x86, mrst: use a temporary variable for SFI irq
[linux-btrfs-devel.git] / net / mac80211 / rx.c
blobfe2c2a7177930b2f7df8c42d81eac9987956c761
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
32 * monitor mode reception
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
51 return skb;
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
75 int len;
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
80 if (status->flag & RX_FLAG_MACTIME_MPDU)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
88 if (status->flag & RX_FLAG_HT) /* HT info */
89 len += 3;
91 return len;
95 * ieee80211_add_rx_radiotap_header - add radiotap header
97 * add a radiotap header containing all the fields which the hardware provided.
99 static void
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
101 struct sk_buff *skb,
102 struct ieee80211_rate *rate,
103 int rtap_len)
105 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
106 struct ieee80211_radiotap_header *rthdr;
107 unsigned char *pos;
108 u16 rx_flags = 0;
110 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
111 memset(rthdr, 0, rtap_len);
113 /* radiotap header, set always present flags */
114 rthdr->it_present =
115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
116 (1 << IEEE80211_RADIOTAP_CHANNEL) |
117 (1 << IEEE80211_RADIOTAP_ANTENNA) |
118 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
119 rthdr->it_len = cpu_to_le16(rtap_len);
121 pos = (unsigned char *)(rthdr+1);
123 /* the order of the following fields is important */
125 /* IEEE80211_RADIOTAP_TSFT */
126 if (status->flag & RX_FLAG_MACTIME_MPDU) {
127 put_unaligned_le64(status->mactime, pos);
128 rthdr->it_present |=
129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
130 pos += 8;
133 /* IEEE80211_RADIOTAP_FLAGS */
134 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
135 *pos |= IEEE80211_RADIOTAP_F_FCS;
136 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
137 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
138 if (status->flag & RX_FLAG_SHORTPRE)
139 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
140 pos++;
142 /* IEEE80211_RADIOTAP_RATE */
143 if (status->flag & RX_FLAG_HT) {
145 * MCS information is a separate field in radiotap,
146 * added below. The byte here is needed as padding
147 * for the channel though, so initialise it to 0.
149 *pos = 0;
150 } else {
151 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
152 *pos = rate->bitrate / 5;
154 pos++;
156 /* IEEE80211_RADIOTAP_CHANNEL */
157 put_unaligned_le16(status->freq, pos);
158 pos += 2;
159 if (status->band == IEEE80211_BAND_5GHZ)
160 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
161 pos);
162 else if (status->flag & RX_FLAG_HT)
163 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
164 pos);
165 else if (rate->flags & IEEE80211_RATE_ERP_G)
166 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
167 pos);
168 else
169 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
170 pos);
171 pos += 2;
173 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
175 *pos = status->signal;
176 rthdr->it_present |=
177 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
178 pos++;
181 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
183 /* IEEE80211_RADIOTAP_ANTENNA */
184 *pos = status->antenna;
185 pos++;
187 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
189 /* IEEE80211_RADIOTAP_RX_FLAGS */
190 /* ensure 2 byte alignment for the 2 byte field as required */
191 if ((pos - (u8 *)rthdr) & 1)
192 pos++;
193 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
194 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
195 put_unaligned_le16(rx_flags, pos);
196 pos += 2;
198 if (status->flag & RX_FLAG_HT) {
199 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
200 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
201 IEEE80211_RADIOTAP_MCS_HAVE_GI |
202 IEEE80211_RADIOTAP_MCS_HAVE_BW;
203 *pos = 0;
204 if (status->flag & RX_FLAG_SHORT_GI)
205 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
206 if (status->flag & RX_FLAG_40MHZ)
207 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
208 pos++;
209 *pos++ = status->rate_idx;
214 * This function copies a received frame to all monitor interfaces and
215 * returns a cleaned-up SKB that no longer includes the FCS nor the
216 * radiotap header the driver might have added.
218 static struct sk_buff *
219 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
220 struct ieee80211_rate *rate)
222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
223 struct ieee80211_sub_if_data *sdata;
224 int needed_headroom = 0;
225 struct sk_buff *skb, *skb2;
226 struct net_device *prev_dev = NULL;
227 int present_fcs_len = 0;
230 * First, we may need to make a copy of the skb because
231 * (1) we need to modify it for radiotap (if not present), and
232 * (2) the other RX handlers will modify the skb we got.
234 * We don't need to, of course, if we aren't going to return
235 * the SKB because it has a bad FCS/PLCP checksum.
238 /* room for the radiotap header based on driver features */
239 needed_headroom = ieee80211_rx_radiotap_len(local, status);
241 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
242 present_fcs_len = FCS_LEN;
244 /* make sure hdr->frame_control is on the linear part */
245 if (!pskb_may_pull(origskb, 2)) {
246 dev_kfree_skb(origskb);
247 return NULL;
250 if (!local->monitors) {
251 if (should_drop_frame(origskb, present_fcs_len)) {
252 dev_kfree_skb(origskb);
253 return NULL;
256 return remove_monitor_info(local, origskb);
259 if (should_drop_frame(origskb, present_fcs_len)) {
260 /* only need to expand headroom if necessary */
261 skb = origskb;
262 origskb = NULL;
265 * This shouldn't trigger often because most devices have an
266 * RX header they pull before we get here, and that should
267 * be big enough for our radiotap information. We should
268 * probably export the length to drivers so that we can have
269 * them allocate enough headroom to start with.
271 if (skb_headroom(skb) < needed_headroom &&
272 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
273 dev_kfree_skb(skb);
274 return NULL;
276 } else {
278 * Need to make a copy and possibly remove radiotap header
279 * and FCS from the original.
281 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
283 origskb = remove_monitor_info(local, origskb);
285 if (!skb)
286 return origskb;
289 /* prepend radiotap information */
290 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
292 skb_reset_mac_header(skb);
293 skb->ip_summed = CHECKSUM_UNNECESSARY;
294 skb->pkt_type = PACKET_OTHERHOST;
295 skb->protocol = htons(ETH_P_802_2);
297 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
298 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
299 continue;
301 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
302 continue;
304 if (!ieee80211_sdata_running(sdata))
305 continue;
307 if (prev_dev) {
308 skb2 = skb_clone(skb, GFP_ATOMIC);
309 if (skb2) {
310 skb2->dev = prev_dev;
311 netif_receive_skb(skb2);
315 prev_dev = sdata->dev;
316 sdata->dev->stats.rx_packets++;
317 sdata->dev->stats.rx_bytes += skb->len;
320 if (prev_dev) {
321 skb->dev = prev_dev;
322 netif_receive_skb(skb);
323 } else
324 dev_kfree_skb(skb);
326 return origskb;
330 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
332 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
333 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
334 int tid, seqno_idx, security_idx;
336 /* does the frame have a qos control field? */
337 if (ieee80211_is_data_qos(hdr->frame_control)) {
338 u8 *qc = ieee80211_get_qos_ctl(hdr);
339 /* frame has qos control */
340 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
341 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
342 status->rx_flags |= IEEE80211_RX_AMSDU;
344 seqno_idx = tid;
345 security_idx = tid;
346 } else {
348 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
350 * Sequence numbers for management frames, QoS data
351 * frames with a broadcast/multicast address in the
352 * Address 1 field, and all non-QoS data frames sent
353 * by QoS STAs are assigned using an additional single
354 * modulo-4096 counter, [...]
356 * We also use that counter for non-QoS STAs.
358 seqno_idx = NUM_RX_DATA_QUEUES;
359 security_idx = 0;
360 if (ieee80211_is_mgmt(hdr->frame_control))
361 security_idx = NUM_RX_DATA_QUEUES;
362 tid = 0;
365 rx->seqno_idx = seqno_idx;
366 rx->security_idx = security_idx;
367 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
368 * For now, set skb->priority to 0 for other cases. */
369 rx->skb->priority = (tid > 7) ? 0 : tid;
373 * DOC: Packet alignment
375 * Drivers always need to pass packets that are aligned to two-byte boundaries
376 * to the stack.
378 * Additionally, should, if possible, align the payload data in a way that
379 * guarantees that the contained IP header is aligned to a four-byte
380 * boundary. In the case of regular frames, this simply means aligning the
381 * payload to a four-byte boundary (because either the IP header is directly
382 * contained, or IV/RFC1042 headers that have a length divisible by four are
383 * in front of it). If the payload data is not properly aligned and the
384 * architecture doesn't support efficient unaligned operations, mac80211
385 * will align the data.
387 * With A-MSDU frames, however, the payload data address must yield two modulo
388 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
389 * push the IP header further back to a multiple of four again. Thankfully, the
390 * specs were sane enough this time around to require padding each A-MSDU
391 * subframe to a length that is a multiple of four.
393 * Padding like Atheros hardware adds which is between the 802.11 header and
394 * the payload is not supported, the driver is required to move the 802.11
395 * header to be directly in front of the payload in that case.
397 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
399 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
400 WARN_ONCE((unsigned long)rx->skb->data & 1,
401 "unaligned packet at 0x%p\n", rx->skb->data);
402 #endif
406 /* rx handlers */
408 static ieee80211_rx_result debug_noinline
409 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
411 struct ieee80211_local *local = rx->local;
412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
413 struct sk_buff *skb = rx->skb;
415 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
416 !local->sched_scanning))
417 return RX_CONTINUE;
419 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
420 test_bit(SCAN_SW_SCANNING, &local->scanning) ||
421 local->sched_scanning)
422 return ieee80211_scan_rx(rx->sdata, skb);
424 /* scanning finished during invoking of handlers */
425 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
426 return RX_DROP_UNUSABLE;
430 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
432 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
434 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
435 return 0;
437 return ieee80211_is_robust_mgmt_frame(hdr);
441 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
443 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
445 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
446 return 0;
448 return ieee80211_is_robust_mgmt_frame(hdr);
452 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
453 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
455 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
456 struct ieee80211_mmie *mmie;
458 if (skb->len < 24 + sizeof(*mmie) ||
459 !is_multicast_ether_addr(hdr->da))
460 return -1;
462 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
463 return -1; /* not a robust management frame */
465 mmie = (struct ieee80211_mmie *)
466 (skb->data + skb->len - sizeof(*mmie));
467 if (mmie->element_id != WLAN_EID_MMIE ||
468 mmie->length != sizeof(*mmie) - 2)
469 return -1;
471 return le16_to_cpu(mmie->key_id);
475 static ieee80211_rx_result
476 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
478 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
479 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
480 char *dev_addr = rx->sdata->vif.addr;
482 if (ieee80211_is_data(hdr->frame_control)) {
483 if (is_multicast_ether_addr(hdr->addr1)) {
484 if (ieee80211_has_tods(hdr->frame_control) ||
485 !ieee80211_has_fromds(hdr->frame_control))
486 return RX_DROP_MONITOR;
487 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
488 return RX_DROP_MONITOR;
489 } else {
490 if (!ieee80211_has_a4(hdr->frame_control))
491 return RX_DROP_MONITOR;
492 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
493 return RX_DROP_MONITOR;
497 /* If there is not an established peer link and this is not a peer link
498 * establisment frame, beacon or probe, drop the frame.
501 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
502 struct ieee80211_mgmt *mgmt;
504 if (!ieee80211_is_mgmt(hdr->frame_control))
505 return RX_DROP_MONITOR;
507 if (ieee80211_is_action(hdr->frame_control)) {
508 u8 category;
509 mgmt = (struct ieee80211_mgmt *)hdr;
510 category = mgmt->u.action.category;
511 if (category != WLAN_CATEGORY_MESH_ACTION &&
512 category != WLAN_CATEGORY_SELF_PROTECTED)
513 return RX_DROP_MONITOR;
514 return RX_CONTINUE;
517 if (ieee80211_is_probe_req(hdr->frame_control) ||
518 ieee80211_is_probe_resp(hdr->frame_control) ||
519 ieee80211_is_beacon(hdr->frame_control) ||
520 ieee80211_is_auth(hdr->frame_control))
521 return RX_CONTINUE;
523 return RX_DROP_MONITOR;
527 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
529 if (ieee80211_is_data(hdr->frame_control) &&
530 is_multicast_ether_addr(hdr->addr1) &&
531 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
532 return RX_DROP_MONITOR;
533 #undef msh_h_get
535 return RX_CONTINUE;
538 #define SEQ_MODULO 0x1000
539 #define SEQ_MASK 0xfff
541 static inline int seq_less(u16 sq1, u16 sq2)
543 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
546 static inline u16 seq_inc(u16 sq)
548 return (sq + 1) & SEQ_MASK;
551 static inline u16 seq_sub(u16 sq1, u16 sq2)
553 return (sq1 - sq2) & SEQ_MASK;
557 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
558 struct tid_ampdu_rx *tid_agg_rx,
559 int index)
561 struct ieee80211_local *local = hw_to_local(hw);
562 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
563 struct ieee80211_rx_status *status;
565 lockdep_assert_held(&tid_agg_rx->reorder_lock);
567 if (!skb)
568 goto no_frame;
570 /* release the frame from the reorder ring buffer */
571 tid_agg_rx->stored_mpdu_num--;
572 tid_agg_rx->reorder_buf[index] = NULL;
573 status = IEEE80211_SKB_RXCB(skb);
574 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
575 skb_queue_tail(&local->rx_skb_queue, skb);
577 no_frame:
578 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
581 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
582 struct tid_ampdu_rx *tid_agg_rx,
583 u16 head_seq_num)
585 int index;
587 lockdep_assert_held(&tid_agg_rx->reorder_lock);
589 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
590 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
591 tid_agg_rx->buf_size;
592 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
597 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
598 * the skb was added to the buffer longer than this time ago, the earlier
599 * frames that have not yet been received are assumed to be lost and the skb
600 * can be released for processing. This may also release other skb's from the
601 * reorder buffer if there are no additional gaps between the frames.
603 * Callers must hold tid_agg_rx->reorder_lock.
605 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
607 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
608 struct tid_ampdu_rx *tid_agg_rx)
610 int index, j;
612 lockdep_assert_held(&tid_agg_rx->reorder_lock);
614 /* release the buffer until next missing frame */
615 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
616 tid_agg_rx->buf_size;
617 if (!tid_agg_rx->reorder_buf[index] &&
618 tid_agg_rx->stored_mpdu_num > 1) {
620 * No buffers ready to be released, but check whether any
621 * frames in the reorder buffer have timed out.
623 int skipped = 1;
624 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
625 j = (j + 1) % tid_agg_rx->buf_size) {
626 if (!tid_agg_rx->reorder_buf[j]) {
627 skipped++;
628 continue;
630 if (skipped &&
631 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
632 HT_RX_REORDER_BUF_TIMEOUT))
633 goto set_release_timer;
635 #ifdef CONFIG_MAC80211_HT_DEBUG
636 if (net_ratelimit())
637 wiphy_debug(hw->wiphy,
638 "release an RX reorder frame due to timeout on earlier frames\n");
639 #endif
640 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
643 * Increment the head seq# also for the skipped slots.
645 tid_agg_rx->head_seq_num =
646 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
647 skipped = 0;
649 } else while (tid_agg_rx->reorder_buf[index]) {
650 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
651 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
652 tid_agg_rx->buf_size;
655 if (tid_agg_rx->stored_mpdu_num) {
656 j = index = seq_sub(tid_agg_rx->head_seq_num,
657 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
659 for (; j != (index - 1) % tid_agg_rx->buf_size;
660 j = (j + 1) % tid_agg_rx->buf_size) {
661 if (tid_agg_rx->reorder_buf[j])
662 break;
665 set_release_timer:
667 mod_timer(&tid_agg_rx->reorder_timer,
668 tid_agg_rx->reorder_time[j] + 1 +
669 HT_RX_REORDER_BUF_TIMEOUT);
670 } else {
671 del_timer(&tid_agg_rx->reorder_timer);
676 * As this function belongs to the RX path it must be under
677 * rcu_read_lock protection. It returns false if the frame
678 * can be processed immediately, true if it was consumed.
680 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
681 struct tid_ampdu_rx *tid_agg_rx,
682 struct sk_buff *skb)
684 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
685 u16 sc = le16_to_cpu(hdr->seq_ctrl);
686 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
687 u16 head_seq_num, buf_size;
688 int index;
689 bool ret = true;
691 spin_lock(&tid_agg_rx->reorder_lock);
693 buf_size = tid_agg_rx->buf_size;
694 head_seq_num = tid_agg_rx->head_seq_num;
696 /* frame with out of date sequence number */
697 if (seq_less(mpdu_seq_num, head_seq_num)) {
698 dev_kfree_skb(skb);
699 goto out;
703 * If frame the sequence number exceeds our buffering window
704 * size release some previous frames to make room for this one.
706 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
707 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
708 /* release stored frames up to new head to stack */
709 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
712 /* Now the new frame is always in the range of the reordering buffer */
714 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
716 /* check if we already stored this frame */
717 if (tid_agg_rx->reorder_buf[index]) {
718 dev_kfree_skb(skb);
719 goto out;
723 * If the current MPDU is in the right order and nothing else
724 * is stored we can process it directly, no need to buffer it.
725 * If it is first but there's something stored, we may be able
726 * to release frames after this one.
728 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
729 tid_agg_rx->stored_mpdu_num == 0) {
730 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
731 ret = false;
732 goto out;
735 /* put the frame in the reordering buffer */
736 tid_agg_rx->reorder_buf[index] = skb;
737 tid_agg_rx->reorder_time[index] = jiffies;
738 tid_agg_rx->stored_mpdu_num++;
739 ieee80211_sta_reorder_release(hw, tid_agg_rx);
741 out:
742 spin_unlock(&tid_agg_rx->reorder_lock);
743 return ret;
747 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
748 * true if the MPDU was buffered, false if it should be processed.
750 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
752 struct sk_buff *skb = rx->skb;
753 struct ieee80211_local *local = rx->local;
754 struct ieee80211_hw *hw = &local->hw;
755 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
756 struct sta_info *sta = rx->sta;
757 struct tid_ampdu_rx *tid_agg_rx;
758 u16 sc;
759 int tid;
761 if (!ieee80211_is_data_qos(hdr->frame_control))
762 goto dont_reorder;
765 * filter the QoS data rx stream according to
766 * STA/TID and check if this STA/TID is on aggregation
769 if (!sta)
770 goto dont_reorder;
772 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
774 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
775 if (!tid_agg_rx)
776 goto dont_reorder;
778 /* qos null data frames are excluded */
779 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
780 goto dont_reorder;
782 /* new, potentially un-ordered, ampdu frame - process it */
784 /* reset session timer */
785 if (tid_agg_rx->timeout)
786 mod_timer(&tid_agg_rx->session_timer,
787 TU_TO_EXP_TIME(tid_agg_rx->timeout));
789 /* if this mpdu is fragmented - terminate rx aggregation session */
790 sc = le16_to_cpu(hdr->seq_ctrl);
791 if (sc & IEEE80211_SCTL_FRAG) {
792 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
793 skb_queue_tail(&rx->sdata->skb_queue, skb);
794 ieee80211_queue_work(&local->hw, &rx->sdata->work);
795 return;
799 * No locking needed -- we will only ever process one
800 * RX packet at a time, and thus own tid_agg_rx. All
801 * other code manipulating it needs to (and does) make
802 * sure that we cannot get to it any more before doing
803 * anything with it.
805 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
806 return;
808 dont_reorder:
809 skb_queue_tail(&local->rx_skb_queue, skb);
812 static ieee80211_rx_result debug_noinline
813 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
815 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
816 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
818 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
819 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
820 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
821 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
822 hdr->seq_ctrl)) {
823 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
824 rx->local->dot11FrameDuplicateCount++;
825 rx->sta->num_duplicates++;
827 return RX_DROP_UNUSABLE;
828 } else
829 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
832 if (unlikely(rx->skb->len < 16)) {
833 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
834 return RX_DROP_MONITOR;
837 /* Drop disallowed frame classes based on STA auth/assoc state;
838 * IEEE 802.11, Chap 5.5.
840 * mac80211 filters only based on association state, i.e. it drops
841 * Class 3 frames from not associated stations. hostapd sends
842 * deauth/disassoc frames when needed. In addition, hostapd is
843 * responsible for filtering on both auth and assoc states.
846 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
847 return ieee80211_rx_mesh_check(rx);
849 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
850 ieee80211_is_pspoll(hdr->frame_control)) &&
851 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
852 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
853 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC))))
854 return RX_DROP_MONITOR;
856 return RX_CONTINUE;
860 static ieee80211_rx_result debug_noinline
861 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
863 struct sk_buff *skb = rx->skb;
864 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
865 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
866 int keyidx;
867 int hdrlen;
868 ieee80211_rx_result result = RX_DROP_UNUSABLE;
869 struct ieee80211_key *sta_ptk = NULL;
870 int mmie_keyidx = -1;
871 __le16 fc;
874 * Key selection 101
876 * There are four types of keys:
877 * - GTK (group keys)
878 * - IGTK (group keys for management frames)
879 * - PTK (pairwise keys)
880 * - STK (station-to-station pairwise keys)
882 * When selecting a key, we have to distinguish between multicast
883 * (including broadcast) and unicast frames, the latter can only
884 * use PTKs and STKs while the former always use GTKs and IGTKs.
885 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
886 * unicast frames can also use key indices like GTKs. Hence, if we
887 * don't have a PTK/STK we check the key index for a WEP key.
889 * Note that in a regular BSS, multicast frames are sent by the
890 * AP only, associated stations unicast the frame to the AP first
891 * which then multicasts it on their behalf.
893 * There is also a slight problem in IBSS mode: GTKs are negotiated
894 * with each station, that is something we don't currently handle.
895 * The spec seems to expect that one negotiates the same key with
896 * every station but there's no such requirement; VLANs could be
897 * possible.
901 * No point in finding a key and decrypting if the frame is neither
902 * addressed to us nor a multicast frame.
904 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
905 return RX_CONTINUE;
907 /* start without a key */
908 rx->key = NULL;
910 if (rx->sta)
911 sta_ptk = rcu_dereference(rx->sta->ptk);
913 fc = hdr->frame_control;
915 if (!ieee80211_has_protected(fc))
916 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
918 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
919 rx->key = sta_ptk;
920 if ((status->flag & RX_FLAG_DECRYPTED) &&
921 (status->flag & RX_FLAG_IV_STRIPPED))
922 return RX_CONTINUE;
923 /* Skip decryption if the frame is not protected. */
924 if (!ieee80211_has_protected(fc))
925 return RX_CONTINUE;
926 } else if (mmie_keyidx >= 0) {
927 /* Broadcast/multicast robust management frame / BIP */
928 if ((status->flag & RX_FLAG_DECRYPTED) &&
929 (status->flag & RX_FLAG_IV_STRIPPED))
930 return RX_CONTINUE;
932 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
933 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
934 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
935 if (rx->sta)
936 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
937 if (!rx->key)
938 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
939 } else if (!ieee80211_has_protected(fc)) {
941 * The frame was not protected, so skip decryption. However, we
942 * need to set rx->key if there is a key that could have been
943 * used so that the frame may be dropped if encryption would
944 * have been expected.
946 struct ieee80211_key *key = NULL;
947 struct ieee80211_sub_if_data *sdata = rx->sdata;
948 int i;
950 if (ieee80211_is_mgmt(fc) &&
951 is_multicast_ether_addr(hdr->addr1) &&
952 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
953 rx->key = key;
954 else {
955 if (rx->sta) {
956 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
957 key = rcu_dereference(rx->sta->gtk[i]);
958 if (key)
959 break;
962 if (!key) {
963 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
964 key = rcu_dereference(sdata->keys[i]);
965 if (key)
966 break;
969 if (key)
970 rx->key = key;
972 return RX_CONTINUE;
973 } else {
974 u8 keyid;
976 * The device doesn't give us the IV so we won't be
977 * able to look up the key. That's ok though, we
978 * don't need to decrypt the frame, we just won't
979 * be able to keep statistics accurate.
980 * Except for key threshold notifications, should
981 * we somehow allow the driver to tell us which key
982 * the hardware used if this flag is set?
984 if ((status->flag & RX_FLAG_DECRYPTED) &&
985 (status->flag & RX_FLAG_IV_STRIPPED))
986 return RX_CONTINUE;
988 hdrlen = ieee80211_hdrlen(fc);
990 if (rx->skb->len < 8 + hdrlen)
991 return RX_DROP_UNUSABLE; /* TODO: count this? */
994 * no need to call ieee80211_wep_get_keyidx,
995 * it verifies a bunch of things we've done already
997 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
998 keyidx = keyid >> 6;
1000 /* check per-station GTK first, if multicast packet */
1001 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1002 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1004 /* if not found, try default key */
1005 if (!rx->key) {
1006 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1009 * RSNA-protected unicast frames should always be
1010 * sent with pairwise or station-to-station keys,
1011 * but for WEP we allow using a key index as well.
1013 if (rx->key &&
1014 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1015 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1016 !is_multicast_ether_addr(hdr->addr1))
1017 rx->key = NULL;
1021 if (rx->key) {
1022 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1023 return RX_DROP_MONITOR;
1025 rx->key->tx_rx_count++;
1026 /* TODO: add threshold stuff again */
1027 } else {
1028 return RX_DROP_MONITOR;
1031 if (skb_linearize(rx->skb))
1032 return RX_DROP_UNUSABLE;
1033 /* the hdr variable is invalid now! */
1035 switch (rx->key->conf.cipher) {
1036 case WLAN_CIPHER_SUITE_WEP40:
1037 case WLAN_CIPHER_SUITE_WEP104:
1038 /* Check for weak IVs if possible */
1039 if (rx->sta && ieee80211_is_data(fc) &&
1040 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1041 !(status->flag & RX_FLAG_DECRYPTED)) &&
1042 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1043 rx->sta->wep_weak_iv_count++;
1045 result = ieee80211_crypto_wep_decrypt(rx);
1046 break;
1047 case WLAN_CIPHER_SUITE_TKIP:
1048 result = ieee80211_crypto_tkip_decrypt(rx);
1049 break;
1050 case WLAN_CIPHER_SUITE_CCMP:
1051 result = ieee80211_crypto_ccmp_decrypt(rx);
1052 break;
1053 case WLAN_CIPHER_SUITE_AES_CMAC:
1054 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1055 break;
1056 default:
1058 * We can reach here only with HW-only algorithms
1059 * but why didn't it decrypt the frame?!
1061 return RX_DROP_UNUSABLE;
1064 /* either the frame has been decrypted or will be dropped */
1065 status->flag |= RX_FLAG_DECRYPTED;
1067 return result;
1070 static ieee80211_rx_result debug_noinline
1071 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1073 struct ieee80211_local *local;
1074 struct ieee80211_hdr *hdr;
1075 struct sk_buff *skb;
1077 local = rx->local;
1078 skb = rx->skb;
1079 hdr = (struct ieee80211_hdr *) skb->data;
1081 if (!local->pspolling)
1082 return RX_CONTINUE;
1084 if (!ieee80211_has_fromds(hdr->frame_control))
1085 /* this is not from AP */
1086 return RX_CONTINUE;
1088 if (!ieee80211_is_data(hdr->frame_control))
1089 return RX_CONTINUE;
1091 if (!ieee80211_has_moredata(hdr->frame_control)) {
1092 /* AP has no more frames buffered for us */
1093 local->pspolling = false;
1094 return RX_CONTINUE;
1097 /* more data bit is set, let's request a new frame from the AP */
1098 ieee80211_send_pspoll(local, rx->sdata);
1100 return RX_CONTINUE;
1103 static void ap_sta_ps_start(struct sta_info *sta)
1105 struct ieee80211_sub_if_data *sdata = sta->sdata;
1106 struct ieee80211_local *local = sdata->local;
1108 atomic_inc(&sdata->bss->num_sta_ps);
1109 set_sta_flags(sta, WLAN_STA_PS_STA);
1110 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1111 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1112 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1113 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1114 sdata->name, sta->sta.addr, sta->sta.aid);
1115 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1118 static void ap_sta_ps_end(struct sta_info *sta)
1120 struct ieee80211_sub_if_data *sdata = sta->sdata;
1122 atomic_dec(&sdata->bss->num_sta_ps);
1124 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1125 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1126 sdata->name, sta->sta.addr, sta->sta.aid);
1127 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1129 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1130 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1131 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1132 sdata->name, sta->sta.addr, sta->sta.aid);
1133 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1134 return;
1137 ieee80211_sta_ps_deliver_wakeup(sta);
1140 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1142 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1143 bool in_ps;
1145 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1147 /* Don't let the same PS state be set twice */
1148 in_ps = test_sta_flags(sta_inf, WLAN_STA_PS_STA);
1149 if ((start && in_ps) || (!start && !in_ps))
1150 return -EINVAL;
1152 if (start)
1153 ap_sta_ps_start(sta_inf);
1154 else
1155 ap_sta_ps_end(sta_inf);
1157 return 0;
1159 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1161 static ieee80211_rx_result debug_noinline
1162 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1164 struct sta_info *sta = rx->sta;
1165 struct sk_buff *skb = rx->skb;
1166 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1167 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1169 if (!sta)
1170 return RX_CONTINUE;
1173 * Update last_rx only for IBSS packets which are for the current
1174 * BSSID to avoid keeping the current IBSS network alive in cases
1175 * where other STAs start using different BSSID.
1177 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1178 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1179 NL80211_IFTYPE_ADHOC);
1180 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1181 sta->last_rx = jiffies;
1182 if (ieee80211_is_data(hdr->frame_control)) {
1183 sta->last_rx_rate_idx = status->rate_idx;
1184 sta->last_rx_rate_flag = status->flag;
1187 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1189 * Mesh beacons will update last_rx when if they are found to
1190 * match the current local configuration when processed.
1192 sta->last_rx = jiffies;
1193 if (ieee80211_is_data(hdr->frame_control)) {
1194 sta->last_rx_rate_idx = status->rate_idx;
1195 sta->last_rx_rate_flag = status->flag;
1199 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1200 return RX_CONTINUE;
1202 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1203 ieee80211_sta_rx_notify(rx->sdata, hdr);
1205 sta->rx_fragments++;
1206 sta->rx_bytes += rx->skb->len;
1207 sta->last_signal = status->signal;
1208 ewma_add(&sta->avg_signal, -status->signal);
1211 * Change STA power saving mode only at the end of a frame
1212 * exchange sequence.
1214 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1215 !ieee80211_has_morefrags(hdr->frame_control) &&
1216 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1217 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1218 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1219 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1221 * Ignore doze->wake transitions that are
1222 * indicated by non-data frames, the standard
1223 * is unclear here, but for example going to
1224 * PS mode and then scanning would cause a
1225 * doze->wake transition for the probe request,
1226 * and that is clearly undesirable.
1228 if (ieee80211_is_data(hdr->frame_control) &&
1229 !ieee80211_has_pm(hdr->frame_control))
1230 ap_sta_ps_end(sta);
1231 } else {
1232 if (ieee80211_has_pm(hdr->frame_control))
1233 ap_sta_ps_start(sta);
1238 * Drop (qos-)data::nullfunc frames silently, since they
1239 * are used only to control station power saving mode.
1241 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1242 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1243 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1246 * If we receive a 4-addr nullfunc frame from a STA
1247 * that was not moved to a 4-addr STA vlan yet, drop
1248 * the frame to the monitor interface, to make sure
1249 * that hostapd sees it
1251 if (ieee80211_has_a4(hdr->frame_control) &&
1252 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1253 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1254 !rx->sdata->u.vlan.sta)))
1255 return RX_DROP_MONITOR;
1257 * Update counter and free packet here to avoid
1258 * counting this as a dropped packed.
1260 sta->rx_packets++;
1261 dev_kfree_skb(rx->skb);
1262 return RX_QUEUED;
1265 return RX_CONTINUE;
1266 } /* ieee80211_rx_h_sta_process */
1268 static inline struct ieee80211_fragment_entry *
1269 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1270 unsigned int frag, unsigned int seq, int rx_queue,
1271 struct sk_buff **skb)
1273 struct ieee80211_fragment_entry *entry;
1274 int idx;
1276 idx = sdata->fragment_next;
1277 entry = &sdata->fragments[sdata->fragment_next++];
1278 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1279 sdata->fragment_next = 0;
1281 if (!skb_queue_empty(&entry->skb_list)) {
1282 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1283 struct ieee80211_hdr *hdr =
1284 (struct ieee80211_hdr *) entry->skb_list.next->data;
1285 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1286 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1287 "addr1=%pM addr2=%pM\n",
1288 sdata->name, idx,
1289 jiffies - entry->first_frag_time, entry->seq,
1290 entry->last_frag, hdr->addr1, hdr->addr2);
1291 #endif
1292 __skb_queue_purge(&entry->skb_list);
1295 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1296 *skb = NULL;
1297 entry->first_frag_time = jiffies;
1298 entry->seq = seq;
1299 entry->rx_queue = rx_queue;
1300 entry->last_frag = frag;
1301 entry->ccmp = 0;
1302 entry->extra_len = 0;
1304 return entry;
1307 static inline struct ieee80211_fragment_entry *
1308 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1309 unsigned int frag, unsigned int seq,
1310 int rx_queue, struct ieee80211_hdr *hdr)
1312 struct ieee80211_fragment_entry *entry;
1313 int i, idx;
1315 idx = sdata->fragment_next;
1316 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1317 struct ieee80211_hdr *f_hdr;
1319 idx--;
1320 if (idx < 0)
1321 idx = IEEE80211_FRAGMENT_MAX - 1;
1323 entry = &sdata->fragments[idx];
1324 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1325 entry->rx_queue != rx_queue ||
1326 entry->last_frag + 1 != frag)
1327 continue;
1329 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1332 * Check ftype and addresses are equal, else check next fragment
1334 if (((hdr->frame_control ^ f_hdr->frame_control) &
1335 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1336 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1337 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1338 continue;
1340 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1341 __skb_queue_purge(&entry->skb_list);
1342 continue;
1344 return entry;
1347 return NULL;
1350 static ieee80211_rx_result debug_noinline
1351 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1353 struct ieee80211_hdr *hdr;
1354 u16 sc;
1355 __le16 fc;
1356 unsigned int frag, seq;
1357 struct ieee80211_fragment_entry *entry;
1358 struct sk_buff *skb;
1359 struct ieee80211_rx_status *status;
1361 hdr = (struct ieee80211_hdr *)rx->skb->data;
1362 fc = hdr->frame_control;
1363 sc = le16_to_cpu(hdr->seq_ctrl);
1364 frag = sc & IEEE80211_SCTL_FRAG;
1366 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1367 (rx->skb)->len < 24 ||
1368 is_multicast_ether_addr(hdr->addr1))) {
1369 /* not fragmented */
1370 goto out;
1372 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1374 if (skb_linearize(rx->skb))
1375 return RX_DROP_UNUSABLE;
1378 * skb_linearize() might change the skb->data and
1379 * previously cached variables (in this case, hdr) need to
1380 * be refreshed with the new data.
1382 hdr = (struct ieee80211_hdr *)rx->skb->data;
1383 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1385 if (frag == 0) {
1386 /* This is the first fragment of a new frame. */
1387 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1388 rx->seqno_idx, &(rx->skb));
1389 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1390 ieee80211_has_protected(fc)) {
1391 int queue = rx->security_idx;
1392 /* Store CCMP PN so that we can verify that the next
1393 * fragment has a sequential PN value. */
1394 entry->ccmp = 1;
1395 memcpy(entry->last_pn,
1396 rx->key->u.ccmp.rx_pn[queue],
1397 CCMP_PN_LEN);
1399 return RX_QUEUED;
1402 /* This is a fragment for a frame that should already be pending in
1403 * fragment cache. Add this fragment to the end of the pending entry.
1405 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1406 rx->seqno_idx, hdr);
1407 if (!entry) {
1408 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1409 return RX_DROP_MONITOR;
1412 /* Verify that MPDUs within one MSDU have sequential PN values.
1413 * (IEEE 802.11i, 8.3.3.4.5) */
1414 if (entry->ccmp) {
1415 int i;
1416 u8 pn[CCMP_PN_LEN], *rpn;
1417 int queue;
1418 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1419 return RX_DROP_UNUSABLE;
1420 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1421 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1422 pn[i]++;
1423 if (pn[i])
1424 break;
1426 queue = rx->security_idx;
1427 rpn = rx->key->u.ccmp.rx_pn[queue];
1428 if (memcmp(pn, rpn, CCMP_PN_LEN))
1429 return RX_DROP_UNUSABLE;
1430 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1433 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1434 __skb_queue_tail(&entry->skb_list, rx->skb);
1435 entry->last_frag = frag;
1436 entry->extra_len += rx->skb->len;
1437 if (ieee80211_has_morefrags(fc)) {
1438 rx->skb = NULL;
1439 return RX_QUEUED;
1442 rx->skb = __skb_dequeue(&entry->skb_list);
1443 if (skb_tailroom(rx->skb) < entry->extra_len) {
1444 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1445 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1446 GFP_ATOMIC))) {
1447 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1448 __skb_queue_purge(&entry->skb_list);
1449 return RX_DROP_UNUSABLE;
1452 while ((skb = __skb_dequeue(&entry->skb_list))) {
1453 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1454 dev_kfree_skb(skb);
1457 /* Complete frame has been reassembled - process it now */
1458 status = IEEE80211_SKB_RXCB(rx->skb);
1459 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1461 out:
1462 if (rx->sta)
1463 rx->sta->rx_packets++;
1464 if (is_multicast_ether_addr(hdr->addr1))
1465 rx->local->dot11MulticastReceivedFrameCount++;
1466 else
1467 ieee80211_led_rx(rx->local);
1468 return RX_CONTINUE;
1471 static ieee80211_rx_result debug_noinline
1472 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1474 struct ieee80211_sub_if_data *sdata = rx->sdata;
1475 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1476 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1478 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1479 !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1480 return RX_CONTINUE;
1482 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1483 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1484 return RX_DROP_UNUSABLE;
1486 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1487 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1488 else
1489 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1491 /* Free PS Poll skb here instead of returning RX_DROP that would
1492 * count as an dropped frame. */
1493 dev_kfree_skb(rx->skb);
1495 return RX_QUEUED;
1498 static ieee80211_rx_result debug_noinline
1499 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1501 u8 *data = rx->skb->data;
1502 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1504 if (!ieee80211_is_data_qos(hdr->frame_control))
1505 return RX_CONTINUE;
1507 /* remove the qos control field, update frame type and meta-data */
1508 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1509 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1510 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1511 /* change frame type to non QOS */
1512 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1514 return RX_CONTINUE;
1517 static int
1518 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1520 if (unlikely(!rx->sta ||
1521 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1522 return -EACCES;
1524 return 0;
1527 static int
1528 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1530 struct sk_buff *skb = rx->skb;
1531 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1534 * Pass through unencrypted frames if the hardware has
1535 * decrypted them already.
1537 if (status->flag & RX_FLAG_DECRYPTED)
1538 return 0;
1540 /* Drop unencrypted frames if key is set. */
1541 if (unlikely(!ieee80211_has_protected(fc) &&
1542 !ieee80211_is_nullfunc(fc) &&
1543 ieee80211_is_data(fc) &&
1544 (rx->key || rx->sdata->drop_unencrypted)))
1545 return -EACCES;
1547 return 0;
1550 static int
1551 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1553 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1554 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1555 __le16 fc = hdr->frame_control;
1558 * Pass through unencrypted frames if the hardware has
1559 * decrypted them already.
1561 if (status->flag & RX_FLAG_DECRYPTED)
1562 return 0;
1564 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1565 if (unlikely(!ieee80211_has_protected(fc) &&
1566 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1567 rx->key)) {
1568 if (ieee80211_is_deauth(fc))
1569 cfg80211_send_unprot_deauth(rx->sdata->dev,
1570 rx->skb->data,
1571 rx->skb->len);
1572 else if (ieee80211_is_disassoc(fc))
1573 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1574 rx->skb->data,
1575 rx->skb->len);
1576 return -EACCES;
1578 /* BIP does not use Protected field, so need to check MMIE */
1579 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1580 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1581 if (ieee80211_is_deauth(fc))
1582 cfg80211_send_unprot_deauth(rx->sdata->dev,
1583 rx->skb->data,
1584 rx->skb->len);
1585 else if (ieee80211_is_disassoc(fc))
1586 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1587 rx->skb->data,
1588 rx->skb->len);
1589 return -EACCES;
1592 * When using MFP, Action frames are not allowed prior to
1593 * having configured keys.
1595 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1596 ieee80211_is_robust_mgmt_frame(
1597 (struct ieee80211_hdr *) rx->skb->data)))
1598 return -EACCES;
1601 return 0;
1604 static int
1605 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1607 struct ieee80211_sub_if_data *sdata = rx->sdata;
1608 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1609 bool check_port_control = false;
1610 struct ethhdr *ehdr;
1611 int ret;
1613 *port_control = false;
1614 if (ieee80211_has_a4(hdr->frame_control) &&
1615 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1616 return -1;
1618 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1619 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1621 if (!sdata->u.mgd.use_4addr)
1622 return -1;
1623 else
1624 check_port_control = true;
1627 if (is_multicast_ether_addr(hdr->addr1) &&
1628 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1629 return -1;
1631 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1632 if (ret < 0)
1633 return ret;
1635 ehdr = (struct ethhdr *) rx->skb->data;
1636 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1637 *port_control = true;
1638 else if (check_port_control)
1639 return -1;
1641 return 0;
1645 * requires that rx->skb is a frame with ethernet header
1647 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1649 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1650 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1651 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1654 * Allow EAPOL frames to us/the PAE group address regardless
1655 * of whether the frame was encrypted or not.
1657 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1658 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1659 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1660 return true;
1662 if (ieee80211_802_1x_port_control(rx) ||
1663 ieee80211_drop_unencrypted(rx, fc))
1664 return false;
1666 return true;
1670 * requires that rx->skb is a frame with ethernet header
1672 static void
1673 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1675 struct ieee80211_sub_if_data *sdata = rx->sdata;
1676 struct net_device *dev = sdata->dev;
1677 struct sk_buff *skb, *xmit_skb;
1678 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1679 struct sta_info *dsta;
1680 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1682 skb = rx->skb;
1683 xmit_skb = NULL;
1685 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1686 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1687 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1688 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1689 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1690 if (is_multicast_ether_addr(ehdr->h_dest)) {
1692 * send multicast frames both to higher layers in
1693 * local net stack and back to the wireless medium
1695 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1696 if (!xmit_skb && net_ratelimit())
1697 printk(KERN_DEBUG "%s: failed to clone "
1698 "multicast frame\n", dev->name);
1699 } else {
1700 dsta = sta_info_get(sdata, skb->data);
1701 if (dsta) {
1703 * The destination station is associated to
1704 * this AP (in this VLAN), so send the frame
1705 * directly to it and do not pass it to local
1706 * net stack.
1708 xmit_skb = skb;
1709 skb = NULL;
1714 if (skb) {
1715 int align __maybe_unused;
1717 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1719 * 'align' will only take the values 0 or 2 here
1720 * since all frames are required to be aligned
1721 * to 2-byte boundaries when being passed to
1722 * mac80211. That also explains the __skb_push()
1723 * below.
1725 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1726 if (align) {
1727 if (WARN_ON(skb_headroom(skb) < 3)) {
1728 dev_kfree_skb(skb);
1729 skb = NULL;
1730 } else {
1731 u8 *data = skb->data;
1732 size_t len = skb_headlen(skb);
1733 skb->data -= align;
1734 memmove(skb->data, data, len);
1735 skb_set_tail_pointer(skb, len);
1738 #endif
1740 if (skb) {
1741 /* deliver to local stack */
1742 skb->protocol = eth_type_trans(skb, dev);
1743 memset(skb->cb, 0, sizeof(skb->cb));
1744 netif_receive_skb(skb);
1748 if (xmit_skb) {
1749 /* send to wireless media */
1750 xmit_skb->protocol = htons(ETH_P_802_3);
1751 skb_reset_network_header(xmit_skb);
1752 skb_reset_mac_header(xmit_skb);
1753 dev_queue_xmit(xmit_skb);
1757 static ieee80211_rx_result debug_noinline
1758 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1760 struct net_device *dev = rx->sdata->dev;
1761 struct sk_buff *skb = rx->skb;
1762 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1763 __le16 fc = hdr->frame_control;
1764 struct sk_buff_head frame_list;
1765 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1767 if (unlikely(!ieee80211_is_data(fc)))
1768 return RX_CONTINUE;
1770 if (unlikely(!ieee80211_is_data_present(fc)))
1771 return RX_DROP_MONITOR;
1773 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1774 return RX_CONTINUE;
1776 if (ieee80211_has_a4(hdr->frame_control) &&
1777 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1778 !rx->sdata->u.vlan.sta)
1779 return RX_DROP_UNUSABLE;
1781 if (is_multicast_ether_addr(hdr->addr1) &&
1782 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1783 rx->sdata->u.vlan.sta) ||
1784 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1785 rx->sdata->u.mgd.use_4addr)))
1786 return RX_DROP_UNUSABLE;
1788 skb->dev = dev;
1789 __skb_queue_head_init(&frame_list);
1791 if (skb_linearize(skb))
1792 return RX_DROP_UNUSABLE;
1794 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1795 rx->sdata->vif.type,
1796 rx->local->hw.extra_tx_headroom, true);
1798 while (!skb_queue_empty(&frame_list)) {
1799 rx->skb = __skb_dequeue(&frame_list);
1801 if (!ieee80211_frame_allowed(rx, fc)) {
1802 dev_kfree_skb(rx->skb);
1803 continue;
1805 dev->stats.rx_packets++;
1806 dev->stats.rx_bytes += rx->skb->len;
1808 ieee80211_deliver_skb(rx);
1811 return RX_QUEUED;
1814 #ifdef CONFIG_MAC80211_MESH
1815 static ieee80211_rx_result
1816 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1818 struct ieee80211_hdr *hdr;
1819 struct ieee80211s_hdr *mesh_hdr;
1820 unsigned int hdrlen;
1821 struct sk_buff *skb = rx->skb, *fwd_skb;
1822 struct ieee80211_local *local = rx->local;
1823 struct ieee80211_sub_if_data *sdata = rx->sdata;
1824 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1826 hdr = (struct ieee80211_hdr *) skb->data;
1827 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1828 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1830 if (!ieee80211_is_data(hdr->frame_control))
1831 return RX_CONTINUE;
1833 if (!mesh_hdr->ttl)
1834 /* illegal frame */
1835 return RX_DROP_MONITOR;
1837 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1838 struct mesh_path *mppath;
1839 char *proxied_addr;
1840 char *mpp_addr;
1842 if (is_multicast_ether_addr(hdr->addr1)) {
1843 mpp_addr = hdr->addr3;
1844 proxied_addr = mesh_hdr->eaddr1;
1845 } else {
1846 mpp_addr = hdr->addr4;
1847 proxied_addr = mesh_hdr->eaddr2;
1850 rcu_read_lock();
1851 mppath = mpp_path_lookup(proxied_addr, sdata);
1852 if (!mppath) {
1853 mpp_path_add(proxied_addr, mpp_addr, sdata);
1854 } else {
1855 spin_lock_bh(&mppath->state_lock);
1856 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1857 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1858 spin_unlock_bh(&mppath->state_lock);
1860 rcu_read_unlock();
1863 /* Frame has reached destination. Don't forward */
1864 if (!is_multicast_ether_addr(hdr->addr1) &&
1865 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1866 return RX_CONTINUE;
1868 mesh_hdr->ttl--;
1870 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1871 if (!mesh_hdr->ttl)
1872 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1873 dropped_frames_ttl);
1874 else {
1875 struct ieee80211_hdr *fwd_hdr;
1876 struct ieee80211_tx_info *info;
1878 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1880 if (!fwd_skb && net_ratelimit())
1881 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1882 sdata->name);
1883 if (!fwd_skb)
1884 goto out;
1886 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1887 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1888 info = IEEE80211_SKB_CB(fwd_skb);
1889 memset(info, 0, sizeof(*info));
1890 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1891 info->control.vif = &rx->sdata->vif;
1892 skb_set_queue_mapping(skb,
1893 ieee80211_select_queue(rx->sdata, fwd_skb));
1894 ieee80211_set_qos_hdr(local, skb);
1895 if (is_multicast_ether_addr(fwd_hdr->addr1))
1896 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1897 fwded_mcast);
1898 else {
1899 int err;
1901 * Save TA to addr1 to send TA a path error if a
1902 * suitable next hop is not found
1904 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1905 ETH_ALEN);
1906 err = mesh_nexthop_lookup(fwd_skb, sdata);
1907 /* Failed to immediately resolve next hop:
1908 * fwded frame was dropped or will be added
1909 * later to the pending skb queue. */
1910 if (err)
1911 return RX_DROP_MONITOR;
1913 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1914 fwded_unicast);
1916 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1917 fwded_frames);
1918 ieee80211_add_pending_skb(local, fwd_skb);
1922 out:
1923 if (is_multicast_ether_addr(hdr->addr1) ||
1924 sdata->dev->flags & IFF_PROMISC)
1925 return RX_CONTINUE;
1926 else
1927 return RX_DROP_MONITOR;
1929 #endif
1931 static ieee80211_rx_result debug_noinline
1932 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1934 struct ieee80211_sub_if_data *sdata = rx->sdata;
1935 struct ieee80211_local *local = rx->local;
1936 struct net_device *dev = sdata->dev;
1937 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1938 __le16 fc = hdr->frame_control;
1939 bool port_control;
1940 int err;
1942 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1943 return RX_CONTINUE;
1945 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1946 return RX_DROP_MONITOR;
1949 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1950 * that a 4-addr station can be detected and moved into a separate VLAN
1952 if (ieee80211_has_a4(hdr->frame_control) &&
1953 sdata->vif.type == NL80211_IFTYPE_AP)
1954 return RX_DROP_MONITOR;
1956 err = __ieee80211_data_to_8023(rx, &port_control);
1957 if (unlikely(err))
1958 return RX_DROP_UNUSABLE;
1960 if (!ieee80211_frame_allowed(rx, fc))
1961 return RX_DROP_MONITOR;
1963 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1964 unlikely(port_control) && sdata->bss) {
1965 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1966 u.ap);
1967 dev = sdata->dev;
1968 rx->sdata = sdata;
1971 rx->skb->dev = dev;
1973 dev->stats.rx_packets++;
1974 dev->stats.rx_bytes += rx->skb->len;
1976 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1977 !is_multicast_ether_addr(
1978 ((struct ethhdr *)rx->skb->data)->h_dest) &&
1979 (!local->scanning &&
1980 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
1981 mod_timer(&local->dynamic_ps_timer, jiffies +
1982 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1985 ieee80211_deliver_skb(rx);
1987 return RX_QUEUED;
1990 static ieee80211_rx_result debug_noinline
1991 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1993 struct ieee80211_local *local = rx->local;
1994 struct ieee80211_hw *hw = &local->hw;
1995 struct sk_buff *skb = rx->skb;
1996 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1997 struct tid_ampdu_rx *tid_agg_rx;
1998 u16 start_seq_num;
1999 u16 tid;
2001 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2002 return RX_CONTINUE;
2004 if (ieee80211_is_back_req(bar->frame_control)) {
2005 struct {
2006 __le16 control, start_seq_num;
2007 } __packed bar_data;
2009 if (!rx->sta)
2010 return RX_DROP_MONITOR;
2012 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2013 &bar_data, sizeof(bar_data)))
2014 return RX_DROP_MONITOR;
2016 tid = le16_to_cpu(bar_data.control) >> 12;
2018 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2019 if (!tid_agg_rx)
2020 return RX_DROP_MONITOR;
2022 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2024 /* reset session timer */
2025 if (tid_agg_rx->timeout)
2026 mod_timer(&tid_agg_rx->session_timer,
2027 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2029 spin_lock(&tid_agg_rx->reorder_lock);
2030 /* release stored frames up to start of BAR */
2031 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2032 spin_unlock(&tid_agg_rx->reorder_lock);
2034 kfree_skb(skb);
2035 return RX_QUEUED;
2039 * After this point, we only want management frames,
2040 * so we can drop all remaining control frames to
2041 * cooked monitor interfaces.
2043 return RX_DROP_MONITOR;
2046 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2047 struct ieee80211_mgmt *mgmt,
2048 size_t len)
2050 struct ieee80211_local *local = sdata->local;
2051 struct sk_buff *skb;
2052 struct ieee80211_mgmt *resp;
2054 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2055 /* Not to own unicast address */
2056 return;
2059 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2060 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2061 /* Not from the current AP or not associated yet. */
2062 return;
2065 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2066 /* Too short SA Query request frame */
2067 return;
2070 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2071 if (skb == NULL)
2072 return;
2074 skb_reserve(skb, local->hw.extra_tx_headroom);
2075 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2076 memset(resp, 0, 24);
2077 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2078 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2079 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2080 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2081 IEEE80211_STYPE_ACTION);
2082 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2083 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2084 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2085 memcpy(resp->u.action.u.sa_query.trans_id,
2086 mgmt->u.action.u.sa_query.trans_id,
2087 WLAN_SA_QUERY_TR_ID_LEN);
2089 ieee80211_tx_skb(sdata, skb);
2092 static ieee80211_rx_result debug_noinline
2093 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2095 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2096 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2099 * From here on, look only at management frames.
2100 * Data and control frames are already handled,
2101 * and unknown (reserved) frames are useless.
2103 if (rx->skb->len < 24)
2104 return RX_DROP_MONITOR;
2106 if (!ieee80211_is_mgmt(mgmt->frame_control))
2107 return RX_DROP_MONITOR;
2109 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2110 return RX_DROP_MONITOR;
2112 if (ieee80211_drop_unencrypted_mgmt(rx))
2113 return RX_DROP_UNUSABLE;
2115 return RX_CONTINUE;
2118 static ieee80211_rx_result debug_noinline
2119 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2121 struct ieee80211_local *local = rx->local;
2122 struct ieee80211_sub_if_data *sdata = rx->sdata;
2123 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2124 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2125 int len = rx->skb->len;
2127 if (!ieee80211_is_action(mgmt->frame_control))
2128 return RX_CONTINUE;
2130 /* drop too small frames */
2131 if (len < IEEE80211_MIN_ACTION_SIZE)
2132 return RX_DROP_UNUSABLE;
2134 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2135 return RX_DROP_UNUSABLE;
2137 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2138 return RX_DROP_UNUSABLE;
2140 switch (mgmt->u.action.category) {
2141 case WLAN_CATEGORY_BACK:
2143 * The aggregation code is not prepared to handle
2144 * anything but STA/AP due to the BSSID handling;
2145 * IBSS could work in the code but isn't supported
2146 * by drivers or the standard.
2148 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2149 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2150 sdata->vif.type != NL80211_IFTYPE_AP)
2151 break;
2153 /* verify action_code is present */
2154 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2155 break;
2157 switch (mgmt->u.action.u.addba_req.action_code) {
2158 case WLAN_ACTION_ADDBA_REQ:
2159 if (len < (IEEE80211_MIN_ACTION_SIZE +
2160 sizeof(mgmt->u.action.u.addba_req)))
2161 goto invalid;
2162 break;
2163 case WLAN_ACTION_ADDBA_RESP:
2164 if (len < (IEEE80211_MIN_ACTION_SIZE +
2165 sizeof(mgmt->u.action.u.addba_resp)))
2166 goto invalid;
2167 break;
2168 case WLAN_ACTION_DELBA:
2169 if (len < (IEEE80211_MIN_ACTION_SIZE +
2170 sizeof(mgmt->u.action.u.delba)))
2171 goto invalid;
2172 break;
2173 default:
2174 goto invalid;
2177 goto queue;
2178 case WLAN_CATEGORY_SPECTRUM_MGMT:
2179 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2180 break;
2182 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2183 break;
2185 /* verify action_code is present */
2186 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2187 break;
2189 switch (mgmt->u.action.u.measurement.action_code) {
2190 case WLAN_ACTION_SPCT_MSR_REQ:
2191 if (len < (IEEE80211_MIN_ACTION_SIZE +
2192 sizeof(mgmt->u.action.u.measurement)))
2193 break;
2194 ieee80211_process_measurement_req(sdata, mgmt, len);
2195 goto handled;
2196 case WLAN_ACTION_SPCT_CHL_SWITCH:
2197 if (len < (IEEE80211_MIN_ACTION_SIZE +
2198 sizeof(mgmt->u.action.u.chan_switch)))
2199 break;
2201 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2202 break;
2204 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2205 break;
2207 goto queue;
2209 break;
2210 case WLAN_CATEGORY_SA_QUERY:
2211 if (len < (IEEE80211_MIN_ACTION_SIZE +
2212 sizeof(mgmt->u.action.u.sa_query)))
2213 break;
2215 switch (mgmt->u.action.u.sa_query.action) {
2216 case WLAN_ACTION_SA_QUERY_REQUEST:
2217 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2218 break;
2219 ieee80211_process_sa_query_req(sdata, mgmt, len);
2220 goto handled;
2222 break;
2223 case WLAN_CATEGORY_MESH_ACTION:
2224 if (!ieee80211_vif_is_mesh(&sdata->vif))
2225 break;
2226 goto queue;
2227 case WLAN_CATEGORY_MESH_PATH_SEL:
2228 if (!mesh_path_sel_is_hwmp(sdata))
2229 break;
2230 goto queue;
2233 return RX_CONTINUE;
2235 invalid:
2236 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2237 /* will return in the next handlers */
2238 return RX_CONTINUE;
2240 handled:
2241 if (rx->sta)
2242 rx->sta->rx_packets++;
2243 dev_kfree_skb(rx->skb);
2244 return RX_QUEUED;
2246 queue:
2247 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2248 skb_queue_tail(&sdata->skb_queue, rx->skb);
2249 ieee80211_queue_work(&local->hw, &sdata->work);
2250 if (rx->sta)
2251 rx->sta->rx_packets++;
2252 return RX_QUEUED;
2255 static ieee80211_rx_result debug_noinline
2256 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2258 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2260 /* skip known-bad action frames and return them in the next handler */
2261 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2262 return RX_CONTINUE;
2265 * Getting here means the kernel doesn't know how to handle
2266 * it, but maybe userspace does ... include returned frames
2267 * so userspace can register for those to know whether ones
2268 * it transmitted were processed or returned.
2271 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2272 rx->skb->data, rx->skb->len,
2273 GFP_ATOMIC)) {
2274 if (rx->sta)
2275 rx->sta->rx_packets++;
2276 dev_kfree_skb(rx->skb);
2277 return RX_QUEUED;
2281 return RX_CONTINUE;
2284 static ieee80211_rx_result debug_noinline
2285 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2287 struct ieee80211_local *local = rx->local;
2288 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2289 struct sk_buff *nskb;
2290 struct ieee80211_sub_if_data *sdata = rx->sdata;
2291 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2293 if (!ieee80211_is_action(mgmt->frame_control))
2294 return RX_CONTINUE;
2297 * For AP mode, hostapd is responsible for handling any action
2298 * frames that we didn't handle, including returning unknown
2299 * ones. For all other modes we will return them to the sender,
2300 * setting the 0x80 bit in the action category, as required by
2301 * 802.11-2007 7.3.1.11.
2302 * Newer versions of hostapd shall also use the management frame
2303 * registration mechanisms, but older ones still use cooked
2304 * monitor interfaces so push all frames there.
2306 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2307 (sdata->vif.type == NL80211_IFTYPE_AP ||
2308 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2309 return RX_DROP_MONITOR;
2311 /* do not return rejected action frames */
2312 if (mgmt->u.action.category & 0x80)
2313 return RX_DROP_UNUSABLE;
2315 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2316 GFP_ATOMIC);
2317 if (nskb) {
2318 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2320 nmgmt->u.action.category |= 0x80;
2321 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2322 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2324 memset(nskb->cb, 0, sizeof(nskb->cb));
2326 ieee80211_tx_skb(rx->sdata, nskb);
2328 dev_kfree_skb(rx->skb);
2329 return RX_QUEUED;
2332 static ieee80211_rx_result debug_noinline
2333 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2335 struct ieee80211_sub_if_data *sdata = rx->sdata;
2336 ieee80211_rx_result rxs;
2337 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2338 __le16 stype;
2340 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2341 if (rxs != RX_CONTINUE)
2342 return rxs;
2344 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2346 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2347 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2348 sdata->vif.type != NL80211_IFTYPE_STATION)
2349 return RX_DROP_MONITOR;
2351 switch (stype) {
2352 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2353 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2354 /* process for all: mesh, mlme, ibss */
2355 break;
2356 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2357 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2358 if (is_multicast_ether_addr(mgmt->da) &&
2359 !is_broadcast_ether_addr(mgmt->da))
2360 return RX_DROP_MONITOR;
2362 /* process only for station */
2363 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2364 return RX_DROP_MONITOR;
2365 break;
2366 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2367 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2368 /* process only for ibss */
2369 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2370 return RX_DROP_MONITOR;
2371 break;
2372 default:
2373 return RX_DROP_MONITOR;
2376 /* queue up frame and kick off work to process it */
2377 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2378 skb_queue_tail(&sdata->skb_queue, rx->skb);
2379 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2380 if (rx->sta)
2381 rx->sta->rx_packets++;
2383 return RX_QUEUED;
2386 /* TODO: use IEEE80211_RX_FRAGMENTED */
2387 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2388 struct ieee80211_rate *rate)
2390 struct ieee80211_sub_if_data *sdata;
2391 struct ieee80211_local *local = rx->local;
2392 struct ieee80211_rtap_hdr {
2393 struct ieee80211_radiotap_header hdr;
2394 u8 flags;
2395 u8 rate_or_pad;
2396 __le16 chan_freq;
2397 __le16 chan_flags;
2398 } __packed *rthdr;
2399 struct sk_buff *skb = rx->skb, *skb2;
2400 struct net_device *prev_dev = NULL;
2401 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2404 * If cooked monitor has been processed already, then
2405 * don't do it again. If not, set the flag.
2407 if (rx->flags & IEEE80211_RX_CMNTR)
2408 goto out_free_skb;
2409 rx->flags |= IEEE80211_RX_CMNTR;
2411 if (skb_headroom(skb) < sizeof(*rthdr) &&
2412 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2413 goto out_free_skb;
2415 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2416 memset(rthdr, 0, sizeof(*rthdr));
2417 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2418 rthdr->hdr.it_present =
2419 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2420 (1 << IEEE80211_RADIOTAP_CHANNEL));
2422 if (rate) {
2423 rthdr->rate_or_pad = rate->bitrate / 5;
2424 rthdr->hdr.it_present |=
2425 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2427 rthdr->chan_freq = cpu_to_le16(status->freq);
2429 if (status->band == IEEE80211_BAND_5GHZ)
2430 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2431 IEEE80211_CHAN_5GHZ);
2432 else
2433 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2434 IEEE80211_CHAN_2GHZ);
2436 skb_set_mac_header(skb, 0);
2437 skb->ip_summed = CHECKSUM_UNNECESSARY;
2438 skb->pkt_type = PACKET_OTHERHOST;
2439 skb->protocol = htons(ETH_P_802_2);
2441 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2442 if (!ieee80211_sdata_running(sdata))
2443 continue;
2445 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2446 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2447 continue;
2449 if (prev_dev) {
2450 skb2 = skb_clone(skb, GFP_ATOMIC);
2451 if (skb2) {
2452 skb2->dev = prev_dev;
2453 netif_receive_skb(skb2);
2457 prev_dev = sdata->dev;
2458 sdata->dev->stats.rx_packets++;
2459 sdata->dev->stats.rx_bytes += skb->len;
2462 if (prev_dev) {
2463 skb->dev = prev_dev;
2464 netif_receive_skb(skb);
2465 return;
2468 out_free_skb:
2469 dev_kfree_skb(skb);
2472 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2473 ieee80211_rx_result res)
2475 switch (res) {
2476 case RX_DROP_MONITOR:
2477 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2478 if (rx->sta)
2479 rx->sta->rx_dropped++;
2480 /* fall through */
2481 case RX_CONTINUE: {
2482 struct ieee80211_rate *rate = NULL;
2483 struct ieee80211_supported_band *sband;
2484 struct ieee80211_rx_status *status;
2486 status = IEEE80211_SKB_RXCB((rx->skb));
2488 sband = rx->local->hw.wiphy->bands[status->band];
2489 if (!(status->flag & RX_FLAG_HT))
2490 rate = &sband->bitrates[status->rate_idx];
2492 ieee80211_rx_cooked_monitor(rx, rate);
2493 break;
2495 case RX_DROP_UNUSABLE:
2496 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2497 if (rx->sta)
2498 rx->sta->rx_dropped++;
2499 dev_kfree_skb(rx->skb);
2500 break;
2501 case RX_QUEUED:
2502 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2503 break;
2507 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2509 ieee80211_rx_result res = RX_DROP_MONITOR;
2510 struct sk_buff *skb;
2512 #define CALL_RXH(rxh) \
2513 do { \
2514 res = rxh(rx); \
2515 if (res != RX_CONTINUE) \
2516 goto rxh_next; \
2517 } while (0);
2519 spin_lock(&rx->local->rx_skb_queue.lock);
2520 if (rx->local->running_rx_handler)
2521 goto unlock;
2523 rx->local->running_rx_handler = true;
2525 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2526 spin_unlock(&rx->local->rx_skb_queue.lock);
2529 * all the other fields are valid across frames
2530 * that belong to an aMPDU since they are on the
2531 * same TID from the same station
2533 rx->skb = skb;
2535 CALL_RXH(ieee80211_rx_h_decrypt)
2536 CALL_RXH(ieee80211_rx_h_check_more_data)
2537 CALL_RXH(ieee80211_rx_h_sta_process)
2538 CALL_RXH(ieee80211_rx_h_defragment)
2539 CALL_RXH(ieee80211_rx_h_ps_poll)
2540 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2541 /* must be after MMIC verify so header is counted in MPDU mic */
2542 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2543 CALL_RXH(ieee80211_rx_h_amsdu)
2544 #ifdef CONFIG_MAC80211_MESH
2545 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2546 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2547 #endif
2548 CALL_RXH(ieee80211_rx_h_data)
2549 CALL_RXH(ieee80211_rx_h_ctrl);
2550 CALL_RXH(ieee80211_rx_h_mgmt_check)
2551 CALL_RXH(ieee80211_rx_h_action)
2552 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2553 CALL_RXH(ieee80211_rx_h_action_return)
2554 CALL_RXH(ieee80211_rx_h_mgmt)
2556 rxh_next:
2557 ieee80211_rx_handlers_result(rx, res);
2558 spin_lock(&rx->local->rx_skb_queue.lock);
2559 #undef CALL_RXH
2562 rx->local->running_rx_handler = false;
2564 unlock:
2565 spin_unlock(&rx->local->rx_skb_queue.lock);
2568 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2570 ieee80211_rx_result res = RX_DROP_MONITOR;
2572 #define CALL_RXH(rxh) \
2573 do { \
2574 res = rxh(rx); \
2575 if (res != RX_CONTINUE) \
2576 goto rxh_next; \
2577 } while (0);
2579 CALL_RXH(ieee80211_rx_h_passive_scan)
2580 CALL_RXH(ieee80211_rx_h_check)
2582 ieee80211_rx_reorder_ampdu(rx);
2584 ieee80211_rx_handlers(rx);
2585 return;
2587 rxh_next:
2588 ieee80211_rx_handlers_result(rx, res);
2590 #undef CALL_RXH
2594 * This function makes calls into the RX path, therefore
2595 * it has to be invoked under RCU read lock.
2597 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2599 struct ieee80211_rx_data rx = {
2600 .sta = sta,
2601 .sdata = sta->sdata,
2602 .local = sta->local,
2603 /* This is OK -- must be QoS data frame */
2604 .security_idx = tid,
2605 .seqno_idx = tid,
2606 .flags = 0,
2608 struct tid_ampdu_rx *tid_agg_rx;
2610 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2611 if (!tid_agg_rx)
2612 return;
2614 spin_lock(&tid_agg_rx->reorder_lock);
2615 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2616 spin_unlock(&tid_agg_rx->reorder_lock);
2618 ieee80211_rx_handlers(&rx);
2621 /* main receive path */
2623 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2624 struct ieee80211_hdr *hdr)
2626 struct ieee80211_sub_if_data *sdata = rx->sdata;
2627 struct sk_buff *skb = rx->skb;
2628 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2629 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2630 int multicast = is_multicast_ether_addr(hdr->addr1);
2632 switch (sdata->vif.type) {
2633 case NL80211_IFTYPE_STATION:
2634 if (!bssid && !sdata->u.mgd.use_4addr)
2635 return 0;
2636 if (!multicast &&
2637 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2638 if (!(sdata->dev->flags & IFF_PROMISC) ||
2639 sdata->u.mgd.use_4addr)
2640 return 0;
2641 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2643 break;
2644 case NL80211_IFTYPE_ADHOC:
2645 if (!bssid)
2646 return 0;
2647 if (ieee80211_is_beacon(hdr->frame_control)) {
2648 return 1;
2650 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2651 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2652 return 0;
2653 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2654 } else if (!multicast &&
2655 compare_ether_addr(sdata->vif.addr,
2656 hdr->addr1) != 0) {
2657 if (!(sdata->dev->flags & IFF_PROMISC))
2658 return 0;
2659 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2660 } else if (!rx->sta) {
2661 int rate_idx;
2662 if (status->flag & RX_FLAG_HT)
2663 rate_idx = 0; /* TODO: HT rates */
2664 else
2665 rate_idx = status->rate_idx;
2666 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2667 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2669 break;
2670 case NL80211_IFTYPE_MESH_POINT:
2671 if (!multicast &&
2672 compare_ether_addr(sdata->vif.addr,
2673 hdr->addr1) != 0) {
2674 if (!(sdata->dev->flags & IFF_PROMISC))
2675 return 0;
2677 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2679 break;
2680 case NL80211_IFTYPE_AP_VLAN:
2681 case NL80211_IFTYPE_AP:
2682 if (!bssid) {
2683 if (compare_ether_addr(sdata->vif.addr,
2684 hdr->addr1))
2685 return 0;
2686 } else if (!ieee80211_bssid_match(bssid,
2687 sdata->vif.addr)) {
2688 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2689 !ieee80211_is_beacon(hdr->frame_control))
2690 return 0;
2691 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2693 break;
2694 case NL80211_IFTYPE_WDS:
2695 if (bssid || !ieee80211_is_data(hdr->frame_control))
2696 return 0;
2697 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2698 return 0;
2699 break;
2700 default:
2701 /* should never get here */
2702 WARN_ON(1);
2703 break;
2706 return 1;
2710 * This function returns whether or not the SKB
2711 * was destined for RX processing or not, which,
2712 * if consume is true, is equivalent to whether
2713 * or not the skb was consumed.
2715 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2716 struct sk_buff *skb, bool consume)
2718 struct ieee80211_local *local = rx->local;
2719 struct ieee80211_sub_if_data *sdata = rx->sdata;
2720 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2721 struct ieee80211_hdr *hdr = (void *)skb->data;
2722 int prepares;
2724 rx->skb = skb;
2725 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2726 prepares = prepare_for_handlers(rx, hdr);
2728 if (!prepares)
2729 return false;
2731 if (!consume) {
2732 skb = skb_copy(skb, GFP_ATOMIC);
2733 if (!skb) {
2734 if (net_ratelimit())
2735 wiphy_debug(local->hw.wiphy,
2736 "failed to copy skb for %s\n",
2737 sdata->name);
2738 return true;
2741 rx->skb = skb;
2744 ieee80211_invoke_rx_handlers(rx);
2745 return true;
2749 * This is the actual Rx frames handler. as it blongs to Rx path it must
2750 * be called with rcu_read_lock protection.
2752 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2753 struct sk_buff *skb)
2755 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2756 struct ieee80211_local *local = hw_to_local(hw);
2757 struct ieee80211_sub_if_data *sdata;
2758 struct ieee80211_hdr *hdr;
2759 __le16 fc;
2760 struct ieee80211_rx_data rx;
2761 struct ieee80211_sub_if_data *prev;
2762 struct sta_info *sta, *tmp, *prev_sta;
2763 int err = 0;
2765 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2766 memset(&rx, 0, sizeof(rx));
2767 rx.skb = skb;
2768 rx.local = local;
2770 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2771 local->dot11ReceivedFragmentCount++;
2773 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2774 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2775 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2777 if (ieee80211_is_mgmt(fc))
2778 err = skb_linearize(skb);
2779 else
2780 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2782 if (err) {
2783 dev_kfree_skb(skb);
2784 return;
2787 hdr = (struct ieee80211_hdr *)skb->data;
2788 ieee80211_parse_qos(&rx);
2789 ieee80211_verify_alignment(&rx);
2791 if (ieee80211_is_data(fc)) {
2792 prev_sta = NULL;
2794 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2795 if (!prev_sta) {
2796 prev_sta = sta;
2797 continue;
2800 rx.sta = prev_sta;
2801 rx.sdata = prev_sta->sdata;
2802 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2804 prev_sta = sta;
2807 if (prev_sta) {
2808 rx.sta = prev_sta;
2809 rx.sdata = prev_sta->sdata;
2811 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2812 return;
2813 goto out;
2817 prev = NULL;
2819 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2820 if (!ieee80211_sdata_running(sdata))
2821 continue;
2823 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2824 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2825 continue;
2828 * frame is destined for this interface, but if it's
2829 * not also for the previous one we handle that after
2830 * the loop to avoid copying the SKB once too much
2833 if (!prev) {
2834 prev = sdata;
2835 continue;
2838 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2839 rx.sdata = prev;
2840 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2842 prev = sdata;
2845 if (prev) {
2846 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2847 rx.sdata = prev;
2849 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2850 return;
2853 out:
2854 dev_kfree_skb(skb);
2858 * This is the receive path handler. It is called by a low level driver when an
2859 * 802.11 MPDU is received from the hardware.
2861 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2863 struct ieee80211_local *local = hw_to_local(hw);
2864 struct ieee80211_rate *rate = NULL;
2865 struct ieee80211_supported_band *sband;
2866 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2868 WARN_ON_ONCE(softirq_count() == 0);
2870 if (WARN_ON(status->band < 0 ||
2871 status->band >= IEEE80211_NUM_BANDS))
2872 goto drop;
2874 sband = local->hw.wiphy->bands[status->band];
2875 if (WARN_ON(!sband))
2876 goto drop;
2879 * If we're suspending, it is possible although not too likely
2880 * that we'd be receiving frames after having already partially
2881 * quiesced the stack. We can't process such frames then since
2882 * that might, for example, cause stations to be added or other
2883 * driver callbacks be invoked.
2885 if (unlikely(local->quiescing || local->suspended))
2886 goto drop;
2889 * The same happens when we're not even started,
2890 * but that's worth a warning.
2892 if (WARN_ON(!local->started))
2893 goto drop;
2895 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2897 * Validate the rate, unless a PLCP error means that
2898 * we probably can't have a valid rate here anyway.
2901 if (status->flag & RX_FLAG_HT) {
2903 * rate_idx is MCS index, which can be [0-76]
2904 * as documented on:
2906 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2908 * Anything else would be some sort of driver or
2909 * hardware error. The driver should catch hardware
2910 * errors.
2912 if (WARN((status->rate_idx < 0 ||
2913 status->rate_idx > 76),
2914 "Rate marked as an HT rate but passed "
2915 "status->rate_idx is not "
2916 "an MCS index [0-76]: %d (0x%02x)\n",
2917 status->rate_idx,
2918 status->rate_idx))
2919 goto drop;
2920 } else {
2921 if (WARN_ON(status->rate_idx < 0 ||
2922 status->rate_idx >= sband->n_bitrates))
2923 goto drop;
2924 rate = &sband->bitrates[status->rate_idx];
2928 status->rx_flags = 0;
2931 * key references and virtual interfaces are protected using RCU
2932 * and this requires that we are in a read-side RCU section during
2933 * receive processing
2935 rcu_read_lock();
2938 * Frames with failed FCS/PLCP checksum are not returned,
2939 * all other frames are returned without radiotap header
2940 * if it was previously present.
2941 * Also, frames with less than 16 bytes are dropped.
2943 skb = ieee80211_rx_monitor(local, skb, rate);
2944 if (!skb) {
2945 rcu_read_unlock();
2946 return;
2949 ieee80211_tpt_led_trig_rx(local,
2950 ((struct ieee80211_hdr *)skb->data)->frame_control,
2951 skb->len);
2952 __ieee80211_rx_handle_packet(hw, skb);
2954 rcu_read_unlock();
2956 return;
2957 drop:
2958 kfree_skb(skb);
2960 EXPORT_SYMBOL(ieee80211_rx);
2962 /* This is a version of the rx handler that can be called from hard irq
2963 * context. Post the skb on the queue and schedule the tasklet */
2964 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2966 struct ieee80211_local *local = hw_to_local(hw);
2968 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2970 skb->pkt_type = IEEE80211_RX_MSG;
2971 skb_queue_tail(&local->skb_queue, skb);
2972 tasklet_schedule(&local->tasklet);
2974 EXPORT_SYMBOL(ieee80211_rx_irqsafe);