int linkno = link->pmp;
363 int i;
365 if (ata_is_host_link(link))
366 linkno += 15;
368 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
369 const struct ata_force_ent *fe = &ata_force_tbl[i];
371 if (fe->port != -1 && fe->port != link->ap->print_id)
372 continue;
374 if (fe->device != -1 && fe->device != linkno)
375 continue;
377 /* only honor the first spd limit */
378 if (!did_spd && fe->param.spd_limit) {
379 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
380 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
381 fe->param.name);
382 did_spd = true;
385 /* let lflags stack */
386 if (fe->param.lflags) {
387 link->flags |= fe->param.lflags;
388 ata_link_notice(link,
389 "FORCE: link flag 0x%x forced -> 0x%x\n",
390 fe->param.lflags, link->flags);
396 * ata_force_xfermask - force xfermask according to libata.force
397 * @dev: ATA device of interest
399 * Force xfer_mask according to libata.force and whine about it.
400 * For consistency with link selection, device number 15 selects
401 * the first device connected to the host link.
403 * LOCKING:
404 * EH context.
406 static void ata_force_xfermask(struct ata_device *dev)
408 int devno = dev->link->pmp + dev->devno;
409 int alt_devno = devno;
410 int i;
412 /* allow n.15/16 for devices attached to host port */
413 if (ata_is_host_link(dev->link))
414 alt_devno += 15;
416 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
417 const struct ata_force_ent *fe = &ata_force_tbl[i];
418 unsigned long pio_mask, mwdma_mask, udma_mask;
420 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
421 continue;
423 if (fe->device != -1 && fe->device != devno &&
424 fe->device != alt_devno)
425 continue;
427 if (!fe->param.xfer_mask)
428 continue;
430 ata_unpack_xfermask(fe->param.xfer_mask,
431 &pio_mask, &mwdma_mask, &udma_mask);
432 if (udma_mask)
433 dev->udma_mask = udma_mask;
434 else if (mwdma_mask) {
435 dev->udma_mask = 0;
436 dev->mwdma_mask = mwdma_mask;
437 } else {
438 dev->udma_mask = 0;
439 dev->mwdma_mask = 0;
440 dev->pio_mask = pio_mask;
443 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
444 fe->param.name);
445 return;
450 * ata_force_horkage - force horkage according to libata.force
451 * @dev: ATA device of interest
453 * Force horkage according to libata.force and whine about it.
454 * For consistency with link selection, device number 15 selects
455 * the first device connected to the host link.
457 * LOCKING:
458 * EH context.
460 static void ata_force_horkage(struct ata_device *dev)
462 int devno = dev->link->pmp + dev->devno;
463 int alt_devno = devno;
464 int i;
466 /* allow n.15/16 for devices attached to host port */
467 if (ata_is_host_link(dev->link))
468 alt_devno += 15;
470 for (i = 0; i < ata_force_tbl_size; i++) {
471 const struct ata_force_ent *fe = &ata_force_tbl[i];
473 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
474 continue;
476 if (fe->device != -1 && fe->device != devno &&
477 fe->device != alt_devno)
478 continue;
480 if (!(~dev->horkage & fe->param.horkage_on) &&
481 !(dev->horkage & fe->param.horkage_off))
482 continue;
484 dev->horkage |= fe->param.horkage_on;
485 dev->horkage &= ~fe->param.horkage_off;
487 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
488 fe->param.name);
493 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
494 * @opcode: SCSI opcode
496 * Determine ATAPI command type from @opcode.
498 * LOCKING:
499 * None.
501 * RETURNS:
502 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504 int atapi_cmd_type(u8 opcode)
506 switch (opcode) {
507 case GPCMD_READ_10:
508 case GPCMD_READ_12:
509 return ATAPI_READ;
511 case GPCMD_WRITE_10:
512 case GPCMD_WRITE_12:
513 case GPCMD_WRITE_AND_VERIFY_10:
514 return ATAPI_WRITE;
516 case GPCMD_READ_CD:
517 case GPCMD_READ_CD_MSF:
518 return ATAPI_READ_CD;
520 case ATA_16:
521 case ATA_12:
522 if (atapi_passthru16)
523 return ATAPI_PASS_THRU;
524 /* fall thru */
525 default:
526 return ATAPI_MISC;
531 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
532 * @tf: Taskfile to convert
533 * @pmp: Port multiplier port
534 * @is_cmd: This FIS is for command
535 * @fis: Buffer into which data will output
537 * Converts a standard ATA taskfile to a Serial ATA
538 * FIS structure (Register - Host to Device).
540 * LOCKING:
541 * Inherited from caller.
543 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
545 fis[0] = 0x27; /* Register - Host to Device FIS */
546 fis[1] = pmp & 0xf; /* Port multiplier number*/
547 if (is_cmd)
548 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
550 fis[2] = tf->command;
551 fis[3] = tf->feature;
553 fis[4] = tf->lbal;
554 fis[5] = tf->lbam;
555 fis[6] = tf->lbah;
556 fis[7] = tf->device;
558 fis[8] = tf->hob_lbal;
559 fis[9] = tf->hob_lbam;
560 fis[10] = tf->hob_lbah;
561 fis[11] = tf->hob_feature;
563 fis[12] = tf->nsect;
564 fis[13] = tf->hob_nsect;
565 fis[14] = 0;
566 fis[15] = tf->ctl;
568 fis[16] = 0;
569 fis[17] = 0;
570 fis[18] = 0;
571 fis[19] = 0;
575 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
576 * @fis: Buffer from which data will be input
577 * @tf: Taskfile to output
579 * Converts a serial ATA FIS structure to a standard ATA taskfile.
581 * LOCKING:
582 * Inherited from caller.
585 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
587 tf->command = fis[2]; /* status */
588 tf->feature = fis[3]; /* error */
590 tf->lbal = fis[4];
591 tf->lbam = fis[5];
592 tf->lbah = fis[6];
593 tf->device = fis[7];
595 tf->hob_lbal = fis[8];
596 tf->hob_lbam = fis[9];
597 tf->hob_lbah = fis[10];
599 tf->nsect = fis[12];
600 tf->hob_nsect = fis[13];
603 static const u8 ata_rw_cmds[] = {
604 /* pio multi */
605 ATA_CMD_READ_MULTI,
606 ATA_CMD_WRITE_MULTI,
607 ATA_CMD_READ_MULTI_EXT,
608 ATA_CMD_WRITE_MULTI_EXT,
612 ATA_CMD_WRITE_MULTI_FUA_EXT,
613 /* pio */
614 ATA_CMD_PIO_READ,
615 ATA_CMD_PIO_WRITE,
616 ATA_CMD_PIO_READ_EXT,
617 ATA_CMD_PIO_WRITE_EXT,
622 /* dma */
623 ATA_CMD_READ,
624 ATA_CMD_WRITE,
625 ATA_CMD_READ_EXT,
626 ATA_CMD_WRITE_EXT,
630 ATA_CMD_WRITE_FUA_EXT
634 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
635 * @tf: command to examine and configure
636 * @dev: device tf belongs to
638 * Examine the device configuration and tf->flags to calculate
639 * the proper read/write commands and protocol to use.
641 * LOCKING:
642 * caller.
644 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
646 u8 cmd;
648 int index, fua, lba48, write;
650 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
651 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
652 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
654 if (dev->flags & ATA_DFLAG_PIO) {
655 tf->protocol = ATA_PROT_PIO;
656 index = dev->multi_count ? 0 : 8;
657 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
658 /* Unable to use DMA due to host limitation */
659 tf->protocol = ATA_PROT_PIO;
660 index = dev->multi_count ? 0 : 8;
661 } else {
662 tf->protocol = ATA_PROT_DMA;
663 index = 16;
666 cmd = ata_rw_cmds[index + fua + lba48 + write];
667 if (cmd) {
668 tf->command = cmd;
669 return 0;
671 return -1;
675 * ata_tf_read_block - Read block address from ATA taskfile
676 * @tf: ATA taskfile of interest
677 * @dev: ATA device @tf belongs to
679 * LOCKING:
680 * None.
682 * Read block address from @tf. This function can handle all
683 * three address formats - LBA, LBA48 and CHS. tf->protocol and
684 * flags select the address format to use.
686 * RETURNS:
687 * Block address read from @tf.
689 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
691 u64 block = 0;
693 if (tf->flags & ATA_TFLAG_LBA) {
694 if (tf->flags & ATA_TFLAG_LBA48) {
695 block |= (u64)tf->hob_lbah << 40;
696 block |= (u64)tf->hob_lbam << 32;
697 block |= (u64)tf->hob_lbal << 24;
698 } else
699 block |= (tf->device & 0xf) << 24;
701 block |= tf->lbah << 16;
702 block |= tf->lbam << 8;
703 block |= tf->lbal;
704 } else {
705 u32 cyl, head, sect;
707 cyl = tf->lbam | (tf->lbah << 8);
708 head = tf->device & 0xf;
709 sect = tf->lbal;
711 if (!sect) {
712 ata_dev_warn(dev,
713 "device reported invalid CHS sector 0\n");
714 sect = 1; /* oh well */
717 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
720 return block;
724 * ata_build_rw_tf - Build ATA taskfile for given read/write request
725 * @tf: Target ATA taskfile
726 * @dev: ATA device @tf belongs to
727 * @block: Block address
728 * @n_block: Number of blocks
729 * @tf_flags: RW/FUA etc...
730 * @tag: tag
732 * LOCKING:
733 * None.
735 * Build ATA taskfile @tf for read/write request described by
736 * @block, @n_block, @tf_flags and @tag on @dev.
738 * RETURNS:
740 * 0 on success, -ERANGE if the request is too large for @dev,
741 * -EINVAL if the request is invalid.
743 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
744 u64 block, u32 n_block, unsigned int tf_flags,
745 unsigned int tag)
747 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
748 tf->flags |= tf_flags;
750 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
751 /* yay, NCQ */
752 if (!lba_48_ok(block, n_block))
753 return -ERANGE;
755 tf->protocol = ATA_PROT_NCQ;
756 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
758 if (tf->flags & ATA_TFLAG_WRITE)
759 tf->command = ATA_CMD_FPDMA_WRITE;
760 else
761 tf->command = ATA_CMD_FPDMA_READ;
763 tf->nsect = tag << 3;
764 tf->hob_feature = (n_block >> 8) & 0xff;
765 tf->feature = n_block & 0xff;
767 tf->hob_lbah = (block >> 40) & 0xff;
768 tf->hob_lbam = (block >> 32) & 0xff;
769 tf->hob_lbal = (block >> 24) & 0xff;
770 tf->lbah = (block >> 16) & 0xff;
771 tf->lbam = (block >> 8) & 0xff;
772 tf->lbal = block & 0xff;
774 tf->device = 1 << 6;
775 if (tf->flags & ATA_TFLAG_FUA)
776 tf->device |= 1 << 7;
777 } else if (dev->flags & ATA_DFLAG_LBA) {
778 tf->flags |= ATA_TFLAG_LBA;
780 if (lba_28_ok(block, n_block)) {
781 /* use LBA28 */
782 tf->device |= (block >> 24) & 0xf;
783 } else if (lba_48_ok(block, n_block)) {
784 if (!(dev->flags & ATA_DFLAG_LBA48))
785 return -ERANGE;
787 /* use LBA48 */
788 tf->flags |= ATA_TFLAG_LBA48;
790 tf->hob_nsect = (n_block >> 8) & 0xff;
792 tf->hob_lbah = (block >> 40) & 0xff;
793 tf->hob_lbam = (block >> 32) & 0xff;
794 tf->hob_lbal = (block >> 24) & 0xff;
795 } else
796 /* request too large even for LBA48 */
797 return -ERANGE;
799 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
800 return -EINVAL;
802 tf->nsect = n_block & 0xff;
804 tf->lbah = (block >> 16) & 0xff;
805 tf->lbam = (block >> 8) & 0xff;
806 tf->lbal = block & 0xff;
808 tf->device |= ATA_LBA;
809 } else {
810 /* CHS */
811 u32 sect, head, cyl, track;
813 /* The request -may- be too large for CHS addressing. */
814 if (!lba_28_ok(block, n_block))
815 return -ERANGE;
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
820 /* Convert LBA to CHS */
821 track = (u32)block / dev->sectors;
822 cyl = track / dev->heads;
823 head = track % dev->heads;
824 sect = (u32)block % dev->sectors + 1;
826 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
827 (u32)block, track, cyl, head, sect);
829 /* Check whether the converted CHS can fit.
830 Cylinder: 0-65535
831 Head: 0-15
832 Sector: 1-255*/
833 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
834 return -ERANGE;
836 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
837 tf->lbal = sect;
838 tf->lbam = cyl;
839 tf->lbah = cyl >> 8;
840 tf->device |= head;
843 return 0;
847 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
848 * @pio_mask: pio_mask
849 * @mwdma_mask: mwdma_mask
850 * @udma_mask: udma_mask
852 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
853 * unsigned int xfer_mask.
855 * LOCKING:
856 * None.
858 * RETURNS:
859 * Packed xfer_mask.
861 unsigned long ata_pack_xfermask(unsigned long pio_mask,
862 unsigned long mwdma_mask,
863 unsigned long udma_mask)
865 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
866 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
867 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
871 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
872 * @xfer_mask: xfer_mask to unpack
873 * @pio_mask: resulting pio_mask
874 * @mwdma_mask: resulting mwdma_mask
875 * @udma_mask: resulting udma_mask
877 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
878 * Any NULL distination masks will be ignored.
880 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
881 unsigned long *mwdma_mask, unsigned long *udma_mask)
883 if (pio_mask)
884 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
885 if (mwdma_mask)
886 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
887 if (udma_mask)
888 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
891 static const struct ata_xfer_ent {
892 int shift, bits;
893 u8 base;
894 } ata_xfer_tbl[] = {
895 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
896 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
897 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
898 { -1, },
902 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
903 * @xfer_mask: xfer_mask of interest
905 * Return matching XFER_* value for @xfer_mask. Only the highest
906 * bit of @xfer_mask is considered.
908 * LOCKING:
909 * None.
911 * RETURNS:
912 * Matching XFER_* value, 0xff if no match found.
914 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
916 int highbit = fls(xfer_mask) - 1;
917 const struct ata_xfer_ent *ent;
919 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
920 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
921 return ent->base + highbit - ent->shift;
922 return 0xff;
926 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
927 * @xfer_mode: XFER_* of interest
929 * Return matching xfer_mask for @xfer_mode.
931 * LOCKING:
932 * None.
934 * RETURNS:
935 * Matching xfer_mask, 0 if no match found.
937 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
939 const struct ata_xfer_ent *ent;
941 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
942 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
943 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
944 & ~((1 << ent->shift) - 1);
945 return 0;
949 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
950 * @xfer_mode: XFER_* of interest
952 * Return matching xfer_shift for @xfer_mode.
954 * LOCKING:
955 * None.
957 * RETURNS:
958 * Matching xfer_shift, -1 if no match found.
960 int ata_xfer_mode2shift(unsigned long xfer_mode)
962 const struct ata_xfer_ent *ent;
964 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
965 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
966 return ent->shift;
967 return -1;
971 * ata_mode_string - convert xfer_mask to string
972 * @xfer_mask: mask of bits supported; only highest bit counts.
974 * Determine string which represents the highest speed
975 * (highest bit in @modemask).
977 * LOCKING:
978 * None.
980 * RETURNS:
981 * Constant C string representing highest speed listed in
982 * @mode_mask, or the constant C string "<n/a>".
984 const char *ata_mode_string(unsigned long xfer_mask)
986 static const char * const xfer_mode_str[] = {
987 "PIO0",
988 "PIO1",
989 "PIO2",
990 "PIO3",
991 "PIO4",
992 "PIO5",
993 "PIO6",
994 "MWDMA0",
995 "MWDMA1",
996 "MWDMA2",
997 "MWDMA3",
998 "MWDMA4",
999 "UDMA/16",
1000 "UDMA/25",
1001 "UDMA/33",
1002 "UDMA/44",
1003 "UDMA/66",
1004 "UDMA/100",
1005 "UDMA/133",
1006 "UDMA7",
1008 int highbit;
1010 highbit = fls(xfer_mask) - 1;
1011 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1012 return xfer_mode_str[highbit];
1013 return "<n/a>";
1016 const char *sata_spd_string(unsigned int spd)
1018 static const char * const spd_str[] = {
1019 "1.5 Gbps",
1020 "3.0 Gbps",
1021 "6.0 Gbps",
1024 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1025 return "<unknown>";
1026 return spd_str[spd - 1];
1030 * ata_dev_classify - determine device type based on ATA-spec signature
1031 * @tf: ATA taskfile register set for device to be identified
1033 * Determine from taskfile register contents whether a device is
1034 * ATA or ATAPI, as per "Signature and persistence" section
1035 * of ATA/PI spec (volume 1, sect 5.14).
1037 * LOCKING:
1038 * None.
1040 * RETURNS:
1041 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1042 * %ATA_DEV_UNKNOWN the event of failure.
1044 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1046 /* Apple's open source Darwin code hints that some devices only
1047 * put a proper signature into the LBA mid/high registers,
1048 * So, we only check those. It's sufficient for uniqueness.
1050 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1051 * signatures for ATA and ATAPI devices attached on SerialATA,
1052 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1053 * spec has never mentioned about using different signatures
1054 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1055 * Multiplier specification began to use 0x69/0x96 to identify
1056 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1057 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1058 * 0x69/0x96 shortly and described them as reserved for
1059 * SerialATA.
1061 * We follow the current spec and consider that 0x69/0x96
1062 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1063 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1064 * SEMB signature. This is worked around in
1065 * ata_dev_read_id().
1067 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1068 DPRINTK("found ATA device by sig\n");
1069 return ATA_DEV_ATA;
1072 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1073 DPRINTK("found ATAPI device by sig\n");
1074 return ATA_DEV_ATAPI;
1077 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1078 DPRINTK("found PMP device by sig\n");
1079 return ATA_DEV_PMP;
1082 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1083 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1084 return ATA_DEV_SEMB;
1087 DPRINTK("unknown device\n");
1088 return ATA_DEV_UNKNOWN;
1092 * ata_id_string - Convert IDENTIFY DEVICE page into string
1093 * @id: IDENTIFY DEVICE results we will examine
1094 * @s: string into which data is output
1095 * @ofs: offset into identify device page
1096 * @len: length of string to return. must be an even number.
1098 * The strings in the IDENTIFY DEVICE page are broken up into
1099 * 16-bit chunks. Run through the string, and output each
1100 * 8-bit chunk linearly, regardless of platform.
1102 * LOCKING:
1103 * caller.
1106 void ata_id_string(const u16 *id, unsigned char *s,
1107 unsigned int ofs, unsigned int len)
1109 unsigned int c;
1111 BUG_ON(len & 1);
1113 while (len > 0) {
1114 c = id[ofs] >> 8;
1115 *s = c;
1116 s++;
1118 c = id[ofs] & 0xff;
1119 *s = c;
1120 s++;
1122 ofs++;
1123 len -= 2;
1128 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1129 * @id: IDENTIFY DEVICE results we will examine
1130 * @s: string into which data is output
1131 * @ofs: offset into identify device page
1132 * @len: length of string to return. must be an odd number.
1134 * This function is identical to ata_id_string except that it
1135 * trims trailing spaces and terminates the resulting string with
1136 * null. @len must be actual maximum length (even number) + 1.
1138 * LOCKING:
1139 * caller.
1141 void ata_id_c_string(const u16 *id, unsigned char *s,
1142 unsigned int ofs, unsigned int len)
1144 unsigned char *p;
1146 ata_id_string(id, s, ofs, len - 1);
1148 p = s + strnlen(s, len - 1);
1149 while (p > s && p[-1] == ' ')
1150 p--;
1151 *p = '\0';
1154 static u64 ata_id_n_sectors(const u16 *id)
1156 if (ata_id_has_lba(id)) {
1157 if (ata_id_has_lba48(id))
1158 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1159 else
1160 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1161 } else {
1162 if (ata_id_current_chs_valid(id))
1163 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1164 id[ATA_ID_CUR_SECTORS];
1165 else
1166 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1167 id[ATA_ID_SECTORS];
1171 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1173 u64 sectors = 0;
1175 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1176 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1177 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1178 sectors |= (tf->lbah & 0xff) << 16;
1179 sectors |= (tf->lbam & 0xff) << 8;
1180 sectors |= (tf->lbal & 0xff);
1182 return sectors;
1185 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1187 u64 sectors = 0;
1189 sectors |= (tf->device & 0x0f) << 24;
1190 sectors |= (tf->lbah & 0xff) << 16;
1191 sectors |= (tf->lbam & 0xff) << 8;
1192 sectors |= (tf->lbal & 0xff);
1194 return sectors;
1198 * ata_read_native_max_address - Read native max address
1199 * @dev: target device
1200 * @max_sectors: out parameter for the result native max address
1202 * Perform an LBA48 or LBA28 native size query upon the device in
1203 * question.
1205 * RETURNS:
1206 * 0 on success, -EACCES if command is aborted by the drive.
1207 * -EIO on other errors.
1209 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1211 unsigned int err_mask;
1212 struct ata_taskfile tf;
1213 int lba48 = ata_id_has_lba48(dev->id);
1215 ata_tf_init(dev, &tf);
1217 /* always clear all address registers */
1218 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1220 if (lba48) {
1221 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1222 tf.flags |= ATA_TFLAG_LBA48;
1223 } else
1224 tf.command = ATA_CMD_READ_NATIVE_MAX;
1226 tf.protocol |= ATA_PROT_NODATA;
1227 tf.device |= ATA_LBA;
1229 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1230 if (err_mask) {
1231 ata_dev_warn(dev,
1232 "failed to read native max address (err_mask=0x%x)\n",
1233 err_mask);
1234 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1235 return -EACCES;
1236 return -EIO;
1239 if (lba48)
1240 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1241 else
1242 *max_sectors = ata_tf_to_lba(&tf) + 1;
1243 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1244 (*max_sectors)--;
1245 return 0;
1249 * ata_set_max_sectors - Set max sectors
1250 * @dev: target device
1251 * @new_sectors: new max sectors value to set for the device
1253 * Set max sectors of @dev to @new_sectors.
1255 * RETURNS:
1256 * 0 on success, -EACCES if command is aborted or denied (due to
1257 * previous non-volatile SET_MAX) by the drive. -EIO on other
1258 * errors.
1260 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1262 unsigned int err_mask;
1263 struct ata_taskfile tf;
1264 int lba48 = ata_id_has_lba48(dev->id);
1266 new_sectors--;
1268 ata_tf_init(dev, &tf);
1270 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1272 if (lba48) {
1273 tf.command = ATA_CMD_SET_MAX_EXT;
1274 tf.flags |= ATA_TFLAG_LBA48;
1276 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1277 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1278 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1279 } else {
1280 tf.command = ATA_CMD_SET_MAX;
1282 tf.device |= (new_sectors >> 24) & 0xf;
1285 tf.protocol |= ATA_PROT_NODATA;
1286 tf.device |= ATA_LBA;
1288 tf.lbal = (new_sectors >> 0) & 0xff;
1289 tf.lbam = (new_sectors >> 8) & 0xff;
1290 tf.lbah = (new_sectors >> 16) & 0xff;
1292 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1293 if (err_mask) {
1294 ata_dev_warn(dev,
1295 "failed to set max address (err_mask=0x%x)\n",
1296 err_mask);
1297 if (err_mask == AC_ERR_DEV &&
1298 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1299 return -EACCES;
1300 return -EIO;
1303 return 0;
1307 * ata_hpa_resize - Resize a device with an HPA set
1308 * @dev: Device to resize
1310 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1311 * it if required to the full size of the media. The caller must check
1312 * the drive has the HPA feature set enabled.
1314 * RETURNS:
1315 * 0 on success, -errno on failure.
1317 static int ata_hpa_resize(struct ata_device *dev)
1319 struct ata_eh_context *ehc = &dev->link->eh_context;
1320 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1321 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1322 u64 sectors = ata_id_n_sectors(dev->id);
1323 u64 native_sectors;
1324 int rc;
1326 /* do we need to do it? */
1327 if (dev->class != ATA_DEV_ATA ||
1328 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1329 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1330 return 0;
1332 /* read native max address */
1333 rc = ata_read_native_max_address(dev, &native_sectors);
1334 if (rc) {
1335 /* If device aborted the command or HPA isn't going to
1336 * be unlocked, skip HPA resizing.
1338 if (rc == -EACCES || !unlock_hpa) {
1339 ata_dev_warn(dev,
1340 "HPA support seems broken, skipping HPA handling\n");
1341 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1343 /* we can continue if device aborted the command */
1344 if (rc == -EACCES)
1345 rc = 0;
1348 return rc;
1350 dev->n_native_sectors = native_sectors;
1352 /* nothing to do? */
1353 if (native_sectors <= sectors || !unlock_hpa) {
1354 if (!print_info || native_sectors == sectors)
1355 return 0;
1357 if (native_sectors > sectors)
1358 ata_dev_info(dev,
1359 "HPA detected: current %llu, native %llu\n",
1360 (unsigned long long)sectors,
1361 (unsigned long long)native_sectors);
1362 else if (native_sectors < sectors)
1363 ata_dev_warn(dev,
1364 "native sectors (%llu) is smaller than sectors (%llu)\n",
1365 (unsigned long long)native_sectors,
1366 (unsigned long long)sectors);
1367 return 0;
1370 /* let's unlock HPA */
1371 rc = ata_set_max_sectors(dev, native_sectors);
1372 if (rc == -EACCES) {
1373 /* if device aborted the command, skip HPA resizing */
1374 ata_dev_warn(dev,
1375 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1376 (unsigned long long)sectors,
1377 (unsigned long long)native_sectors);
1378 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1379 return 0;
1380 } else if (rc)
1381 return rc;
1383 /* re-read IDENTIFY data */
1384 rc = ata_dev_reread_id(dev, 0);
1385 if (rc) {
1386 ata_dev_err(dev,
1387 "failed to re-read IDENTIFY data after HPA resizing\n");
1388 return rc;
1391 if (print_info) {
1392 u64 new_sectors = ata_id_n_sectors(dev->id);
1393 ata_dev_info(dev,
1394 "HPA unlocked: %llu -> %llu, native %llu\n",
1395 (unsigned long long)sectors,
1396 (unsigned long long)new_sectors,
1397 (unsigned long long)native_sectors);
1400 return 0;
1404 * ata_dump_id - IDENTIFY DEVICE info debugging output
1405 * @id: IDENTIFY DEVICE page to dump
1407 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1408 * page.
1410 * LOCKING:
1411 * caller.
1414 static inline void ata_dump_id(const u16 *id)
1416 DPRINTK("49==0x%04x "
1417 "53==0x%04x "
1418 "63==0x%04x "
1419 "64==0x%04x "
1420 "75==0x%04x \n",
1421 id[49],
1422 id[53],
1423 id[63],
1424 id[64],
1425 id[75]);
1426 DPRINTK("80==0x%04x "
1427 "81==0x%04x "
1428 "82==0x%04x "
1429 "83==0x%04x "
1430 "84==0x%04x \n",
1431 id[80],
1432 id[81],
1433 id[82],
1434 id[83],
1435 id[84]);
1436 DPRINTK("88==0x%04x "
1437 "93==0x%04x\n",
1438 id[88],
1439 id[93]);
1443 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1444 * @id: IDENTIFY data to compute xfer mask from
1446 * Compute the xfermask for this device. This is not as trivial
1447 * as it seems if we must consider early devices correctly.
1449 * FIXME: pre IDE drive timing (do we care ?).
1451 * LOCKING:
1452 * None.
1454 * RETURNS:
1455 * Computed xfermask
1457 unsigned long ata_id_xfermask(const u16 *id)
1459 unsigned long pio_mask, mwdma_mask, udma_mask;
1461 /* Usual case. Word 53 indicates word 64 is valid */
1462 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1463 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1464 pio_mask <<= 3;
1465 pio_mask |= 0x7;
1466 } else {
1467 /* If word 64 isn't valid then Word 51 high byte holds
1468 * the PIO timing number for the maximum. Turn it into
1469 * a mask.
1471 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1472 if (mode < 5) /* Valid PIO range */
1473 pio_mask = (2 << mode) - 1;
1474 else
1475 pio_mask = 1;
1477 /* But wait.. there's more. Design your standards by
1478 * committee and you too can get a free iordy field to
1479 * process. However its the speeds not the modes that
1480 * are supported... Note drivers using the timing API
1481 * will get this right anyway
1485 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1487 if (ata_id_is_cfa(id)) {
1489 * Process compact flash extended modes
1491 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1492 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1494 if (pio)
1495 pio_mask |= (1 << 5);
1496 if (pio > 1)
1497 pio_mask |= (1 << 6);
1498 if (dma)
1499 mwdma_mask |= (1 << 3);
1500 if (dma > 1)
1501 mwdma_mask |= (1 << 4);
1504 udma_mask = 0;
1505 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1506 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1508 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1511 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1513 struct completion *waiting = qc->private_data;
1515 complete(waiting);
1519 * ata_exec_internal_sg - execute libata internal command
1520 * @dev: Device to which the command is sent
1521 * @tf: Taskfile registers for the command and the result
1522 * @cdb: CDB for packet command
1523 * @dma_dir: Data tranfer direction of the command
1524 * @sgl: sg list for the data buffer of the command
1525 * @n_elem: Number of sg entries
1526 * @timeout: Timeout in msecs (0 for default)
1528 * Executes libata internal command with timeout. @tf contains
1529 * command on entry and result on return. Timeout and error
1530 * conditions are reported via return value. No recovery action
1531 * is taken after a command times out. It's caller's duty to
1532 * clean up after timeout.
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1540 unsigned ata_exec_internal_sg(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, struct scatterlist *sgl,
1543 unsigned int n_elem, unsigned long timeout)
1545 struct ata_link *link = dev->link;
1546 struct ata_port *ap = link->ap;
1547 u8 command = tf->command;
1548 int auto_timeout = 0;
1549 struct ata_queued_cmd *qc;
1550 unsigned int tag, preempted_tag;
1551 u32 preempted_sactive, preempted_qc_active;
1552 int preempted_nr_active_links;
1553 DECLARE_COMPLETION_ONSTACK(wait);
1554 unsigned long flags;
1555 unsigned int err_mask;
1556 int rc;
1558 spin_lock_irqsave(ap->lock, flags);
1560 /* no internal command while frozen */
1561 if (ap->pflags & ATA_PFLAG_FROZEN) {
1562 spin_unlock_irqrestore(ap->lock, flags);
1563 return AC_ERR_SYSTEM;
1566 /* initialize internal qc */
1568 /* XXX: Tag 0 is used for drivers with legacy EH as some
1569 * drivers choke if any other tag is given. This breaks
1570 * ata_tag_internal() test for those drivers. Don't use new
1571 * EH stuff without converting to it.
1573 if (ap->ops->error_handler)
1574 tag = ATA_TAG_INTERNAL;
1575 else
1576 tag = 0;
1578 if (test_and_set_bit(tag, &ap->qc_allocated))
1579 BUG();
1580 qc = __ata_qc_from_tag(ap, tag);
1582 qc->tag = tag;
1583 qc->scsicmd = NULL;
1584 qc->ap = ap;
1585 qc->dev = dev;
1586 ata_qc_reinit(qc);
1588 preempted_tag = link->active_tag;
1589 preempted_sactive = link->sactive;
1590 preempted_qc_active = ap->qc_active;
1591 preempted_nr_active_links = ap->nr_active_links;
1592 link->active_tag = ATA_TAG_POISON;
1593 link->sactive = 0;
1594 ap->qc_active = 0;
1595 ap->nr_active_links = 0;
1597 /* prepare & issue qc */
1598 qc->tf = *tf;
1599 if (cdb)
1600 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1601 qc->flags |= ATA_QCFLAG_RESULT_TF;
1602 qc->dma_dir = dma_dir;
1603 if (dma_dir != DMA_NONE) {
1604 unsigned int i, buflen = 0;
1605 struct scatterlist *sg;
1607 for_each_sg(sgl, sg, n_elem, i)
1608 buflen += sg->length;
1610 ata_sg_init(qc, sgl, n_elem);
1611 qc->nbytes = buflen;
1614 qc->private_data = &wait;
1615 qc->complete_fn = ata_qc_complete_internal;
1617 ata_qc_issue(qc);
1619 spin_unlock_irqrestore(ap->lock, flags);
1621 if (!timeout) {
1622 if (ata_probe_timeout)
1623 timeout = ata_probe_timeout * 1000;
1624 else {
1625 timeout = ata_internal_cmd_timeout(dev, command);
1626 auto_timeout = 1;
1630 if (ap->ops->error_handler)
1631 ata_eh_release(ap);
1633 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1635 if (ap->ops->error_handler)
1636 ata_eh_acquire(ap);
1638 ata_sff_flush_pio_task(ap);
1640 if (!rc) {
1641 spin_lock_irqsave(ap->lock, flags);
1643 /* We're racing with irq here. If we lose, the
1644 * following test prevents us from completing the qc
1645 * twice. If we win, the port is frozen and will be
1646 * cleaned up by ->post_internal_cmd().
1648 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1649 qc->err_mask |= AC_ERR_TIMEOUT;
1651 if (ap->ops->error_handler)
1652 ata_port_freeze(ap);
1653 else
1654 ata_qc_complete(qc);
1656 if (ata_msg_warn(ap))
1657 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1658 command);
1661 spin_unlock_irqrestore(ap->lock, flags);
1664 /* do post_internal_cmd */
1665 if (ap->ops->post_internal_cmd)
1666 ap->ops->post_internal_cmd(qc);
1668 /* perform minimal error analysis */
1669 if (qc->flags & ATA_QCFLAG_FAILED) {
1670 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1671 qc->err_mask |= AC_ERR_DEV;
1673 if (!qc->err_mask)
1674 qc->err_mask |= AC_ERR_OTHER;
1676 if (qc->err_mask & ~AC_ERR_OTHER)
1677 qc->err_mask &= ~AC_ERR_OTHER;
1680 /* finish up */
1681 spin_lock_irqsave(ap->lock, flags);
1683 *tf = qc->result_tf;
1684 err_mask = qc->err_mask;
1686 ata_qc_free(qc);
1687 link->active_tag = preempted_tag;
1688 link->sactive = preempted_sactive;
1689 ap->qc_active = preempted_qc_active;
1690 ap->nr_active_links = preempted_nr_active_links;
1692 spin_unlock_irqrestore(ap->lock, flags);
1694 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1695 ata_internal_cmd_timed_out(dev, command);
1697 return err_mask;
1701 * ata_exec_internal - execute libata internal command
1702 * @dev: Device to which the command is sent
1703 * @tf: Taskfile registers for the command and the result
1704 * @cdb: CDB for packet command
1705 * @dma_dir: Data tranfer direction of the command
1706 * @buf: Data buffer of the command
1707 * @buflen: Length of data buffer
1708 * @timeout: Timeout in msecs (0 for default)
1710 * Wrapper around ata_exec_internal_sg() which takes simple
1711 * buffer instead of sg list.
1713 * LOCKING:
1714 * None. Should be called with kernel context, might sleep.
1716 * RETURNS:
1717 * Zero on success, AC_ERR_* mask on failure
1719 unsigned ata_exec_internal(struct ata_device *dev,
1720 struct ata_taskfile *tf, const u8 *cdb,
1721 int dma_dir, void *buf, unsigned int buflen,
1722 unsigned long timeout)
1724 struct scatterlist *psg = NULL, sg;
1725 unsigned int n_elem = 0;
1727 if (dma_dir != DMA_NONE) {
1728 WARN_ON(!buf);
1729 sg_init_one(&sg, buf, buflen);
1730 psg = &sg;
1731 n_elem++;
1734 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1735 timeout);
1739 * ata_do_simple_cmd - execute simple internal command
1740 * @dev: Device to which the command is sent
1741 * @cmd: Opcode to execute
1743 * Execute a 'simple' command, that only consists of the opcode
1744 * 'cmd' itself, without filling any other registers
1746 * LOCKING:
1747 * Kernel thread context (may sleep).
1749 * RETURNS:
1750 * Zero on success, AC_ERR_* mask on failure
1752 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1754 struct ata_taskfile tf;
1756 ata_tf_init(dev, &tf);
1758 tf.command = cmd;
1759 tf.flags |= ATA_TFLAG_DEVICE;
1760 tf.protocol = ATA_PROT_NODATA;
1762 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1766 * ata_pio_need_iordy - check if iordy needed
1767 * @adev: ATA device
1769 * Check if the current speed of the device requires IORDY. Used
1770 * by various controllers for chip configuration.
1772 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1774 /* Don't set IORDY if we're preparing for reset. IORDY may
1775 * lead to controller lock up on certain controllers if the
1776 * port is not occupied. See bko#11703 for details.
1778 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1779 return 0;
1780 /* Controller doesn't support IORDY. Probably a pointless
1781 * check as the caller should know this.
1783 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1784 return 0;
1785 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1786 if (ata_id_is_cfa(adev->id)
1787 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1788 return 0;
1789 /* PIO3 and higher it is mandatory */
1790 if (adev->pio_mode > XFER_PIO_2)
1791 return 1;
1792 /* We turn it on when possible */
1793 if (ata_id_has_iordy(adev->id))
1794 return 1;
1795 return 0;
1799 * ata_pio_mask_no_iordy - Return the non IORDY mask
1800 * @adev: ATA device
1802 * Compute the highest mode possible if we are not using iordy. Return
1803 * -1 if no iordy mode is available.
1805 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1807 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1808 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1809 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1810 /* Is the speed faster than the drive allows non IORDY ? */
1811 if (pio) {
1812 /* This is cycle times not frequency - watch the logic! */
1813 if (pio > 240) /* PIO2 is 240nS per cycle */
1814 return 3 << ATA_SHIFT_PIO;
1815 return 7 << ATA_SHIFT_PIO;
1818 return 3 << ATA_SHIFT_PIO;
1822 * ata_do_dev_read_id - default ID read method
1823 * @dev: device
1824 * @tf: proposed taskfile
1825 * @id: data buffer
1827 * Issue the identify taskfile and hand back the buffer containing
1828 * identify data. For some RAID controllers and for pre ATA devices
1829 * this function is wrapped or replaced by the driver
1831 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1832 struct ata_taskfile *tf, u16 *id)
1834 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1835 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1839 * ata_dev_read_id - Read ID data from the specified device
1840 * @dev: target device
1841 * @p_class: pointer to class of the target device (may be changed)
1842 * @flags: ATA_READID_* flags
1843 * @id: buffer to read IDENTIFY data into
1845 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1846 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1847 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1848 * for pre-ATA4 drives.
1850 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1851 * now we abort if we hit that case.
1853 * LOCKING:
1854 * Kernel thread context (may sleep)
1856 * RETURNS:
1857 * 0 on success, -errno otherwise.
1859 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1860 unsigned int flags, u16 *id)
1862 struct ata_port *ap = dev->link->ap;
1863 unsigned int class = *p_class;
1864 struct ata_taskfile tf;
1865 unsigned int err_mask = 0;
1866 const char *reason;
1867 bool is_semb = class == ATA_DEV_SEMB;
1868 int may_fallback = 1, tried_spinup = 0;
1869 int rc;
1871 if (ata_msg_ctl(ap))
1872 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1874 retry:
1875 ata_tf_init(dev, &tf);
1877 switch (class) {
1878 case ATA_DEV_SEMB:
1879 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1880 case ATA_DEV_ATA:
1881 tf.command = ATA_CMD_ID_ATA;
1882 break;
1883 case ATA_DEV_ATAPI:
1884 tf.command = ATA_CMD_ID_ATAPI;
1885 break;
1886 default:
1887 rc = -ENODEV;
1888 reason = "unsupported class";
1889 goto err_out;
1892 tf.protocol = ATA_PROT_PIO;
1894 /* Some devices choke if TF registers contain garbage. Make
1895 * sure those are properly initialized.
1897 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1899 /* Device presence detection is unreliable on some
1900 * controllers. Always poll IDENTIFY if available.
1902 tf.flags |= ATA_TFLAG_POLLING;
1904 if (ap->ops->read_id)
1905 err_mask = ap->ops->read_id(dev, &tf, id);
1906 else
1907 err_mask = ata_do_dev_read_id(dev, &tf, id);
1909 if (err_mask) {
1910 if (err_mask & AC_ERR_NODEV_HINT) {
1911 ata_dev_dbg(dev, "NODEV after polling detection\n");
1912 return -ENOENT;
1915 if (is_semb) {
1916 ata_dev_info(dev,
1917 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1918 /* SEMB is not supported yet */
1919 *p_class = ATA_DEV_SEMB_UNSUP;
1920 return 0;
1923 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1924 /* Device or controller might have reported
1925 * the wrong device class. Give a shot at the
1926 * other IDENTIFY if the current one is
1927 * aborted by the device.
1929 if (may_fallback) {
1930 may_fallback = 0;
1932 if (class == ATA_DEV_ATA)
1933 class = ATA_DEV_ATAPI;
1934 else
1935 class = ATA_DEV_ATA;
1936 goto retry;
1939 /* Control reaches here iff the device aborted
1940 * both flavors of IDENTIFYs which happens
1941 * sometimes with phantom devices.
1943 ata_dev_dbg(dev,
1944 "both IDENTIFYs aborted, assuming NODEV\n");
1945 return -ENOENT;
1948 rc = -EIO;
1949 reason = "I/O error";
1950 goto err_out;
1953 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1954 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1955 "class=%d may_fallback=%d tried_spinup=%d\n",
1956 class, may_fallback, tried_spinup);
1957 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1958 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1961 /* Falling back doesn't make sense if ID data was read
1962 * successfully at least once.
1964 may_fallback = 0;
1966 swap_buf_le16(id, ATA_ID_WORDS);
1968 /* sanity check */
1969 rc = -EINVAL;
1970 reason = "device reports invalid type";
1972 if (class == ATA_DEV_ATA) {
1973 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1974 goto err_out;
1975 } else {
1976 if (ata_id_is_ata(id))
1977 goto err_out;
1980 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1981 tried_spinup = 1;
1983 * Drive powered-up in standby mode, and requires a specific
1984 * SET_FEATURES spin-up subcommand before it will accept
1985 * anything other than the original IDENTIFY command.
1987 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1988 if (err_mask && id[2] != 0x738c) {
1989 rc = -EIO;
1990 reason = "SPINUP failed";
1991 goto err_out;
1994 * If the drive initially returned incomplete IDENTIFY info,
1995 * we now must reissue the IDENTIFY command.
1997 if (id[2] == 0x37c8)
1998 goto retry;
2001 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2003 * The exact sequence expected by certain pre-ATA4 drives is:
2004 * SRST RESET
2005 * IDENTIFY (optional in early ATA)
2006 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2007 * anything else..
2008 * Some drives were very specific about that exact sequence.
2010 * Note that ATA4 says lba is mandatory so the second check
2011 * should never trigger.
2013 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2014 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2015 if (err_mask) {
2016 rc = -EIO;
2017 reason = "INIT_DEV_PARAMS failed";
2018 goto err_out;
2021 /* current CHS translation info (id[53-58]) might be
2022 * changed. reread the identify device info.
2024 flags &= ~ATA_READID_POSTRESET;
2025 goto retry;
2029 *p_class = class;
2031 return 0;
2033 err_out:
2034 if (ata_msg_warn(ap))
2035 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2036 reason, err_mask);
2037 return rc;
2040 static int ata_do_link_spd_horkage(struct ata_device *dev)
2042 struct ata_link *plink = ata_dev_phys_link(dev);
2043 u32 target, target_limit;
2045 if (!sata_scr_valid(plink))
2046 return 0;
2048 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2049 target = 1;
2050 else
2051 return 0;
2053 target_limit = (1 << target) - 1;
2055 /* if already on stricter limit, no need to push further */
2056 if (plink->sata_spd_limit <= target_limit)
2057 return 0;
2059 plink->sata_spd_limit = target_limit;
2061 /* Request another EH round by returning -EAGAIN if link is
2062 * going faster than the target speed. Forward progress is
2063 * guaranteed by setting sata_spd_limit to target_limit above.
2065 if (plink->sata_spd > target) {
2066 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2067 sata_spd_string(target));
2068 return -EAGAIN;
2070 return 0;
2073 static inline u8 ata_dev_knobble(struct ata_device *dev)
2075 struct ata_port *ap = dev->link->ap;
2077 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2078 return 0;
2080 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2083 static int ata_dev_config_ncq(struct ata_device *dev,
2084 char *desc, size_t desc_sz)
2086 struct ata_port *ap = dev->link->ap;
2087 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2088 unsigned int err_mask;
2089 char *aa_desc = "";
2091 if (!ata_id_has_ncq(dev->id)) {
2092 desc[0] = '\0';
2093 return 0;
2095 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2096 snprintf(desc, desc_sz, "NCQ (not used)");
2097 return 0;
2099 if (ap->flags & ATA_FLAG_NCQ) {
2100 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2101 dev->flags |= ATA_DFLAG_NCQ;
2104 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2105 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2106 ata_id_has_fpdma_aa(dev->id)) {
2107 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2108 SATA_FPDMA_AA);
2109 if (err_mask) {
2110 ata_dev_err(dev,
2111 "failed to enable AA (error_mask=0x%x)\n",
2112 err_mask);
2113 if (err_mask != AC_ERR_DEV) {
2114 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2115 return -EIO;
2117 } else
2118 aa_desc = ", AA";
2121 if (hdepth >= ddepth)
2122 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2123 else
2124 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2125 ddepth, aa_desc);
2126 return 0;
2130 * ata_dev_configure - Configure the specified ATA/ATAPI device
2131 * @dev: Target device to configure
2133 * Configure @dev according to @dev->id. Generic and low-level
2134 * driver specific fixups are also applied.
2136 * LOCKING:
2137 * Kernel thread context (may sleep)
2139 * RETURNS:
2140 * 0 on success, -errno otherwise
2142 int ata_dev_configure(struct ata_device *dev)
2144 struct ata_port *ap = dev->link->ap;
2145 struct ata_eh_context *ehc = &dev->link->eh_context;
2146 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2147 const u16 *id = dev->id;
2148 unsigned long xfer_mask;
2149 char revbuf[7]; /* XYZ-99\0 */
2150 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2151 char modelbuf[ATA_ID_PROD_LEN+1];
2152 int rc;
2154 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2155 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2156 return 0;
2159 if (ata_msg_probe(ap))
2160 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2162 /* set horkage */
2163 dev->horkage |= ata_dev_blacklisted(dev);
2164 ata_force_horkage(dev);
2166 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2167 ata_dev_info(dev, "unsupported device, disabling\n");
2168 ata_dev_disable(dev);
2169 return 0;
2172 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2173 dev->class == ATA_DEV_ATAPI) {
2174 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2175 atapi_enabled ? "not supported with this driver"
2176 : "disabled");
2177 ata_dev_disable(dev);
2178 return 0;
2181 rc = ata_do_link_spd_horkage(dev);
2182 if (rc)
2183 return rc;
2185 /* let ACPI work its magic */
2186 rc = ata_acpi_on_devcfg(dev);
2187 if (rc)
2188 return rc;
2190 /* massage HPA, do it early as it might change IDENTIFY data */
2191 rc = ata_hpa_resize(dev);
2192 if (rc)
2193 return rc;
2195 /* print device capabilities */
2196 if (ata_msg_probe(ap))
2197 ata_dev_dbg(dev,
2198 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2199 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2200 __func__,
2201 id[49], id[82], id[83], id[84],
2202 id[85], id[86], id[87], id[88]);
2204 /* initialize to-be-configured parameters */
2205 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2206 dev->max_sectors = 0;
2207 dev->cdb_len = 0;
2208 dev->n_sectors = 0;
2209 dev->cylinders = 0;
2210 dev->heads = 0;
2211 dev->sectors = 0;
2212 dev->multi_count = 0;
2215 * common ATA, ATAPI feature tests
2218 /* find max transfer mode; for printk only */
2219 xfer_mask = ata_id_xfermask(id);
2221 if (ata_msg_probe(ap))
2222 ata_dump_id(id);
2224 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2225 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2226 sizeof(fwrevbuf));
2228 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2229 sizeof(modelbuf));
2231 /* ATA-specific feature tests */
2232 if (dev->class == ATA_DEV_ATA) {
2233 if (ata_id_is_cfa(id)) {
2234 /* CPRM may make this media unusable */
2235 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2236 ata_dev_warn(dev,
2237 "supports DRM functions and may not be fully accessible\n");
2238 snprintf(revbuf, 7, "CFA");
2239 } else {
2240 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2241 /* Warn the user if the device has TPM extensions */
2242 if (ata_id_has_tpm(id))
2243 ata_dev_warn(dev,
2244 "supports DRM functions and may not be fully accessible\n");
2247 dev->n_sectors = ata_id_n_sectors(id);
2249 /* get current R/W Multiple count setting */
2250 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2251 unsigned int max = dev->id[47] & 0xff;
2252 unsigned int cnt = dev->id[59] & 0xff;
2253 /* only recognize/allow powers of two here */
2254 if (is_power_of_2(max) && is_power_of_2(cnt))
2255 if (cnt <= max)
2256 dev->multi_count = cnt;
2259 if (ata_id_has_lba(id)) {
2260 const char *lba_desc;
2261 char ncq_desc[24];
2263 lba_desc = "LBA";
2264 dev->flags |= ATA_DFLAG_LBA;
2265 if (ata_id_has_lba48(id)) {
2266 dev->flags |= ATA_DFLAG_LBA48;
2267 lba_desc = "LBA48";
2269 if (dev->n_sectors >= (1UL << 28) &&
2270 ata_id_has_flush_ext(id))
2271 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2274 /* config NCQ */
2275 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2276 if (rc)
2277 return rc;
2279 /* print device info to dmesg */
2280 if (ata_msg_drv(ap) && print_info) {
2281 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2282 revbuf, modelbuf, fwrevbuf,
2283 ata_mode_string(xfer_mask));
2284 ata_dev_info(dev,
2285 "%llu sectors, multi %u: %s %s\n",
2286 (unsigned long long)dev->n_sectors,
2287 dev->multi_count, lba_desc, ncq_desc);
2289 } else {
2290 /* CHS */
2292 /* Default translation */
2293 dev->cylinders = id[1];
2294 dev->heads = id[3];
2295 dev->sectors = id[6];
2297 if (ata_id_current_chs_valid(id)) {
2298 /* Current CHS translation is valid. */
2299 dev->cylinders = id[54];
2300 dev->heads = id[55];
2301 dev->sectors = id[56];
2304 /* print device info to dmesg */
2305 if (ata_msg_drv(ap) && print_info) {
2306 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2307 revbuf, modelbuf, fwrevbuf,
2308 ata_mode_string(xfer_mask));
2309 ata_dev_info(dev,
2310 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2311 (unsigned long long)dev->n_sectors,
2312 dev->multi_count, dev->cylinders,
2313 dev->heads, dev->sectors);
2317 dev->cdb_len = 16;
2320 /* ATAPI-specific feature tests */
2321 else if (dev->class == ATA_DEV_ATAPI) {
2322 const char *cdb_intr_string = "";
2323 const char *atapi_an_string = "";
2324 const char *dma_dir_string = "";
2325 u32 sntf;
2327 rc = atapi_cdb_len(id);
2328 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2329 if (ata_msg_warn(ap))
2330 ata_dev_warn(dev, "unsupported CDB len\n");
2331 rc = -EINVAL;
2332 goto err_out_nosup;
2334 dev->cdb_len = (unsigned int) rc;
2336 /* Enable ATAPI AN if both the host and device have
2337 * the support. If PMP is attached, SNTF is required
2338 * to enable ATAPI AN to discern between PHY status
2339 * changed notifications and ATAPI ANs.
2341 if (atapi_an &&
2342 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2343 (!sata_pmp_attached(ap) ||
2344 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2345 unsigned int err_mask;
2347 /* issue SET feature command to turn this on */
2348 err_mask = ata_dev_set_feature(dev,
2349 SETFEATURES_SATA_ENABLE, SATA_AN);
2350 if (err_mask)
2351 ata_dev_err(dev,
2352 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2353 err_mask);
2354 else {
2355 dev->flags |= ATA_DFLAG_AN;
2356 atapi_an_string = ", ATAPI AN";
2360 if (ata_id_cdb_intr(dev->id)) {
2361 dev->flags |= ATA_DFLAG_CDB_INTR;
2362 cdb_intr_string = ", CDB intr";
2365 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2366 dev->flags |= ATA_DFLAG_DMADIR;
2367 dma_dir_string = ", DMADIR";
2370 /* print device info to dmesg */
2371 if (ata_msg_drv(ap) && print_info)
2372 ata_dev_info(dev,
2373 "ATAPI: %s, %s, max %s%s%s%s\n",
2374 modelbuf, fwrevbuf,
2375 ata_mode_string(xfer_mask),
2376 cdb_intr_string, atapi_an_string,
2377 dma_dir_string);
2380 /* determine max_sectors */
2381 dev->max_sectors = ATA_MAX_SECTORS;
2382 if (dev->flags & ATA_DFLAG_LBA48)
2383 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2385 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2386 200 sectors */
2387 if (ata_dev_knobble(dev)) {
2388 if (ata_msg_drv(ap) && print_info)
2389 ata_dev_info(dev, "applying bridge limits\n");
2390 dev->udma_mask &= ATA_UDMA5;
2391 dev->max_sectors = ATA_MAX_SECTORS;
2394 if ((dev->class == ATA_DEV_ATAPI) &&
2395 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2396 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2397 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2400 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2401 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2402 dev->max_sectors);
2404 if (ap->ops->dev_config)
2405 ap->ops->dev_config(dev);
2407 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2408 /* Let the user know. We don't want to disallow opens for
2409 rescue purposes, or in case the vendor is just a blithering
2410 idiot. Do this after the dev_config call as some controllers
2411 with buggy firmware may want to avoid reporting false device
2412 bugs */
2414 if (print_info) {
2415 ata_dev_warn(dev,
2416 "Drive reports diagnostics failure. This may indicate a drive\n");
2417 ata_dev_warn(dev,
2418 "fault or invalid emulation. Contact drive vendor for information.\n");
2422 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2423 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2424 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2427 return 0;
2429 err_out_nosup:
2430 if (ata_msg_probe(ap))
2431 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2432 return rc;
2436 * ata_cable_40wire - return 40 wire cable type
2437 * @ap: port
2439 * Helper method for drivers which want to hardwire 40 wire cable
2440 * detection.
2443 int ata_cable_40wire(struct ata_port *ap)
2445 return ATA_CBL_PATA40;
2449 * ata_cable_80wire - return 80 wire cable type
2450 * @ap: port
2452 * Helper method for drivers which want to hardwire 80 wire cable
2453 * detection.
2456 int ata_cable_80wire(struct ata_port *ap)
2458 return ATA_CBL_PATA80;
2462 * ata_cable_unknown - return unknown PATA cable.
2463 * @ap: port
2465 * Helper method for drivers which have no PATA cable detection.
2468 int ata_cable_unknown(struct ata_port *ap)
2470 return ATA_CBL_PATA_UNK;
2474 * ata_cable_ignore - return ignored PATA cable.
2475 * @ap: port
2477 * Helper method for drivers which don't use cable type to limit
2478 * transfer mode.
2480 int ata_cable_ignore(struct ata_port *ap)
2482 return ATA_CBL_PATA_IGN;
2486 * ata_cable_sata - return SATA cable type
2487 * @ap: port
2489 * Helper method for drivers which have SATA cables
2492 int ata_cable_sata(struct ata_port *ap)
2494 return ATA_CBL_SATA;
2498 * ata_bus_probe - Reset and probe ATA bus
2499 * @ap: Bus to probe
2501 * Master ATA bus probing function. Initiates a hardware-dependent
2502 * bus reset, then attempts to identify any devices found on
2503 * the bus.
2505 * LOCKING:
2506 * PCI/etc. bus probe sem.
2508 * RETURNS:
2509 * Zero on success, negative errno otherwise.
2512 int ata_bus_probe(struct ata_port *ap)
2514 unsigned int classes[ATA_MAX_DEVICES];
2515 int tries[ATA_MAX_DEVICES];
2516 int rc;
2517 struct ata_device *dev;
2519 ata_for_each_dev(dev, &ap->link, ALL)
2520 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2522 retry:
2523 ata_for_each_dev(dev, &ap->link, ALL) {
2524 /* If we issue an SRST then an ATA drive (not ATAPI)
2525 * may change configuration and be in PIO0 timing. If
2526 * we do a hard reset (or are coming from power on)
2527 * this is true for ATA or ATAPI. Until we've set a
2528 * suitable controller mode we should not touch the
2529 * bus as we may be talking too fast.
2531 dev->pio_mode = XFER_PIO_0;
2533 /* If the controller has a pio mode setup function
2534 * then use it to set the chipset to rights. Don't
2535 * touch the DMA setup as that will be dealt with when
2536 * configuring devices.
2538 if (ap->ops->set_piomode)
2539 ap->ops->set_piomode(ap, dev);
2542 /* reset and determine device classes */
2543 ap->ops->phy_reset(ap);
2545 ata_for_each_dev(dev, &ap->link, ALL) {
2546 if (dev->class != ATA_DEV_UNKNOWN)
2547 classes[dev->devno] = dev->class;
2548 else
2549 classes[dev->devno] = ATA_DEV_NONE;
2551 dev->class = ATA_DEV_UNKNOWN;
2554 /* read IDENTIFY page and configure devices. We have to do the identify
2555 specific sequence bass-ackwards so that PDIAG- is released by
2556 the slave device */
2558 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2559 if (tries[dev->devno])
2560 dev->class = classes[dev->devno];
2562 if (!ata_dev_enabled(dev))
2563 continue;
2565 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2566 dev->id);
2567 if (rc)
2568 goto fail;
2571 /* Now ask for the cable type as PDIAG- should have been released */
2572 if (ap->ops->cable_detect)
2573 ap->cbl = ap->ops->cable_detect(ap);
2575 /* We may have SATA bridge glue hiding here irrespective of
2576 * the reported cable types and sensed types. When SATA
2577 * drives indicate we have a bridge, we don't know which end
2578 * of the link the bridge is which is a problem.
2580 ata_for_each_dev(dev, &ap->link, ENABLED)
2581 if (ata_id_is_sata(dev->id))
2582 ap->cbl = ATA_CBL_SATA;
2584 /* After the identify sequence we can now set up the devices. We do
2585 this in the normal order so that the user doesn't get confused */
2587 ata_for_each_dev(dev, &ap->link, ENABLED) {
2588 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2589 rc = ata_dev_configure(dev);
2590 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2591 if (rc)
2592 goto fail;
2595 /* configure transfer mode */
2596 rc = ata_set_mode(&ap->link, &dev);
2597 if (rc)
2598 goto fail;
2600 ata_for_each_dev(dev, &ap->link, ENABLED)
2601 return 0;
2603 return -ENODEV;
2605 fail:
2606 tries[dev->devno]--;
2608 switch (rc) {
2609 case -EINVAL:
2610 /* eeek, something went very wrong, give up */
2611 tries[dev->devno] = 0;
2612 break;
2614 case -ENODEV:
2615 /* give it just one more chance */
2616 tries[dev->devno] = min(tries[dev->devno], 1);
2617 case -EIO:
2618 if (tries[dev->devno] == 1) {
2619 /* This is the last chance, better to slow
2620 * down than lose it.
2622 sata_down_spd_limit(&ap->link, 0);
2623 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2627 if (!tries[dev->devno])
2628 ata_dev_disable(dev);
2630 goto retry;
2634 * sata_print_link_status - Print SATA link status
2635 * @link: SATA link to printk link status about
2637 * This function prints link speed and status of a SATA link.
2639 * LOCKING:
2640 * None.
2642 static void sata_print_link_status(struct ata_link *link)
2644 u32 sstatus, scontrol, tmp;
2646 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2647 return;
2648 sata_scr_read(link, SCR_CONTROL, &scontrol);
2650 if (ata_phys_link_online(link)) {
2651 tmp = (sstatus >> 4) & 0xf;
2652 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2653 sata_spd_string(tmp), sstatus, scontrol);
2654 } else {
2655 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2656 sstatus, scontrol);
2661 * ata_dev_pair - return other device on cable
2662 * @adev: device
2664 * Obtain the other device on the same cable, or if none is
2665 * present NULL is returned
2668 struct ata_device *ata_dev_pair(struct ata_device *adev)
2670 struct ata_link *link = adev->link;
2671 struct ata_device *pair = &link->device[1 - adev->devno];
2672 if (!ata_dev_enabled(pair))
2673 return NULL;
2674 return pair;
2678 * sata_down_spd_limit - adjust SATA spd limit downward
2679 * @link: Link to adjust SATA spd limit for
2680 * @spd_limit: Additional limit
2682 * Adjust SATA spd limit of @link downward. Note that this
2683 * function only adjusts the limit. The change must be applied
2684 * using sata_set_spd().
2686 * If @spd_limit is non-zero, the speed is limited to equal to or
2687 * lower than @spd_limit if such speed is supported. If
2688 * @spd_limit is slower than any supported speed, only the lowest
2689 * supported speed is allowed.
2691 * LOCKING:
2692 * Inherited from caller.
2694 * RETURNS:
2695 * 0 on success, negative errno on failure
2697 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2699 u32 sstatus, spd, mask;
2700 int rc, bit;
2702 if (!sata_scr_valid(link))
2703 return -EOPNOTSUPP;
2705 /* If SCR can be read, use it to determine the current SPD.
2706 * If not, use cached value in link->sata_spd.
2708 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2709 if (rc == 0 && ata_sstatus_online(sstatus))
2710 spd = (sstatus >> 4) & 0xf;
2711 else
2712 spd = link->sata_spd;
2714 mask = link->sata_spd_limit;
2715 if (mask <= 1)
2716 return -EINVAL;
2718 /* unconditionally mask off the highest bit */
2719 bit = fls(mask) - 1;
2720 mask &= ~(1 << bit);
2722 /* Mask off all speeds higher than or equal to the current
2723 * one. Force 1.5Gbps if current SPD is not available.
2725 if (spd > 1)
2726 mask &= (1 << (spd - 1)) - 1;
2727 else
2728 mask &= 1;
2730 /* were we already at the bottom? */
2731 if (!mask)
2732 return -EINVAL;
2734 if (spd_limit) {
2735 if (mask & ((1 << spd_limit) - 1))
2736 mask &= (1 << spd_limit) - 1;
2737 else {
2738 bit = ffs(mask) - 1;
2739 mask = 1 << bit;
2743 link->sata_spd_limit = mask;
2745 ata_link_warn(link, "limiting SATA link speed to %s\n",
2746 sata_spd_string(fls(mask)));
2748 return 0;
2751 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2753 struct ata_link *host_link = &link->ap->link;
2754 u32 limit, target, spd;
2756 limit = link->sata_spd_limit;
2758 /* Don't configure downstream link faster than upstream link.
2759 * It doesn't speed up anything and some PMPs choke on such
2760 * configuration.
2762 if (!ata_is_host_link(link) && host_link->sata_spd)
2763 limit &= (1 << host_link->sata_spd) - 1;
2765 if (limit == UINT_MAX)
2766 target = 0;
2767 else
2768 target = fls(limit);
2770 spd = (*scontrol >> 4) & 0xf;
2771 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2773 return spd != target;
2777 * sata_set_spd_needed - is SATA spd configuration needed
2778 * @link: Link in question
2780 * Test whether the spd limit in SControl matches
2781 * @link->sata_spd_limit. This function is used to determine
2782 * whether hardreset is necessary to apply SATA spd
2783 * configuration.
2785 * LOCKING:
2786 * Inherited from caller.
2788 * RETURNS:
2789 * 1 if SATA spd configuration is needed, 0 otherwise.
2791 static int sata_set_spd_needed(struct ata_link *link)
2793 u32 scontrol;
2795 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2796 return 1;
2798 return __sata_set_spd_needed(link, &scontrol);
2802 * sata_set_spd - set SATA spd according to spd limit
2803 * @link: Link to set SATA spd for
2805 * Set SATA spd of @link according to sata_spd_limit.
2807 * LOCKING:
2808 * Inherited from caller.
2810 * RETURNS:
2811 * 0 if spd doesn't need to be changed, 1 if spd has been
2812 * changed. Negative errno if SCR registers are inaccessible.
2814 int sata_set_spd(struct ata_link *link)
2816 u32 scontrol;
2817 int rc;
2819 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2820 return rc;
2822 if (!__sata_set_spd_needed(link, &scontrol))
2823 return 0;
2825 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2826 return rc;
2828 return 1;
2832 * This mode timing computation functionality is ported over from
2833 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2836 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2837 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2838 * for UDMA6, which is currently supported only by Maxtor drives.
2840 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2843 static const struct ata_timing ata_timing[] = {
2844 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2845 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2846 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2847 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2848 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2849 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2850 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2851 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2853 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2854 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2855 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2857 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2858 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2859 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2860 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2861 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2863 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2864 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2865 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2866 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2867 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2868 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2869 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2870 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2872 { 0xFF }
2875 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2876 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2878 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2880 q->setup = EZ(t->setup * 1000, T);
2881 q->act8b = EZ(t->act8b * 1000, T);
2882 q->rec8b = EZ(t->rec8b * 1000, T);
2883 q->cyc8b = EZ(t->cyc8b * 1000, T);
2884 q->active = EZ(t->active * 1000, T);
2885 q->recover = EZ(t->recover * 1000, T);
2886 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2887 q->cycle = EZ(t->cycle * 1000, T);
2888 q->udma = EZ(t->udma * 1000, UT);
2891 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2892 struct ata_timing *m, unsigned int what)
2894 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2895 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2896 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2897 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2898 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2899 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2900 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2901 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2902 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2905 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2907 const struct ata_timing *t = ata_timing;
2909 while (xfer_mode > t->mode)
2910 t++;
2912 if (xfer_mode == t->mode)
2913 return t;
2914 return NULL;
2917 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2918 struct ata_timing *t, int T, int UT)
2920 const u16 *id = adev->id;
2921 const struct ata_timing *s;
2922 struct ata_timing p;
2925 * Find the mode.
2928 if (!(s = ata_timing_find_mode(speed)))
2929 return -EINVAL;
2931 memcpy(t, s, sizeof(*s));
2934 * If the drive is an EIDE drive, it can tell us it needs extended
2935 * PIO/MW_DMA cycle timing.
2938 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2939 memset(&p, 0, sizeof(p));
2941 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2942 if (speed <= XFER_PIO_2)
2943 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2944 else if ((speed <= XFER_PIO_4) ||
2945 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2946 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2947 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2948 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2950 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2954 * Convert the timing to bus clock counts.
2957 ata_timing_quantize(t, t, T, UT);
2960 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2961 * S.M.A.R.T * and some other commands. We have to ensure that the
2962 * DMA cycle timing is slower/equal than the fastest PIO timing.
2965 if (speed > XFER_PIO_6) {
2966 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2967 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2971 * Lengthen active & recovery time so that cycle time is correct.
2974 if (t->act8b + t->rec8b < t->cyc8b) {
2975 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2976 t->rec8b = t->cyc8b - t->act8b;
2979 if (t->active + t->recover < t->cycle) {
2980 t->active += (t->cycle - (t->active + t->recover)) / 2;
2981 t->recover = t->cycle - t->active;
2984 /* In a few cases quantisation may produce enough errors to
2985 leave t->cycle too low for the sum of active and recovery
2986 if so we must correct this */
2987 if (t->active + t->recover > t->cycle)
2988 t->cycle = t->active + t->recover;
2990 return 0;
2994 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2995 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2996 * @cycle: cycle duration in ns
2998 * Return matching xfer mode for @cycle. The returned mode is of
2999 * the transfer type specified by @xfer_shift. If @cycle is too
3000 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3001 * than the fastest known mode, the fasted mode is returned.
3003 * LOCKING:
3004 * None.
3006 * RETURNS:
3007 * Matching xfer_mode, 0xff if no match found.
3009 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3011 u8 base_mode = 0xff, last_mode = 0xff;
3012 const struct ata_xfer_ent *ent;
3013 const struct ata_timing *t;
3015 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3016 if (ent->shift == xfer_shift)
3017 base_mode = ent->base;
3019 for (t = ata_timing_find_mode(base_mode);
3020 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3021 unsigned short this_cycle;
3023 switch (xfer_shift) {
3024 case ATA_SHIFT_PIO:
3025 case ATA_SHIFT_MWDMA:
3026 this_cycle = t->cycle;
3027 break;
3028 case ATA_SHIFT_UDMA:
3029 this_cycle = t->udma;
3030 break;
3031 default:
3032 return 0xff;
3035 if (cycle > this_cycle)
3036 break;
3038 last_mode = t->mode;
3041 return last_mode;
3045 * ata_down_xfermask_limit - adjust dev xfer masks downward
3046 * @dev: Device to adjust xfer masks
3047 * @sel: ATA_DNXFER_* selector
3049 * Adjust xfer masks of @dev downward. Note that this function
3050 * does not apply the change. Invoking ata_set_mode() afterwards
3051 * will apply the limit.
3053 * LOCKING:
3054 * Inherited from caller.
3056 * RETURNS:
3057 * 0 on success, negative errno on failure
3059 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3061 char buf[32];
3062 unsigned long orig_mask, xfer_mask;
3063 unsigned long pio_mask, mwdma_mask, udma_mask;
3064 int quiet, highbit;
3066 quiet = !!(sel & ATA_DNXFER_QUIET);
3067 sel &= ~ATA_DNXFER_QUIET;
3069 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3070 dev->mwdma_mask,
3071 dev->udma_mask);
3072 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3074 switch (sel) {
3075 case ATA_DNXFER_PIO:
3076 highbit = fls(pio_mask) - 1;
3077 pio_mask &= ~(1 << highbit);
3078 break;
3080 case ATA_DNXFER_DMA:
3081 if (udma_mask) {
3082 highbit = fls(udma_mask) - 1;
3083 udma_mask &= ~(1 << highbit);
3084 if (!udma_mask)
3085 return -ENOENT;
3086 } else if (mwdma_mask) {
3087 highbit = fls(mwdma_mask) - 1;
3088 mwdma_mask &= ~(1 << highbit);
3089 if (!mwdma_mask)
3090 return -ENOENT;
3092 break;
3094 case ATA_DNXFER_40C:
3095 udma_mask &= ATA_UDMA_MASK_40C;
3096 break;
3098 case ATA_DNXFER_FORCE_PIO0:
3099 pio_mask &= 1;
3100 case ATA_DNXFER_FORCE_PIO:
3101 mwdma_mask = 0;
3102 udma_mask = 0;
3103 break;
3105 default:
3106 BUG();
3109 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3111 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3112 return -ENOENT;
3114 if (!quiet) {
3115 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3116 snprintf(buf, sizeof(buf), "%s:%s",
3117 ata_mode_string(xfer_mask),
3118 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3119 else
3120 snprintf(buf, sizeof(buf), "%s",
3121 ata_mode_string(xfer_mask));
3123 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3126 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3127 &dev->udma_mask);
3129 return 0;
3132 static int ata_dev_set_mode(struct ata_device *dev)
3134 struct ata_port *ap = dev->link->ap;
3135 struct ata_eh_context *ehc = &dev->link->eh_context;
3136 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3137 const char *dev_err_whine = "";
3138 int ign_dev_err = 0;
3139 unsigned int err_mask = 0;
3140 int rc;
3142 dev->flags &= ~ATA_DFLAG_PIO;
3143 if (dev->xfer_shift == ATA_SHIFT_PIO)
3144 dev->flags |= ATA_DFLAG_PIO;
3146 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3147 dev_err_whine = " (SET_XFERMODE skipped)";
3148 else {
3149 if (nosetxfer)
3150 ata_dev_warn(dev,
3151 "NOSETXFER but PATA detected - can't "
3152 "skip SETXFER, might malfunction\n");
3153 err_mask = ata_dev_set_xfermode(dev);
3156 if (err_mask & ~AC_ERR_DEV)
3157 goto fail;
3159 /* revalidate */
3160 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3161 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3162 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3163 if (rc)
3164 return rc;
3166 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3167 /* Old CFA may refuse this command, which is just fine */
3168 if (ata_id_is_cfa(dev->id))
3169 ign_dev_err = 1;
3170 /* Catch several broken garbage emulations plus some pre
3171 ATA devices */
3172 if (ata_id_major_version(dev->id) == 0 &&
3173 dev->pio_mode <= XFER_PIO_2)
3174 ign_dev_err = 1;
3175 /* Some very old devices and some bad newer ones fail
3176 any kind of SET_XFERMODE request but support PIO0-2
3177 timings and no IORDY */
3178 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3179 ign_dev_err = 1;
3181 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3182 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3183 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3184 dev->dma_mode == XFER_MW_DMA_0 &&
3185 (dev->id[63] >> 8) & 1)
3186 ign_dev_err = 1;
3188 /* if the device is actually configured correctly, ignore dev err */
3189 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3190 ign_dev_err = 1;
3192 if (err_mask & AC_ERR_DEV) {
3193 if (!ign_dev_err)
3194 goto fail;
3195 else
3196 dev_err_whine = " (device error ignored)";
3199 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3200 dev->xfer_shift, (int)dev->xfer_mode);
3202 ata_dev_info(dev, "configured for %s%s\n",
3203 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3204 dev_err_whine);
3206 return 0;
3208 fail:
3209 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3210 return -EIO;
3214 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3215 * @link: link on which timings will be programmed
3216 * @r_failed_dev: out parameter for failed device
3218 * Standard implementation of the function used to tune and set
3219 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3220 * ata_dev_set_mode() fails, pointer to the failing device is
3221 * returned in @r_failed_dev.
3223 * LOCKING:
3224 * PCI/etc. bus probe sem.
3226 * RETURNS:
3227 * 0 on success, negative errno otherwise
3230 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3232 struct ata_port *ap = link->ap;
3233 struct ata_device *dev;
3234 int rc = 0, used_dma = 0, found = 0;
3236 /* step 1: calculate xfer_mask */
3237 ata_for_each_dev(dev, link, ENABLED) {
3238 unsigned long pio_mask, dma_mask;
3239 unsigned int mode_mask;
3241 mode_mask = ATA_DMA_MASK_ATA;
3242 if (dev->class == ATA_DEV_ATAPI)
3243 mode_mask = ATA_DMA_MASK_ATAPI;
3244 else if (ata_id_is_cfa(dev->id))
3245 mode_mask = ATA_DMA_MASK_CFA;
3247 ata_dev_xfermask(dev);
3248 ata_force_xfermask(dev);
3250 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3251 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3253 if (libata_dma_mask & mode_mask)
3254 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3255 else
3256 dma_mask = 0;
3258 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3259 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3261 found = 1;
3262 if (ata_dma_enabled(dev))
3263 used_dma = 1;
3265 if (!found)
3266 goto out;
3268 /* step 2: always set host PIO timings */
3269 ata_for_each_dev(dev, link, ENABLED) {
3270 if (dev->pio_mode == 0xff) {
3271 ata_dev_warn(dev, "no PIO support\n");
3272 rc = -EINVAL;
3273 goto out;
3276 dev->xfer_mode = dev->pio_mode;
3277 dev->xfer_shift = ATA_SHIFT_PIO;
3278 if (ap->ops->set_piomode)
3279 ap->ops->set_piomode(ap, dev);
3282 /* step 3: set host DMA timings */
3283 ata_for_each_dev(dev, link, ENABLED) {
3284 if (!ata_dma_enabled(dev))
3285 continue;
3287 dev->xfer_mode = dev->dma_mode;
3288 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3289 if (ap->ops->set_dmamode)
3290 ap->ops->set_dmamode(ap, dev);
3293 /* step 4: update devices' xfer mode */
3294 ata_for_each_dev(dev, link, ENABLED) {
3295 rc = ata_dev_set_mode(dev);
3296 if (rc)
3297 goto out;
3300 /* Record simplex status. If we selected DMA then the other
3301 * host channels are not permitted to do so.
3303 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3304 ap->host->simplex_claimed = ap;
3306 out:
3307 if (rc)
3308 *r_failed_dev = dev;
3309 return rc;
3313 * ata_wait_ready - wait for link to become ready
3314 * @link: link to be waited on
3315 * @deadline: deadline jiffies for the operation
3316 * @check_ready: callback to check link readiness
3318 * Wait for @link to become ready. @check_ready should return
3319 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3320 * link doesn't seem to be occupied, other errno for other error
3321 * conditions.
3323 * Transient -ENODEV conditions are allowed for
3324 * ATA_TMOUT_FF_WAIT.
3326 * LOCKING:
3327 * EH context.
3329 * RETURNS:
3330 * 0 if @linke is ready before @deadline; otherwise, -errno.
3332 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3333 int (*check_ready)(struct ata_link *link))
3335 unsigned long start = jiffies;
3336 unsigned long nodev_deadline;
3337 int warned = 0;
3339 /* choose which 0xff timeout to use, read comment in libata.h */
3340 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3341 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3342 else
3343 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3345 /* Slave readiness can't be tested separately from master. On
3346 * M/S emulation configuration, this function should be called
3347 * only on the master and it will handle both master and slave.
3349 WARN_ON(link == link->ap->slave_link);
3351 if (time_after(nodev_deadline, deadline))
3352 nodev_deadline = deadline;
3354 while (1) {
3355 unsigned long now = jiffies;
3356 int ready, tmp;
3358 ready = tmp = check_ready(link);
3359 if (ready > 0)
3360 return 0;
3363 * -ENODEV could be transient. Ignore -ENODEV if link
3364 * is online. Also, some SATA devices take a long
3365 * time to clear 0xff after reset. Wait for
3366 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3367 * offline.
3369 * Note that some PATA controllers (pata_ali) explode
3370 * if status register is read more than once when
3371 * there's no device attached.
3373 if (ready == -ENODEV) {
3374 if (ata_link_online(link))
3375 ready = 0;
3376 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3377 !ata_link_offline(link) &&
3378 time_before(now, nodev_deadline))
3379 ready = 0;
3382 if (ready)
3383 return ready;
3384 if (time_after(now, deadline))
3385 return -EBUSY;
3387 if (!warned && time_after(now, start + 5 * HZ) &&
3388 (deadline - now > 3 * HZ)) {
3389 ata_link_warn(link,
3390 "link is slow to respond, please be patient "
3391 "(ready=%d)\n", tmp);
3392 warned = 1;
3395 ata_msleep(link->ap, 50);
3400 * ata_wait_after_reset - wait for link to become ready after reset
3401 * @link: link to be waited on
3402 * @deadline: deadline jiffies for the operation
3403 * @check_ready: callback to check link readiness
3405 * Wait for @link to become ready after reset.
3407 * LOCKING:
3408 * EH context.
3410 * RETURNS:
3411 * 0 if @linke is ready before @deadline; otherwise, -errno.
3413 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3414 int (*check_ready)(struct ata_link *link))
3416 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3418 return ata_wait_ready(link, deadline, check_ready);
3422 * sata_link_debounce - debounce SATA phy status
3423 * @link: ATA link to debounce SATA phy status for
3424 * @params: timing parameters { interval, duratinon, timeout } in msec
3425 * @deadline: deadline jiffies for the operation
3427 * Make sure SStatus of @link reaches stable state, determined by
3428 * holding the same value where DET is not 1 for @duration polled
3429 * every @interval, before @timeout. Timeout constraints the
3430 * beginning of the stable state. Because DET gets stuck at 1 on
3431 * some controllers after hot unplugging, this functions waits
3432 * until timeout then returns 0 if DET is stable at 1.
3434 * @timeout is further limited by @deadline. The sooner of the
3435 * two is used.
3437 * LOCKING:
3438 * Kernel thread context (may sleep)
3440 * RETURNS:
3441 * 0 on success, -errno on failure.
3443 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3444 unsigned long deadline)
3446 unsigned long interval = params[0];
3447 unsigned long duration = params[1];
3448 unsigned long last_jiffies, t;
3449 u32 last, cur;
3450 int rc;
3452 t = ata_deadline(jiffies, params[2]);
3453 if (time_before(t, deadline))
3454 deadline = t;
3456 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3457 return rc;
3458 cur &= 0xf;
3460 last = cur;
3461 last_jiffies = jiffies;
3463 while (1) {
3464 ata_msleep(link->ap, interval);
3465 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3466 return rc;
3467 cur &= 0xf;
3469 /* DET stable? */
3470 if (cur == last) {
3471 if (cur == 1 && time_before(jiffies, deadline))
3472 continue;
3473 if (time_after(jiffies,
3474 ata_deadline(last_jiffies, duration)))
3475 return 0;
3476 continue;
3479 /* unstable, start over */
3480 last = cur;
3481 last_jiffies = jiffies;
3483 /* Check deadline. If debouncing failed, return
3484 * -EPIPE to tell upper layer to lower link speed.
3486 if (time_after(jiffies, deadline))
3487 return -EPIPE;
3492 * sata_link_resume - resume SATA link
3493 * @link: ATA link to resume SATA
3494 * @params: timing parameters { interval, duratinon, timeout } in msec
3495 * @deadline: deadline jiffies for the operation
3497 * Resume SATA phy @link and debounce it.
3499 * LOCKING:
3500 * Kernel thread context (may sleep)
3502 * RETURNS:
3503 * 0 on success, -errno on failure.
3505 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3506 unsigned long deadline)
3508 int tries = ATA_LINK_RESUME_TRIES;
3509 u32 scontrol, serror;
3510 int rc;
3512 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3513 return rc;
3516 * Writes to SControl sometimes get ignored under certain
3517 * controllers (ata_piix SIDPR). Make sure DET actually is
3518 * cleared.
3520 do {
3521 scontrol = (scontrol & 0x0f0) | 0x300;
3522 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3523 return rc;
3525 * Some PHYs react badly if SStatus is pounded
3526 * immediately after resuming. Delay 200ms before
3527 * debouncing.
3529 ata_msleep(link->ap, 200);
3531 /* is SControl restored correctly? */
3532 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3533 return rc;
3534 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3536 if ((scontrol & 0xf0f) != 0x300) {
3537 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3538 scontrol);
3539 return 0;
3542 if (tries < ATA_LINK_RESUME_TRIES)
3543 ata_link_warn(link, "link resume succeeded after %d retries\n",
3544 ATA_LINK_RESUME_TRIES - tries);
3546 if ((rc = sata_link_debounce(link, params, deadline)))
3547 return rc;
3549 /* clear SError, some PHYs require this even for SRST to work */
3550 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3551 rc = sata_scr_write(link, SCR_ERROR, serror);
3553 return rc != -EINVAL ? rc : 0;
3557 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3558 * @link: ATA link to manipulate SControl for
3559 * @policy: LPM policy to configure
3560 * @spm_wakeup: initiate LPM transition to active state
3562 * Manipulate the IPM field of the SControl register of @link
3563 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3564 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3565 * the link. This function also clears PHYRDY_CHG before
3566 * returning.
3568 * LOCKING:
3569 * EH context.
3571 * RETURNS:
3572 * 0 on succes, -errno otherwise.
3574 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3575 bool spm_wakeup)
3577 struct ata_eh_context *ehc = &link->eh_context;
3578 bool woken_up = false;
3579 u32 scontrol;
3580 int rc;
3582 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3583 if (rc)
3584 return rc;
3586 switch (policy) {
3587 case ATA_LPM_MAX_POWER:
3588 /* disable all LPM transitions */
3589 scontrol |= (0x3 << 8);
3590 /* initiate transition to active state */
3591 if (spm_wakeup) {
3592 scontrol |= (0x4 << 12);
3593 woken_up = true;
3595 break;
3596 case ATA_LPM_MED_POWER:
3597 /* allow LPM to PARTIAL */
3598 scontrol &= ~(0x1 << 8);
3599 scontrol |= (0x2 << 8);
3600 break;
3601 case ATA_LPM_MIN_POWER:
3602 if (ata_link_nr_enabled(link) > 0)
3603 /* no restrictions on LPM transitions */
3604 scontrol &= ~(0x3 << 8);
3605 else {
3606 /* empty port, power off */
3607 scontrol &= ~0xf;
3608 scontrol |= (0x1 << 2);
3610 break;
3611 default:
3612 WARN_ON(1);
3615 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3616 if (rc)
3617 return rc;
3619 /* give the link time to transit out of LPM state */
3620 if (woken_up)
3621 msleep(10);
3623 /* clear PHYRDY_CHG from SError */
3624 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3625 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3629 * ata_std_prereset - prepare for reset
3630 * @link: ATA link to be reset
3631 * @deadline: deadline jiffies for the operation
3633 * @link is about to be reset. Initialize it. Failure from
3634 * prereset makes libata abort whole reset sequence and give up
3635 * that port, so prereset should be best-effort. It does its
3636 * best to prepare for reset sequence but if things go wrong, it
3637 * should just whine, not fail.
3639 * LOCKING:
3640 * Kernel thread context (may sleep)
3642 * RETURNS:
3643 * 0 on success, -errno otherwise.
3645 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3647 struct ata_port *ap = link->ap;
3648 struct ata_eh_context *ehc = &link->eh_context;
3649 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3650 int rc;
3652 /* if we're about to do hardreset, nothing more to do */
3653 if (ehc->i.action & ATA_EH_HARDRESET)
3654 return 0;
3656 /* if SATA, resume link */
3657 if (ap->flags & ATA_FLAG_SATA) {
3658 rc = sata_link_resume(link, timing, deadline);
3659 /* whine about phy resume failure but proceed */
3660 if (rc && rc != -EOPNOTSUPP)
3661 ata_link_warn(link,
3662 "failed to resume link for reset (errno=%d)\n",
3663 rc);
3666 /* no point in trying softreset on offline link */
3667 if (ata_phys_link_offline(link))
3668 ehc->i.action &= ~ATA_EH_SOFTRESET;
3670 return 0;
3674 * sata_link_hardreset - reset link via SATA phy reset
3675 * @link: link to reset
3676 * @timing: timing parameters { interval, duratinon, timeout } in msec
3677 * @deadline: deadline jiffies for the operation
3678 * @online: optional out parameter indicating link onlineness
3679 * @check_ready: optional callback to check link readiness
3681 * SATA phy-reset @link using DET bits of SControl register.
3682 * After hardreset, link readiness is waited upon using
3683 * ata_wait_ready() if @check_ready is specified. LLDs are
3684 * allowed to not specify @check_ready and wait itself after this
3685 * function returns. Device classification is LLD's
3686 * responsibility.
3688 * *@online is set to one iff reset succeeded and @link is online
3689 * after reset.
3691 * LOCKING:
3692 * Kernel thread context (may sleep)
3694 * RETURNS:
3695 * 0 on success, -errno otherwise.
3697 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3698 unsigned long deadline,
3699 bool *online, int (*check_ready)(struct ata_link *))
3701 u32 scontrol;
3702 int rc;
3704 DPRINTK("ENTER\n");
3706 if (online)
3707 *online = false;
3709 if (sata_set_spd_needed(link)) {
3710 /* SATA spec says nothing about how to reconfigure
3711 * spd. To be on the safe side, turn off phy during
3712 * reconfiguration. This works for at least ICH7 AHCI
3713 * and Sil3124.
3715 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3716 goto out;
3718 scontrol = (scontrol & 0x0f0) | 0x304;
3720 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3721 goto out;
3723 sata_set_spd(link);
3726 /* issue phy wake/reset */
3727 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3728 goto out;
3730 scontrol = (scontrol & 0x0f0) | 0x301;
3732 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3733 goto out;
3735 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3736 * 10.4.2 says at least 1 ms.
3738 ata_msleep(link->ap, 1);
3740 /* bring link back */
3741 rc = sata_link_resume(link, timing, deadline);
3742 if (rc)
3743 goto out;
3744 /* if link is offline nothing more to do */
3745 if (ata_phys_link_offline(link))
3746 goto out;
3748 /* Link is online. From this point, -ENODEV too is an error. */
3749 if (online)
3750 *online = true;
3752 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3753 /* If PMP is supported, we have to do follow-up SRST.
3754 * Some PMPs don't send D2H Reg FIS after hardreset if
3755 * the first port is empty. Wait only for
3756 * ATA_TMOUT_PMP_SRST_WAIT.
3758 if (check_ready) {
3759 unsigned long pmp_deadline;
3761 pmp_deadline = ata_deadline(jiffies,
3762 ATA_TMOUT_PMP_SRST_WAIT);
3763 if (time_after(pmp_deadline, deadline))
3764 pmp_deadline = deadline;
3765 ata_wait_ready(link, pmp_deadline, check_ready);
3767 rc = -EAGAIN;
3768 goto out;
3771 rc = 0;
3772 if (check_ready)
3773 rc = ata_wait_ready(link, deadline, check_ready);
3774 out:
3775 if (rc && rc != -EAGAIN) {
3776 /* online is set iff link is online && reset succeeded */
3777 if (online)
3778 *online = false;
3779 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3781 DPRINTK("EXIT, rc=%d\n", rc);
3782 return rc;
3786 * sata_std_hardreset - COMRESET w/o waiting or classification
3787 * @link: link to reset
3788 * @class: resulting class of attached device
3789 * @deadline: deadline jiffies for the operation
3791 * Standard SATA COMRESET w/o waiting or classification.
3793 * LOCKING:
3794 * Kernel thread context (may sleep)
3796 * RETURNS:
3797 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3799 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3800 unsigned long deadline)
3802 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3803 bool online;
3804 int rc;
3806 /* do hardreset */
3807 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3808 return online ? -EAGAIN : rc;
3812 * ata_std_postreset - standard postreset callback
3813 * @link: the target ata_link
3814 * @classes: classes of attached devices
3816 * This function is invoked after a successful reset. Note that
3817 * the device might have been reset more than once using
3818 * different reset methods before postreset is invoked.
3820 * LOCKING:
3821 * Kernel thread context (may sleep)
3823 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3825 u32 serror;
3827 DPRINTK("ENTER\n");
3829 /* reset complete, clear SError */
3830 if (!sata_scr_read(link, SCR_ERROR, &serror))
3831 sata_scr_write(link, SCR_ERROR, serror);
3833 /* print link status */
3834 sata_print_link_status(link);
3836 DPRINTK("EXIT\n");
3840 * ata_dev_same_device - Determine whether new ID matches configured device
3841 * @dev: device to compare against
3842 * @new_class: class of the new device
3843 * @new_id: IDENTIFY page of the new device
3845 * Compare @new_class and @new_id against @dev and determine
3846 * whether @dev is the device indicated by @new_class and
3847 * @new_id.
3849 * LOCKING:
3850 * None.
3852 * RETURNS:
3853 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3855 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3856 const u16 *new_id)
3858 const u16 *old_id = dev->id;
3859 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3860 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3862 if (dev->class != new_class) {
3863 ata_dev_info(dev, "class mismatch %d != %d\n",
3864 dev->class, new_class);
3865 return 0;
3868 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3869 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3870 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3871 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3873 if (strcmp(model[0], model[1])) {
3874 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3875 model[0], model[1]);
3876 return 0;
3879 if (strcmp(serial[0], serial[1])) {
3880 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3881 serial[0], serial[1]);
3882 return 0;
3885 return 1;
3889 * ata_dev_reread_id - Re-read IDENTIFY data
3890 * @dev: target ATA device
3891 * @readid_flags: read ID flags
3893 * Re-read IDENTIFY page and make sure @dev is still attached to
3894 * the port.
3896 * LOCKING:
3897 * Kernel thread context (may sleep)
3899 * RETURNS:
3900 * 0 on success, negative errno otherwise
3902 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3904 unsigned int class = dev->class;
3905 u16 *id = (void *)dev->link->ap->sector_buf;
3906 int rc;
3908 /* read ID data */
3909 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3910 if (rc)
3911 return rc;
3913 /* is the device still there? */
3914 if (!ata_dev_same_device(dev, class, id))
3915 return -ENODEV;
3917 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3918 return 0;
3922 * ata_dev_revalidate - Revalidate ATA device
3923 * @dev: device to revalidate
3924 * @new_class: new class code
3925 * @readid_flags: read ID flags
3927 * Re-read IDENTIFY page, make sure @dev is still attached to the
3928 * port and reconfigure it according to the new IDENTIFY page.
3930 * LOCKING:
3931 * Kernel thread context (may sleep)
3933 * RETURNS:
3934 * 0 on success, negative errno otherwise
3936 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3937 unsigned int readid_flags)
3939 u64 n_sectors = dev->n_sectors;
3940 u64 n_native_sectors = dev->n_native_sectors;
3941 int rc;
3943 if (!ata_dev_enabled(dev))
3944 return -ENODEV;
3946 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3947 if (ata_class_enabled(new_class) &&
3948 new_class != ATA_DEV_ATA &&
3949 new_class != ATA_DEV_ATAPI &&
3950 new_class != ATA_DEV_SEMB) {
3951 ata_dev_info(dev, "class mismatch %u != %u\n",
3952 dev->class, new_class);
3953 rc = -ENODEV;
3954 goto fail;
3957 /* re-read ID */
3958 rc = ata_dev_reread_id(dev, readid_flags);
3959 if (rc)
3960 goto fail;
3962 /* configure device according to the new ID */
3963 rc = ata_dev_configure(dev);
3964 if (rc)
3965 goto fail;
3967 /* verify n_sectors hasn't changed */
3968 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3969 dev->n_sectors == n_sectors)
3970 return 0;
3972 /* n_sectors has changed */
3973 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3974 (unsigned long long)n_sectors,
3975 (unsigned long long)dev->n_sectors);
3978 * Something could have caused HPA to be unlocked
3979 * involuntarily. If n_native_sectors hasn't changed and the
3980 * new size matches it, keep the device.
3982 if (dev->n_native_sectors == n_native_sectors &&
3983 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3984 ata_dev_warn(dev,
3985 "new n_sectors matches native, probably "
3986 "late HPA unlock, n_sectors updated\n");
3987 /* use the larger n_sectors */
3988 return 0;
3992 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3993 * unlocking HPA in those cases.
3995 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3997 if (dev->n_native_sectors == n_native_sectors &&
3998 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3999 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4000 ata_dev_warn(dev,
4001 "old n_sectors matches native, probably "
4002 "late HPA lock, will try to unlock HPA\n");
4003 /* try unlocking HPA */
4004 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4005 rc = -EIO;
4006 } else
4007 rc = -ENODEV;
4009 /* restore original n_[native_]sectors and fail */
4010 dev->n_native_sectors = n_native_sectors;
4011 dev->n_sectors = n_sectors;
4012 fail:
4013 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4014 return rc;
4017 struct ata_blacklist_entry {
4018 const char *model_num;
4019 const char *model_rev;
4020 unsigned long horkage;
4023 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4024 /* Devices with DMA related problems under Linux */
4025 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4026 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4027 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4028 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4029 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4030 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4031 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4032 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4033 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4034 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4035 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4036 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4037 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4038 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4039 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4040 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4041 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4042 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4043 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4044 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4045 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4046 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4047 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4048 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4049 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4050 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4051 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4052 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4053 /* Odd clown on sil3726/4726 PMPs */
4054 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4056 /* Weird ATAPI devices */
4057 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4058 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4060 /* Devices we expect to fail diagnostics */
4062 /* Devices where NCQ should be avoided */
4063 /* NCQ is slow */
4064 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4065 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4066 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4067 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4068 /* NCQ is broken */
4069 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4070 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4071 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4072 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4073 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4075 /* Seagate NCQ + FLUSH CACHE firmware bug */
4076 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4077 ATA_HORKAGE_FIRMWARE_WARN },
4079 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4080 ATA_HORKAGE_FIRMWARE_WARN },
4082 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4083 ATA_HORKAGE_FIRMWARE_WARN },
4085 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4086 ATA_HORKAGE_FIRMWARE_WARN },
4088 /* Blacklist entries taken from Silicon Image 3124/3132
4089 Windows driver .inf file - also several Linux problem reports */
4090 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4091 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4092 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4094 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4095 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4097 /* devices which puke on READ_NATIVE_MAX */
4098 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4099 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4100 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4101 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4103 /* this one allows HPA unlocking but fails IOs on the area */
4104 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4106 /* Devices which report 1 sector over size HPA */
4107 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4108 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4109 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4111 /* Devices which get the IVB wrong */
4112 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4113 /* Maybe we should just blacklist TSSTcorp... */
4114 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4116 /* Devices that do not need bridging limits applied */
4117 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4119 /* Devices which aren't very happy with higher link speeds */
4120 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4123 * Devices which choke on SETXFER. Applies only if both the
4124 * device and controller are SATA.
4126 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4127 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4128 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4130 /* End Marker */
4135 * glob_match - match a text string against a glob-style pattern
4136 * @text: the string to be examined
4137 * @pattern: the glob-style pattern to be matched against
4139 * Either/both of text and pattern can be empty strings.
4141 * Match text against a glob-style pattern, with wildcards and simple sets:
4143 * ? matches any single character.
4144 * * matches any run of characters.
4145 * [xyz] matches a single character from the set: x, y, or z.
4146 * [a-d] matches a single character from the range: a, b, c, or d.
4147 * [a-d0-9] matches a single character from either range.
4149 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4150 * Behaviour with malformed patterns is undefined, though generally reasonable.
4152 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4154 * This function uses one level of recursion per '*' in pattern.
4155 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4156 * this will not cause stack problems for any reasonable use here.
4158 * RETURNS:
4159 * 0 on match, 1 otherwise.
4161 static int glob_match (const char *text, const char *pattern)
4163 do {
4164 /* Match single character or a '?' wildcard */
4165 if (*text == *pattern || *pattern == '?') {
4166 if (!*pattern++)
4167 return 0; /* End of both strings: match */
4168 } else {
4169 /* Match single char against a '[' bracketed ']' pattern set */
4170 if (!*text || *pattern != '[')
4171 break; /* Not a pattern set */
4172 while (*++pattern && *pattern != ']' && *text != *pattern) {
4173 if (*pattern == '-' && *(pattern - 1) != '[')
4174 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4175 ++pattern;
4176 break;
4179 if (!*pattern || *pattern == ']')
4180 return 1; /* No match */
4181 while (*pattern && *pattern++ != ']');
4183 } while (*++text && *pattern);
4185 /* Match any run of chars against a '*' wildcard */
4186 if (*pattern == '*') {
4187 if (!*++pattern)
4188 return 0; /* Match: avoid recursion at end of pattern */
4189 /* Loop to handle additional pattern chars after the wildcard */
4190 while (*text) {
4191 if (glob_match(text, pattern) == 0)
4192 return 0; /* Remainder matched */
4193 ++text; /* Absorb (match) this char and try again */
4196 if (!*text && !*pattern)
4197 return 0; /* End of both strings: match */
4198 return 1; /* No match */
4201 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4203 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4204 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4205 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4207 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4208 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4210 while (ad->model_num) {
4211 if (!glob_match(model_num, ad->model_num)) {
4212 if (ad->model_rev == NULL)
4213 return ad->horkage;
4214 if (!glob_match(model_rev, ad->model_rev))
4215 return ad->horkage;
4217 ad++;
4219 return 0;
4222 static int ata_dma_blacklisted(const struct ata_device *dev)
4224 /* We don't support polling DMA.
4225 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4226 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4228 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4229 (dev->flags & ATA_DFLAG_CDB_INTR))
4230 return 1;
4231 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4235 * ata_is_40wire - check drive side detection
4236 * @dev: device
4238 * Perform drive side detection decoding, allowing for device vendors
4239 * who can't follow the documentation.
4242 static int ata_is_40wire(struct ata_device *dev)
4244 if (dev->horkage & ATA_HORKAGE_IVB)
4245 return ata_drive_40wire_relaxed(dev->id);
4246 return ata_drive_40wire(dev->id);
4250 * cable_is_40wire - 40/80/SATA decider
4251 * @ap: port to consider
4253 * This function encapsulates the policy for speed management
4254 * in one place. At the moment we don't cache the result but
4255 * there is a good case for setting ap->cbl to the result when
4256 * we are called with unknown cables (and figuring out if it
4257 * impacts hotplug at all).
4259 * Return 1 if the cable appears to be 40 wire.
4262 static int cable_is_40wire(struct ata_port *ap)
4264 struct ata_link *link;
4265 struct ata_device *dev;
4267 /* If the controller thinks we are 40 wire, we are. */
4268 if (ap->cbl == ATA_CBL_PATA40)
4269 return 1;
4271 /* If the controller thinks we are 80 wire, we are. */
4272 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4273 return 0;
4275 /* If the system is known to be 40 wire short cable (eg
4276 * laptop), then we allow 80 wire modes even if the drive
4277 * isn't sure.
4279 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4280 return 0;
4282 /* If the controller doesn't know, we scan.
4284 * Note: We look for all 40 wire detects at this point. Any
4285 * 80 wire detect is taken to be 80 wire cable because
4286 * - in many setups only the one drive (slave if present) will
4287 * give a valid detect
4288 * - if you have a non detect capable drive you don't want it
4289 * to colour the choice
4291 ata_for_each_link(link, ap, EDGE) {
4292 ata_for_each_dev(dev, link, ENABLED) {
4293 if (!ata_is_40wire(dev))
4294 return 0;
4297 return 1;
4301 * ata_dev_xfermask - Compute supported xfermask of the given device
4302 * @dev: Device to compute xfermask for
4304 * Compute supported xfermask of @dev and store it in
4305 * dev->*_mask. This function is responsible for applying all
4306 * known limits including host controller limits, device
4307 * blacklist, etc...
4309 * LOCKING:
4310 * None.
4312 static void ata_dev_xfermask(struct ata_device *dev)
4314 struct ata_link *link = dev->link;
4315 struct ata_port *ap = link->ap;
4316 struct ata_host *host = ap->host;
4317 unsigned long xfer_mask;
4319 /* controller modes available */
4320 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4321 ap->mwdma_mask, ap->udma_mask);
4323 /* drive modes available */
4324 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4325 dev->mwdma_mask, dev->udma_mask);
4326 xfer_mask &= ata_id_xfermask(dev->id);
4329 * CFA Advanced TrueIDE timings are not allowed on a shared
4330 * cable
4332 if (ata_dev_pair(dev)) {
4333 /* No PIO5 or PIO6 */
4334 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4335 /* No MWDMA3 or MWDMA 4 */
4336 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4339 if (ata_dma_blacklisted(dev)) {
4340 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4341 ata_dev_warn(dev,
4342 "device is on DMA blacklist, disabling DMA\n");
4345 if ((host->flags & ATA_HOST_SIMPLEX) &&
4346 host->simplex_claimed && host->simplex_claimed != ap) {
4347 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4348 ata_dev_warn(dev,
4349 "simplex DMA is claimed by other device, disabling DMA\n");
4352 if (ap->flags & ATA_FLAG_NO_IORDY)
4353 xfer_mask &= ata_pio_mask_no_iordy(dev);
4355 if (ap->ops->mode_filter)
4356 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4358 /* Apply cable rule here. Don't apply it early because when
4359 * we handle hot plug the cable type can itself change.
4360 * Check this last so that we know if the transfer rate was
4361 * solely limited by the cable.
4362 * Unknown or 80 wire cables reported host side are checked
4363 * drive side as well. Cases where we know a 40wire cable
4364 * is used safely for 80 are not checked here.
4366 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4367 /* UDMA/44 or higher would be available */
4368 if (cable_is_40wire(ap)) {
4369 ata_dev_warn(dev,
4370 "limited to UDMA/33 due to 40-wire cable\n");
4371 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4374 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4375 &dev->mwdma_mask, &dev->udma_mask);
4379 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4380 * @dev: Device to which command will be sent
4382 * Issue SET FEATURES - XFER MODE command to device @dev
4383 * on port @ap.
4385 * LOCKING:
4386 * PCI/etc. bus probe sem.
4388 * RETURNS:
4389 * 0 on success, AC_ERR_* mask otherwise.
4392 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4394 struct ata_taskfile tf;
4395 unsigned int err_mask;
4397 /* set up set-features taskfile */
4398 DPRINTK("set features - xfer mode\n");
4400 /* Some controllers and ATAPI devices show flaky interrupt
4401 * behavior after setting xfer mode. Use polling instead.
4403 ata_tf_init(dev, &tf);
4404 tf.command = ATA_CMD_SET_FEATURES;
4405 tf.feature = SETFEATURES_XFER;
4406 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4407 tf.protocol = ATA_PROT_NODATA;
4408 /* If we are using IORDY we must send the mode setting command */
4409 if (ata_pio_need_iordy(dev))
4410 tf.nsect = dev->xfer_mode;
4411 /* If the device has IORDY and the controller does not - turn it off */
4412 else if (ata_id_has_iordy(dev->id))
4413 tf.nsect = 0x01;
4414 else /* In the ancient relic department - skip all of this */
4415 return 0;
4417 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4419 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4420 return err_mask;
4424 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4425 * @dev: Device to which command will be sent
4426 * @enable: Whether to enable or disable the feature
4427 * @feature: The sector count represents the feature to set
4429 * Issue SET FEATURES - SATA FEATURES command to device @dev
4430 * on port @ap with sector count
4432 * LOCKING:
4433 * PCI/etc. bus probe sem.
4435 * RETURNS:
4436 * 0 on success, AC_ERR_* mask otherwise.
4438 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4440 struct ata_taskfile tf;
4441 unsigned int err_mask;
4443 /* set up set-features taskfile */
4444 DPRINTK("set features - SATA features\n");
4446 ata_tf_init(dev, &tf);
4447 tf.command = ATA_CMD_SET_FEATURES;
4448 tf.feature = enable;
4449 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4450 tf.protocol = ATA_PROT_NODATA;
4451 tf.nsect = feature;
4453 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4455 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4456 return err_mask;
4460 * ata_dev_init_params - Issue INIT DEV PARAMS command
4461 * @dev: Device to which command will be sent
4462 * @heads: Number of heads (taskfile parameter)
4463 * @sectors: Number of sectors (taskfile parameter)
4465 * LOCKING:
4466 * Kernel thread context (may sleep)
4468 * RETURNS:
4469 * 0 on success, AC_ERR_* mask otherwise.
4471 static unsigned int ata_dev_init_params(struct ata_device *dev,
4472 u16 heads, u16 sectors)
4474 struct ata_taskfile tf;
4475 unsigned int err_mask;
4477 /* Number of sectors per track 1-255. Number of heads 1-16 */
4478 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4479 return AC_ERR_INVALID;
4481 /* set up init dev params taskfile */
4482 DPRINTK("init dev params \n");
4484 ata_tf_init(dev, &tf);
4485 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4486 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4487 tf.protocol = ATA_PROT_NODATA;
4488 tf.nsect = sectors;
4489 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4491 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4492 /* A clean abort indicates an original or just out of spec drive
4493 and we should continue as we issue the setup based on the
4494 drive reported working geometry */
4495 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4496 err_mask = 0;
4498 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4499 return err_mask;
4503 * ata_sg_clean - Unmap DMA memory associated with command
4504 * @qc: Command containing DMA memory to be released
4506 * Unmap all mapped DMA memory associated with this command.
4508 * LOCKING:
4509 * spin_lock_irqsave(host lock)
4511 void ata_sg_clean(struct ata_queued_cmd *qc)
4513 struct ata_port *ap = qc->ap;
4514 struct scatterlist *sg = qc->sg;
4515 int dir = qc->dma_dir;
4517 WARN_ON_ONCE(sg == NULL);
4519 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4521 if (qc->n_elem)
4522 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4524 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4525 qc->sg = NULL;
4529 * atapi_check_dma - Check whether ATAPI DMA can be supported
4530 * @qc: Metadata associated with taskfile to check
4532 * Allow low-level driver to filter ATA PACKET commands, returning
4533 * a status indicating whether or not it is OK to use DMA for the
4534 * supplied PACKET command.
4536 * LOCKING:
4537 * spin_lock_irqsave(host lock)
4539 * RETURNS: 0 when ATAPI DMA can be used
4540 * nonzero otherwise
4542 int atapi_check_dma(struct ata_queued_cmd *qc)
4544 struct ata_port *ap = qc->ap;
4546 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4547 * few ATAPI devices choke on such DMA requests.
4549 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4550 unlikely(qc->nbytes & 15))
4551 return 1;
4553 if (ap->ops->check_atapi_dma)
4554 return ap->ops->check_atapi_dma(qc);
4556 return 0;
4560 * ata_std_qc_defer - Check whether a qc needs to be deferred
4561 * @qc: ATA command in question
4563 * Non-NCQ commands cannot run with any other command, NCQ or
4564 * not. As upper layer only knows the queue depth, we are
4565 * responsible for maintaining exclusion. This function checks
4566 * whether a new command @qc can be issued.
4568 * LOCKING:
4569 * spin_lock_irqsave(host lock)
4571 * RETURNS:
4572 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4574 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4576 struct ata_link *link = qc->dev->link;
4578 if (qc->tf.protocol == ATA_PROT_NCQ) {
4579 if (!ata_tag_valid(link->active_tag))
4580 return 0;
4581 } else {
4582 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4583 return 0;
4586 return ATA_DEFER_LINK;
4589 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4592 * ata_sg_init - Associate command with scatter-gather table.
4593 * @qc: Command to be associated
4594 * @sg: Scatter-gather table.
4595 * @n_elem: Number of elements in s/g table.
4597 * Initialize the data-related elements of queued_cmd @qc
4598 * to point to a scatter-gather table @sg, containing @n_elem
4599 * elements.
4601 * LOCKING:
4602 * spin_lock_irqsave(host lock)
4604 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4605 unsigned int n_elem)
4607 qc->sg = sg;
4608 qc->n_elem = n_elem;
4609 qc->cursg = qc->sg;
4613 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4614 * @qc: Command with scatter-gather table to be mapped.
4616 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4618 * LOCKING:
4619 * spin_lock_irqsave(host lock)
4621 * RETURNS:
4622 * Zero on success, negative on error.
4625 static int ata_sg_setup(struct ata_queued_cmd *qc)
4627 struct ata_port *ap = qc->ap;
4628 unsigned int n_elem;
4630 VPRINTK("ENTER, ata%u\n", ap->print_id);
4632 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4633 if (n_elem < 1)
4634 return -1;
4636 DPRINTK("%d sg elements mapped\n", n_elem);
4637 qc->orig_n_elem = qc->n_elem;
4638 qc->n_elem = n_elem;
4639 qc->flags |= ATA_QCFLAG_DMAMAP;
4641 return 0;
4645 * swap_buf_le16 - swap halves of 16-bit words in place
4646 * @buf: Buffer to swap
4647 * @buf_words: Number of 16-bit words in buffer.
4649 * Swap halves of 16-bit words if needed to convert from
4650 * little-endian byte order to native cpu byte order, or
4651 * vice-versa.
4653 * LOCKING:
4654 * Inherited from caller.
4656 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4658 #ifdef __BIG_ENDIAN
4659 unsigned int i;
4661 for (i = 0; i < buf_words; i++)
4662 buf[i] = le16_to_cpu(buf[i]);
4663 #endif /* __BIG_ENDIAN */
4667 * ata_qc_new - Request an available ATA command, for queueing
4668 * @ap: target port
4670 * LOCKING:
4671 * None.
4674 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4676 struct ata_queued_cmd *qc = NULL;
4677 unsigned int i;
4679 /* no command while frozen */
4680 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4681 return NULL;
4683 /* the last tag is reserved for internal command. */
4684 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4685 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4686 qc = __ata_qc_from_tag(ap, i);
4687 break;
4690 if (qc)
4691 qc->tag = i;
4693 return qc;
4697 * ata_qc_new_init - Request an available ATA command, and initialize it
4698 * @dev: Device from whom we request an available command structure
4700 * LOCKING:
4701 * None.
4704 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4706 struct ata_port *ap = dev->link->ap;
4707 struct ata_queued_cmd *qc;
4709 qc = ata_qc_new(ap);
4710 if (qc) {
4711 qc->scsicmd = NULL;
4712 qc->ap = ap;
4713 qc->dev = dev;
4715 ata_qc_reinit(qc);
4718 return qc;
4722 * ata_qc_free - free unused ata_queued_cmd
4723 * @qc: Command to complete
4725 * Designed to free unused ata_queued_cmd object
4726 * in case something prevents using it.
4728 * LOCKING:
4729 * spin_lock_irqsave(host lock)
4731 void ata_qc_free(struct ata_queued_cmd *qc)
4733 struct ata_port *ap;
4734 unsigned int tag;
4736 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4737 ap = qc->ap;
4739 qc->flags = 0;
4740 tag = qc->tag;
4741 if (likely(ata_tag_valid(tag))) {
4742 qc->tag = ATA_TAG_POISON;
4743 clear_bit(tag, &ap->qc_allocated);
4747 void __ata_qc_complete(struct ata_queued_cmd *qc)
4749 struct ata_port *ap;
4750 struct ata_link *link;
4752 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4753 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4754 ap = qc->ap;
4755 link = qc->dev->link;
4757 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4758 ata_sg_clean(qc);
4760 /* command should be marked inactive atomically with qc completion */
4761 if (qc->tf.protocol == ATA_PROT_NCQ) {
4762 link->sactive &= ~(1 << qc->tag);
4763 if (!link->sactive)
4764 ap->nr_active_links--;
4765 } else {
4766 link->active_tag = ATA_TAG_POISON;
4767 ap->nr_active_links--;
4770 /* clear exclusive status */
4771 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4772 ap->excl_link == link))
4773 ap->excl_link = NULL;
4775 /* atapi: mark qc as inactive to prevent the interrupt handler
4776 * from completing the command twice later, before the error handler
4777 * is called. (when rc != 0 and atapi request sense is needed)
4779 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4780 ap->qc_active &= ~(1 << qc->tag);
4782 /* call completion callback */
4783 qc->complete_fn(qc);
4786 static void fill_result_tf(struct ata_queued_cmd *qc)
4788 struct ata_port *ap = qc->ap;
4790 qc->result_tf.flags = qc->tf.flags;
4791 ap->ops->qc_fill_rtf(qc);
4794 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4796 struct ata_device *dev = qc->dev;
4798 if (ata_is_nodata(qc->tf.protocol))
4799 return;
4801 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4802 return;
4804 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4808 * ata_qc_complete - Complete an active ATA command
4809 * @qc: Command to complete
4811 * Indicate to the mid and upper layers that an ATA command has
4812 * completed, with either an ok or not-ok status.
4814 * Refrain from calling this function multiple times when
4815 * successfully completing multiple NCQ commands.
4816 * ata_qc_complete_multiple() should be used instead, which will
4817 * properly update IRQ expect state.
4819 * LOCKING:
4820 * spin_lock_irqsave(host lock)
4822 void ata_qc_complete(struct ata_queued_cmd *qc)
4824 struct ata_port *ap = qc->ap;
4826 /* XXX: New EH and old EH use different mechanisms to
4827 * synchronize EH with regular execution path.
4829 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4830 * Normal execution path is responsible for not accessing a
4831 * failed qc. libata core enforces the rule by returning NULL
4832 * from ata_qc_from_tag() for failed qcs.
4834 * Old EH depends on ata_qc_complete() nullifying completion
4835 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4836 * not synchronize with interrupt handler. Only PIO task is
4837 * taken care of.
4839 if (ap->ops->error_handler) {
4840 struct ata_device *dev = qc->dev;
4841 struct ata_eh_info *ehi = &dev->link->eh_info;
4843 if (unlikely(qc->err_mask))
4844 qc->flags |= ATA_QCFLAG_FAILED;
4847 * Finish internal commands without any further processing
4848 * and always with the result TF filled.
4850 if (unlikely(ata_tag_internal(qc->tag))) {
4851 fill_result_tf(qc);
4852 __ata_qc_complete(qc);
4853 return;
4857 * Non-internal qc has failed. Fill the result TF and
4858 * summon EH.
4860 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4861 fill_result_tf(qc);
4862 ata_qc_schedule_eh(qc);
4863 return;
4866 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4868 /* read result TF if requested */
4869 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4870 fill_result_tf(qc);
4872 /* Some commands need post-processing after successful
4873 * completion.
4875 switch (qc->tf.command) {
4876 case ATA_CMD_SET_FEATURES:
4877 if (qc->tf.feature != SETFEATURES_WC_ON &&
4878 qc->tf.feature != SETFEATURES_WC_OFF)
4879 break;
4880 /* fall through */
4881 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4882 case ATA_CMD_SET_MULTI: /* multi_count changed */
4883 /* revalidate device */
4884 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4885 ata_port_schedule_eh(ap);
4886 break;
4888 case ATA_CMD_SLEEP:
4889 dev->flags |= ATA_DFLAG_SLEEPING;
4890 break;
4893 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4894 ata_verify_xfer(qc);
4896 __ata_qc_complete(qc);
4897 } else {
4898 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4899 return;
4901 /* read result TF if failed or requested */
4902 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4903 fill_result_tf(qc);
4905 __ata_qc_complete(qc);
4910 * ata_qc_complete_multiple - Complete multiple qcs successfully
4911 * @ap: port in question
4912 * @qc_active: new qc_active mask
4914 * Complete in-flight commands. This functions is meant to be
4915 * called from low-level driver's interrupt routine to complete
4916 * requests normally. ap->qc_active and @qc_active is compared
4917 * and commands are completed accordingly.
4919 * Always use this function when completing multiple NCQ commands
4920 * from IRQ handlers instead of calling ata_qc_complete()
4921 * multiple times to keep IRQ expect status properly in sync.
4923 * LOCKING:
4924 * spin_lock_irqsave(host lock)
4926 * RETURNS:
4927 * Number of completed commands on success, -errno otherwise.
4929 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4931 int nr_done = 0;
4932 u32 done_mask;
4934 done_mask = ap->qc_active ^ qc_active;
4936 if (unlikely(done_mask & qc_active)) {
4937 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4938 ap->qc_active, qc_active);
4939 return -EINVAL;
4942 while (done_mask) {
4943 struct ata_queued_cmd *qc;
4944 unsigned int tag = __ffs(done_mask);
4946 qc = ata_qc_from_tag(ap, tag);
4947 if (qc) {
4948 ata_qc_complete(qc);
4949 nr_done++;
4951 done_mask &= ~(1 << tag);
4954 return nr_done;
4958 * ata_qc_issue - issue taskfile to device
4959 * @qc: command to issue to device
4961 * Prepare an ATA command to submission to device.
4962 * This includes mapping the data into a DMA-able
4963 * area, filling in the S/G table, and finally
4964 * writing the taskfile to hardware, starting the command.
4966 * LOCKING:
4967 * spin_lock_irqsave(host lock)
4969 void ata_qc_issue(struct ata_queued_cmd *qc)
4971 struct ata_port *ap = qc->ap;
4972 struct ata_link *link = qc->dev->link;
4973 u8 prot = qc->tf.protocol;
4975 /* Make sure only one non-NCQ command is outstanding. The
4976 * check is skipped for old EH because it reuses active qc to
4977 * request ATAPI sense.
4979 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4981 if (ata_is_ncq(prot)) {
4982 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
4984 if (!link->sactive)
4985 ap->nr_active_links++;
4986 link->sactive |= 1 << qc->tag;
4987 } else {
4988 WARN_ON_ONCE(link->sactive);
4990 ap->nr_active_links++;
4991 link->active_tag = qc->tag;
4994 qc->flags |= ATA_QCFLAG_ACTIVE;
4995 ap->qc_active |= 1 << qc->tag;
4998 * We guarantee to LLDs that they will have at least one
4999 * non-zero sg if the command is a data command.
5001 if (WARN_ON_ONCE(ata_is_data(prot) &&
5002 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5003 goto sys_err;
5005 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5006 (ap->flags & ATA_FLAG_PIO_DMA)))
5007 if (ata_sg_setup(qc))
5008 goto sys_err;
5010 /* if device is sleeping, schedule reset and abort the link */
5011 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5012 link->eh_info.action |= ATA_EH_RESET;
5013 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5014 ata_link_abort(link);
5015 return;
5018 ap->ops->qc_prep(qc);
5020 qc->err_mask |= ap->ops->qc_issue(qc);
5021 if (unlikely(qc->err_mask))
5022 goto err;
5023 return;
5025 sys_err:
5026 qc->err_mask |= AC_ERR_SYSTEM;
5027 err:
5028 ata_qc_complete(qc);
5032 * sata_scr_valid - test whether SCRs are accessible
5033 * @link: ATA link to test SCR accessibility for
5035 * Test whether SCRs are accessible for @link.
5037 * LOCKING:
5038 * None.
5040 * RETURNS:
5041 * 1 if SCRs are accessible, 0 otherwise.
5043 int sata_scr_valid(struct ata_link *link)
5045 struct ata_port *ap = link->ap;
5047 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5051 * sata_scr_read - read SCR register of the specified port
5052 * @link: ATA link to read SCR for
5053 * @reg: SCR to read
5054 * @val: Place to store read value
5056 * Read SCR register @reg of @link into *@val. This function is
5057 * guaranteed to succeed if @link is ap->link, the cable type of
5058 * the port is SATA and the port implements ->scr_read.
5060 * LOCKING:
5061 * None if @link is ap->link. Kernel thread context otherwise.
5063 * RETURNS:
5064 * 0 on success, negative errno on failure.
5066 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5068 if (ata_is_host_link(link)) {
5069 if (sata_scr_valid(link))
5070 return link->ap->ops->scr_read(link, reg, val);
5071 return -EOPNOTSUPP;
5074 return sata_pmp_scr_read(link, reg, val);
5078 * sata_scr_write - write SCR register of the specified port
5079 * @link: ATA link to write SCR for
5080 * @reg: SCR to write
5081 * @val: value to write
5083 * Write @val to SCR register @reg of @link. This function is
5084 * guaranteed to succeed if @link is ap->link, the cable type of
5085 * the port is SATA and the port implements ->scr_read.
5087 * LOCKING:
5088 * None if @link is ap->link. Kernel thread context otherwise.
5090 * RETURNS:
5091 * 0 on success, negative errno on failure.
5093 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5095 if (ata_is_host_link(link)) {
5096 if (sata_scr_valid(link))
5097 return link->ap->ops->scr_write(link, reg, val);
5098 return -EOPNOTSUPP;
5101 return sata_pmp_scr_write(link, reg, val);
5105 * sata_scr_write_flush - write SCR register of the specified port and flush
5106 * @link: ATA link to write SCR for
5107 * @reg: SCR to write
5108 * @val: value to write
5110 * This function is identical to sata_scr_write() except that this
5111 * function performs flush after writing to the register.
5113 * LOCKING:
5114 * None if @link is ap->link. Kernel thread context otherwise.
5116 * RETURNS:
5117 * 0 on success, negative errno on failure.
5119 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5121 if (ata_is_host_link(link)) {
5122 int rc;
5124 if (sata_scr_valid(link)) {
5125 rc = link->ap->ops->scr_write(link, reg, val);
5126 if (rc == 0)
5127 rc = link->ap->ops->scr_read(link, reg, &val);
5128 return rc;
5130 return -EOPNOTSUPP;
5133 return sata_pmp_scr_write(link, reg, val);
5137 * ata_phys_link_online - test whether the given link is online
5138 * @link: ATA link to test
5140 * Test whether @link is online. Note that this function returns
5141 * 0 if online status of @link cannot be obtained, so
5142 * ata_link_online(link) != !ata_link_offline(link).
5144 * LOCKING:
5145 * None.
5147 * RETURNS:
5148 * True if the port online status is available and online.
5150 bool ata_phys_link_online(struct ata_link *link)
5152 u32 sstatus;
5154 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5155 ata_sstatus_online(sstatus))
5156 return true;
5157 return false;
5161 * ata_phys_link_offline - test whether the given link is offline
5162 * @link: ATA link to test
5164 * Test whether @link is offline. Note that this function
5165 * returns 0 if offline status of @link cannot be obtained, so
5166 * ata_link_online(link) != !ata_link_offline(link).
5168 * LOCKING:
5169 * None.
5171 * RETURNS:
5172 * True if the port offline status is available and offline.
5174 bool ata_phys_link_offline(struct ata_link *link)
5176 u32 sstatus;
5178 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5179 !ata_sstatus_online(sstatus))
5180 return true;
5181 return false;
5185 * ata_link_online - test whether the given link is online
5186 * @link: ATA link to test
5188 * Test whether @link is online. This is identical to
5189 * ata_phys_link_online() when there's no slave link. When
5190 * there's a slave link, this function should only be called on
5191 * the master link and will return true if any of M/S links is
5192 * online.
5194 * LOCKING:
5195 * None.
5197 * RETURNS:
5198 * True if the port online status is available and online.
5200 bool ata_link_online(struct ata_link *link)
5202 struct ata_link *slave = link->ap->slave_link;
5204 WARN_ON(link == slave); /* shouldn't be called on slave link */
5206 return ata_phys_link_online(link) ||
5207 (slave && ata_phys_link_online(slave));
5211 * ata_link_offline - test whether the given link is offline
5212 * @link: ATA link to test
5214 * Test whether @link is offline. This is identical to
5215 * ata_phys_link_offline() when there's no slave link. When
5216 * there's a slave link, this function should only be called on
5217 * the master link and will return true if both M/S links are
5218 * offline.
5220 * LOCKING:
5221 * None.
5223 * RETURNS:
5224 * True if the port offline status is available and offline.
5226 bool ata_link_offline(struct ata_link *link)
5228 struct ata_link *slave = link->ap->slave_link;
5230 WARN_ON(link == slave); /* shouldn't be called on slave link */
5232 return ata_phys_link_offline(link) &&
5233 (!slave || ata_phys_link_offline(slave));
5236 #ifdef CONFIG_PM
5237 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5238 unsigned int action, unsigned int ehi_flags,
5239 int wait)
5241 unsigned long flags;
5242 int i, rc;
5244 for (i = 0; i < host->n_ports; i++) {
5245 struct ata_port *ap = host->ports[i];
5246 struct ata_link *link;
5248 /* Previous resume operation might still be in
5249 * progress. Wait for PM_PENDING to clear.
5251 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5252 ata_port_wait_eh(ap);
5253 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5256 /* request PM ops to EH */
5257 spin_lock_irqsave(ap->lock, flags);
5259 ap->pm_mesg = mesg;
5260 if (wait) {
5261 rc = 0;
5262 ap->pm_result = &rc;
5265 ap->pflags |= ATA_PFLAG_PM_PENDING;
5266 ata_for_each_link(link, ap, HOST_FIRST) {
5267 link->eh_info.action |= action;
5268 link->eh_info.flags |= ehi_flags;
5271 ata_port_schedule_eh(ap);
5273 spin_unlock_irqrestore(ap->lock, flags);
5275 /* wait and check result */
5276 if (wait) {
5277 ata_port_wait_eh(ap);
5278 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5279 if (rc)
5280 return rc;
5284 return 0;
5288 * ata_host_suspend - suspend host
5289 * @host: host to suspend
5290 * @mesg: PM message
5292 * Suspend @host. Actual operation is performed by EH. This
5293 * function requests EH to perform PM operations and waits for EH
5294 * to finish.
5296 * LOCKING:
5297 * Kernel thread context (may sleep).
5299 * RETURNS:
5300 * 0 on success, -errno on failure.
5302 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5304 unsigned int ehi_flags = ATA_EHI_QUIET;
5305 int rc;
5308 * On some hardware, device fails to respond after spun down
5309 * for suspend. As the device won't be used before being
5310 * resumed, we don't need to touch the device. Ask EH to skip
5311 * the usual stuff and proceed directly to suspend.
5313 * http://thread.gmane.org/gmane.linux.ide/46764
5315 if (mesg.event == PM_EVENT_SUSPEND)
5316 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5318 rc = ata_host_request_pm(host, mesg, 0, ehi_flags, 1);
5319 if (rc == 0)
5320 host->dev->power.power_state = mesg;
5321 return rc;
5325 * ata_host_resume - resume host
5326 * @host: host to resume
5328 * Resume @host. Actual operation is performed by EH. This
5329 * function requests EH to perform PM operations and returns.
5330 * Note that all resume operations are performed parallelly.
5332 * LOCKING:
5333 * Kernel thread context (may sleep).
5335 void ata_host_resume(struct ata_host *host)
5337 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5338 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5339 host->dev->power.power_state = PMSG_ON;
5341 #endif
5344 * ata_dev_init - Initialize an ata_device structure
5345 * @dev: Device structure to initialize
5347 * Initialize @dev in preparation for probing.
5349 * LOCKING:
5350 * Inherited from caller.
5352 void ata_dev_init(struct ata_device *dev)
5354 struct ata_link *link = ata_dev_phys_link(dev);
5355 struct ata_port *ap = link->ap;
5356 unsigned long flags;
5358 /* SATA spd limit is bound to the attached device, reset together */
5359 link->sata_spd_limit = link->hw_sata_spd_limit;
5360 link->sata_spd = 0;
5362 /* High bits of dev->flags are used to record warm plug
5363 * requests which occur asynchronously. Synchronize using
5364 * host lock.
5366 spin_lock_irqsave(ap->lock, flags);
5367 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5368 dev->horkage = 0;
5369 spin_unlock_irqrestore(ap->lock, flags);
5371 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5372 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5373 dev->pio_mask = UINT_MAX;
5374 dev->mwdma_mask = UINT_MAX;
5375 dev->udma_mask = UINT_MAX;
5379 * ata_link_init - Initialize an ata_link structure
5380 * @ap: ATA port link is attached to
5381 * @link: Link structure to initialize
5382 * @pmp: Port multiplier port number
5384 * Initialize @link.
5386 * LOCKING:
5387 * Kernel thread context (may sleep)
5389 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5391 int i;
5393 /* clear everything except for devices */
5394 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5395 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5397 link->ap = ap;
5398 link->pmp = pmp;
5399 link->active_tag = ATA_TAG_POISON;
5400 link->hw_sata_spd_limit = UINT_MAX;
5402 /* can't use iterator, ap isn't initialized yet */
5403 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5404 struct ata_device *dev = &link->device[i];
5406 dev->link = link;
5407 dev->devno = dev - link->device;
5408 #ifdef CONFIG_ATA_ACPI
5409 dev->gtf_filter = ata_acpi_gtf_filter;
5410 #endif
5411 ata_dev_init(dev);
5416 * sata_link_init_spd - Initialize link->sata_spd_limit
5417 * @link: Link to configure sata_spd_limit for
5419 * Initialize @link->[hw_]sata_spd_limit to the currently
5420 * configured value.
5422 * LOCKING:
5423 * Kernel thread context (may sleep).
5425 * RETURNS:
5426 * 0 on success, -errno on failure.
5428 int sata_link_init_spd(struct ata_link *link)
5430 u8 spd;
5431 int rc;
5433 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5434 if (rc)
5435 return rc;
5437 spd = (link->saved_scontrol >> 4) & 0xf;
5438 if (spd)
5439 link->hw_sata_spd_limit &= (1 << spd) - 1;
5441 ata_force_link_limits(link);
5443 link->sata_spd_limit = link->hw_sata_spd_limit;
5445 return 0;
5449 * ata_port_alloc - allocate and initialize basic ATA port resources
5450 * @host: ATA host this allocated port belongs to
5452 * Allocate and initialize basic ATA port resources.
5454 * RETURNS:
5455 * Allocate ATA port on success, NULL on failure.
5457 * LOCKING:
5458 * Inherited from calling layer (may sleep).
5460 struct ata_port *ata_port_alloc(struct ata_host *host)
5462 struct ata_port *ap;
5464 DPRINTK("ENTER\n");
5466 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5467 if (!ap)
5468 return NULL;
5470 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5471 ap->lock = &host->lock;
5472 ap->print_id = -1;
5473 ap->host = host;
5474 ap->dev = host->dev;
5476 #if defined(ATA_VERBOSE_DEBUG)
5477 /* turn on all debugging levels */
5478 ap->msg_enable = 0x00FF;
5479 #elif defined(ATA_DEBUG)
5480 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5481 #else
5482 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5483 #endif
5485 mutex_init(&ap->scsi_scan_mutex);
5486 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5487 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5488 INIT_LIST_HEAD(&ap->eh_done_q);
5489 init_waitqueue_head(&ap->eh_wait_q);
5490 init_completion(&ap->park_req_pending);
5491 init_timer_deferrable(&ap->fastdrain_timer);
5492 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5493 ap->fastdrain_timer.data = (unsigned long)ap;
5495 ap->cbl = ATA_CBL_NONE;
5497 ata_link_init(ap, &ap->link, 0);
5499 #ifdef ATA_IRQ_TRAP
5500 ap->stats.unhandled_irq = 1;
5501 ap->stats.idle_irq = 1;
5502 #endif
5503 ata_sff_port_init(ap);
5505 return ap;
5508 static void ata_host_release(struct device *gendev, void *res)
5510 struct ata_host *host = dev_get_drvdata(gendev);
5511 int i;
5513 for (i = 0; i < host->n_ports; i++) {
5514 struct ata_port *ap = host->ports[i];
5516 if (!ap)
5517 continue;
5519 if (ap->scsi_host)
5520 scsi_host_put(ap->scsi_host);
5522 kfree(ap->pmp_link);
5523 kfree(ap->slave_link);
5524 kfree(ap);
5525 host->ports[i] = NULL;
5528 dev_set_drvdata(gendev, NULL);
5532 * ata_host_alloc - allocate and init basic ATA host resources
5533 * @dev: generic device this host is associated with
5534 * @max_ports: maximum number of ATA ports associated with this host
5536 * Allocate and initialize basic ATA host resources. LLD calls
5537 * this function to allocate a host, initializes it fully and
5538 * attaches it using ata_host_register().
5540 * @max_ports ports are allocated and host->n_ports is
5541 * initialized to @max_ports. The caller is allowed to decrease
5542 * host->n_ports before calling ata_host_register(). The unused
5543 * ports will be automatically freed on registration.
5545 * RETURNS:
5546 * Allocate ATA host on success, NULL on failure.
5548 * LOCKING:
5549 * Inherited from calling layer (may sleep).
5551 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5553 struct ata_host *host;
5554 size_t sz;
5555 int i;
5557 DPRINTK("ENTER\n");
5559 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5560 return NULL;
5562 /* alloc a container for our list of ATA ports (buses) */
5563 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5564 /* alloc a container for our list of ATA ports (buses) */
5565 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5566 if (!host)
5567 goto err_out;
5569 devres_add(dev, host);
5570 dev_set_drvdata(dev, host);
5572 spin_lock_init(&host->lock);
5573 mutex_init(&host->eh_mutex);
5574 host->dev = dev;
5575 host->n_ports = max_ports;
5577 /* allocate ports bound to this host */
5578 for (i = 0; i < max_ports; i++) {
5579 struct ata_port *ap;
5581 ap = ata_port_alloc(host);
5582 if (!ap)
5583 goto err_out;
5585 ap->port_no = i;
5586 host->ports[i] = ap;
5589 devres_remove_group(dev, NULL);
5590 return host;
5592 err_out:
5593 devres_release_group(dev, NULL);
5594 return NULL;
5598 * ata_host_alloc_pinfo - alloc host and init with port_info array
5599 * @dev: generic device this host is associated with
5600 * @ppi: array of ATA port_info to initialize host with
5601 * @n_ports: number of ATA ports attached to this host
5603 * Allocate ATA host and initialize with info from @ppi. If NULL
5604 * terminated, @ppi may contain fewer entries than @n_ports. The
5605 * last entry will be used for the remaining ports.
5607 * RETURNS:
5608 * Allocate ATA host on success, NULL on failure.
5610 * LOCKING:
5611 * Inherited from calling layer (may sleep).
5613 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5614 const struct ata_port_info * const * ppi,
5615 int n_ports)
5617 const struct ata_port_info *pi;
5618 struct ata_host *host;
5619 int i, j;
5621 host = ata_host_alloc(dev, n_ports);
5622 if (!host)
5623 return NULL;
5625 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5626 struct ata_port *ap = host->ports[i];
5628 if (ppi[j])
5629 pi = ppi[j++];
5631 ap->pio_mask = pi->pio_mask;
5632 ap->mwdma_mask = pi->mwdma_mask;
5633 ap->udma_mask = pi->udma_mask;
5634 ap->flags |= pi->flags;
5635 ap->link.flags |= pi->link_flags;
5636 ap->ops = pi->port_ops;
5638 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5639 host->ops = pi->port_ops;
5642 return host;
5646 * ata_slave_link_init - initialize slave link
5647 * @ap: port to initialize slave link for
5649 * Create and initialize slave link for @ap. This enables slave
5650 * link handling on the port.
5652 * In libata, a port contains links and a link contains devices.
5653 * There is single host link but if a PMP is attached to it,
5654 * there can be multiple fan-out links. On SATA, there's usually
5655 * a single device connected to a link but PATA and SATA
5656 * controllers emulating TF based interface can have two - master
5657 * and slave.
5659 * However, there are a few controllers which don't fit into this
5660 * abstraction too well - SATA controllers which emulate TF
5661 * interface with both master and slave devices but also have
5662 * separate SCR register sets for each device. These controllers
5663 * need separate links for physical link handling
5664 * (e.g. onlineness, link speed) but should be treated like a
5665 * traditional M/S controller for everything else (e.g. command
5666 * issue, softreset).
5668 * slave_link is libata's way of handling this class of
5669 * controllers without impacting core layer too much. For
5670 * anything other than physical link handling, the default host
5671 * link is used for both master and slave. For physical link
5672 * handling, separate @ap->slave_link is used. All dirty details
5673 * are implemented inside libata core layer. From LLD's POV, the
5674 * only difference is that prereset, hardreset and postreset are
5675 * called once more for the slave link, so the reset sequence
5676 * looks like the following.
5678 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5679 * softreset(M) -> postreset(M) -> postreset(S)
5681 * Note that softreset is called only for the master. Softreset
5682 * resets both M/S by definition, so SRST on master should handle
5683 * both (the standard method will work just fine).
5685 * LOCKING:
5686 * Should be called before host is registered.
5688 * RETURNS:
5689 * 0 on success, -errno on failure.
5691 int ata_slave_link_init(struct ata_port *ap)
5693 struct ata_link *link;
5695 WARN_ON(ap->slave_link);
5696 WARN_ON(ap->flags & ATA_FLAG_PMP);
5698 link = kzalloc(sizeof(*link), GFP_KERNEL);
5699 if (!link)
5700 return -ENOMEM;
5702 ata_link_init(ap, link, 1);
5703 ap->slave_link = link;
5704 return 0;
5707 static void ata_host_stop(struct device *gendev, void *res)
5709 struct ata_host *host = dev_get_drvdata(gendev);
5710 int i;
5712 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5714 for (i = 0; i < host->n_ports; i++) {
5715 struct ata_port *ap = host->ports[i];
5717 if (ap->ops->port_stop)
5718 ap->ops->port_stop(ap);
5721 if (host->ops->host_stop)
5722 host->ops->host_stop(host);
5726 * ata_finalize_port_ops - finalize ata_port_operations
5727 * @ops: ata_port_operations to finalize
5729 * An ata_port_operations can inherit from another ops and that
5730 * ops can again inherit from another. This can go on as many
5731 * times as necessary as long as there is no loop in the
5732 * inheritance chain.
5734 * Ops tables are finalized when the host is started. NULL or
5735 * unspecified entries are inherited from the closet ancestor
5736 * which has the method and the entry is populated with it.
5737 * After finalization, the ops table directly points to all the
5738 * methods and ->inherits is no longer necessary and cleared.
5740 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5742 * LOCKING:
5743 * None.
5745 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5747 static DEFINE_SPINLOCK(lock);
5748 const struct ata_port_operations *cur;
5749 void **begin = (void **)ops;
5750 void **end = (void **)&ops->inherits;
5751 void **pp;
5753 if (!ops || !ops->inherits)
5754 return;
5756 spin_lock(&lock);
5758 for (cur = ops->inherits; cur; cur = cur->inherits) {
5759 void **inherit = (void **)cur;
5761 for (pp = begin; pp < end; pp++, inherit++)
5762 if (!*pp)
5763 *pp = *inherit;
5766 for (pp = begin; pp < end; pp++)
5767 if (IS_ERR(*pp))
5768 *pp = NULL;
5770 ops->inherits = NULL;
5772 spin_unlock(&lock);
5776 * ata_host_start - start and freeze ports of an ATA host
5777 * @host: ATA host to start ports for
5779 * Start and then freeze ports of @host. Started status is
5780 * recorded in host->flags, so this function can be called
5781 * multiple times. Ports are guaranteed to get started only
5782 * once. If host->ops isn't initialized yet, its set to the
5783 * first non-dummy port ops.
5785 * LOCKING:
5786 * Inherited from calling layer (may sleep).
5788 * RETURNS:
5789 * 0 if all ports are started successfully, -errno otherwise.
5791 int ata_host_start(struct ata_host *host)
5793 int have_stop = 0;
5794 void *start_dr = NULL;
5795 int i, rc;
5797 if (host->flags & ATA_HOST_STARTED)
5798 return 0;
5800 ata_finalize_port_ops(host->ops);
5802 for (i = 0; i < host->n_ports; i++) {
5803 struct ata_port *ap = host->ports[i];
5805 ata_finalize_port_ops(ap->ops);
5807 if (!host->ops && !ata_port_is_dummy(ap))
5808 host->ops = ap->ops;
5810 if (ap->ops->port_stop)
5811 have_stop = 1;
5814 if (host->ops->host_stop)
5815 have_stop = 1;
5817 if (have_stop) {
5818 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5819 if (!start_dr)
5820 return -ENOMEM;
5823 for (i = 0; i < host->n_ports; i++) {
5824 struct ata_port *ap = host->ports[i];
5826 if (ap->ops->port_start) {
5827 rc = ap->ops->port_start(ap);
5828 if (rc) {
5829 if (rc != -ENODEV)
5830 dev_err(host->dev,
5831 "failed to start port %d (errno=%d)\n",
5832 i, rc);
5833 goto err_out;
5836 ata_eh_freeze_port(ap);
5839 if (start_dr)
5840 devres_add(host->dev, start_dr);
5841 host->flags |= ATA_HOST_STARTED;
5842 return 0;
5844 err_out:
5845 while (--i >= 0) {
5846 struct ata_port *ap = host->ports[i];
5848 if (ap->ops->port_stop)
5849 ap->ops->port_stop(ap);
5851 devres_free(start_dr);
5852 return rc;
5856 * ata_sas_host_init - Initialize a host struct
5857 * @host: host to initialize
5858 * @dev: device host is attached to
5859 * @flags: host flags
5860 * @ops: port_ops
5862 * LOCKING:
5863 * PCI/etc. bus probe sem.
5866 /* KILLME - the only user left is ipr */
5867 void ata_host_init(struct ata_host *host, struct device *dev,
5868 unsigned long flags, struct ata_port_operations *ops)
5870 spin_lock_init(&host->lock);
5871 mutex_init(&host->eh_mutex);
5872 host->dev = dev;
5873 host->flags = flags;
5874 host->ops = ops;
5877 int ata_port_probe(struct ata_port *ap)
5879 int rc = 0;
5881 /* probe */
5882 if (ap->ops->error_handler) {
5883 struct ata_eh_info *ehi = &ap->link.eh_info;
5884 unsigned long flags;
5886 /* kick EH for boot probing */
5887 spin_lock_irqsave(ap->lock, flags);
5889 ehi->probe_mask |= ATA_ALL_DEVICES;
5890 ehi->action |= ATA_EH_RESET;
5891 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5893 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5894 ap->pflags |= ATA_PFLAG_LOADING;
5895 ata_port_schedule_eh(ap);
5897 spin_unlock_irqrestore(ap->lock, flags);
5899 /* wait for EH to finish */
5900 ata_port_wait_eh(ap);
5901 } else {
5902 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5903 rc = ata_bus_probe(ap);
5904 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5906 return rc;
5910 static void async_port_probe(void *data, async_cookie_t cookie)
5912 struct ata_port *ap = data;
5915 * If we're not allowed to scan this host in parallel,
5916 * we need to wait until all previous scans have completed
5917 * before going further.
5918 * Jeff Garzik says this is only within a controller, so we
5919 * don't need to wait for port 0, only for later ports.
5921 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5922 async_synchronize_cookie(cookie);
5924 (void)ata_port_probe(ap);
5926 /* in order to keep device order, we need to synchronize at this point */
5927 async_synchronize_cookie(cookie);
5929 ata_scsi_scan_host(ap, 1);
5933 * ata_host_register - register initialized ATA host
5934 * @host: ATA host to register
5935 * @sht: template for SCSI host
5937 * Register initialized ATA host. @host is allocated using
5938 * ata_host_alloc() and fully initialized by LLD. This function
5939 * starts ports, registers @host with ATA and SCSI layers and
5940 * probe registered devices.
5942 * LOCKING:
5943 * Inherited from calling layer (may sleep).
5945 * RETURNS:
5946 * 0 on success, -errno otherwise.
5948 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5950 int i, rc;
5952 /* host must have been started */
5953 if (!(host->flags & ATA_HOST_STARTED)) {
5954 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5955 WARN_ON(1);
5956 return -EINVAL;
5959 /* Blow away unused ports. This happens when LLD can't
5960 * determine the exact number of ports to allocate at
5961 * allocation time.
5963 for (i = host->n_ports; host->ports[i]; i++)
5964 kfree(host->ports[i]);
5966 /* give ports names and add SCSI hosts */
5967 for (i = 0; i < host->n_ports; i++)
5968 host->ports[i]->print_id = ata_print_id++;
5971 /* Create associated sysfs transport objects */
5972 for (i = 0; i < host->n_ports; i++) {
5973 rc = ata_tport_add(host->dev,host->ports[i]);
5974 if (rc) {
5975 goto err_tadd;
5979 rc = ata_scsi_add_hosts(host, sht);
5980 if (rc)
5981 goto err_tadd;
5983 /* associate with ACPI nodes */
5984 ata_acpi_associate(host);
5986 /* set cable, sata_spd_limit and report */
5987 for (i = 0; i < host->n_ports; i++) {
5988 struct ata_port *ap = host->ports[i];
5989 unsigned long xfer_mask;
5991 /* set SATA cable type if still unset */
5992 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5993 ap->cbl = ATA_CBL_SATA;
5995 /* init sata_spd_limit to the current value */
5996 sata_link_init_spd(&ap->link);
5997 if (ap->slave_link)
5998 sata_link_init_spd(ap->slave_link);
6000 /* print per-port info to dmesg */
6001 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6002 ap->udma_mask);
6004 if (!ata_port_is_dummy(ap)) {
6005 ata_port_info(ap, "%cATA max %s %s\n",
6006 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6007 ata_mode_string(xfer_mask),
6008 ap->link.eh_info.desc);
6009 ata_ehi_clear_desc(&ap->link.eh_info);
6010 } else
6011 ata_port_info(ap, "DUMMY\n");
6014 /* perform each probe asynchronously */
6015 for (i = 0; i < host->n_ports; i++) {
6016 struct ata_port *ap = host->ports[i];
6017 async_schedule(async_port_probe, ap);
6020 return 0;
6022 err_tadd:
6023 while (--i >= 0) {
6024 ata_tport_delete(host->ports[i]);
6026 return rc;
6031 * ata_host_activate - start host, request IRQ and register it
6032 * @host: target ATA host
6033 * @irq: IRQ to request
6034 * @irq_handler: irq_handler used when requesting IRQ
6035 * @irq_flags: irq_flags used when requesting IRQ
6036 * @sht: scsi_host_template to use when registering the host
6038 * After allocating an ATA host and initializing it, most libata
6039 * LLDs perform three steps to activate the host - start host,
6040 * request IRQ and register it. This helper takes necessasry
6041 * arguments and performs the three steps in one go.
6043 * An invalid IRQ skips the IRQ registration and expects the host to
6044 * have set polling mode on the port. In this case, @irq_handler
6045 * should be NULL.
6047 * LOCKING:
6048 * Inherited from calling layer (may sleep).
6050 * RETURNS:
6051 * 0 on success, -errno otherwise.
6053 int ata_host_activate(struct ata_host *host, int irq,
6054 irq_handler_t irq_handler, unsigned long irq_flags,
6055 struct scsi_host_template *sht)
6057 int i, rc;
6059 rc = ata_host_start(host);
6060 if (rc)
6061 return rc;
6063 /* Special case for polling mode */
6064 if (!irq) {
6065 WARN_ON(irq_handler);
6066 return ata_host_register(host, sht);
6069 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6070 dev_driver_string(host->dev), host);
6071 if (rc)
6072 return rc;
6074 for (i = 0; i < host->n_ports; i++)
6075 ata_port_desc(host->ports[i], "irq %d", irq);
6077 rc = ata_host_register(host, sht);
6078 /* if failed, just free the IRQ and leave ports alone */
6079 if (rc)
6080 devm_free_irq(host->dev, irq, host);
6082 return rc;
6086 * ata_port_detach - Detach ATA port in prepration of device removal
6087 * @ap: ATA port to be detached
6089 * Detach all ATA devices and the associated SCSI devices of @ap;
6090 * then, remove the associated SCSI host. @ap is guaranteed to
6091 * be quiescent on return from this function.
6093 * LOCKING:
6094 * Kernel thread context (may sleep).
6096 static void ata_port_detach(struct ata_port *ap)
6098 unsigned long flags;
6100 if (!ap->ops->error_handler)
6101 goto skip_eh;
6103 /* tell EH we're leaving & flush EH */
6104 spin_lock_irqsave(ap->lock, flags);
6105 ap->pflags |= ATA_PFLAG_UNLOADING;
6106 ata_port_schedule_eh(ap);
6107 spin_unlock_irqrestore(ap->lock, flags);
6109 /* wait till EH commits suicide */
6110 ata_port_wait_eh(ap);
6112 /* it better be dead now */
6113 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6115 cancel_delayed_work_sync(&ap->hotplug_task);
6117 skip_eh:
6118 if (ap->pmp_link) {
6119 int i;
6120 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6121 ata_tlink_delete(&ap->pmp_link[i]);
6123 ata_tport_delete(ap);
6125 /* remove the associated SCSI host */
6126 scsi_remove_host(ap->scsi_host);
6130 * ata_host_detach - Detach all ports of an ATA host
6131 * @host: Host to detach
6133 * Detach all ports of @host.
6135 * LOCKING:
6136 * Kernel thread context (may sleep).
6138 void ata_host_detach(struct ata_host *host)
6140 int i;
6142 for (i = 0; i < host->n_ports; i++)
6143 ata_port_detach(host->ports[i]);
6145 /* the host is dead now, dissociate ACPI */
6146 ata_acpi_dissociate(host);
6149 #ifdef CONFIG_PCI
6152 * ata_pci_remove_one - PCI layer callback for device removal
6153 * @pdev: PCI device that was removed
6155 * PCI layer indicates to libata via this hook that hot-unplug or
6156 * module unload event has occurred. Detach all ports. Resource
6157 * release is handled via devres.
6159 * LOCKING:
6160 * Inherited from PCI layer (may sleep).
6162 void ata_pci_remove_one(struct pci_dev *pdev)
6164 struct device *dev = &pdev->dev;
6165 struct ata_host *host = dev_get_drvdata(dev);
6167 ata_host_detach(host);
6170 /* move to PCI subsystem */
6171 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6173 unsigned long tmp = 0;
6175 switch (bits->width) {
6176 case 1: {
6177 u8 tmp8 = 0;
6178 pci_read_config_byte(pdev, bits->reg, &tmp8);
6179 tmp = tmp8;
6180 break;
6182 case 2: {
6183 u16 tmp16 = 0;
6184 pci_read_config_word(pdev, bits->reg, &tmp16);
6185 tmp = tmp16;
6186 break;
6188 case 4: {
6189 u32 tmp32 = 0;
6190 pci_read_config_dword(pdev, bits->reg, &tmp32);
6191 tmp = tmp32;
6192 break;
6195 default:
6196 return -EINVAL;
6199 tmp &= bits->mask;
6201 return (tmp == bits->val) ? 1 : 0;
6204 #ifdef CONFIG_PM
6205 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6207 pci_save_state(pdev);
6208 pci_disable_device(pdev);
6210 if (mesg.event & PM_EVENT_SLEEP)
6211 pci_set_power_state(pdev, PCI_D3hot);
6214 int ata_pci_device_do_resume(struct pci_dev *pdev)
6216 int rc;
6218 pci_set_power_state(pdev, PCI_D0);
6219 pci_restore_state(pdev);
6221 rc = pcim_enable_device(pdev);
6222 if (rc) {
6223 dev_err(&pdev->dev,
6224 "failed to enable device after resume (%d)\n", rc);
6225 return rc;
6228 pci_set_master(pdev);
6229 return 0;
6232 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6234 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6235 int rc = 0;
6237 rc = ata_host_suspend(host, mesg);
6238 if (rc)
6239 return rc;
6241 ata_pci_device_do_suspend(pdev, mesg);
6243 return 0;
6246 int ata_pci_device_resume(struct pci_dev *pdev)
6248 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6249 int rc;
6251 rc = ata_pci_device_do_resume(pdev);
6252 if (rc == 0)
6253 ata_host_resume(host);
6254 return rc;
6256 #endif /* CONFIG_PM */
6258 #endif /* CONFIG_PCI */
6260 static int __init ata_parse_force_one(char **cur,
6261 struct ata_force_ent *force_ent,
6262 const char **reason)
6264 /* FIXME: Currently, there's no way to tag init const data and
6265 * using __initdata causes build failure on some versions of
6266 * gcc. Once __initdataconst is implemented, add const to the
6267 * following structure.
6269 static struct ata_force_param force_tbl[] __initdata = {
6270 { "40c", .cbl = ATA_CBL_PATA40 },
6271 { "80c", .cbl = ATA_CBL_PATA80 },
6272 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6273 { "unk", .cbl = ATA_CBL_PATA_UNK },
6274 { "ign", .cbl = ATA_CBL_PATA_IGN },
6275 { "sata", .cbl = ATA_CBL_SATA },
6276 { "1.5Gbps", .spd_limit = 1 },
6277 { "3.0Gbps", .spd_limit = 2 },
6278 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6279 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6280 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6281 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6282 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6283 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6284 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6285 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6286 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6287 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6288 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6289 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6290 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6291 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6292 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6293 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6294 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6295 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6296 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6297 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6298 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6299 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6300 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6301 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6302 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6303 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6304 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6305 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6306 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6307 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6308 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6309 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6310 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6311 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6312 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6313 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6314 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6315 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6316 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6317 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6319 char *start = *cur, *p = *cur;
6320 char *id, *val, *endp;
6321 const struct ata_force_param *match_fp = NULL;
6322 int nr_matches = 0, i;
6324 /* find where this param ends and update *cur */
6325 while (*p != '\0' && *p != ',')
6326 p++;
6328 if (*p == '\0')
6329 *cur = p;
6330 else
6331 *cur = p + 1;
6333 *p = '\0';
6335 /* parse */
6336 p = strchr(start, ':');
6337 if (!p) {
6338 val = strstrip(start);
6339 goto parse_val;
6341 *p = '\0';
6343 id = strstrip(start);
6344 val = strstrip(p + 1);
6346 /* parse id */
6347 p = strchr(id, '.');
6348 if (p) {
6349 *p++ = '\0';
6350 force_ent->device = simple_strtoul(p, &endp, 10);
6351 if (p == endp || *endp != '\0') {
6352 *reason = "invalid device";
6353 return -EINVAL;
6357 force_ent->port = simple_strtoul(id, &endp, 10);
6358 if (p == endp || *endp != '\0') {
6359 *reason = "invalid port/link";
6360 return -EINVAL;
6363 parse_val:
6364 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6365 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6366 const struct ata_force_param *fp = &force_tbl[i];
6368 if (strncasecmp(val, fp->name, strlen(val)))
6369 continue;
6371 nr_matches++;
6372 match_fp = fp;
6374 if (strcasecmp(val, fp->name) == 0) {
6375 nr_matches = 1;
6376 break;
6380 if (!nr_matches) {
6381 *reason = "unknown value";
6382 return -EINVAL;
6384 if (nr_matches > 1) {
6385 *reason = "ambigious value";
6386 return -EINVAL;
6389 force_ent->param = *match_fp;
6391 return 0;
6394 static void __init ata_parse_force_param(void)
6396 int idx = 0, size = 1;
6397 int last_port = -1, last_device = -1;
6398 char *p, *cur, *next;
6400 /* calculate maximum number of params and allocate force_tbl */
6401 for (p = ata_force_param_buf; *p; p++)
6402 if (*p == ',')
6403 size++;
6405 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6406 if (!ata_force_tbl) {
6407 printk(KERN_WARNING "ata: failed to extend force table, "
6408 "libata.force ignored\n");
6409 return;
6412 /* parse and populate the table */
6413 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6414 const char *reason = "";
6415 struct ata_force_ent te = { .port = -1, .device = -1 };
6417 next = cur;
6418 if (ata_parse_force_one(&next, &te, &reason)) {
6419 printk(KERN_WARNING "ata: failed to parse force "
6420 "parameter \"%s\" (%s)\n",
6421 cur, reason);
6422 continue;
6425 if (te.port == -1) {
6426 te.port = last_port;
6427 te.device = last_device;
6430 ata_force_tbl[idx++] = te;
6432 last_port = te.port;
6433 last_device = te.device;
6436 ata_force_tbl_size = idx;
6439 static int __init ata_init(void)
6441 int rc;
6443 ata_parse_force_param();
6445 rc = ata_sff_init();
6446 if (rc) {
6447 kfree(ata_force_tbl);
6448 return rc;
6451 libata_transport_init();
6452 ata_scsi_transport_template = ata_attach_transport();
6453 if (!ata_scsi_transport_template) {
6454 ata_sff_exit();
6455 rc = -ENOMEM;
6456 goto err_out;
6459 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6460 return 0;
6462 err_out:
6463 return rc;
6466 static void __exit ata_exit(void)
6468 ata_release_transport(ata_scsi_transport_template);
6469 libata_transport_exit();
6470 ata_sff_exit();
6471 kfree(ata_force_tbl);
6474 subsys_initcall(ata_init);
6475 module_exit(ata_exit);
6477 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6479 int ata_ratelimit(void)
6481 return __ratelimit(&ratelimit);
6485 * ata_msleep - ATA EH owner aware msleep
6486 * @ap: ATA port to attribute the sleep to
6487 * @msecs: duration to sleep in milliseconds
6489 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6490 * ownership is released before going to sleep and reacquired
6491 * after the sleep is complete. IOW, other ports sharing the
6492 * @ap->host will be allowed to own the EH while this task is
6493 * sleeping.
6495 * LOCKING:
6496 * Might sleep.
6498 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6500 bool owns_eh = ap && ap->host->eh_owner == current;
6502 if (owns_eh)
6503 ata_eh_release(ap);
6505 msleep(msecs);
6507 if (owns_eh)
6508 ata_eh_acquire(ap);
6512 * ata_wait_register - wait until register value changes
6513 * @ap: ATA port to wait register for, can be NULL
6514 * @reg: IO-mapped register
6515 * @mask: Mask to apply to read register value
6516 * @val: Wait condition
6517 * @interval: polling interval in milliseconds
6518 * @timeout: timeout in milliseconds
6520 * Waiting for some bits of register to change is a common
6521 * operation for ATA controllers. This function reads 32bit LE
6522 * IO-mapped register @reg and tests for the following condition.
6524 * (*@reg & mask) != val
6526 * If the condition is met, it returns; otherwise, the process is
6527 * repeated after @interval_msec until timeout.
6529 * LOCKING:
6530 * Kernel thread context (may sleep)
6532 * RETURNS:
6533 * The final register value.
6535 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6536 unsigned long interval, unsigned long timeout)
6538 unsigned long deadline;
6539 u32 tmp;
6541 tmp = ioread32(reg);
6543 /* Calculate timeout _after_ the first read to make sure
6544 * preceding writes reach the controller before starting to
6545 * eat away the timeout.
6547 deadline = ata_deadline(jiffies, timeout);
6549 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6550 ata_msleep(ap, interval);
6551 tmp = ioread32(reg);
6554 return tmp;
6558 * Dummy port_ops
6560 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6562 return AC_ERR_SYSTEM;
6565 static void ata_dummy_error_handler(struct ata_port *ap)
6567 /* truly dummy */
6570 struct ata_port_operations ata_dummy_port_ops = {
6571 .qc_prep = ata_noop_qc_prep,
6572 .qc_issue = ata_dummy_qc_issue,
6573 .error_handler = ata_dummy_error_handler,
6576 const struct ata_port_info ata_dummy_port_info = {
6577 .port_ops = &ata_dummy_port_ops,
6581 * Utility print functions
6583 int ata_port_printk(const struct ata_port *ap, const char *level,
6584 const char *fmt, ...)
6586 struct va_format vaf;
6587 va_list args;
6588 int r;
6590 va_start(args, fmt);
6592 vaf.fmt = fmt;
6593 vaf.va = &args;
6595 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6597 va_end(args);
6599 return r;
6601 EXPORT_SYMBOL(ata_port_printk);
6603 int ata_link_printk(const struct ata_link *link, const char *level,
6604 const char *fmt, ...)
6606 struct va_format vaf;
6607 va_list args;
6608 int r;
6610 va_start(args, fmt);
6612 vaf.fmt = fmt;
6613 vaf.va = &args;
6615 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6616 r = printk("%sata%u.%02u: %pV",
6617 level, link->ap->print_id, link->pmp, &vaf);
6618 else
6619 r = printk("%sata%u: %pV",
6620 level, link->ap->print_id, &vaf);
6622 va_end(args);
6624 return r;
6626 EXPORT_SYMBOL(ata_link_printk);
6628 int ata_dev_printk(const struct ata_device *dev, const char *level,
6629 const char *fmt, ...)
6631 struct va_format vaf;
6632 va_list args;
6633 int r;
6635 va_start(args, fmt);
6637 vaf.fmt = fmt;
6638 vaf.va = &args;
6640 r = printk("%sata%u.%02u: %pV",
6641 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6642 &vaf);
6644 va_end(args);
6646 return r;
6648 EXPORT_SYMBOL(ata_dev_printk);
6650 void ata_print_version(const struct device *dev, const char *version)
6652 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6654 EXPORT_SYMBOL(ata_print_version);
6657 * libata is essentially a library of internal helper functions for
6658 * low-level ATA host controller drivers. As such, the API/ABI is
6659 * likely to change as new drivers are added and updated.
6660 * Do not depend on ABI/API stability.
6662 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6663 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6664 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6665 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6666 EXPORT_SYMBOL_GPL(sata_port_ops);
6667 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6668 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6669 EXPORT_SYMBOL_GPL(ata_link_next);
6670 EXPORT_SYMBOL_GPL(ata_dev_next);
6671 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6672 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6673 EXPORT_SYMBOL_GPL(ata_host_init);
6674 EXPORT_SYMBOL_GPL(ata_host_alloc);
6675 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6676 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6677 EXPORT_SYMBOL_GPL(ata_host_start);
6678 EXPORT_SYMBOL_GPL(ata_host_register);
6679 EXPORT_SYMBOL_GPL(ata_host_activate);
6680 EXPORT_SYMBOL_GPL(ata_host_detach);
6681 EXPORT_SYMBOL_GPL(ata_sg_init);
6682 EXPORT_SYMBOL_GPL(ata_qc_complete);
6683 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6684 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6685 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6686 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6687 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6688 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6689 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6690 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6691 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6692 EXPORT_SYMBOL_GPL(ata_mode_string);
6693 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6694 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6695 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6696 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6697 EXPORT_SYMBOL_GPL(ata_dev_disable);
6698 EXPORT_SYMBOL_GPL(sata_set_spd);
6699 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6700 EXPORT_SYMBOL_GPL(sata_link_debounce);
6701 EXPORT_SYMBOL_GPL(sata_link_resume);
6702 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6703 EXPORT_SYMBOL_GPL(ata_std_prereset);
6704 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6705 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6706 EXPORT_SYMBOL_GPL(ata_std_postreset);
6707 EXPORT_SYMBOL_GPL(ata_dev_classify);
6708 EXPORT_SYMBOL_GPL(ata_dev_pair);
6709 EXPORT_SYMBOL_GPL(ata_ratelimit);
6710 EXPORT_SYMBOL_GPL(ata_msleep);
6711 EXPORT_SYMBOL_GPL(ata_wait_register);
6712 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6713 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6714 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6715 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6716 EXPORT_SYMBOL_GPL(sata_scr_valid);
6717 EXPORT_SYMBOL_GPL(sata_scr_read);
6718 EXPORT_SYMBOL_GPL(sata_scr_write);
6719 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6720 EXPORT_SYMBOL_GPL(ata_link_online);
6721 EXPORT_SYMBOL_GPL(ata_link_offline);
6722 #ifdef CONFIG_PM
6723 EXPORT_SYMBOL_GPL(ata_host_suspend);
6724 EXPORT_SYMBOL_GPL(ata_host_resume);
6725 #endif /* CONFIG_PM */
6726 EXPORT_SYMBOL_GPL(ata_id_string);
6727 EXPORT_SYMBOL_GPL(ata_id_c_string);
6728 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6729 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6731 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6732 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6733 EXPORT_SYMBOL_GPL(ata_timing_compute);
6734 EXPORT_SYMBOL_GPL(ata_timing_merge);
6735 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6737 #ifdef CONFIG_PCI
6738 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6739 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6740 #ifdef CONFIG_PM
6741 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6742 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6743 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6744 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6745 #endif /* CONFIG_PM */
6746 #endif /* CONFIG_PCI */
6748 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6749 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6750 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6751 EXPORT_SYMBOL_GPL(ata_port_desc);
6752 #ifdef CONFIG_PCI
6753 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6754 #endif /* CONFIG_PCI */
6755 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6756 EXPORT_SYMBOL_GPL(ata_link_abort);
6757 EXPORT_SYMBOL_GPL(ata_port_abort);
6758 EXPORT_SYMBOL_GPL(ata_port_freeze);
6759 EXPORT_SYMBOL_GPL(sata_async_notification);
6760 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6761 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6762 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6763 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6764 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6765 EXPORT_SYMBOL_GPL(ata_do_eh);
6766 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6768 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6769 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6770 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6771 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6772 EXPORT_SYMBOL_GPL(ata_cable_sata);