x86, mrst: use a temporary variable for SFI irq
[linux-btrfs-devel.git] / fs / xfs / xfs_log_recover.c
bloba199dbcee7d8c274b14a648c1252986234b04f9e
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_rw.h"
44 #include "xfs_utils.h"
45 #include "xfs_trace.h"
47 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
48 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
49 #if defined(DEBUG)
50 STATIC void xlog_recover_check_summary(xlog_t *);
51 #else
52 #define xlog_recover_check_summary(log)
53 #endif
56 * This structure is used during recovery to record the buf log items which
57 * have been canceled and should not be replayed.
59 struct xfs_buf_cancel {
60 xfs_daddr_t bc_blkno;
61 uint bc_len;
62 int bc_refcount;
63 struct list_head bc_list;
67 * Sector aligned buffer routines for buffer create/read/write/access
71 * Verify the given count of basic blocks is valid number of blocks
72 * to specify for an operation involving the given XFS log buffer.
73 * Returns nonzero if the count is valid, 0 otherwise.
76 static inline int
77 xlog_buf_bbcount_valid(
78 xlog_t *log,
79 int bbcount)
81 return bbcount > 0 && bbcount <= log->l_logBBsize;
85 * Allocate a buffer to hold log data. The buffer needs to be able
86 * to map to a range of nbblks basic blocks at any valid (basic
87 * block) offset within the log.
89 STATIC xfs_buf_t *
90 xlog_get_bp(
91 xlog_t *log,
92 int nbblks)
94 struct xfs_buf *bp;
96 if (!xlog_buf_bbcount_valid(log, nbblks)) {
97 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
98 nbblks);
99 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
100 return NULL;
104 * We do log I/O in units of log sectors (a power-of-2
105 * multiple of the basic block size), so we round up the
106 * requested size to accommodate the basic blocks required
107 * for complete log sectors.
109 * In addition, the buffer may be used for a non-sector-
110 * aligned block offset, in which case an I/O of the
111 * requested size could extend beyond the end of the
112 * buffer. If the requested size is only 1 basic block it
113 * will never straddle a sector boundary, so this won't be
114 * an issue. Nor will this be a problem if the log I/O is
115 * done in basic blocks (sector size 1). But otherwise we
116 * extend the buffer by one extra log sector to ensure
117 * there's space to accommodate this possibility.
119 if (nbblks > 1 && log->l_sectBBsize > 1)
120 nbblks += log->l_sectBBsize;
121 nbblks = round_up(nbblks, log->l_sectBBsize);
123 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, BBTOB(nbblks), 0);
124 if (bp)
125 xfs_buf_unlock(bp);
126 return bp;
129 STATIC void
130 xlog_put_bp(
131 xfs_buf_t *bp)
133 xfs_buf_free(bp);
137 * Return the address of the start of the given block number's data
138 * in a log buffer. The buffer covers a log sector-aligned region.
140 STATIC xfs_caddr_t
141 xlog_align(
142 xlog_t *log,
143 xfs_daddr_t blk_no,
144 int nbblks,
145 xfs_buf_t *bp)
147 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
149 ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
150 return bp->b_addr + BBTOB(offset);
155 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
157 STATIC int
158 xlog_bread_noalign(
159 xlog_t *log,
160 xfs_daddr_t blk_no,
161 int nbblks,
162 xfs_buf_t *bp)
164 int error;
166 if (!xlog_buf_bbcount_valid(log, nbblks)) {
167 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
168 nbblks);
169 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
170 return EFSCORRUPTED;
173 blk_no = round_down(blk_no, log->l_sectBBsize);
174 nbblks = round_up(nbblks, log->l_sectBBsize);
176 ASSERT(nbblks > 0);
177 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
179 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
180 XFS_BUF_READ(bp);
181 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
183 xfsbdstrat(log->l_mp, bp);
184 error = xfs_buf_iowait(bp);
185 if (error)
186 xfs_ioerror_alert("xlog_bread", log->l_mp,
187 bp, XFS_BUF_ADDR(bp));
188 return error;
191 STATIC int
192 xlog_bread(
193 xlog_t *log,
194 xfs_daddr_t blk_no,
195 int nbblks,
196 xfs_buf_t *bp,
197 xfs_caddr_t *offset)
199 int error;
201 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
202 if (error)
203 return error;
205 *offset = xlog_align(log, blk_no, nbblks, bp);
206 return 0;
210 * Read at an offset into the buffer. Returns with the buffer in it's original
211 * state regardless of the result of the read.
213 STATIC int
214 xlog_bread_offset(
215 xlog_t *log,
216 xfs_daddr_t blk_no, /* block to read from */
217 int nbblks, /* blocks to read */
218 xfs_buf_t *bp,
219 xfs_caddr_t offset)
221 xfs_caddr_t orig_offset = bp->b_addr;
222 int orig_len = bp->b_buffer_length;
223 int error, error2;
225 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
226 if (error)
227 return error;
229 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
231 /* must reset buffer pointer even on error */
232 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
233 if (error)
234 return error;
235 return error2;
239 * Write out the buffer at the given block for the given number of blocks.
240 * The buffer is kept locked across the write and is returned locked.
241 * This can only be used for synchronous log writes.
243 STATIC int
244 xlog_bwrite(
245 xlog_t *log,
246 xfs_daddr_t blk_no,
247 int nbblks,
248 xfs_buf_t *bp)
250 int error;
252 if (!xlog_buf_bbcount_valid(log, nbblks)) {
253 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
254 nbblks);
255 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
256 return EFSCORRUPTED;
259 blk_no = round_down(blk_no, log->l_sectBBsize);
260 nbblks = round_up(nbblks, log->l_sectBBsize);
262 ASSERT(nbblks > 0);
263 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
265 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
266 XFS_BUF_ZEROFLAGS(bp);
267 xfs_buf_hold(bp);
268 xfs_buf_lock(bp);
269 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
271 if ((error = xfs_bwrite(log->l_mp, bp)))
272 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
273 bp, XFS_BUF_ADDR(bp));
274 return error;
277 #ifdef DEBUG
279 * dump debug superblock and log record information
281 STATIC void
282 xlog_header_check_dump(
283 xfs_mount_t *mp,
284 xlog_rec_header_t *head)
286 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
287 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
288 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
289 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
291 #else
292 #define xlog_header_check_dump(mp, head)
293 #endif
296 * check log record header for recovery
298 STATIC int
299 xlog_header_check_recover(
300 xfs_mount_t *mp,
301 xlog_rec_header_t *head)
303 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
306 * IRIX doesn't write the h_fmt field and leaves it zeroed
307 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
308 * a dirty log created in IRIX.
310 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
311 xfs_warn(mp,
312 "dirty log written in incompatible format - can't recover");
313 xlog_header_check_dump(mp, head);
314 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
315 XFS_ERRLEVEL_HIGH, mp);
316 return XFS_ERROR(EFSCORRUPTED);
317 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
318 xfs_warn(mp,
319 "dirty log entry has mismatched uuid - can't recover");
320 xlog_header_check_dump(mp, head);
321 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
322 XFS_ERRLEVEL_HIGH, mp);
323 return XFS_ERROR(EFSCORRUPTED);
325 return 0;
329 * read the head block of the log and check the header
331 STATIC int
332 xlog_header_check_mount(
333 xfs_mount_t *mp,
334 xlog_rec_header_t *head)
336 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
338 if (uuid_is_nil(&head->h_fs_uuid)) {
340 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
341 * h_fs_uuid is nil, we assume this log was last mounted
342 * by IRIX and continue.
344 xfs_warn(mp, "nil uuid in log - IRIX style log");
345 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
346 xfs_warn(mp, "log has mismatched uuid - can't recover");
347 xlog_header_check_dump(mp, head);
348 XFS_ERROR_REPORT("xlog_header_check_mount",
349 XFS_ERRLEVEL_HIGH, mp);
350 return XFS_ERROR(EFSCORRUPTED);
352 return 0;
355 STATIC void
356 xlog_recover_iodone(
357 struct xfs_buf *bp)
359 if (bp->b_error) {
361 * We're not going to bother about retrying
362 * this during recovery. One strike!
364 xfs_ioerror_alert("xlog_recover_iodone",
365 bp->b_target->bt_mount, bp,
366 XFS_BUF_ADDR(bp));
367 xfs_force_shutdown(bp->b_target->bt_mount,
368 SHUTDOWN_META_IO_ERROR);
370 bp->b_iodone = NULL;
371 xfs_buf_ioend(bp, 0);
375 * This routine finds (to an approximation) the first block in the physical
376 * log which contains the given cycle. It uses a binary search algorithm.
377 * Note that the algorithm can not be perfect because the disk will not
378 * necessarily be perfect.
380 STATIC int
381 xlog_find_cycle_start(
382 xlog_t *log,
383 xfs_buf_t *bp,
384 xfs_daddr_t first_blk,
385 xfs_daddr_t *last_blk,
386 uint cycle)
388 xfs_caddr_t offset;
389 xfs_daddr_t mid_blk;
390 xfs_daddr_t end_blk;
391 uint mid_cycle;
392 int error;
394 end_blk = *last_blk;
395 mid_blk = BLK_AVG(first_blk, end_blk);
396 while (mid_blk != first_blk && mid_blk != end_blk) {
397 error = xlog_bread(log, mid_blk, 1, bp, &offset);
398 if (error)
399 return error;
400 mid_cycle = xlog_get_cycle(offset);
401 if (mid_cycle == cycle)
402 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
403 else
404 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
405 mid_blk = BLK_AVG(first_blk, end_blk);
407 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
408 (mid_blk == end_blk && mid_blk-1 == first_blk));
410 *last_blk = end_blk;
412 return 0;
416 * Check that a range of blocks does not contain stop_on_cycle_no.
417 * Fill in *new_blk with the block offset where such a block is
418 * found, or with -1 (an invalid block number) if there is no such
419 * block in the range. The scan needs to occur from front to back
420 * and the pointer into the region must be updated since a later
421 * routine will need to perform another test.
423 STATIC int
424 xlog_find_verify_cycle(
425 xlog_t *log,
426 xfs_daddr_t start_blk,
427 int nbblks,
428 uint stop_on_cycle_no,
429 xfs_daddr_t *new_blk)
431 xfs_daddr_t i, j;
432 uint cycle;
433 xfs_buf_t *bp;
434 xfs_daddr_t bufblks;
435 xfs_caddr_t buf = NULL;
436 int error = 0;
439 * Greedily allocate a buffer big enough to handle the full
440 * range of basic blocks we'll be examining. If that fails,
441 * try a smaller size. We need to be able to read at least
442 * a log sector, or we're out of luck.
444 bufblks = 1 << ffs(nbblks);
445 while (!(bp = xlog_get_bp(log, bufblks))) {
446 bufblks >>= 1;
447 if (bufblks < log->l_sectBBsize)
448 return ENOMEM;
451 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
452 int bcount;
454 bcount = min(bufblks, (start_blk + nbblks - i));
456 error = xlog_bread(log, i, bcount, bp, &buf);
457 if (error)
458 goto out;
460 for (j = 0; j < bcount; j++) {
461 cycle = xlog_get_cycle(buf);
462 if (cycle == stop_on_cycle_no) {
463 *new_blk = i+j;
464 goto out;
467 buf += BBSIZE;
471 *new_blk = -1;
473 out:
474 xlog_put_bp(bp);
475 return error;
479 * Potentially backup over partial log record write.
481 * In the typical case, last_blk is the number of the block directly after
482 * a good log record. Therefore, we subtract one to get the block number
483 * of the last block in the given buffer. extra_bblks contains the number
484 * of blocks we would have read on a previous read. This happens when the
485 * last log record is split over the end of the physical log.
487 * extra_bblks is the number of blocks potentially verified on a previous
488 * call to this routine.
490 STATIC int
491 xlog_find_verify_log_record(
492 xlog_t *log,
493 xfs_daddr_t start_blk,
494 xfs_daddr_t *last_blk,
495 int extra_bblks)
497 xfs_daddr_t i;
498 xfs_buf_t *bp;
499 xfs_caddr_t offset = NULL;
500 xlog_rec_header_t *head = NULL;
501 int error = 0;
502 int smallmem = 0;
503 int num_blks = *last_blk - start_blk;
504 int xhdrs;
506 ASSERT(start_blk != 0 || *last_blk != start_blk);
508 if (!(bp = xlog_get_bp(log, num_blks))) {
509 if (!(bp = xlog_get_bp(log, 1)))
510 return ENOMEM;
511 smallmem = 1;
512 } else {
513 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
514 if (error)
515 goto out;
516 offset += ((num_blks - 1) << BBSHIFT);
519 for (i = (*last_blk) - 1; i >= 0; i--) {
520 if (i < start_blk) {
521 /* valid log record not found */
522 xfs_warn(log->l_mp,
523 "Log inconsistent (didn't find previous header)");
524 ASSERT(0);
525 error = XFS_ERROR(EIO);
526 goto out;
529 if (smallmem) {
530 error = xlog_bread(log, i, 1, bp, &offset);
531 if (error)
532 goto out;
535 head = (xlog_rec_header_t *)offset;
537 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
538 break;
540 if (!smallmem)
541 offset -= BBSIZE;
545 * We hit the beginning of the physical log & still no header. Return
546 * to caller. If caller can handle a return of -1, then this routine
547 * will be called again for the end of the physical log.
549 if (i == -1) {
550 error = -1;
551 goto out;
555 * We have the final block of the good log (the first block
556 * of the log record _before_ the head. So we check the uuid.
558 if ((error = xlog_header_check_mount(log->l_mp, head)))
559 goto out;
562 * We may have found a log record header before we expected one.
563 * last_blk will be the 1st block # with a given cycle #. We may end
564 * up reading an entire log record. In this case, we don't want to
565 * reset last_blk. Only when last_blk points in the middle of a log
566 * record do we update last_blk.
568 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
569 uint h_size = be32_to_cpu(head->h_size);
571 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
572 if (h_size % XLOG_HEADER_CYCLE_SIZE)
573 xhdrs++;
574 } else {
575 xhdrs = 1;
578 if (*last_blk - i + extra_bblks !=
579 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
580 *last_blk = i;
582 out:
583 xlog_put_bp(bp);
584 return error;
588 * Head is defined to be the point of the log where the next log write
589 * write could go. This means that incomplete LR writes at the end are
590 * eliminated when calculating the head. We aren't guaranteed that previous
591 * LR have complete transactions. We only know that a cycle number of
592 * current cycle number -1 won't be present in the log if we start writing
593 * from our current block number.
595 * last_blk contains the block number of the first block with a given
596 * cycle number.
598 * Return: zero if normal, non-zero if error.
600 STATIC int
601 xlog_find_head(
602 xlog_t *log,
603 xfs_daddr_t *return_head_blk)
605 xfs_buf_t *bp;
606 xfs_caddr_t offset;
607 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
608 int num_scan_bblks;
609 uint first_half_cycle, last_half_cycle;
610 uint stop_on_cycle;
611 int error, log_bbnum = log->l_logBBsize;
613 /* Is the end of the log device zeroed? */
614 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
615 *return_head_blk = first_blk;
617 /* Is the whole lot zeroed? */
618 if (!first_blk) {
619 /* Linux XFS shouldn't generate totally zeroed logs -
620 * mkfs etc write a dummy unmount record to a fresh
621 * log so we can store the uuid in there
623 xfs_warn(log->l_mp, "totally zeroed log");
626 return 0;
627 } else if (error) {
628 xfs_warn(log->l_mp, "empty log check failed");
629 return error;
632 first_blk = 0; /* get cycle # of 1st block */
633 bp = xlog_get_bp(log, 1);
634 if (!bp)
635 return ENOMEM;
637 error = xlog_bread(log, 0, 1, bp, &offset);
638 if (error)
639 goto bp_err;
641 first_half_cycle = xlog_get_cycle(offset);
643 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
644 error = xlog_bread(log, last_blk, 1, bp, &offset);
645 if (error)
646 goto bp_err;
648 last_half_cycle = xlog_get_cycle(offset);
649 ASSERT(last_half_cycle != 0);
652 * If the 1st half cycle number is equal to the last half cycle number,
653 * then the entire log is stamped with the same cycle number. In this
654 * case, head_blk can't be set to zero (which makes sense). The below
655 * math doesn't work out properly with head_blk equal to zero. Instead,
656 * we set it to log_bbnum which is an invalid block number, but this
657 * value makes the math correct. If head_blk doesn't changed through
658 * all the tests below, *head_blk is set to zero at the very end rather
659 * than log_bbnum. In a sense, log_bbnum and zero are the same block
660 * in a circular file.
662 if (first_half_cycle == last_half_cycle) {
664 * In this case we believe that the entire log should have
665 * cycle number last_half_cycle. We need to scan backwards
666 * from the end verifying that there are no holes still
667 * containing last_half_cycle - 1. If we find such a hole,
668 * then the start of that hole will be the new head. The
669 * simple case looks like
670 * x | x ... | x - 1 | x
671 * Another case that fits this picture would be
672 * x | x + 1 | x ... | x
673 * In this case the head really is somewhere at the end of the
674 * log, as one of the latest writes at the beginning was
675 * incomplete.
676 * One more case is
677 * x | x + 1 | x ... | x - 1 | x
678 * This is really the combination of the above two cases, and
679 * the head has to end up at the start of the x-1 hole at the
680 * end of the log.
682 * In the 256k log case, we will read from the beginning to the
683 * end of the log and search for cycle numbers equal to x-1.
684 * We don't worry about the x+1 blocks that we encounter,
685 * because we know that they cannot be the head since the log
686 * started with x.
688 head_blk = log_bbnum;
689 stop_on_cycle = last_half_cycle - 1;
690 } else {
692 * In this case we want to find the first block with cycle
693 * number matching last_half_cycle. We expect the log to be
694 * some variation on
695 * x + 1 ... | x ... | x
696 * The first block with cycle number x (last_half_cycle) will
697 * be where the new head belongs. First we do a binary search
698 * for the first occurrence of last_half_cycle. The binary
699 * search may not be totally accurate, so then we scan back
700 * from there looking for occurrences of last_half_cycle before
701 * us. If that backwards scan wraps around the beginning of
702 * the log, then we look for occurrences of last_half_cycle - 1
703 * at the end of the log. The cases we're looking for look
704 * like
705 * v binary search stopped here
706 * x + 1 ... | x | x + 1 | x ... | x
707 * ^ but we want to locate this spot
708 * or
709 * <---------> less than scan distance
710 * x + 1 ... | x ... | x - 1 | x
711 * ^ we want to locate this spot
713 stop_on_cycle = last_half_cycle;
714 if ((error = xlog_find_cycle_start(log, bp, first_blk,
715 &head_blk, last_half_cycle)))
716 goto bp_err;
720 * Now validate the answer. Scan back some number of maximum possible
721 * blocks and make sure each one has the expected cycle number. The
722 * maximum is determined by the total possible amount of buffering
723 * in the in-core log. The following number can be made tighter if
724 * we actually look at the block size of the filesystem.
726 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
727 if (head_blk >= num_scan_bblks) {
729 * We are guaranteed that the entire check can be performed
730 * in one buffer.
732 start_blk = head_blk - num_scan_bblks;
733 if ((error = xlog_find_verify_cycle(log,
734 start_blk, num_scan_bblks,
735 stop_on_cycle, &new_blk)))
736 goto bp_err;
737 if (new_blk != -1)
738 head_blk = new_blk;
739 } else { /* need to read 2 parts of log */
741 * We are going to scan backwards in the log in two parts.
742 * First we scan the physical end of the log. In this part
743 * of the log, we are looking for blocks with cycle number
744 * last_half_cycle - 1.
745 * If we find one, then we know that the log starts there, as
746 * we've found a hole that didn't get written in going around
747 * the end of the physical log. The simple case for this is
748 * x + 1 ... | x ... | x - 1 | x
749 * <---------> less than scan distance
750 * If all of the blocks at the end of the log have cycle number
751 * last_half_cycle, then we check the blocks at the start of
752 * the log looking for occurrences of last_half_cycle. If we
753 * find one, then our current estimate for the location of the
754 * first occurrence of last_half_cycle is wrong and we move
755 * back to the hole we've found. This case looks like
756 * x + 1 ... | x | x + 1 | x ...
757 * ^ binary search stopped here
758 * Another case we need to handle that only occurs in 256k
759 * logs is
760 * x + 1 ... | x ... | x+1 | x ...
761 * ^ binary search stops here
762 * In a 256k log, the scan at the end of the log will see the
763 * x + 1 blocks. We need to skip past those since that is
764 * certainly not the head of the log. By searching for
765 * last_half_cycle-1 we accomplish that.
767 ASSERT(head_blk <= INT_MAX &&
768 (xfs_daddr_t) num_scan_bblks >= head_blk);
769 start_blk = log_bbnum - (num_scan_bblks - head_blk);
770 if ((error = xlog_find_verify_cycle(log, start_blk,
771 num_scan_bblks - (int)head_blk,
772 (stop_on_cycle - 1), &new_blk)))
773 goto bp_err;
774 if (new_blk != -1) {
775 head_blk = new_blk;
776 goto validate_head;
780 * Scan beginning of log now. The last part of the physical
781 * log is good. This scan needs to verify that it doesn't find
782 * the last_half_cycle.
784 start_blk = 0;
785 ASSERT(head_blk <= INT_MAX);
786 if ((error = xlog_find_verify_cycle(log,
787 start_blk, (int)head_blk,
788 stop_on_cycle, &new_blk)))
789 goto bp_err;
790 if (new_blk != -1)
791 head_blk = new_blk;
794 validate_head:
796 * Now we need to make sure head_blk is not pointing to a block in
797 * the middle of a log record.
799 num_scan_bblks = XLOG_REC_SHIFT(log);
800 if (head_blk >= num_scan_bblks) {
801 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
803 /* start ptr at last block ptr before head_blk */
804 if ((error = xlog_find_verify_log_record(log, start_blk,
805 &head_blk, 0)) == -1) {
806 error = XFS_ERROR(EIO);
807 goto bp_err;
808 } else if (error)
809 goto bp_err;
810 } else {
811 start_blk = 0;
812 ASSERT(head_blk <= INT_MAX);
813 if ((error = xlog_find_verify_log_record(log, start_blk,
814 &head_blk, 0)) == -1) {
815 /* We hit the beginning of the log during our search */
816 start_blk = log_bbnum - (num_scan_bblks - head_blk);
817 new_blk = log_bbnum;
818 ASSERT(start_blk <= INT_MAX &&
819 (xfs_daddr_t) log_bbnum-start_blk >= 0);
820 ASSERT(head_blk <= INT_MAX);
821 if ((error = xlog_find_verify_log_record(log,
822 start_blk, &new_blk,
823 (int)head_blk)) == -1) {
824 error = XFS_ERROR(EIO);
825 goto bp_err;
826 } else if (error)
827 goto bp_err;
828 if (new_blk != log_bbnum)
829 head_blk = new_blk;
830 } else if (error)
831 goto bp_err;
834 xlog_put_bp(bp);
835 if (head_blk == log_bbnum)
836 *return_head_blk = 0;
837 else
838 *return_head_blk = head_blk;
840 * When returning here, we have a good block number. Bad block
841 * means that during a previous crash, we didn't have a clean break
842 * from cycle number N to cycle number N-1. In this case, we need
843 * to find the first block with cycle number N-1.
845 return 0;
847 bp_err:
848 xlog_put_bp(bp);
850 if (error)
851 xfs_warn(log->l_mp, "failed to find log head");
852 return error;
856 * Find the sync block number or the tail of the log.
858 * This will be the block number of the last record to have its
859 * associated buffers synced to disk. Every log record header has
860 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
861 * to get a sync block number. The only concern is to figure out which
862 * log record header to believe.
864 * The following algorithm uses the log record header with the largest
865 * lsn. The entire log record does not need to be valid. We only care
866 * that the header is valid.
868 * We could speed up search by using current head_blk buffer, but it is not
869 * available.
871 STATIC int
872 xlog_find_tail(
873 xlog_t *log,
874 xfs_daddr_t *head_blk,
875 xfs_daddr_t *tail_blk)
877 xlog_rec_header_t *rhead;
878 xlog_op_header_t *op_head;
879 xfs_caddr_t offset = NULL;
880 xfs_buf_t *bp;
881 int error, i, found;
882 xfs_daddr_t umount_data_blk;
883 xfs_daddr_t after_umount_blk;
884 xfs_lsn_t tail_lsn;
885 int hblks;
887 found = 0;
890 * Find previous log record
892 if ((error = xlog_find_head(log, head_blk)))
893 return error;
895 bp = xlog_get_bp(log, 1);
896 if (!bp)
897 return ENOMEM;
898 if (*head_blk == 0) { /* special case */
899 error = xlog_bread(log, 0, 1, bp, &offset);
900 if (error)
901 goto done;
903 if (xlog_get_cycle(offset) == 0) {
904 *tail_blk = 0;
905 /* leave all other log inited values alone */
906 goto done;
911 * Search backwards looking for log record header block
913 ASSERT(*head_blk < INT_MAX);
914 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
915 error = xlog_bread(log, i, 1, bp, &offset);
916 if (error)
917 goto done;
919 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
920 found = 1;
921 break;
925 * If we haven't found the log record header block, start looking
926 * again from the end of the physical log. XXXmiken: There should be
927 * a check here to make sure we didn't search more than N blocks in
928 * the previous code.
930 if (!found) {
931 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
932 error = xlog_bread(log, i, 1, bp, &offset);
933 if (error)
934 goto done;
936 if (*(__be32 *)offset ==
937 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
938 found = 2;
939 break;
943 if (!found) {
944 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
945 ASSERT(0);
946 return XFS_ERROR(EIO);
949 /* find blk_no of tail of log */
950 rhead = (xlog_rec_header_t *)offset;
951 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
954 * Reset log values according to the state of the log when we
955 * crashed. In the case where head_blk == 0, we bump curr_cycle
956 * one because the next write starts a new cycle rather than
957 * continuing the cycle of the last good log record. At this
958 * point we have guaranteed that all partial log records have been
959 * accounted for. Therefore, we know that the last good log record
960 * written was complete and ended exactly on the end boundary
961 * of the physical log.
963 log->l_prev_block = i;
964 log->l_curr_block = (int)*head_blk;
965 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
966 if (found == 2)
967 log->l_curr_cycle++;
968 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
969 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
970 xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
971 BBTOB(log->l_curr_block));
972 xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
973 BBTOB(log->l_curr_block));
976 * Look for unmount record. If we find it, then we know there
977 * was a clean unmount. Since 'i' could be the last block in
978 * the physical log, we convert to a log block before comparing
979 * to the head_blk.
981 * Save the current tail lsn to use to pass to
982 * xlog_clear_stale_blocks() below. We won't want to clear the
983 * unmount record if there is one, so we pass the lsn of the
984 * unmount record rather than the block after it.
986 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
987 int h_size = be32_to_cpu(rhead->h_size);
988 int h_version = be32_to_cpu(rhead->h_version);
990 if ((h_version & XLOG_VERSION_2) &&
991 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
992 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
993 if (h_size % XLOG_HEADER_CYCLE_SIZE)
994 hblks++;
995 } else {
996 hblks = 1;
998 } else {
999 hblks = 1;
1001 after_umount_blk = (i + hblks + (int)
1002 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1003 tail_lsn = atomic64_read(&log->l_tail_lsn);
1004 if (*head_blk == after_umount_blk &&
1005 be32_to_cpu(rhead->h_num_logops) == 1) {
1006 umount_data_blk = (i + hblks) % log->l_logBBsize;
1007 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1008 if (error)
1009 goto done;
1011 op_head = (xlog_op_header_t *)offset;
1012 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1014 * Set tail and last sync so that newly written
1015 * log records will point recovery to after the
1016 * current unmount record.
1018 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1019 log->l_curr_cycle, after_umount_blk);
1020 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1021 log->l_curr_cycle, after_umount_blk);
1022 *tail_blk = after_umount_blk;
1025 * Note that the unmount was clean. If the unmount
1026 * was not clean, we need to know this to rebuild the
1027 * superblock counters from the perag headers if we
1028 * have a filesystem using non-persistent counters.
1030 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1035 * Make sure that there are no blocks in front of the head
1036 * with the same cycle number as the head. This can happen
1037 * because we allow multiple outstanding log writes concurrently,
1038 * and the later writes might make it out before earlier ones.
1040 * We use the lsn from before modifying it so that we'll never
1041 * overwrite the unmount record after a clean unmount.
1043 * Do this only if we are going to recover the filesystem
1045 * NOTE: This used to say "if (!readonly)"
1046 * However on Linux, we can & do recover a read-only filesystem.
1047 * We only skip recovery if NORECOVERY is specified on mount,
1048 * in which case we would not be here.
1050 * But... if the -device- itself is readonly, just skip this.
1051 * We can't recover this device anyway, so it won't matter.
1053 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1054 error = xlog_clear_stale_blocks(log, tail_lsn);
1056 done:
1057 xlog_put_bp(bp);
1059 if (error)
1060 xfs_warn(log->l_mp, "failed to locate log tail");
1061 return error;
1065 * Is the log zeroed at all?
1067 * The last binary search should be changed to perform an X block read
1068 * once X becomes small enough. You can then search linearly through
1069 * the X blocks. This will cut down on the number of reads we need to do.
1071 * If the log is partially zeroed, this routine will pass back the blkno
1072 * of the first block with cycle number 0. It won't have a complete LR
1073 * preceding it.
1075 * Return:
1076 * 0 => the log is completely written to
1077 * -1 => use *blk_no as the first block of the log
1078 * >0 => error has occurred
1080 STATIC int
1081 xlog_find_zeroed(
1082 xlog_t *log,
1083 xfs_daddr_t *blk_no)
1085 xfs_buf_t *bp;
1086 xfs_caddr_t offset;
1087 uint first_cycle, last_cycle;
1088 xfs_daddr_t new_blk, last_blk, start_blk;
1089 xfs_daddr_t num_scan_bblks;
1090 int error, log_bbnum = log->l_logBBsize;
1092 *blk_no = 0;
1094 /* check totally zeroed log */
1095 bp = xlog_get_bp(log, 1);
1096 if (!bp)
1097 return ENOMEM;
1098 error = xlog_bread(log, 0, 1, bp, &offset);
1099 if (error)
1100 goto bp_err;
1102 first_cycle = xlog_get_cycle(offset);
1103 if (first_cycle == 0) { /* completely zeroed log */
1104 *blk_no = 0;
1105 xlog_put_bp(bp);
1106 return -1;
1109 /* check partially zeroed log */
1110 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1111 if (error)
1112 goto bp_err;
1114 last_cycle = xlog_get_cycle(offset);
1115 if (last_cycle != 0) { /* log completely written to */
1116 xlog_put_bp(bp);
1117 return 0;
1118 } else if (first_cycle != 1) {
1120 * If the cycle of the last block is zero, the cycle of
1121 * the first block must be 1. If it's not, maybe we're
1122 * not looking at a log... Bail out.
1124 xfs_warn(log->l_mp,
1125 "Log inconsistent or not a log (last==0, first!=1)");
1126 return XFS_ERROR(EINVAL);
1129 /* we have a partially zeroed log */
1130 last_blk = log_bbnum-1;
1131 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1132 goto bp_err;
1135 * Validate the answer. Because there is no way to guarantee that
1136 * the entire log is made up of log records which are the same size,
1137 * we scan over the defined maximum blocks. At this point, the maximum
1138 * is not chosen to mean anything special. XXXmiken
1140 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1141 ASSERT(num_scan_bblks <= INT_MAX);
1143 if (last_blk < num_scan_bblks)
1144 num_scan_bblks = last_blk;
1145 start_blk = last_blk - num_scan_bblks;
1148 * We search for any instances of cycle number 0 that occur before
1149 * our current estimate of the head. What we're trying to detect is
1150 * 1 ... | 0 | 1 | 0...
1151 * ^ binary search ends here
1153 if ((error = xlog_find_verify_cycle(log, start_blk,
1154 (int)num_scan_bblks, 0, &new_blk)))
1155 goto bp_err;
1156 if (new_blk != -1)
1157 last_blk = new_blk;
1160 * Potentially backup over partial log record write. We don't need
1161 * to search the end of the log because we know it is zero.
1163 if ((error = xlog_find_verify_log_record(log, start_blk,
1164 &last_blk, 0)) == -1) {
1165 error = XFS_ERROR(EIO);
1166 goto bp_err;
1167 } else if (error)
1168 goto bp_err;
1170 *blk_no = last_blk;
1171 bp_err:
1172 xlog_put_bp(bp);
1173 if (error)
1174 return error;
1175 return -1;
1179 * These are simple subroutines used by xlog_clear_stale_blocks() below
1180 * to initialize a buffer full of empty log record headers and write
1181 * them into the log.
1183 STATIC void
1184 xlog_add_record(
1185 xlog_t *log,
1186 xfs_caddr_t buf,
1187 int cycle,
1188 int block,
1189 int tail_cycle,
1190 int tail_block)
1192 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1194 memset(buf, 0, BBSIZE);
1195 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1196 recp->h_cycle = cpu_to_be32(cycle);
1197 recp->h_version = cpu_to_be32(
1198 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1199 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1200 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1201 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1202 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1205 STATIC int
1206 xlog_write_log_records(
1207 xlog_t *log,
1208 int cycle,
1209 int start_block,
1210 int blocks,
1211 int tail_cycle,
1212 int tail_block)
1214 xfs_caddr_t offset;
1215 xfs_buf_t *bp;
1216 int balign, ealign;
1217 int sectbb = log->l_sectBBsize;
1218 int end_block = start_block + blocks;
1219 int bufblks;
1220 int error = 0;
1221 int i, j = 0;
1224 * Greedily allocate a buffer big enough to handle the full
1225 * range of basic blocks to be written. If that fails, try
1226 * a smaller size. We need to be able to write at least a
1227 * log sector, or we're out of luck.
1229 bufblks = 1 << ffs(blocks);
1230 while (!(bp = xlog_get_bp(log, bufblks))) {
1231 bufblks >>= 1;
1232 if (bufblks < sectbb)
1233 return ENOMEM;
1236 /* We may need to do a read at the start to fill in part of
1237 * the buffer in the starting sector not covered by the first
1238 * write below.
1240 balign = round_down(start_block, sectbb);
1241 if (balign != start_block) {
1242 error = xlog_bread_noalign(log, start_block, 1, bp);
1243 if (error)
1244 goto out_put_bp;
1246 j = start_block - balign;
1249 for (i = start_block; i < end_block; i += bufblks) {
1250 int bcount, endcount;
1252 bcount = min(bufblks, end_block - start_block);
1253 endcount = bcount - j;
1255 /* We may need to do a read at the end to fill in part of
1256 * the buffer in the final sector not covered by the write.
1257 * If this is the same sector as the above read, skip it.
1259 ealign = round_down(end_block, sectbb);
1260 if (j == 0 && (start_block + endcount > ealign)) {
1261 offset = bp->b_addr + BBTOB(ealign - start_block);
1262 error = xlog_bread_offset(log, ealign, sectbb,
1263 bp, offset);
1264 if (error)
1265 break;
1269 offset = xlog_align(log, start_block, endcount, bp);
1270 for (; j < endcount; j++) {
1271 xlog_add_record(log, offset, cycle, i+j,
1272 tail_cycle, tail_block);
1273 offset += BBSIZE;
1275 error = xlog_bwrite(log, start_block, endcount, bp);
1276 if (error)
1277 break;
1278 start_block += endcount;
1279 j = 0;
1282 out_put_bp:
1283 xlog_put_bp(bp);
1284 return error;
1288 * This routine is called to blow away any incomplete log writes out
1289 * in front of the log head. We do this so that we won't become confused
1290 * if we come up, write only a little bit more, and then crash again.
1291 * If we leave the partial log records out there, this situation could
1292 * cause us to think those partial writes are valid blocks since they
1293 * have the current cycle number. We get rid of them by overwriting them
1294 * with empty log records with the old cycle number rather than the
1295 * current one.
1297 * The tail lsn is passed in rather than taken from
1298 * the log so that we will not write over the unmount record after a
1299 * clean unmount in a 512 block log. Doing so would leave the log without
1300 * any valid log records in it until a new one was written. If we crashed
1301 * during that time we would not be able to recover.
1303 STATIC int
1304 xlog_clear_stale_blocks(
1305 xlog_t *log,
1306 xfs_lsn_t tail_lsn)
1308 int tail_cycle, head_cycle;
1309 int tail_block, head_block;
1310 int tail_distance, max_distance;
1311 int distance;
1312 int error;
1314 tail_cycle = CYCLE_LSN(tail_lsn);
1315 tail_block = BLOCK_LSN(tail_lsn);
1316 head_cycle = log->l_curr_cycle;
1317 head_block = log->l_curr_block;
1320 * Figure out the distance between the new head of the log
1321 * and the tail. We want to write over any blocks beyond the
1322 * head that we may have written just before the crash, but
1323 * we don't want to overwrite the tail of the log.
1325 if (head_cycle == tail_cycle) {
1327 * The tail is behind the head in the physical log,
1328 * so the distance from the head to the tail is the
1329 * distance from the head to the end of the log plus
1330 * the distance from the beginning of the log to the
1331 * tail.
1333 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1334 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1335 XFS_ERRLEVEL_LOW, log->l_mp);
1336 return XFS_ERROR(EFSCORRUPTED);
1338 tail_distance = tail_block + (log->l_logBBsize - head_block);
1339 } else {
1341 * The head is behind the tail in the physical log,
1342 * so the distance from the head to the tail is just
1343 * the tail block minus the head block.
1345 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1346 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1347 XFS_ERRLEVEL_LOW, log->l_mp);
1348 return XFS_ERROR(EFSCORRUPTED);
1350 tail_distance = tail_block - head_block;
1354 * If the head is right up against the tail, we can't clear
1355 * anything.
1357 if (tail_distance <= 0) {
1358 ASSERT(tail_distance == 0);
1359 return 0;
1362 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1364 * Take the smaller of the maximum amount of outstanding I/O
1365 * we could have and the distance to the tail to clear out.
1366 * We take the smaller so that we don't overwrite the tail and
1367 * we don't waste all day writing from the head to the tail
1368 * for no reason.
1370 max_distance = MIN(max_distance, tail_distance);
1372 if ((head_block + max_distance) <= log->l_logBBsize) {
1374 * We can stomp all the blocks we need to without
1375 * wrapping around the end of the log. Just do it
1376 * in a single write. Use the cycle number of the
1377 * current cycle minus one so that the log will look like:
1378 * n ... | n - 1 ...
1380 error = xlog_write_log_records(log, (head_cycle - 1),
1381 head_block, max_distance, tail_cycle,
1382 tail_block);
1383 if (error)
1384 return error;
1385 } else {
1387 * We need to wrap around the end of the physical log in
1388 * order to clear all the blocks. Do it in two separate
1389 * I/Os. The first write should be from the head to the
1390 * end of the physical log, and it should use the current
1391 * cycle number minus one just like above.
1393 distance = log->l_logBBsize - head_block;
1394 error = xlog_write_log_records(log, (head_cycle - 1),
1395 head_block, distance, tail_cycle,
1396 tail_block);
1398 if (error)
1399 return error;
1402 * Now write the blocks at the start of the physical log.
1403 * This writes the remainder of the blocks we want to clear.
1404 * It uses the current cycle number since we're now on the
1405 * same cycle as the head so that we get:
1406 * n ... n ... | n - 1 ...
1407 * ^^^^^ blocks we're writing
1409 distance = max_distance - (log->l_logBBsize - head_block);
1410 error = xlog_write_log_records(log, head_cycle, 0, distance,
1411 tail_cycle, tail_block);
1412 if (error)
1413 return error;
1416 return 0;
1419 /******************************************************************************
1421 * Log recover routines
1423 ******************************************************************************
1426 STATIC xlog_recover_t *
1427 xlog_recover_find_tid(
1428 struct hlist_head *head,
1429 xlog_tid_t tid)
1431 xlog_recover_t *trans;
1432 struct hlist_node *n;
1434 hlist_for_each_entry(trans, n, head, r_list) {
1435 if (trans->r_log_tid == tid)
1436 return trans;
1438 return NULL;
1441 STATIC void
1442 xlog_recover_new_tid(
1443 struct hlist_head *head,
1444 xlog_tid_t tid,
1445 xfs_lsn_t lsn)
1447 xlog_recover_t *trans;
1449 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1450 trans->r_log_tid = tid;
1451 trans->r_lsn = lsn;
1452 INIT_LIST_HEAD(&trans->r_itemq);
1454 INIT_HLIST_NODE(&trans->r_list);
1455 hlist_add_head(&trans->r_list, head);
1458 STATIC void
1459 xlog_recover_add_item(
1460 struct list_head *head)
1462 xlog_recover_item_t *item;
1464 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1465 INIT_LIST_HEAD(&item->ri_list);
1466 list_add_tail(&item->ri_list, head);
1469 STATIC int
1470 xlog_recover_add_to_cont_trans(
1471 struct log *log,
1472 xlog_recover_t *trans,
1473 xfs_caddr_t dp,
1474 int len)
1476 xlog_recover_item_t *item;
1477 xfs_caddr_t ptr, old_ptr;
1478 int old_len;
1480 if (list_empty(&trans->r_itemq)) {
1481 /* finish copying rest of trans header */
1482 xlog_recover_add_item(&trans->r_itemq);
1483 ptr = (xfs_caddr_t) &trans->r_theader +
1484 sizeof(xfs_trans_header_t) - len;
1485 memcpy(ptr, dp, len); /* d, s, l */
1486 return 0;
1488 /* take the tail entry */
1489 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1491 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1492 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1494 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1495 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1496 item->ri_buf[item->ri_cnt-1].i_len += len;
1497 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1498 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1499 return 0;
1503 * The next region to add is the start of a new region. It could be
1504 * a whole region or it could be the first part of a new region. Because
1505 * of this, the assumption here is that the type and size fields of all
1506 * format structures fit into the first 32 bits of the structure.
1508 * This works because all regions must be 32 bit aligned. Therefore, we
1509 * either have both fields or we have neither field. In the case we have
1510 * neither field, the data part of the region is zero length. We only have
1511 * a log_op_header and can throw away the header since a new one will appear
1512 * later. If we have at least 4 bytes, then we can determine how many regions
1513 * will appear in the current log item.
1515 STATIC int
1516 xlog_recover_add_to_trans(
1517 struct log *log,
1518 xlog_recover_t *trans,
1519 xfs_caddr_t dp,
1520 int len)
1522 xfs_inode_log_format_t *in_f; /* any will do */
1523 xlog_recover_item_t *item;
1524 xfs_caddr_t ptr;
1526 if (!len)
1527 return 0;
1528 if (list_empty(&trans->r_itemq)) {
1529 /* we need to catch log corruptions here */
1530 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1531 xfs_warn(log->l_mp, "%s: bad header magic number",
1532 __func__);
1533 ASSERT(0);
1534 return XFS_ERROR(EIO);
1536 if (len == sizeof(xfs_trans_header_t))
1537 xlog_recover_add_item(&trans->r_itemq);
1538 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1539 return 0;
1542 ptr = kmem_alloc(len, KM_SLEEP);
1543 memcpy(ptr, dp, len);
1544 in_f = (xfs_inode_log_format_t *)ptr;
1546 /* take the tail entry */
1547 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1548 if (item->ri_total != 0 &&
1549 item->ri_total == item->ri_cnt) {
1550 /* tail item is in use, get a new one */
1551 xlog_recover_add_item(&trans->r_itemq);
1552 item = list_entry(trans->r_itemq.prev,
1553 xlog_recover_item_t, ri_list);
1556 if (item->ri_total == 0) { /* first region to be added */
1557 if (in_f->ilf_size == 0 ||
1558 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1559 xfs_warn(log->l_mp,
1560 "bad number of regions (%d) in inode log format",
1561 in_f->ilf_size);
1562 ASSERT(0);
1563 return XFS_ERROR(EIO);
1566 item->ri_total = in_f->ilf_size;
1567 item->ri_buf =
1568 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1569 KM_SLEEP);
1571 ASSERT(item->ri_total > item->ri_cnt);
1572 /* Description region is ri_buf[0] */
1573 item->ri_buf[item->ri_cnt].i_addr = ptr;
1574 item->ri_buf[item->ri_cnt].i_len = len;
1575 item->ri_cnt++;
1576 trace_xfs_log_recover_item_add(log, trans, item, 0);
1577 return 0;
1581 * Sort the log items in the transaction. Cancelled buffers need
1582 * to be put first so they are processed before any items that might
1583 * modify the buffers. If they are cancelled, then the modifications
1584 * don't need to be replayed.
1586 STATIC int
1587 xlog_recover_reorder_trans(
1588 struct log *log,
1589 xlog_recover_t *trans,
1590 int pass)
1592 xlog_recover_item_t *item, *n;
1593 LIST_HEAD(sort_list);
1595 list_splice_init(&trans->r_itemq, &sort_list);
1596 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1597 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1599 switch (ITEM_TYPE(item)) {
1600 case XFS_LI_BUF:
1601 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1602 trace_xfs_log_recover_item_reorder_head(log,
1603 trans, item, pass);
1604 list_move(&item->ri_list, &trans->r_itemq);
1605 break;
1607 case XFS_LI_INODE:
1608 case XFS_LI_DQUOT:
1609 case XFS_LI_QUOTAOFF:
1610 case XFS_LI_EFD:
1611 case XFS_LI_EFI:
1612 trace_xfs_log_recover_item_reorder_tail(log,
1613 trans, item, pass);
1614 list_move_tail(&item->ri_list, &trans->r_itemq);
1615 break;
1616 default:
1617 xfs_warn(log->l_mp,
1618 "%s: unrecognized type of log operation",
1619 __func__);
1620 ASSERT(0);
1621 return XFS_ERROR(EIO);
1624 ASSERT(list_empty(&sort_list));
1625 return 0;
1629 * Build up the table of buf cancel records so that we don't replay
1630 * cancelled data in the second pass. For buffer records that are
1631 * not cancel records, there is nothing to do here so we just return.
1633 * If we get a cancel record which is already in the table, this indicates
1634 * that the buffer was cancelled multiple times. In order to ensure
1635 * that during pass 2 we keep the record in the table until we reach its
1636 * last occurrence in the log, we keep a reference count in the cancel
1637 * record in the table to tell us how many times we expect to see this
1638 * record during the second pass.
1640 STATIC int
1641 xlog_recover_buffer_pass1(
1642 struct log *log,
1643 xlog_recover_item_t *item)
1645 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1646 struct list_head *bucket;
1647 struct xfs_buf_cancel *bcp;
1650 * If this isn't a cancel buffer item, then just return.
1652 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1653 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1654 return 0;
1658 * Insert an xfs_buf_cancel record into the hash table of them.
1659 * If there is already an identical record, bump its reference count.
1661 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1662 list_for_each_entry(bcp, bucket, bc_list) {
1663 if (bcp->bc_blkno == buf_f->blf_blkno &&
1664 bcp->bc_len == buf_f->blf_len) {
1665 bcp->bc_refcount++;
1666 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1667 return 0;
1671 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1672 bcp->bc_blkno = buf_f->blf_blkno;
1673 bcp->bc_len = buf_f->blf_len;
1674 bcp->bc_refcount = 1;
1675 list_add_tail(&bcp->bc_list, bucket);
1677 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1678 return 0;
1682 * Check to see whether the buffer being recovered has a corresponding
1683 * entry in the buffer cancel record table. If it does then return 1
1684 * so that it will be cancelled, otherwise return 0. If the buffer is
1685 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1686 * the refcount on the entry in the table and remove it from the table
1687 * if this is the last reference.
1689 * We remove the cancel record from the table when we encounter its
1690 * last occurrence in the log so that if the same buffer is re-used
1691 * again after its last cancellation we actually replay the changes
1692 * made at that point.
1694 STATIC int
1695 xlog_check_buffer_cancelled(
1696 struct log *log,
1697 xfs_daddr_t blkno,
1698 uint len,
1699 ushort flags)
1701 struct list_head *bucket;
1702 struct xfs_buf_cancel *bcp;
1704 if (log->l_buf_cancel_table == NULL) {
1706 * There is nothing in the table built in pass one,
1707 * so this buffer must not be cancelled.
1709 ASSERT(!(flags & XFS_BLF_CANCEL));
1710 return 0;
1714 * Search for an entry in the cancel table that matches our buffer.
1716 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1717 list_for_each_entry(bcp, bucket, bc_list) {
1718 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1719 goto found;
1723 * We didn't find a corresponding entry in the table, so return 0 so
1724 * that the buffer is NOT cancelled.
1726 ASSERT(!(flags & XFS_BLF_CANCEL));
1727 return 0;
1729 found:
1731 * We've go a match, so return 1 so that the recovery of this buffer
1732 * is cancelled. If this buffer is actually a buffer cancel log
1733 * item, then decrement the refcount on the one in the table and
1734 * remove it if this is the last reference.
1736 if (flags & XFS_BLF_CANCEL) {
1737 if (--bcp->bc_refcount == 0) {
1738 list_del(&bcp->bc_list);
1739 kmem_free(bcp);
1742 return 1;
1746 * Perform recovery for a buffer full of inodes. In these buffers, the only
1747 * data which should be recovered is that which corresponds to the
1748 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1749 * data for the inodes is always logged through the inodes themselves rather
1750 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1752 * The only time when buffers full of inodes are fully recovered is when the
1753 * buffer is full of newly allocated inodes. In this case the buffer will
1754 * not be marked as an inode buffer and so will be sent to
1755 * xlog_recover_do_reg_buffer() below during recovery.
1757 STATIC int
1758 xlog_recover_do_inode_buffer(
1759 struct xfs_mount *mp,
1760 xlog_recover_item_t *item,
1761 struct xfs_buf *bp,
1762 xfs_buf_log_format_t *buf_f)
1764 int i;
1765 int item_index = 0;
1766 int bit = 0;
1767 int nbits = 0;
1768 int reg_buf_offset = 0;
1769 int reg_buf_bytes = 0;
1770 int next_unlinked_offset;
1771 int inodes_per_buf;
1772 xfs_agino_t *logged_nextp;
1773 xfs_agino_t *buffer_nextp;
1775 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1777 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1778 for (i = 0; i < inodes_per_buf; i++) {
1779 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1780 offsetof(xfs_dinode_t, di_next_unlinked);
1782 while (next_unlinked_offset >=
1783 (reg_buf_offset + reg_buf_bytes)) {
1785 * The next di_next_unlinked field is beyond
1786 * the current logged region. Find the next
1787 * logged region that contains or is beyond
1788 * the current di_next_unlinked field.
1790 bit += nbits;
1791 bit = xfs_next_bit(buf_f->blf_data_map,
1792 buf_f->blf_map_size, bit);
1795 * If there are no more logged regions in the
1796 * buffer, then we're done.
1798 if (bit == -1)
1799 return 0;
1801 nbits = xfs_contig_bits(buf_f->blf_data_map,
1802 buf_f->blf_map_size, bit);
1803 ASSERT(nbits > 0);
1804 reg_buf_offset = bit << XFS_BLF_SHIFT;
1805 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1806 item_index++;
1810 * If the current logged region starts after the current
1811 * di_next_unlinked field, then move on to the next
1812 * di_next_unlinked field.
1814 if (next_unlinked_offset < reg_buf_offset)
1815 continue;
1817 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1818 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1819 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1822 * The current logged region contains a copy of the
1823 * current di_next_unlinked field. Extract its value
1824 * and copy it to the buffer copy.
1826 logged_nextp = item->ri_buf[item_index].i_addr +
1827 next_unlinked_offset - reg_buf_offset;
1828 if (unlikely(*logged_nextp == 0)) {
1829 xfs_alert(mp,
1830 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1831 "Trying to replay bad (0) inode di_next_unlinked field.",
1832 item, bp);
1833 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1834 XFS_ERRLEVEL_LOW, mp);
1835 return XFS_ERROR(EFSCORRUPTED);
1838 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1839 next_unlinked_offset);
1840 *buffer_nextp = *logged_nextp;
1843 return 0;
1847 * Perform a 'normal' buffer recovery. Each logged region of the
1848 * buffer should be copied over the corresponding region in the
1849 * given buffer. The bitmap in the buf log format structure indicates
1850 * where to place the logged data.
1852 STATIC void
1853 xlog_recover_do_reg_buffer(
1854 struct xfs_mount *mp,
1855 xlog_recover_item_t *item,
1856 struct xfs_buf *bp,
1857 xfs_buf_log_format_t *buf_f)
1859 int i;
1860 int bit;
1861 int nbits;
1862 int error;
1864 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1866 bit = 0;
1867 i = 1; /* 0 is the buf format structure */
1868 while (1) {
1869 bit = xfs_next_bit(buf_f->blf_data_map,
1870 buf_f->blf_map_size, bit);
1871 if (bit == -1)
1872 break;
1873 nbits = xfs_contig_bits(buf_f->blf_data_map,
1874 buf_f->blf_map_size, bit);
1875 ASSERT(nbits > 0);
1876 ASSERT(item->ri_buf[i].i_addr != NULL);
1877 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1878 ASSERT(XFS_BUF_COUNT(bp) >=
1879 ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1882 * Do a sanity check if this is a dquot buffer. Just checking
1883 * the first dquot in the buffer should do. XXXThis is
1884 * probably a good thing to do for other buf types also.
1886 error = 0;
1887 if (buf_f->blf_flags &
1888 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1889 if (item->ri_buf[i].i_addr == NULL) {
1890 xfs_alert(mp,
1891 "XFS: NULL dquot in %s.", __func__);
1892 goto next;
1894 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1895 xfs_alert(mp,
1896 "XFS: dquot too small (%d) in %s.",
1897 item->ri_buf[i].i_len, __func__);
1898 goto next;
1900 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1901 -1, 0, XFS_QMOPT_DOWARN,
1902 "dquot_buf_recover");
1903 if (error)
1904 goto next;
1907 memcpy(xfs_buf_offset(bp,
1908 (uint)bit << XFS_BLF_SHIFT), /* dest */
1909 item->ri_buf[i].i_addr, /* source */
1910 nbits<<XFS_BLF_SHIFT); /* length */
1911 next:
1912 i++;
1913 bit += nbits;
1916 /* Shouldn't be any more regions */
1917 ASSERT(i == item->ri_total);
1921 * Do some primitive error checking on ondisk dquot data structures.
1924 xfs_qm_dqcheck(
1925 struct xfs_mount *mp,
1926 xfs_disk_dquot_t *ddq,
1927 xfs_dqid_t id,
1928 uint type, /* used only when IO_dorepair is true */
1929 uint flags,
1930 char *str)
1932 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1933 int errs = 0;
1936 * We can encounter an uninitialized dquot buffer for 2 reasons:
1937 * 1. If we crash while deleting the quotainode(s), and those blks got
1938 * used for user data. This is because we take the path of regular
1939 * file deletion; however, the size field of quotainodes is never
1940 * updated, so all the tricks that we play in itruncate_finish
1941 * don't quite matter.
1943 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1944 * But the allocation will be replayed so we'll end up with an
1945 * uninitialized quota block.
1947 * This is all fine; things are still consistent, and we haven't lost
1948 * any quota information. Just don't complain about bad dquot blks.
1950 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1951 if (flags & XFS_QMOPT_DOWARN)
1952 xfs_alert(mp,
1953 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1954 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1955 errs++;
1957 if (ddq->d_version != XFS_DQUOT_VERSION) {
1958 if (flags & XFS_QMOPT_DOWARN)
1959 xfs_alert(mp,
1960 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1961 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1962 errs++;
1965 if (ddq->d_flags != XFS_DQ_USER &&
1966 ddq->d_flags != XFS_DQ_PROJ &&
1967 ddq->d_flags != XFS_DQ_GROUP) {
1968 if (flags & XFS_QMOPT_DOWARN)
1969 xfs_alert(mp,
1970 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1971 str, id, ddq->d_flags);
1972 errs++;
1975 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1976 if (flags & XFS_QMOPT_DOWARN)
1977 xfs_alert(mp,
1978 "%s : ondisk-dquot 0x%p, ID mismatch: "
1979 "0x%x expected, found id 0x%x",
1980 str, ddq, id, be32_to_cpu(ddq->d_id));
1981 errs++;
1984 if (!errs && ddq->d_id) {
1985 if (ddq->d_blk_softlimit &&
1986 be64_to_cpu(ddq->d_bcount) >=
1987 be64_to_cpu(ddq->d_blk_softlimit)) {
1988 if (!ddq->d_btimer) {
1989 if (flags & XFS_QMOPT_DOWARN)
1990 xfs_alert(mp,
1991 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1992 str, (int)be32_to_cpu(ddq->d_id), ddq);
1993 errs++;
1996 if (ddq->d_ino_softlimit &&
1997 be64_to_cpu(ddq->d_icount) >=
1998 be64_to_cpu(ddq->d_ino_softlimit)) {
1999 if (!ddq->d_itimer) {
2000 if (flags & XFS_QMOPT_DOWARN)
2001 xfs_alert(mp,
2002 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2003 str, (int)be32_to_cpu(ddq->d_id), ddq);
2004 errs++;
2007 if (ddq->d_rtb_softlimit &&
2008 be64_to_cpu(ddq->d_rtbcount) >=
2009 be64_to_cpu(ddq->d_rtb_softlimit)) {
2010 if (!ddq->d_rtbtimer) {
2011 if (flags & XFS_QMOPT_DOWARN)
2012 xfs_alert(mp,
2013 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2014 str, (int)be32_to_cpu(ddq->d_id), ddq);
2015 errs++;
2020 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2021 return errs;
2023 if (flags & XFS_QMOPT_DOWARN)
2024 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2027 * Typically, a repair is only requested by quotacheck.
2029 ASSERT(id != -1);
2030 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2031 memset(d, 0, sizeof(xfs_dqblk_t));
2033 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2034 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2035 d->dd_diskdq.d_flags = type;
2036 d->dd_diskdq.d_id = cpu_to_be32(id);
2038 return errs;
2042 * Perform a dquot buffer recovery.
2043 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2044 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2045 * Else, treat it as a regular buffer and do recovery.
2047 STATIC void
2048 xlog_recover_do_dquot_buffer(
2049 xfs_mount_t *mp,
2050 xlog_t *log,
2051 xlog_recover_item_t *item,
2052 xfs_buf_t *bp,
2053 xfs_buf_log_format_t *buf_f)
2055 uint type;
2057 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2060 * Filesystems are required to send in quota flags at mount time.
2062 if (mp->m_qflags == 0) {
2063 return;
2066 type = 0;
2067 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2068 type |= XFS_DQ_USER;
2069 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2070 type |= XFS_DQ_PROJ;
2071 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2072 type |= XFS_DQ_GROUP;
2074 * This type of quotas was turned off, so ignore this buffer
2076 if (log->l_quotaoffs_flag & type)
2077 return;
2079 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2083 * This routine replays a modification made to a buffer at runtime.
2084 * There are actually two types of buffer, regular and inode, which
2085 * are handled differently. Inode buffers are handled differently
2086 * in that we only recover a specific set of data from them, namely
2087 * the inode di_next_unlinked fields. This is because all other inode
2088 * data is actually logged via inode records and any data we replay
2089 * here which overlaps that may be stale.
2091 * When meta-data buffers are freed at run time we log a buffer item
2092 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2093 * of the buffer in the log should not be replayed at recovery time.
2094 * This is so that if the blocks covered by the buffer are reused for
2095 * file data before we crash we don't end up replaying old, freed
2096 * meta-data into a user's file.
2098 * To handle the cancellation of buffer log items, we make two passes
2099 * over the log during recovery. During the first we build a table of
2100 * those buffers which have been cancelled, and during the second we
2101 * only replay those buffers which do not have corresponding cancel
2102 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2103 * for more details on the implementation of the table of cancel records.
2105 STATIC int
2106 xlog_recover_buffer_pass2(
2107 xlog_t *log,
2108 xlog_recover_item_t *item)
2110 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2111 xfs_mount_t *mp = log->l_mp;
2112 xfs_buf_t *bp;
2113 int error;
2114 uint buf_flags;
2117 * In this pass we only want to recover all the buffers which have
2118 * not been cancelled and are not cancellation buffers themselves.
2120 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2121 buf_f->blf_len, buf_f->blf_flags)) {
2122 trace_xfs_log_recover_buf_cancel(log, buf_f);
2123 return 0;
2126 trace_xfs_log_recover_buf_recover(log, buf_f);
2128 buf_flags = XBF_LOCK;
2129 if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
2130 buf_flags |= XBF_MAPPED;
2132 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2133 buf_flags);
2134 if (!bp)
2135 return XFS_ERROR(ENOMEM);
2136 error = bp->b_error;
2137 if (error) {
2138 xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
2139 bp, buf_f->blf_blkno);
2140 xfs_buf_relse(bp);
2141 return error;
2144 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2145 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2146 } else if (buf_f->blf_flags &
2147 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2148 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2149 } else {
2150 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2152 if (error)
2153 return XFS_ERROR(error);
2156 * Perform delayed write on the buffer. Asynchronous writes will be
2157 * slower when taking into account all the buffers to be flushed.
2159 * Also make sure that only inode buffers with good sizes stay in
2160 * the buffer cache. The kernel moves inodes in buffers of 1 block
2161 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2162 * buffers in the log can be a different size if the log was generated
2163 * by an older kernel using unclustered inode buffers or a newer kernel
2164 * running with a different inode cluster size. Regardless, if the
2165 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2166 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2167 * the buffer out of the buffer cache so that the buffer won't
2168 * overlap with future reads of those inodes.
2170 if (XFS_DINODE_MAGIC ==
2171 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2172 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2173 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2174 XFS_BUF_STALE(bp);
2175 error = xfs_bwrite(mp, bp);
2176 } else {
2177 ASSERT(bp->b_target->bt_mount == mp);
2178 bp->b_iodone = xlog_recover_iodone;
2179 xfs_bdwrite(mp, bp);
2182 return (error);
2185 STATIC int
2186 xlog_recover_inode_pass2(
2187 xlog_t *log,
2188 xlog_recover_item_t *item)
2190 xfs_inode_log_format_t *in_f;
2191 xfs_mount_t *mp = log->l_mp;
2192 xfs_buf_t *bp;
2193 xfs_dinode_t *dip;
2194 int len;
2195 xfs_caddr_t src;
2196 xfs_caddr_t dest;
2197 int error;
2198 int attr_index;
2199 uint fields;
2200 xfs_icdinode_t *dicp;
2201 int need_free = 0;
2203 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2204 in_f = item->ri_buf[0].i_addr;
2205 } else {
2206 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2207 need_free = 1;
2208 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2209 if (error)
2210 goto error;
2214 * Inode buffers can be freed, look out for it,
2215 * and do not replay the inode.
2217 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2218 in_f->ilf_len, 0)) {
2219 error = 0;
2220 trace_xfs_log_recover_inode_cancel(log, in_f);
2221 goto error;
2223 trace_xfs_log_recover_inode_recover(log, in_f);
2225 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2226 XBF_LOCK);
2227 if (!bp) {
2228 error = ENOMEM;
2229 goto error;
2231 error = bp->b_error;
2232 if (error) {
2233 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2234 bp, in_f->ilf_blkno);
2235 xfs_buf_relse(bp);
2236 goto error;
2238 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2239 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2242 * Make sure the place we're flushing out to really looks
2243 * like an inode!
2245 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2246 xfs_buf_relse(bp);
2247 xfs_alert(mp,
2248 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2249 __func__, dip, bp, in_f->ilf_ino);
2250 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2251 XFS_ERRLEVEL_LOW, mp);
2252 error = EFSCORRUPTED;
2253 goto error;
2255 dicp = item->ri_buf[1].i_addr;
2256 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2257 xfs_buf_relse(bp);
2258 xfs_alert(mp,
2259 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2260 __func__, item, in_f->ilf_ino);
2261 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2262 XFS_ERRLEVEL_LOW, mp);
2263 error = EFSCORRUPTED;
2264 goto error;
2267 /* Skip replay when the on disk inode is newer than the log one */
2268 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2270 * Deal with the wrap case, DI_MAX_FLUSH is less
2271 * than smaller numbers
2273 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2274 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2275 /* do nothing */
2276 } else {
2277 xfs_buf_relse(bp);
2278 trace_xfs_log_recover_inode_skip(log, in_f);
2279 error = 0;
2280 goto error;
2283 /* Take the opportunity to reset the flush iteration count */
2284 dicp->di_flushiter = 0;
2286 if (unlikely(S_ISREG(dicp->di_mode))) {
2287 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2288 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2289 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2290 XFS_ERRLEVEL_LOW, mp, dicp);
2291 xfs_buf_relse(bp);
2292 xfs_alert(mp,
2293 "%s: Bad regular inode log record, rec ptr 0x%p, "
2294 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2295 __func__, item, dip, bp, in_f->ilf_ino);
2296 error = EFSCORRUPTED;
2297 goto error;
2299 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2300 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2301 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2302 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2303 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2304 XFS_ERRLEVEL_LOW, mp, dicp);
2305 xfs_buf_relse(bp);
2306 xfs_alert(mp,
2307 "%s: Bad dir inode log record, rec ptr 0x%p, "
2308 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2309 __func__, item, dip, bp, in_f->ilf_ino);
2310 error = EFSCORRUPTED;
2311 goto error;
2314 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2315 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2316 XFS_ERRLEVEL_LOW, mp, dicp);
2317 xfs_buf_relse(bp);
2318 xfs_alert(mp,
2319 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2320 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2321 __func__, item, dip, bp, in_f->ilf_ino,
2322 dicp->di_nextents + dicp->di_anextents,
2323 dicp->di_nblocks);
2324 error = EFSCORRUPTED;
2325 goto error;
2327 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2328 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2329 XFS_ERRLEVEL_LOW, mp, dicp);
2330 xfs_buf_relse(bp);
2331 xfs_alert(mp,
2332 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2333 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2334 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2335 error = EFSCORRUPTED;
2336 goto error;
2338 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2339 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2340 XFS_ERRLEVEL_LOW, mp, dicp);
2341 xfs_buf_relse(bp);
2342 xfs_alert(mp,
2343 "%s: Bad inode log record length %d, rec ptr 0x%p",
2344 __func__, item->ri_buf[1].i_len, item);
2345 error = EFSCORRUPTED;
2346 goto error;
2349 /* The core is in in-core format */
2350 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2352 /* the rest is in on-disk format */
2353 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2354 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2355 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2356 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2359 fields = in_f->ilf_fields;
2360 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2361 case XFS_ILOG_DEV:
2362 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2363 break;
2364 case XFS_ILOG_UUID:
2365 memcpy(XFS_DFORK_DPTR(dip),
2366 &in_f->ilf_u.ilfu_uuid,
2367 sizeof(uuid_t));
2368 break;
2371 if (in_f->ilf_size == 2)
2372 goto write_inode_buffer;
2373 len = item->ri_buf[2].i_len;
2374 src = item->ri_buf[2].i_addr;
2375 ASSERT(in_f->ilf_size <= 4);
2376 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2377 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2378 (len == in_f->ilf_dsize));
2380 switch (fields & XFS_ILOG_DFORK) {
2381 case XFS_ILOG_DDATA:
2382 case XFS_ILOG_DEXT:
2383 memcpy(XFS_DFORK_DPTR(dip), src, len);
2384 break;
2386 case XFS_ILOG_DBROOT:
2387 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2388 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2389 XFS_DFORK_DSIZE(dip, mp));
2390 break;
2392 default:
2394 * There are no data fork flags set.
2396 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2397 break;
2401 * If we logged any attribute data, recover it. There may or
2402 * may not have been any other non-core data logged in this
2403 * transaction.
2405 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2406 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2407 attr_index = 3;
2408 } else {
2409 attr_index = 2;
2411 len = item->ri_buf[attr_index].i_len;
2412 src = item->ri_buf[attr_index].i_addr;
2413 ASSERT(len == in_f->ilf_asize);
2415 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2416 case XFS_ILOG_ADATA:
2417 case XFS_ILOG_AEXT:
2418 dest = XFS_DFORK_APTR(dip);
2419 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2420 memcpy(dest, src, len);
2421 break;
2423 case XFS_ILOG_ABROOT:
2424 dest = XFS_DFORK_APTR(dip);
2425 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2426 len, (xfs_bmdr_block_t*)dest,
2427 XFS_DFORK_ASIZE(dip, mp));
2428 break;
2430 default:
2431 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2432 ASSERT(0);
2433 xfs_buf_relse(bp);
2434 error = EIO;
2435 goto error;
2439 write_inode_buffer:
2440 ASSERT(bp->b_target->bt_mount == mp);
2441 bp->b_iodone = xlog_recover_iodone;
2442 xfs_bdwrite(mp, bp);
2443 error:
2444 if (need_free)
2445 kmem_free(in_f);
2446 return XFS_ERROR(error);
2450 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2451 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2452 * of that type.
2454 STATIC int
2455 xlog_recover_quotaoff_pass1(
2456 xlog_t *log,
2457 xlog_recover_item_t *item)
2459 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2460 ASSERT(qoff_f);
2463 * The logitem format's flag tells us if this was user quotaoff,
2464 * group/project quotaoff or both.
2466 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2467 log->l_quotaoffs_flag |= XFS_DQ_USER;
2468 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2469 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2470 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2471 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2473 return (0);
2477 * Recover a dquot record
2479 STATIC int
2480 xlog_recover_dquot_pass2(
2481 xlog_t *log,
2482 xlog_recover_item_t *item)
2484 xfs_mount_t *mp = log->l_mp;
2485 xfs_buf_t *bp;
2486 struct xfs_disk_dquot *ddq, *recddq;
2487 int error;
2488 xfs_dq_logformat_t *dq_f;
2489 uint type;
2493 * Filesystems are required to send in quota flags at mount time.
2495 if (mp->m_qflags == 0)
2496 return (0);
2498 recddq = item->ri_buf[1].i_addr;
2499 if (recddq == NULL) {
2500 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2501 return XFS_ERROR(EIO);
2503 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2504 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2505 item->ri_buf[1].i_len, __func__);
2506 return XFS_ERROR(EIO);
2510 * This type of quotas was turned off, so ignore this record.
2512 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2513 ASSERT(type);
2514 if (log->l_quotaoffs_flag & type)
2515 return (0);
2518 * At this point we know that quota was _not_ turned off.
2519 * Since the mount flags are not indicating to us otherwise, this
2520 * must mean that quota is on, and the dquot needs to be replayed.
2521 * Remember that we may not have fully recovered the superblock yet,
2522 * so we can't do the usual trick of looking at the SB quota bits.
2524 * The other possibility, of course, is that the quota subsystem was
2525 * removed since the last mount - ENOSYS.
2527 dq_f = item->ri_buf[0].i_addr;
2528 ASSERT(dq_f);
2529 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2530 "xlog_recover_dquot_pass2 (log copy)");
2531 if (error)
2532 return XFS_ERROR(EIO);
2533 ASSERT(dq_f->qlf_len == 1);
2535 error = xfs_read_buf(mp, mp->m_ddev_targp,
2536 dq_f->qlf_blkno,
2537 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2538 0, &bp);
2539 if (error) {
2540 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2541 bp, dq_f->qlf_blkno);
2542 return error;
2544 ASSERT(bp);
2545 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2548 * At least the magic num portion should be on disk because this
2549 * was among a chunk of dquots created earlier, and we did some
2550 * minimal initialization then.
2552 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2553 "xlog_recover_dquot_pass2");
2554 if (error) {
2555 xfs_buf_relse(bp);
2556 return XFS_ERROR(EIO);
2559 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2561 ASSERT(dq_f->qlf_size == 2);
2562 ASSERT(bp->b_target->bt_mount == mp);
2563 bp->b_iodone = xlog_recover_iodone;
2564 xfs_bdwrite(mp, bp);
2566 return (0);
2570 * This routine is called to create an in-core extent free intent
2571 * item from the efi format structure which was logged on disk.
2572 * It allocates an in-core efi, copies the extents from the format
2573 * structure into it, and adds the efi to the AIL with the given
2574 * LSN.
2576 STATIC int
2577 xlog_recover_efi_pass2(
2578 xlog_t *log,
2579 xlog_recover_item_t *item,
2580 xfs_lsn_t lsn)
2582 int error;
2583 xfs_mount_t *mp = log->l_mp;
2584 xfs_efi_log_item_t *efip;
2585 xfs_efi_log_format_t *efi_formatp;
2587 efi_formatp = item->ri_buf[0].i_addr;
2589 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2590 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2591 &(efip->efi_format)))) {
2592 xfs_efi_item_free(efip);
2593 return error;
2595 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2597 spin_lock(&log->l_ailp->xa_lock);
2599 * xfs_trans_ail_update() drops the AIL lock.
2601 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2602 return 0;
2607 * This routine is called when an efd format structure is found in
2608 * a committed transaction in the log. It's purpose is to cancel
2609 * the corresponding efi if it was still in the log. To do this
2610 * it searches the AIL for the efi with an id equal to that in the
2611 * efd format structure. If we find it, we remove the efi from the
2612 * AIL and free it.
2614 STATIC int
2615 xlog_recover_efd_pass2(
2616 xlog_t *log,
2617 xlog_recover_item_t *item)
2619 xfs_efd_log_format_t *efd_formatp;
2620 xfs_efi_log_item_t *efip = NULL;
2621 xfs_log_item_t *lip;
2622 __uint64_t efi_id;
2623 struct xfs_ail_cursor cur;
2624 struct xfs_ail *ailp = log->l_ailp;
2626 efd_formatp = item->ri_buf[0].i_addr;
2627 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2628 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2629 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2630 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2631 efi_id = efd_formatp->efd_efi_id;
2634 * Search for the efi with the id in the efd format structure
2635 * in the AIL.
2637 spin_lock(&ailp->xa_lock);
2638 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2639 while (lip != NULL) {
2640 if (lip->li_type == XFS_LI_EFI) {
2641 efip = (xfs_efi_log_item_t *)lip;
2642 if (efip->efi_format.efi_id == efi_id) {
2644 * xfs_trans_ail_delete() drops the
2645 * AIL lock.
2647 xfs_trans_ail_delete(ailp, lip);
2648 xfs_efi_item_free(efip);
2649 spin_lock(&ailp->xa_lock);
2650 break;
2653 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2655 xfs_trans_ail_cursor_done(ailp, &cur);
2656 spin_unlock(&ailp->xa_lock);
2658 return 0;
2662 * Free up any resources allocated by the transaction
2664 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2666 STATIC void
2667 xlog_recover_free_trans(
2668 struct xlog_recover *trans)
2670 xlog_recover_item_t *item, *n;
2671 int i;
2673 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2674 /* Free the regions in the item. */
2675 list_del(&item->ri_list);
2676 for (i = 0; i < item->ri_cnt; i++)
2677 kmem_free(item->ri_buf[i].i_addr);
2678 /* Free the item itself */
2679 kmem_free(item->ri_buf);
2680 kmem_free(item);
2682 /* Free the transaction recover structure */
2683 kmem_free(trans);
2686 STATIC int
2687 xlog_recover_commit_pass1(
2688 struct log *log,
2689 struct xlog_recover *trans,
2690 xlog_recover_item_t *item)
2692 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2694 switch (ITEM_TYPE(item)) {
2695 case XFS_LI_BUF:
2696 return xlog_recover_buffer_pass1(log, item);
2697 case XFS_LI_QUOTAOFF:
2698 return xlog_recover_quotaoff_pass1(log, item);
2699 case XFS_LI_INODE:
2700 case XFS_LI_EFI:
2701 case XFS_LI_EFD:
2702 case XFS_LI_DQUOT:
2703 /* nothing to do in pass 1 */
2704 return 0;
2705 default:
2706 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2707 __func__, ITEM_TYPE(item));
2708 ASSERT(0);
2709 return XFS_ERROR(EIO);
2713 STATIC int
2714 xlog_recover_commit_pass2(
2715 struct log *log,
2716 struct xlog_recover *trans,
2717 xlog_recover_item_t *item)
2719 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2721 switch (ITEM_TYPE(item)) {
2722 case XFS_LI_BUF:
2723 return xlog_recover_buffer_pass2(log, item);
2724 case XFS_LI_INODE:
2725 return xlog_recover_inode_pass2(log, item);
2726 case XFS_LI_EFI:
2727 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2728 case XFS_LI_EFD:
2729 return xlog_recover_efd_pass2(log, item);
2730 case XFS_LI_DQUOT:
2731 return xlog_recover_dquot_pass2(log, item);
2732 case XFS_LI_QUOTAOFF:
2733 /* nothing to do in pass2 */
2734 return 0;
2735 default:
2736 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2737 __func__, ITEM_TYPE(item));
2738 ASSERT(0);
2739 return XFS_ERROR(EIO);
2744 * Perform the transaction.
2746 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2747 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2749 STATIC int
2750 xlog_recover_commit_trans(
2751 struct log *log,
2752 struct xlog_recover *trans,
2753 int pass)
2755 int error = 0;
2756 xlog_recover_item_t *item;
2758 hlist_del(&trans->r_list);
2760 error = xlog_recover_reorder_trans(log, trans, pass);
2761 if (error)
2762 return error;
2764 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2765 if (pass == XLOG_RECOVER_PASS1)
2766 error = xlog_recover_commit_pass1(log, trans, item);
2767 else
2768 error = xlog_recover_commit_pass2(log, trans, item);
2769 if (error)
2770 return error;
2773 xlog_recover_free_trans(trans);
2774 return 0;
2777 STATIC int
2778 xlog_recover_unmount_trans(
2779 struct log *log,
2780 xlog_recover_t *trans)
2782 /* Do nothing now */
2783 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2784 return 0;
2788 * There are two valid states of the r_state field. 0 indicates that the
2789 * transaction structure is in a normal state. We have either seen the
2790 * start of the transaction or the last operation we added was not a partial
2791 * operation. If the last operation we added to the transaction was a
2792 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2794 * NOTE: skip LRs with 0 data length.
2796 STATIC int
2797 xlog_recover_process_data(
2798 xlog_t *log,
2799 struct hlist_head rhash[],
2800 xlog_rec_header_t *rhead,
2801 xfs_caddr_t dp,
2802 int pass)
2804 xfs_caddr_t lp;
2805 int num_logops;
2806 xlog_op_header_t *ohead;
2807 xlog_recover_t *trans;
2808 xlog_tid_t tid;
2809 int error;
2810 unsigned long hash;
2811 uint flags;
2813 lp = dp + be32_to_cpu(rhead->h_len);
2814 num_logops = be32_to_cpu(rhead->h_num_logops);
2816 /* check the log format matches our own - else we can't recover */
2817 if (xlog_header_check_recover(log->l_mp, rhead))
2818 return (XFS_ERROR(EIO));
2820 while ((dp < lp) && num_logops) {
2821 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2822 ohead = (xlog_op_header_t *)dp;
2823 dp += sizeof(xlog_op_header_t);
2824 if (ohead->oh_clientid != XFS_TRANSACTION &&
2825 ohead->oh_clientid != XFS_LOG) {
2826 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2827 __func__, ohead->oh_clientid);
2828 ASSERT(0);
2829 return (XFS_ERROR(EIO));
2831 tid = be32_to_cpu(ohead->oh_tid);
2832 hash = XLOG_RHASH(tid);
2833 trans = xlog_recover_find_tid(&rhash[hash], tid);
2834 if (trans == NULL) { /* not found; add new tid */
2835 if (ohead->oh_flags & XLOG_START_TRANS)
2836 xlog_recover_new_tid(&rhash[hash], tid,
2837 be64_to_cpu(rhead->h_lsn));
2838 } else {
2839 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2840 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2841 __func__, be32_to_cpu(ohead->oh_len));
2842 WARN_ON(1);
2843 return (XFS_ERROR(EIO));
2845 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2846 if (flags & XLOG_WAS_CONT_TRANS)
2847 flags &= ~XLOG_CONTINUE_TRANS;
2848 switch (flags) {
2849 case XLOG_COMMIT_TRANS:
2850 error = xlog_recover_commit_trans(log,
2851 trans, pass);
2852 break;
2853 case XLOG_UNMOUNT_TRANS:
2854 error = xlog_recover_unmount_trans(log, trans);
2855 break;
2856 case XLOG_WAS_CONT_TRANS:
2857 error = xlog_recover_add_to_cont_trans(log,
2858 trans, dp,
2859 be32_to_cpu(ohead->oh_len));
2860 break;
2861 case XLOG_START_TRANS:
2862 xfs_warn(log->l_mp, "%s: bad transaction",
2863 __func__);
2864 ASSERT(0);
2865 error = XFS_ERROR(EIO);
2866 break;
2867 case 0:
2868 case XLOG_CONTINUE_TRANS:
2869 error = xlog_recover_add_to_trans(log, trans,
2870 dp, be32_to_cpu(ohead->oh_len));
2871 break;
2872 default:
2873 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2874 __func__, flags);
2875 ASSERT(0);
2876 error = XFS_ERROR(EIO);
2877 break;
2879 if (error)
2880 return error;
2882 dp += be32_to_cpu(ohead->oh_len);
2883 num_logops--;
2885 return 0;
2889 * Process an extent free intent item that was recovered from
2890 * the log. We need to free the extents that it describes.
2892 STATIC int
2893 xlog_recover_process_efi(
2894 xfs_mount_t *mp,
2895 xfs_efi_log_item_t *efip)
2897 xfs_efd_log_item_t *efdp;
2898 xfs_trans_t *tp;
2899 int i;
2900 int error = 0;
2901 xfs_extent_t *extp;
2902 xfs_fsblock_t startblock_fsb;
2904 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2907 * First check the validity of the extents described by the
2908 * EFI. If any are bad, then assume that all are bad and
2909 * just toss the EFI.
2911 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2912 extp = &(efip->efi_format.efi_extents[i]);
2913 startblock_fsb = XFS_BB_TO_FSB(mp,
2914 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2915 if ((startblock_fsb == 0) ||
2916 (extp->ext_len == 0) ||
2917 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2918 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2920 * This will pull the EFI from the AIL and
2921 * free the memory associated with it.
2923 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2924 return XFS_ERROR(EIO);
2928 tp = xfs_trans_alloc(mp, 0);
2929 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2930 if (error)
2931 goto abort_error;
2932 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2934 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2935 extp = &(efip->efi_format.efi_extents[i]);
2936 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2937 if (error)
2938 goto abort_error;
2939 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2940 extp->ext_len);
2943 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2944 error = xfs_trans_commit(tp, 0);
2945 return error;
2947 abort_error:
2948 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2949 return error;
2953 * When this is called, all of the EFIs which did not have
2954 * corresponding EFDs should be in the AIL. What we do now
2955 * is free the extents associated with each one.
2957 * Since we process the EFIs in normal transactions, they
2958 * will be removed at some point after the commit. This prevents
2959 * us from just walking down the list processing each one.
2960 * We'll use a flag in the EFI to skip those that we've already
2961 * processed and use the AIL iteration mechanism's generation
2962 * count to try to speed this up at least a bit.
2964 * When we start, we know that the EFIs are the only things in
2965 * the AIL. As we process them, however, other items are added
2966 * to the AIL. Since everything added to the AIL must come after
2967 * everything already in the AIL, we stop processing as soon as
2968 * we see something other than an EFI in the AIL.
2970 STATIC int
2971 xlog_recover_process_efis(
2972 xlog_t *log)
2974 xfs_log_item_t *lip;
2975 xfs_efi_log_item_t *efip;
2976 int error = 0;
2977 struct xfs_ail_cursor cur;
2978 struct xfs_ail *ailp;
2980 ailp = log->l_ailp;
2981 spin_lock(&ailp->xa_lock);
2982 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2983 while (lip != NULL) {
2985 * We're done when we see something other than an EFI.
2986 * There should be no EFIs left in the AIL now.
2988 if (lip->li_type != XFS_LI_EFI) {
2989 #ifdef DEBUG
2990 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2991 ASSERT(lip->li_type != XFS_LI_EFI);
2992 #endif
2993 break;
2997 * Skip EFIs that we've already processed.
2999 efip = (xfs_efi_log_item_t *)lip;
3000 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3001 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3002 continue;
3005 spin_unlock(&ailp->xa_lock);
3006 error = xlog_recover_process_efi(log->l_mp, efip);
3007 spin_lock(&ailp->xa_lock);
3008 if (error)
3009 goto out;
3010 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3012 out:
3013 xfs_trans_ail_cursor_done(ailp, &cur);
3014 spin_unlock(&ailp->xa_lock);
3015 return error;
3019 * This routine performs a transaction to null out a bad inode pointer
3020 * in an agi unlinked inode hash bucket.
3022 STATIC void
3023 xlog_recover_clear_agi_bucket(
3024 xfs_mount_t *mp,
3025 xfs_agnumber_t agno,
3026 int bucket)
3028 xfs_trans_t *tp;
3029 xfs_agi_t *agi;
3030 xfs_buf_t *agibp;
3031 int offset;
3032 int error;
3034 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3035 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3036 0, 0, 0);
3037 if (error)
3038 goto out_abort;
3040 error = xfs_read_agi(mp, tp, agno, &agibp);
3041 if (error)
3042 goto out_abort;
3044 agi = XFS_BUF_TO_AGI(agibp);
3045 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3046 offset = offsetof(xfs_agi_t, agi_unlinked) +
3047 (sizeof(xfs_agino_t) * bucket);
3048 xfs_trans_log_buf(tp, agibp, offset,
3049 (offset + sizeof(xfs_agino_t) - 1));
3051 error = xfs_trans_commit(tp, 0);
3052 if (error)
3053 goto out_error;
3054 return;
3056 out_abort:
3057 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3058 out_error:
3059 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3060 return;
3063 STATIC xfs_agino_t
3064 xlog_recover_process_one_iunlink(
3065 struct xfs_mount *mp,
3066 xfs_agnumber_t agno,
3067 xfs_agino_t agino,
3068 int bucket)
3070 struct xfs_buf *ibp;
3071 struct xfs_dinode *dip;
3072 struct xfs_inode *ip;
3073 xfs_ino_t ino;
3074 int error;
3076 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3077 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3078 if (error)
3079 goto fail;
3082 * Get the on disk inode to find the next inode in the bucket.
3084 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3085 if (error)
3086 goto fail_iput;
3088 ASSERT(ip->i_d.di_nlink == 0);
3089 ASSERT(ip->i_d.di_mode != 0);
3091 /* setup for the next pass */
3092 agino = be32_to_cpu(dip->di_next_unlinked);
3093 xfs_buf_relse(ibp);
3096 * Prevent any DMAPI event from being sent when the reference on
3097 * the inode is dropped.
3099 ip->i_d.di_dmevmask = 0;
3101 IRELE(ip);
3102 return agino;
3104 fail_iput:
3105 IRELE(ip);
3106 fail:
3108 * We can't read in the inode this bucket points to, or this inode
3109 * is messed up. Just ditch this bucket of inodes. We will lose
3110 * some inodes and space, but at least we won't hang.
3112 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3113 * clear the inode pointer in the bucket.
3115 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3116 return NULLAGINO;
3120 * xlog_iunlink_recover
3122 * This is called during recovery to process any inodes which
3123 * we unlinked but not freed when the system crashed. These
3124 * inodes will be on the lists in the AGI blocks. What we do
3125 * here is scan all the AGIs and fully truncate and free any
3126 * inodes found on the lists. Each inode is removed from the
3127 * lists when it has been fully truncated and is freed. The
3128 * freeing of the inode and its removal from the list must be
3129 * atomic.
3131 STATIC void
3132 xlog_recover_process_iunlinks(
3133 xlog_t *log)
3135 xfs_mount_t *mp;
3136 xfs_agnumber_t agno;
3137 xfs_agi_t *agi;
3138 xfs_buf_t *agibp;
3139 xfs_agino_t agino;
3140 int bucket;
3141 int error;
3142 uint mp_dmevmask;
3144 mp = log->l_mp;
3147 * Prevent any DMAPI event from being sent while in this function.
3149 mp_dmevmask = mp->m_dmevmask;
3150 mp->m_dmevmask = 0;
3152 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3154 * Find the agi for this ag.
3156 error = xfs_read_agi(mp, NULL, agno, &agibp);
3157 if (error) {
3159 * AGI is b0rked. Don't process it.
3161 * We should probably mark the filesystem as corrupt
3162 * after we've recovered all the ag's we can....
3164 continue;
3166 agi = XFS_BUF_TO_AGI(agibp);
3168 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3169 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3170 while (agino != NULLAGINO) {
3172 * Release the agi buffer so that it can
3173 * be acquired in the normal course of the
3174 * transaction to truncate and free the inode.
3176 xfs_buf_relse(agibp);
3178 agino = xlog_recover_process_one_iunlink(mp,
3179 agno, agino, bucket);
3182 * Reacquire the agibuffer and continue around
3183 * the loop. This should never fail as we know
3184 * the buffer was good earlier on.
3186 error = xfs_read_agi(mp, NULL, agno, &agibp);
3187 ASSERT(error == 0);
3188 agi = XFS_BUF_TO_AGI(agibp);
3193 * Release the buffer for the current agi so we can
3194 * go on to the next one.
3196 xfs_buf_relse(agibp);
3199 mp->m_dmevmask = mp_dmevmask;
3203 #ifdef DEBUG
3204 STATIC void
3205 xlog_pack_data_checksum(
3206 xlog_t *log,
3207 xlog_in_core_t *iclog,
3208 int size)
3210 int i;
3211 __be32 *up;
3212 uint chksum = 0;
3214 up = (__be32 *)iclog->ic_datap;
3215 /* divide length by 4 to get # words */
3216 for (i = 0; i < (size >> 2); i++) {
3217 chksum ^= be32_to_cpu(*up);
3218 up++;
3220 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3222 #else
3223 #define xlog_pack_data_checksum(log, iclog, size)
3224 #endif
3227 * Stamp cycle number in every block
3229 void
3230 xlog_pack_data(
3231 xlog_t *log,
3232 xlog_in_core_t *iclog,
3233 int roundoff)
3235 int i, j, k;
3236 int size = iclog->ic_offset + roundoff;
3237 __be32 cycle_lsn;
3238 xfs_caddr_t dp;
3240 xlog_pack_data_checksum(log, iclog, size);
3242 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3244 dp = iclog->ic_datap;
3245 for (i = 0; i < BTOBB(size) &&
3246 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3247 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3248 *(__be32 *)dp = cycle_lsn;
3249 dp += BBSIZE;
3252 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3253 xlog_in_core_2_t *xhdr = iclog->ic_data;
3255 for ( ; i < BTOBB(size); i++) {
3256 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3257 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3258 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3259 *(__be32 *)dp = cycle_lsn;
3260 dp += BBSIZE;
3263 for (i = 1; i < log->l_iclog_heads; i++) {
3264 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3269 STATIC void
3270 xlog_unpack_data(
3271 xlog_rec_header_t *rhead,
3272 xfs_caddr_t dp,
3273 xlog_t *log)
3275 int i, j, k;
3277 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3278 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3279 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3280 dp += BBSIZE;
3283 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3284 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3285 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3286 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3287 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3288 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3289 dp += BBSIZE;
3294 STATIC int
3295 xlog_valid_rec_header(
3296 xlog_t *log,
3297 xlog_rec_header_t *rhead,
3298 xfs_daddr_t blkno)
3300 int hlen;
3302 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3303 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3304 XFS_ERRLEVEL_LOW, log->l_mp);
3305 return XFS_ERROR(EFSCORRUPTED);
3307 if (unlikely(
3308 (!rhead->h_version ||
3309 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3310 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3311 __func__, be32_to_cpu(rhead->h_version));
3312 return XFS_ERROR(EIO);
3315 /* LR body must have data or it wouldn't have been written */
3316 hlen = be32_to_cpu(rhead->h_len);
3317 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3318 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3319 XFS_ERRLEVEL_LOW, log->l_mp);
3320 return XFS_ERROR(EFSCORRUPTED);
3322 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3323 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3324 XFS_ERRLEVEL_LOW, log->l_mp);
3325 return XFS_ERROR(EFSCORRUPTED);
3327 return 0;
3331 * Read the log from tail to head and process the log records found.
3332 * Handle the two cases where the tail and head are in the same cycle
3333 * and where the active portion of the log wraps around the end of
3334 * the physical log separately. The pass parameter is passed through
3335 * to the routines called to process the data and is not looked at
3336 * here.
3338 STATIC int
3339 xlog_do_recovery_pass(
3340 xlog_t *log,
3341 xfs_daddr_t head_blk,
3342 xfs_daddr_t tail_blk,
3343 int pass)
3345 xlog_rec_header_t *rhead;
3346 xfs_daddr_t blk_no;
3347 xfs_caddr_t offset;
3348 xfs_buf_t *hbp, *dbp;
3349 int error = 0, h_size;
3350 int bblks, split_bblks;
3351 int hblks, split_hblks, wrapped_hblks;
3352 struct hlist_head rhash[XLOG_RHASH_SIZE];
3354 ASSERT(head_blk != tail_blk);
3357 * Read the header of the tail block and get the iclog buffer size from
3358 * h_size. Use this to tell how many sectors make up the log header.
3360 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3362 * When using variable length iclogs, read first sector of
3363 * iclog header and extract the header size from it. Get a
3364 * new hbp that is the correct size.
3366 hbp = xlog_get_bp(log, 1);
3367 if (!hbp)
3368 return ENOMEM;
3370 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3371 if (error)
3372 goto bread_err1;
3374 rhead = (xlog_rec_header_t *)offset;
3375 error = xlog_valid_rec_header(log, rhead, tail_blk);
3376 if (error)
3377 goto bread_err1;
3378 h_size = be32_to_cpu(rhead->h_size);
3379 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3380 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3381 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3382 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3383 hblks++;
3384 xlog_put_bp(hbp);
3385 hbp = xlog_get_bp(log, hblks);
3386 } else {
3387 hblks = 1;
3389 } else {
3390 ASSERT(log->l_sectBBsize == 1);
3391 hblks = 1;
3392 hbp = xlog_get_bp(log, 1);
3393 h_size = XLOG_BIG_RECORD_BSIZE;
3396 if (!hbp)
3397 return ENOMEM;
3398 dbp = xlog_get_bp(log, BTOBB(h_size));
3399 if (!dbp) {
3400 xlog_put_bp(hbp);
3401 return ENOMEM;
3404 memset(rhash, 0, sizeof(rhash));
3405 if (tail_blk <= head_blk) {
3406 for (blk_no = tail_blk; blk_no < head_blk; ) {
3407 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3408 if (error)
3409 goto bread_err2;
3411 rhead = (xlog_rec_header_t *)offset;
3412 error = xlog_valid_rec_header(log, rhead, blk_no);
3413 if (error)
3414 goto bread_err2;
3416 /* blocks in data section */
3417 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3418 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3419 &offset);
3420 if (error)
3421 goto bread_err2;
3423 xlog_unpack_data(rhead, offset, log);
3424 if ((error = xlog_recover_process_data(log,
3425 rhash, rhead, offset, pass)))
3426 goto bread_err2;
3427 blk_no += bblks + hblks;
3429 } else {
3431 * Perform recovery around the end of the physical log.
3432 * When the head is not on the same cycle number as the tail,
3433 * we can't do a sequential recovery as above.
3435 blk_no = tail_blk;
3436 while (blk_no < log->l_logBBsize) {
3438 * Check for header wrapping around physical end-of-log
3440 offset = hbp->b_addr;
3441 split_hblks = 0;
3442 wrapped_hblks = 0;
3443 if (blk_no + hblks <= log->l_logBBsize) {
3444 /* Read header in one read */
3445 error = xlog_bread(log, blk_no, hblks, hbp,
3446 &offset);
3447 if (error)
3448 goto bread_err2;
3449 } else {
3450 /* This LR is split across physical log end */
3451 if (blk_no != log->l_logBBsize) {
3452 /* some data before physical log end */
3453 ASSERT(blk_no <= INT_MAX);
3454 split_hblks = log->l_logBBsize - (int)blk_no;
3455 ASSERT(split_hblks > 0);
3456 error = xlog_bread(log, blk_no,
3457 split_hblks, hbp,
3458 &offset);
3459 if (error)
3460 goto bread_err2;
3464 * Note: this black magic still works with
3465 * large sector sizes (non-512) only because:
3466 * - we increased the buffer size originally
3467 * by 1 sector giving us enough extra space
3468 * for the second read;
3469 * - the log start is guaranteed to be sector
3470 * aligned;
3471 * - we read the log end (LR header start)
3472 * _first_, then the log start (LR header end)
3473 * - order is important.
3475 wrapped_hblks = hblks - split_hblks;
3476 error = xlog_bread_offset(log, 0,
3477 wrapped_hblks, hbp,
3478 offset + BBTOB(split_hblks));
3479 if (error)
3480 goto bread_err2;
3482 rhead = (xlog_rec_header_t *)offset;
3483 error = xlog_valid_rec_header(log, rhead,
3484 split_hblks ? blk_no : 0);
3485 if (error)
3486 goto bread_err2;
3488 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3489 blk_no += hblks;
3491 /* Read in data for log record */
3492 if (blk_no + bblks <= log->l_logBBsize) {
3493 error = xlog_bread(log, blk_no, bblks, dbp,
3494 &offset);
3495 if (error)
3496 goto bread_err2;
3497 } else {
3498 /* This log record is split across the
3499 * physical end of log */
3500 offset = dbp->b_addr;
3501 split_bblks = 0;
3502 if (blk_no != log->l_logBBsize) {
3503 /* some data is before the physical
3504 * end of log */
3505 ASSERT(!wrapped_hblks);
3506 ASSERT(blk_no <= INT_MAX);
3507 split_bblks =
3508 log->l_logBBsize - (int)blk_no;
3509 ASSERT(split_bblks > 0);
3510 error = xlog_bread(log, blk_no,
3511 split_bblks, dbp,
3512 &offset);
3513 if (error)
3514 goto bread_err2;
3518 * Note: this black magic still works with
3519 * large sector sizes (non-512) only because:
3520 * - we increased the buffer size originally
3521 * by 1 sector giving us enough extra space
3522 * for the second read;
3523 * - the log start is guaranteed to be sector
3524 * aligned;
3525 * - we read the log end (LR header start)
3526 * _first_, then the log start (LR header end)
3527 * - order is important.
3529 error = xlog_bread_offset(log, 0,
3530 bblks - split_bblks, hbp,
3531 offset + BBTOB(split_bblks));
3532 if (error)
3533 goto bread_err2;
3535 xlog_unpack_data(rhead, offset, log);
3536 if ((error = xlog_recover_process_data(log, rhash,
3537 rhead, offset, pass)))
3538 goto bread_err2;
3539 blk_no += bblks;
3542 ASSERT(blk_no >= log->l_logBBsize);
3543 blk_no -= log->l_logBBsize;
3545 /* read first part of physical log */
3546 while (blk_no < head_blk) {
3547 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3548 if (error)
3549 goto bread_err2;
3551 rhead = (xlog_rec_header_t *)offset;
3552 error = xlog_valid_rec_header(log, rhead, blk_no);
3553 if (error)
3554 goto bread_err2;
3556 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3557 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3558 &offset);
3559 if (error)
3560 goto bread_err2;
3562 xlog_unpack_data(rhead, offset, log);
3563 if ((error = xlog_recover_process_data(log, rhash,
3564 rhead, offset, pass)))
3565 goto bread_err2;
3566 blk_no += bblks + hblks;
3570 bread_err2:
3571 xlog_put_bp(dbp);
3572 bread_err1:
3573 xlog_put_bp(hbp);
3574 return error;
3578 * Do the recovery of the log. We actually do this in two phases.
3579 * The two passes are necessary in order to implement the function
3580 * of cancelling a record written into the log. The first pass
3581 * determines those things which have been cancelled, and the
3582 * second pass replays log items normally except for those which
3583 * have been cancelled. The handling of the replay and cancellations
3584 * takes place in the log item type specific routines.
3586 * The table of items which have cancel records in the log is allocated
3587 * and freed at this level, since only here do we know when all of
3588 * the log recovery has been completed.
3590 STATIC int
3591 xlog_do_log_recovery(
3592 xlog_t *log,
3593 xfs_daddr_t head_blk,
3594 xfs_daddr_t tail_blk)
3596 int error, i;
3598 ASSERT(head_blk != tail_blk);
3601 * First do a pass to find all of the cancelled buf log items.
3602 * Store them in the buf_cancel_table for use in the second pass.
3604 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3605 sizeof(struct list_head),
3606 KM_SLEEP);
3607 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3608 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3610 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3611 XLOG_RECOVER_PASS1);
3612 if (error != 0) {
3613 kmem_free(log->l_buf_cancel_table);
3614 log->l_buf_cancel_table = NULL;
3615 return error;
3618 * Then do a second pass to actually recover the items in the log.
3619 * When it is complete free the table of buf cancel items.
3621 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3622 XLOG_RECOVER_PASS2);
3623 #ifdef DEBUG
3624 if (!error) {
3625 int i;
3627 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3628 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3630 #endif /* DEBUG */
3632 kmem_free(log->l_buf_cancel_table);
3633 log->l_buf_cancel_table = NULL;
3635 return error;
3639 * Do the actual recovery
3641 STATIC int
3642 xlog_do_recover(
3643 xlog_t *log,
3644 xfs_daddr_t head_blk,
3645 xfs_daddr_t tail_blk)
3647 int error;
3648 xfs_buf_t *bp;
3649 xfs_sb_t *sbp;
3652 * First replay the images in the log.
3654 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3655 if (error) {
3656 return error;
3659 XFS_bflush(log->l_mp->m_ddev_targp);
3662 * If IO errors happened during recovery, bail out.
3664 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3665 return (EIO);
3669 * We now update the tail_lsn since much of the recovery has completed
3670 * and there may be space available to use. If there were no extent
3671 * or iunlinks, we can free up the entire log and set the tail_lsn to
3672 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3673 * lsn of the last known good LR on disk. If there are extent frees
3674 * or iunlinks they will have some entries in the AIL; so we look at
3675 * the AIL to determine how to set the tail_lsn.
3677 xlog_assign_tail_lsn(log->l_mp);
3680 * Now that we've finished replaying all buffer and inode
3681 * updates, re-read in the superblock.
3683 bp = xfs_getsb(log->l_mp, 0);
3684 XFS_BUF_UNDONE(bp);
3685 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3686 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3687 XFS_BUF_READ(bp);
3688 XFS_BUF_UNASYNC(bp);
3689 xfsbdstrat(log->l_mp, bp);
3690 error = xfs_buf_iowait(bp);
3691 if (error) {
3692 xfs_ioerror_alert("xlog_do_recover",
3693 log->l_mp, bp, XFS_BUF_ADDR(bp));
3694 ASSERT(0);
3695 xfs_buf_relse(bp);
3696 return error;
3699 /* Convert superblock from on-disk format */
3700 sbp = &log->l_mp->m_sb;
3701 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3702 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3703 ASSERT(xfs_sb_good_version(sbp));
3704 xfs_buf_relse(bp);
3706 /* We've re-read the superblock so re-initialize per-cpu counters */
3707 xfs_icsb_reinit_counters(log->l_mp);
3709 xlog_recover_check_summary(log);
3711 /* Normal transactions can now occur */
3712 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3713 return 0;
3717 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3719 * Return error or zero.
3722 xlog_recover(
3723 xlog_t *log)
3725 xfs_daddr_t head_blk, tail_blk;
3726 int error;
3728 /* find the tail of the log */
3729 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3730 return error;
3732 if (tail_blk != head_blk) {
3733 /* There used to be a comment here:
3735 * disallow recovery on read-only mounts. note -- mount
3736 * checks for ENOSPC and turns it into an intelligent
3737 * error message.
3738 * ...but this is no longer true. Now, unless you specify
3739 * NORECOVERY (in which case this function would never be
3740 * called), we just go ahead and recover. We do this all
3741 * under the vfs layer, so we can get away with it unless
3742 * the device itself is read-only, in which case we fail.
3744 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3745 return error;
3748 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3749 log->l_mp->m_logname ? log->l_mp->m_logname
3750 : "internal");
3752 error = xlog_do_recover(log, head_blk, tail_blk);
3753 log->l_flags |= XLOG_RECOVERY_NEEDED;
3755 return error;
3759 * In the first part of recovery we replay inodes and buffers and build
3760 * up the list of extent free items which need to be processed. Here
3761 * we process the extent free items and clean up the on disk unlinked
3762 * inode lists. This is separated from the first part of recovery so
3763 * that the root and real-time bitmap inodes can be read in from disk in
3764 * between the two stages. This is necessary so that we can free space
3765 * in the real-time portion of the file system.
3768 xlog_recover_finish(
3769 xlog_t *log)
3772 * Now we're ready to do the transactions needed for the
3773 * rest of recovery. Start with completing all the extent
3774 * free intent records and then process the unlinked inode
3775 * lists. At this point, we essentially run in normal mode
3776 * except that we're still performing recovery actions
3777 * rather than accepting new requests.
3779 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3780 int error;
3781 error = xlog_recover_process_efis(log);
3782 if (error) {
3783 xfs_alert(log->l_mp, "Failed to recover EFIs");
3784 return error;
3787 * Sync the log to get all the EFIs out of the AIL.
3788 * This isn't absolutely necessary, but it helps in
3789 * case the unlink transactions would have problems
3790 * pushing the EFIs out of the way.
3792 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3794 xlog_recover_process_iunlinks(log);
3796 xlog_recover_check_summary(log);
3798 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3799 log->l_mp->m_logname ? log->l_mp->m_logname
3800 : "internal");
3801 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3802 } else {
3803 xfs_info(log->l_mp, "Ending clean mount");
3805 return 0;
3809 #if defined(DEBUG)
3811 * Read all of the agf and agi counters and check that they
3812 * are consistent with the superblock counters.
3814 void
3815 xlog_recover_check_summary(
3816 xlog_t *log)
3818 xfs_mount_t *mp;
3819 xfs_agf_t *agfp;
3820 xfs_buf_t *agfbp;
3821 xfs_buf_t *agibp;
3822 xfs_agnumber_t agno;
3823 __uint64_t freeblks;
3824 __uint64_t itotal;
3825 __uint64_t ifree;
3826 int error;
3828 mp = log->l_mp;
3830 freeblks = 0LL;
3831 itotal = 0LL;
3832 ifree = 0LL;
3833 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3834 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3835 if (error) {
3836 xfs_alert(mp, "%s agf read failed agno %d error %d",
3837 __func__, agno, error);
3838 } else {
3839 agfp = XFS_BUF_TO_AGF(agfbp);
3840 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3841 be32_to_cpu(agfp->agf_flcount);
3842 xfs_buf_relse(agfbp);
3845 error = xfs_read_agi(mp, NULL, agno, &agibp);
3846 if (error) {
3847 xfs_alert(mp, "%s agi read failed agno %d error %d",
3848 __func__, agno, error);
3849 } else {
3850 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3852 itotal += be32_to_cpu(agi->agi_count);
3853 ifree += be32_to_cpu(agi->agi_freecount);
3854 xfs_buf_relse(agibp);
3858 #endif /* DEBUG */