x86/PCI: use host bridge _CRS info on ASUS M2V-MX SE
[linux-btrfs-devel.git] / drivers / edac / i7300_edac.c
bloba76fe8366b681d14cc2e6158fba49133525aeaa3
1 /*
2 * Intel 7300 class Memory Controllers kernel module (Clarksboro)
4 * This file may be distributed under the terms of the
5 * GNU General Public License version 2 only.
7 * Copyright (c) 2010 by:
8 * Mauro Carvalho Chehab <mchehab@redhat.com>
10 * Red Hat Inc. http://www.redhat.com
12 * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
13 * http://www.intel.com/Assets/PDF/datasheet/318082.pdf
15 * TODO: The chipset allow checking for PCI Express errors also. Currently,
16 * the driver covers only memory error errors
18 * This driver uses "csrows" EDAC attribute to represent DIMM slot#
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/pci.h>
24 #include <linux/pci_ids.h>
25 #include <linux/slab.h>
26 #include <linux/edac.h>
27 #include <linux/mmzone.h>
29 #include "edac_core.h"
32 * Alter this version for the I7300 module when modifications are made
34 #define I7300_REVISION " Ver: 1.0.0"
36 #define EDAC_MOD_STR "i7300_edac"
38 #define i7300_printk(level, fmt, arg...) \
39 edac_printk(level, "i7300", fmt, ##arg)
41 #define i7300_mc_printk(mci, level, fmt, arg...) \
42 edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
44 /***********************************************
45 * i7300 Limit constants Structs and static vars
46 ***********************************************/
49 * Memory topology is organized as:
50 * Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
51 * Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
52 * Each channel can have to 8 DIMM sets (called as SLOTS)
53 * Slots should generally be filled in pairs
54 * Except on Single Channel mode of operation
55 * just slot 0/channel0 filled on this mode
56 * On normal operation mode, the two channels on a branch should be
57 * filled together for the same SLOT#
58 * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
59 * channels on both branches should be filled
62 /* Limits for i7300 */
63 #define MAX_SLOTS 8
64 #define MAX_BRANCHES 2
65 #define MAX_CH_PER_BRANCH 2
66 #define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES)
67 #define MAX_MIR 3
69 #define to_channel(ch, branch) ((((branch)) << 1) | (ch))
71 #define to_csrow(slot, ch, branch) \
72 (to_channel(ch, branch) | ((slot) << 2))
74 /* Device name and register DID (Device ID) */
75 struct i7300_dev_info {
76 const char *ctl_name; /* name for this device */
77 u16 fsb_mapping_errors; /* DID for the branchmap,control */
80 /* Table of devices attributes supported by this driver */
81 static const struct i7300_dev_info i7300_devs[] = {
83 .ctl_name = "I7300",
84 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
88 struct i7300_dimm_info {
89 int megabytes; /* size, 0 means not present */
92 /* driver private data structure */
93 struct i7300_pvt {
94 struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */
95 struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */
96 struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */
97 struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */
99 u16 tolm; /* top of low memory */
100 u64 ambase; /* AMB BAR */
102 u32 mc_settings; /* Report several settings */
103 u32 mc_settings_a;
105 u16 mir[MAX_MIR]; /* Memory Interleave Reg*/
107 u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */
108 u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */
110 /* DIMM information matrix, allocating architecture maximums */
111 struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
113 /* Temporary buffer for use when preparing error messages */
114 char *tmp_prt_buffer;
117 /* FIXME: Why do we need to have this static? */
118 static struct edac_pci_ctl_info *i7300_pci;
120 /***************************************************
121 * i7300 Register definitions for memory enumeration
122 ***************************************************/
125 * Device 16,
126 * Function 0: System Address (not documented)
127 * Function 1: Memory Branch Map, Control, Errors Register
130 /* OFFSETS for Function 0 */
131 #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
132 #define MAXCH 0x56 /* Max Channel Number */
133 #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
135 /* OFFSETS for Function 1 */
136 #define MC_SETTINGS 0x40
137 #define IS_MIRRORED(mc) ((mc) & (1 << 16))
138 #define IS_ECC_ENABLED(mc) ((mc) & (1 << 5))
139 #define IS_RETRY_ENABLED(mc) ((mc) & (1 << 31))
140 #define IS_SCRBALGO_ENHANCED(mc) ((mc) & (1 << 8))
142 #define MC_SETTINGS_A 0x58
143 #define IS_SINGLE_MODE(mca) ((mca) & (1 << 14))
145 #define TOLM 0x6C
147 #define MIR0 0x80
148 #define MIR1 0x84
149 #define MIR2 0x88
152 * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
153 * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
154 * seems that we cannot use this information directly for the same usage.
155 * Each memory slot may have up to 2 AMB interfaces, one for income and another
156 * for outcome interface to the next slot.
157 * For now, the driver just stores the AMB present registers, but rely only at
158 * the MTR info to detect memory.
159 * Datasheet is also not clear about how to map each AMBPRESENT registers to
160 * one of the 4 available channels.
162 #define AMBPRESENT_0 0x64
163 #define AMBPRESENT_1 0x66
165 static const u16 mtr_regs[MAX_SLOTS] = {
166 0x80, 0x84, 0x88, 0x8c,
167 0x82, 0x86, 0x8a, 0x8e
171 * Defines to extract the vaious fields from the
172 * MTRx - Memory Technology Registers
174 #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8))
175 #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7))
176 #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
177 #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4)
178 #define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0)
179 #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
180 #define MTR_DRAM_BANKS_ADDR_BITS 2
181 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
182 #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
183 #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
185 #ifdef CONFIG_EDAC_DEBUG
186 /* MTR NUMROW */
187 static const char *numrow_toString[] = {
188 "8,192 - 13 rows",
189 "16,384 - 14 rows",
190 "32,768 - 15 rows",
191 "65,536 - 16 rows"
194 /* MTR NUMCOL */
195 static const char *numcol_toString[] = {
196 "1,024 - 10 columns",
197 "2,048 - 11 columns",
198 "4,096 - 12 columns",
199 "reserved"
201 #endif
203 /************************************************
204 * i7300 Register definitions for error detection
205 ************************************************/
208 * Device 16.1: FBD Error Registers
210 #define FERR_FAT_FBD 0x98
211 static const char *ferr_fat_fbd_name[] = {
212 [22] = "Non-Redundant Fast Reset Timeout",
213 [2] = ">Tmid Thermal event with intelligent throttling disabled",
214 [1] = "Memory or FBD configuration CRC read error",
215 [0] = "Memory Write error on non-redundant retry or "
216 "FBD configuration Write error on retry",
218 #define GET_FBD_FAT_IDX(fbderr) (fbderr & (3 << 28))
219 #define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3))
221 #define FERR_NF_FBD 0xa0
222 static const char *ferr_nf_fbd_name[] = {
223 [24] = "DIMM-Spare Copy Completed",
224 [23] = "DIMM-Spare Copy Initiated",
225 [22] = "Redundant Fast Reset Timeout",
226 [21] = "Memory Write error on redundant retry",
227 [18] = "SPD protocol Error",
228 [17] = "FBD Northbound parity error on FBD Sync Status",
229 [16] = "Correctable Patrol Data ECC",
230 [15] = "Correctable Resilver- or Spare-Copy Data ECC",
231 [14] = "Correctable Mirrored Demand Data ECC",
232 [13] = "Correctable Non-Mirrored Demand Data ECC",
233 [11] = "Memory or FBD configuration CRC read error",
234 [10] = "FBD Configuration Write error on first attempt",
235 [9] = "Memory Write error on first attempt",
236 [8] = "Non-Aliased Uncorrectable Patrol Data ECC",
237 [7] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
238 [6] = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
239 [5] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
240 [4] = "Aliased Uncorrectable Patrol Data ECC",
241 [3] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
242 [2] = "Aliased Uncorrectable Mirrored Demand Data ECC",
243 [1] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
244 [0] = "Uncorrectable Data ECC on Replay",
246 #define GET_FBD_NF_IDX(fbderr) (fbderr & (3 << 28))
247 #define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
248 (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
249 (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
250 (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
251 (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
252 (1 << 1) | (1 << 0))
254 #define EMASK_FBD 0xa8
255 #define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
256 (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
257 (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
258 (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
259 (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
260 (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
261 (1 << 1) | (1 << 0))
264 * Device 16.2: Global Error Registers
267 #define FERR_GLOBAL_HI 0x48
268 static const char *ferr_global_hi_name[] = {
269 [3] = "FSB 3 Fatal Error",
270 [2] = "FSB 2 Fatal Error",
271 [1] = "FSB 1 Fatal Error",
272 [0] = "FSB 0 Fatal Error",
274 #define ferr_global_hi_is_fatal(errno) 1
276 #define FERR_GLOBAL_LO 0x40
277 static const char *ferr_global_lo_name[] = {
278 [31] = "Internal MCH Fatal Error",
279 [30] = "Intel QuickData Technology Device Fatal Error",
280 [29] = "FSB1 Fatal Error",
281 [28] = "FSB0 Fatal Error",
282 [27] = "FBD Channel 3 Fatal Error",
283 [26] = "FBD Channel 2 Fatal Error",
284 [25] = "FBD Channel 1 Fatal Error",
285 [24] = "FBD Channel 0 Fatal Error",
286 [23] = "PCI Express Device 7Fatal Error",
287 [22] = "PCI Express Device 6 Fatal Error",
288 [21] = "PCI Express Device 5 Fatal Error",
289 [20] = "PCI Express Device 4 Fatal Error",
290 [19] = "PCI Express Device 3 Fatal Error",
291 [18] = "PCI Express Device 2 Fatal Error",
292 [17] = "PCI Express Device 1 Fatal Error",
293 [16] = "ESI Fatal Error",
294 [15] = "Internal MCH Non-Fatal Error",
295 [14] = "Intel QuickData Technology Device Non Fatal Error",
296 [13] = "FSB1 Non-Fatal Error",
297 [12] = "FSB 0 Non-Fatal Error",
298 [11] = "FBD Channel 3 Non-Fatal Error",
299 [10] = "FBD Channel 2 Non-Fatal Error",
300 [9] = "FBD Channel 1 Non-Fatal Error",
301 [8] = "FBD Channel 0 Non-Fatal Error",
302 [7] = "PCI Express Device 7 Non-Fatal Error",
303 [6] = "PCI Express Device 6 Non-Fatal Error",
304 [5] = "PCI Express Device 5 Non-Fatal Error",
305 [4] = "PCI Express Device 4 Non-Fatal Error",
306 [3] = "PCI Express Device 3 Non-Fatal Error",
307 [2] = "PCI Express Device 2 Non-Fatal Error",
308 [1] = "PCI Express Device 1 Non-Fatal Error",
309 [0] = "ESI Non-Fatal Error",
311 #define ferr_global_lo_is_fatal(errno) ((errno < 16) ? 0 : 1)
313 #define NRECMEMA 0xbe
314 #define NRECMEMA_BANK(v) (((v) >> 12) & 7)
315 #define NRECMEMA_RANK(v) (((v) >> 8) & 15)
317 #define NRECMEMB 0xc0
318 #define NRECMEMB_IS_WR(v) ((v) & (1 << 31))
319 #define NRECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
320 #define NRECMEMB_RAS(v) ((v) & 0xffff)
322 #define REDMEMA 0xdc
324 #define REDMEMB 0x7c
325 #define IS_SECOND_CH(v) ((v) * (1 << 17))
327 #define RECMEMA 0xe0
328 #define RECMEMA_BANK(v) (((v) >> 12) & 7)
329 #define RECMEMA_RANK(v) (((v) >> 8) & 15)
331 #define RECMEMB 0xe4
332 #define RECMEMB_IS_WR(v) ((v) & (1 << 31))
333 #define RECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
334 #define RECMEMB_RAS(v) ((v) & 0xffff)
336 /********************************************
337 * i7300 Functions related to error detection
338 ********************************************/
341 * get_err_from_table() - Gets the error message from a table
342 * @table: table name (array of char *)
343 * @size: number of elements at the table
344 * @pos: position of the element to be returned
346 * This is a small routine that gets the pos-th element of a table. If the
347 * element doesn't exist (or it is empty), it returns "reserved".
348 * Instead of calling it directly, the better is to call via the macro
349 * GET_ERR_FROM_TABLE(), that automatically checks the table size via
350 * ARRAY_SIZE() macro
352 static const char *get_err_from_table(const char *table[], int size, int pos)
354 if (unlikely(pos >= size))
355 return "Reserved";
357 if (unlikely(!table[pos]))
358 return "Reserved";
360 return table[pos];
363 #define GET_ERR_FROM_TABLE(table, pos) \
364 get_err_from_table(table, ARRAY_SIZE(table), pos)
367 * i7300_process_error_global() - Retrieve the hardware error information from
368 * the hardware global error registers and
369 * sends it to dmesg
370 * @mci: struct mem_ctl_info pointer
372 static void i7300_process_error_global(struct mem_ctl_info *mci)
374 struct i7300_pvt *pvt;
375 u32 errnum, value;
376 unsigned long errors;
377 const char *specific;
378 bool is_fatal;
380 pvt = mci->pvt_info;
382 /* read in the 1st FATAL error register */
383 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
384 FERR_GLOBAL_HI, &value);
385 if (unlikely(value)) {
386 errors = value;
387 errnum = find_first_bit(&errors,
388 ARRAY_SIZE(ferr_global_hi_name));
389 specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
390 is_fatal = ferr_global_hi_is_fatal(errnum);
392 /* Clear the error bit */
393 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
394 FERR_GLOBAL_HI, value);
396 goto error_global;
399 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
400 FERR_GLOBAL_LO, &value);
401 if (unlikely(value)) {
402 errors = value;
403 errnum = find_first_bit(&errors,
404 ARRAY_SIZE(ferr_global_lo_name));
405 specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
406 is_fatal = ferr_global_lo_is_fatal(errnum);
408 /* Clear the error bit */
409 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
410 FERR_GLOBAL_LO, value);
412 goto error_global;
414 return;
416 error_global:
417 i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
418 is_fatal ? "Fatal" : "NOT fatal", specific);
422 * i7300_process_fbd_error() - Retrieve the hardware error information from
423 * the FBD error registers and sends it via
424 * EDAC error API calls
425 * @mci: struct mem_ctl_info pointer
427 static void i7300_process_fbd_error(struct mem_ctl_info *mci)
429 struct i7300_pvt *pvt;
430 u32 errnum, value;
431 u16 val16;
432 unsigned branch, channel, bank, rank, cas, ras;
433 u32 syndrome;
435 unsigned long errors;
436 const char *specific;
437 bool is_wr;
439 pvt = mci->pvt_info;
441 /* read in the 1st FATAL error register */
442 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
443 FERR_FAT_FBD, &value);
444 if (unlikely(value & FERR_FAT_FBD_ERR_MASK)) {
445 errors = value & FERR_FAT_FBD_ERR_MASK ;
446 errnum = find_first_bit(&errors,
447 ARRAY_SIZE(ferr_fat_fbd_name));
448 specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
450 branch = (GET_FBD_FAT_IDX(value) == 2) ? 1 : 0;
451 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
452 NRECMEMA, &val16);
453 bank = NRECMEMA_BANK(val16);
454 rank = NRECMEMA_RANK(val16);
456 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
457 NRECMEMB, &value);
459 is_wr = NRECMEMB_IS_WR(value);
460 cas = NRECMEMB_CAS(value);
461 ras = NRECMEMB_RAS(value);
463 snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
464 "FATAL (Branch=%d DRAM-Bank=%d %s "
465 "RAS=%d CAS=%d Err=0x%lx (%s))",
466 branch, bank,
467 is_wr ? "RDWR" : "RD",
468 ras, cas,
469 errors, specific);
471 /* Call the helper to output message */
472 edac_mc_handle_fbd_ue(mci, rank, branch << 1,
473 (branch << 1) + 1,
474 pvt->tmp_prt_buffer);
477 /* read in the 1st NON-FATAL error register */
478 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
479 FERR_NF_FBD, &value);
480 if (unlikely(value & FERR_NF_FBD_ERR_MASK)) {
481 errors = value & FERR_NF_FBD_ERR_MASK;
482 errnum = find_first_bit(&errors,
483 ARRAY_SIZE(ferr_nf_fbd_name));
484 specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
486 /* Clear the error bit */
487 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
488 FERR_GLOBAL_LO, value);
490 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
491 REDMEMA, &syndrome);
493 branch = (GET_FBD_FAT_IDX(value) == 2) ? 1 : 0;
494 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
495 RECMEMA, &val16);
496 bank = RECMEMA_BANK(val16);
497 rank = RECMEMA_RANK(val16);
499 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
500 RECMEMB, &value);
502 is_wr = RECMEMB_IS_WR(value);
503 cas = RECMEMB_CAS(value);
504 ras = RECMEMB_RAS(value);
506 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
507 REDMEMB, &value);
509 channel = (branch << 1);
510 if (IS_SECOND_CH(value))
511 channel++;
513 /* Form out message */
514 snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
515 "Corrected error (Branch=%d, Channel %d), "
516 " DRAM-Bank=%d %s "
517 "RAS=%d CAS=%d, CE Err=0x%lx, Syndrome=0x%08x(%s))",
518 branch, channel,
519 bank,
520 is_wr ? "RDWR" : "RD",
521 ras, cas,
522 errors, syndrome, specific);
525 * Call the helper to output message
526 * NOTE: Errors are reported per-branch, and not per-channel
527 * Currently, we don't know how to identify the right
528 * channel.
530 edac_mc_handle_fbd_ce(mci, rank, channel,
531 pvt->tmp_prt_buffer);
533 return;
537 * i7300_check_error() - Calls the error checking subroutines
538 * @mci: struct mem_ctl_info pointer
540 static void i7300_check_error(struct mem_ctl_info *mci)
542 i7300_process_error_global(mci);
543 i7300_process_fbd_error(mci);
547 * i7300_clear_error() - Clears the error registers
548 * @mci: struct mem_ctl_info pointer
550 static void i7300_clear_error(struct mem_ctl_info *mci)
552 struct i7300_pvt *pvt = mci->pvt_info;
553 u32 value;
555 * All error values are RWC - we need to read and write 1 to the
556 * bit that we want to cleanup
559 /* Clear global error registers */
560 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
561 FERR_GLOBAL_HI, &value);
562 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
563 FERR_GLOBAL_HI, value);
565 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
566 FERR_GLOBAL_LO, &value);
567 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
568 FERR_GLOBAL_LO, value);
570 /* Clear FBD error registers */
571 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
572 FERR_FAT_FBD, &value);
573 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
574 FERR_FAT_FBD, value);
576 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
577 FERR_NF_FBD, &value);
578 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
579 FERR_NF_FBD, value);
583 * i7300_enable_error_reporting() - Enable the memory reporting logic at the
584 * hardware
585 * @mci: struct mem_ctl_info pointer
587 static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
589 struct i7300_pvt *pvt = mci->pvt_info;
590 u32 fbd_error_mask;
592 /* Read the FBD Error Mask Register */
593 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
594 EMASK_FBD, &fbd_error_mask);
596 /* Enable with a '0' */
597 fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
599 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
600 EMASK_FBD, fbd_error_mask);
603 /************************************************
604 * i7300 Functions related to memory enumberation
605 ************************************************/
608 * decode_mtr() - Decodes the MTR descriptor, filling the edac structs
609 * @pvt: pointer to the private data struct used by i7300 driver
610 * @slot: DIMM slot (0 to 7)
611 * @ch: Channel number within the branch (0 or 1)
612 * @branch: Branch number (0 or 1)
613 * @dinfo: Pointer to DIMM info where dimm size is stored
614 * @p_csrow: Pointer to the struct csrow_info that corresponds to that element
616 static int decode_mtr(struct i7300_pvt *pvt,
617 int slot, int ch, int branch,
618 struct i7300_dimm_info *dinfo,
619 struct csrow_info *p_csrow,
620 u32 *nr_pages)
622 int mtr, ans, addrBits, channel;
624 channel = to_channel(ch, branch);
626 mtr = pvt->mtr[slot][branch];
627 ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
629 debugf2("\tMTR%d CH%d: DIMMs are %s (mtr)\n",
630 slot, channel,
631 ans ? "Present" : "NOT Present");
633 /* Determine if there is a DIMM present in this DIMM slot */
634 if (!ans)
635 return 0;
637 /* Start with the number of bits for a Bank
638 * on the DRAM */
639 addrBits = MTR_DRAM_BANKS_ADDR_BITS;
640 /* Add thenumber of ROW bits */
641 addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
642 /* add the number of COLUMN bits */
643 addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
644 /* add the number of RANK bits */
645 addrBits += MTR_DIMM_RANKS(mtr);
647 addrBits += 6; /* add 64 bits per DIMM */
648 addrBits -= 20; /* divide by 2^^20 */
649 addrBits -= 3; /* 8 bits per bytes */
651 dinfo->megabytes = 1 << addrBits;
652 *nr_pages = dinfo->megabytes << 8;
654 debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
656 debugf2("\t\tELECTRICAL THROTTLING is %s\n",
657 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
659 debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
660 debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANKS(mtr) ? "double" : "single");
661 debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
662 debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
663 debugf2("\t\tSIZE: %d MB\n", dinfo->megabytes);
665 p_csrow->grain = 8;
666 p_csrow->mtype = MEM_FB_DDR2;
667 p_csrow->csrow_idx = slot;
668 p_csrow->page_mask = 0;
671 * The type of error detection actually depends of the
672 * mode of operation. When it is just one single memory chip, at
673 * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
674 * In normal or mirrored mode, it uses Lockstep mode,
675 * with the possibility of using an extended algorithm for x8 memories
676 * See datasheet Sections 7.3.6 to 7.3.8
679 if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
680 p_csrow->edac_mode = EDAC_SECDED;
681 debugf2("\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
682 } else {
683 debugf2("\t\tECC code is on Lockstep mode\n");
684 if (MTR_DRAM_WIDTH(mtr) == 8)
685 p_csrow->edac_mode = EDAC_S8ECD8ED;
686 else
687 p_csrow->edac_mode = EDAC_S4ECD4ED;
690 /* ask what device type on this row */
691 if (MTR_DRAM_WIDTH(mtr) == 8) {
692 debugf2("\t\tScrub algorithm for x8 is on %s mode\n",
693 IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
694 "enhanced" : "normal");
696 p_csrow->dtype = DEV_X8;
697 } else
698 p_csrow->dtype = DEV_X4;
700 return mtr;
704 * print_dimm_size() - Prints dump of the memory organization
705 * @pvt: pointer to the private data struct used by i7300 driver
707 * Useful for debug. If debug is disabled, this routine do nothing
709 static void print_dimm_size(struct i7300_pvt *pvt)
711 #ifdef CONFIG_EDAC_DEBUG
712 struct i7300_dimm_info *dinfo;
713 char *p;
714 int space, n;
715 int channel, slot;
717 space = PAGE_SIZE;
718 p = pvt->tmp_prt_buffer;
720 n = snprintf(p, space, " ");
721 p += n;
722 space -= n;
723 for (channel = 0; channel < MAX_CHANNELS; channel++) {
724 n = snprintf(p, space, "channel %d | ", channel);
725 p += n;
726 space -= n;
728 debugf2("%s\n", pvt->tmp_prt_buffer);
729 p = pvt->tmp_prt_buffer;
730 space = PAGE_SIZE;
731 n = snprintf(p, space, "-------------------------------"
732 "------------------------------");
733 p += n;
734 space -= n;
735 debugf2("%s\n", pvt->tmp_prt_buffer);
736 p = pvt->tmp_prt_buffer;
737 space = PAGE_SIZE;
739 for (slot = 0; slot < MAX_SLOTS; slot++) {
740 n = snprintf(p, space, "csrow/SLOT %d ", slot);
741 p += n;
742 space -= n;
744 for (channel = 0; channel < MAX_CHANNELS; channel++) {
745 dinfo = &pvt->dimm_info[slot][channel];
746 n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
747 p += n;
748 space -= n;
751 debugf2("%s\n", pvt->tmp_prt_buffer);
752 p = pvt->tmp_prt_buffer;
753 space = PAGE_SIZE;
756 n = snprintf(p, space, "-------------------------------"
757 "------------------------------");
758 p += n;
759 space -= n;
760 debugf2("%s\n", pvt->tmp_prt_buffer);
761 p = pvt->tmp_prt_buffer;
762 space = PAGE_SIZE;
763 #endif
767 * i7300_init_csrows() - Initialize the 'csrows' table within
768 * the mci control structure with the
769 * addressing of memory.
770 * @mci: struct mem_ctl_info pointer
772 static int i7300_init_csrows(struct mem_ctl_info *mci)
774 struct i7300_pvt *pvt;
775 struct i7300_dimm_info *dinfo;
776 struct csrow_info *p_csrow;
777 int rc = -ENODEV;
778 int mtr;
779 int ch, branch, slot, channel;
780 u32 last_page = 0, nr_pages;
782 pvt = mci->pvt_info;
784 debugf2("Memory Technology Registers:\n");
786 /* Get the AMB present registers for the four channels */
787 for (branch = 0; branch < MAX_BRANCHES; branch++) {
788 /* Read and dump branch 0's MTRs */
789 channel = to_channel(0, branch);
790 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
791 AMBPRESENT_0,
792 &pvt->ambpresent[channel]);
793 debugf2("\t\tAMB-present CH%d = 0x%x:\n",
794 channel, pvt->ambpresent[channel]);
796 channel = to_channel(1, branch);
797 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
798 AMBPRESENT_1,
799 &pvt->ambpresent[channel]);
800 debugf2("\t\tAMB-present CH%d = 0x%x:\n",
801 channel, pvt->ambpresent[channel]);
804 /* Get the set of MTR[0-7] regs by each branch */
805 for (slot = 0; slot < MAX_SLOTS; slot++) {
806 int where = mtr_regs[slot];
807 for (branch = 0; branch < MAX_BRANCHES; branch++) {
808 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
809 where,
810 &pvt->mtr[slot][branch]);
811 for (ch = 0; ch < MAX_BRANCHES; ch++) {
812 int channel = to_channel(ch, branch);
814 dinfo = &pvt->dimm_info[slot][channel];
815 p_csrow = &mci->csrows[slot];
817 mtr = decode_mtr(pvt, slot, ch, branch,
818 dinfo, p_csrow, &nr_pages);
819 /* if no DIMMS on this row, continue */
820 if (!MTR_DIMMS_PRESENT(mtr))
821 continue;
823 /* Update per_csrow memory count */
824 p_csrow->nr_pages += nr_pages;
825 p_csrow->first_page = last_page;
826 last_page += nr_pages;
827 p_csrow->last_page = last_page;
829 rc = 0;
834 return rc;
838 * decode_mir() - Decodes Memory Interleave Register (MIR) info
839 * @int mir_no: number of the MIR register to decode
840 * @mir: array with the MIR data cached on the driver
842 static void decode_mir(int mir_no, u16 mir[MAX_MIR])
844 if (mir[mir_no] & 3)
845 debugf2("MIR%d: limit= 0x%x Branch(es) that participate:"
846 " %s %s\n",
847 mir_no,
848 (mir[mir_no] >> 4) & 0xfff,
849 (mir[mir_no] & 1) ? "B0" : "",
850 (mir[mir_no] & 2) ? "B1" : "");
854 * i7300_get_mc_regs() - Get the contents of the MC enumeration registers
855 * @mci: struct mem_ctl_info pointer
857 * Data read is cached internally for its usage when needed
859 static int i7300_get_mc_regs(struct mem_ctl_info *mci)
861 struct i7300_pvt *pvt;
862 u32 actual_tolm;
863 int i, rc;
865 pvt = mci->pvt_info;
867 pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
868 (u32 *) &pvt->ambase);
870 debugf2("AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
872 /* Get the Branch Map regs */
873 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
874 pvt->tolm >>= 12;
875 debugf2("TOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
876 pvt->tolm);
878 actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
879 debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
880 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
882 /* Get memory controller settings */
883 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
884 &pvt->mc_settings);
885 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
886 &pvt->mc_settings_a);
888 if (IS_SINGLE_MODE(pvt->mc_settings_a))
889 debugf0("Memory controller operating on single mode\n");
890 else
891 debugf0("Memory controller operating on %s mode\n",
892 IS_MIRRORED(pvt->mc_settings) ? "mirrored" : "non-mirrored");
894 debugf0("Error detection is %s\n",
895 IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
896 debugf0("Retry is %s\n",
897 IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
899 /* Get Memory Interleave Range registers */
900 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
901 &pvt->mir[0]);
902 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
903 &pvt->mir[1]);
904 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
905 &pvt->mir[2]);
907 /* Decode the MIR regs */
908 for (i = 0; i < MAX_MIR; i++)
909 decode_mir(i, pvt->mir);
911 rc = i7300_init_csrows(mci);
912 if (rc < 0)
913 return rc;
915 /* Go and determine the size of each DIMM and place in an
916 * orderly matrix */
917 print_dimm_size(pvt);
919 return 0;
922 /*************************************************
923 * i7300 Functions related to device probe/release
924 *************************************************/
927 * i7300_put_devices() - Release the PCI devices
928 * @mci: struct mem_ctl_info pointer
930 static void i7300_put_devices(struct mem_ctl_info *mci)
932 struct i7300_pvt *pvt;
933 int branch;
935 pvt = mci->pvt_info;
937 /* Decrement usage count for devices */
938 for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
939 pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
940 pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
941 pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
945 * i7300_get_devices() - Find and perform 'get' operation on the MCH's
946 * device/functions we want to reference for this driver
947 * @mci: struct mem_ctl_info pointer
949 * Access and prepare the several devices for usage:
950 * I7300 devices used by this driver:
951 * Device 16, functions 0,1 and 2: PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
952 * Device 21 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
953 * Device 22 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
955 static int __devinit i7300_get_devices(struct mem_ctl_info *mci)
957 struct i7300_pvt *pvt;
958 struct pci_dev *pdev;
960 pvt = mci->pvt_info;
962 /* Attempt to 'get' the MCH register we want */
963 pdev = NULL;
964 while (!pvt->pci_dev_16_1_fsb_addr_map ||
965 !pvt->pci_dev_16_2_fsb_err_regs) {
966 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
967 PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, pdev);
968 if (!pdev) {
969 /* End of list, leave */
970 i7300_printk(KERN_ERR,
971 "'system address,Process Bus' "
972 "device not found:"
973 "vendor 0x%x device 0x%x ERR funcs "
974 "(broken BIOS?)\n",
975 PCI_VENDOR_ID_INTEL,
976 PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
977 goto error;
980 /* Store device 16 funcs 1 and 2 */
981 switch (PCI_FUNC(pdev->devfn)) {
982 case 1:
983 pvt->pci_dev_16_1_fsb_addr_map = pdev;
984 break;
985 case 2:
986 pvt->pci_dev_16_2_fsb_err_regs = pdev;
987 break;
991 debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
992 pci_name(pvt->pci_dev_16_0_fsb_ctlr),
993 pvt->pci_dev_16_0_fsb_ctlr->vendor,
994 pvt->pci_dev_16_0_fsb_ctlr->device);
995 debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
996 pci_name(pvt->pci_dev_16_1_fsb_addr_map),
997 pvt->pci_dev_16_1_fsb_addr_map->vendor,
998 pvt->pci_dev_16_1_fsb_addr_map->device);
999 debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
1000 pci_name(pvt->pci_dev_16_2_fsb_err_regs),
1001 pvt->pci_dev_16_2_fsb_err_regs->vendor,
1002 pvt->pci_dev_16_2_fsb_err_regs->device);
1004 pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
1005 PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
1006 NULL);
1007 if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
1008 i7300_printk(KERN_ERR,
1009 "MC: 'BRANCH 0' device not found:"
1010 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
1011 PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
1012 goto error;
1015 pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
1016 PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
1017 NULL);
1018 if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
1019 i7300_printk(KERN_ERR,
1020 "MC: 'BRANCH 1' device not found:"
1021 "vendor 0x%x device 0x%x Func 0 "
1022 "(broken BIOS?)\n",
1023 PCI_VENDOR_ID_INTEL,
1024 PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
1025 goto error;
1028 return 0;
1030 error:
1031 i7300_put_devices(mci);
1032 return -ENODEV;
1036 * i7300_init_one() - Probe for one instance of the device
1037 * @pdev: struct pci_dev pointer
1038 * @id: struct pci_device_id pointer - currently unused
1040 static int __devinit i7300_init_one(struct pci_dev *pdev,
1041 const struct pci_device_id *id)
1043 struct mem_ctl_info *mci;
1044 struct i7300_pvt *pvt;
1045 int num_channels;
1046 int num_dimms_per_channel;
1047 int num_csrows;
1048 int rc;
1050 /* wake up device */
1051 rc = pci_enable_device(pdev);
1052 if (rc == -EIO)
1053 return rc;
1055 debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1056 __func__,
1057 pdev->bus->number,
1058 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1060 /* We only are looking for func 0 of the set */
1061 if (PCI_FUNC(pdev->devfn) != 0)
1062 return -ENODEV;
1064 /* As we don't have a motherboard identification routine to determine
1065 * actual number of slots/dimms per channel, we thus utilize the
1066 * resource as specified by the chipset. Thus, we might have
1067 * have more DIMMs per channel than actually on the mobo, but this
1068 * allows the driver to support up to the chipset max, without
1069 * some fancy mobo determination.
1071 num_dimms_per_channel = MAX_SLOTS;
1072 num_channels = MAX_CHANNELS;
1073 num_csrows = MAX_SLOTS * MAX_CHANNELS;
1075 debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
1076 __func__, num_channels, num_dimms_per_channel, num_csrows);
1078 /* allocate a new MC control structure */
1079 mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
1081 if (mci == NULL)
1082 return -ENOMEM;
1084 debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
1086 mci->dev = &pdev->dev; /* record ptr to the generic device */
1088 pvt = mci->pvt_info;
1089 pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */
1091 pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1092 if (!pvt->tmp_prt_buffer) {
1093 edac_mc_free(mci);
1094 return -ENOMEM;
1097 /* 'get' the pci devices we want to reserve for our use */
1098 if (i7300_get_devices(mci))
1099 goto fail0;
1101 mci->mc_idx = 0;
1102 mci->mtype_cap = MEM_FLAG_FB_DDR2;
1103 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1104 mci->edac_cap = EDAC_FLAG_NONE;
1105 mci->mod_name = "i7300_edac.c";
1106 mci->mod_ver = I7300_REVISION;
1107 mci->ctl_name = i7300_devs[0].ctl_name;
1108 mci->dev_name = pci_name(pdev);
1109 mci->ctl_page_to_phys = NULL;
1111 /* Set the function pointer to an actual operation function */
1112 mci->edac_check = i7300_check_error;
1114 /* initialize the MC control structure 'csrows' table
1115 * with the mapping and control information */
1116 if (i7300_get_mc_regs(mci)) {
1117 debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1118 " because i7300_init_csrows() returned nonzero "
1119 "value\n");
1120 mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1121 } else {
1122 debugf1("MC: Enable error reporting now\n");
1123 i7300_enable_error_reporting(mci);
1126 /* add this new MC control structure to EDAC's list of MCs */
1127 if (edac_mc_add_mc(mci)) {
1128 debugf0("MC: " __FILE__
1129 ": %s(): failed edac_mc_add_mc()\n", __func__);
1130 /* FIXME: perhaps some code should go here that disables error
1131 * reporting if we just enabled it
1133 goto fail1;
1136 i7300_clear_error(mci);
1138 /* allocating generic PCI control info */
1139 i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1140 if (!i7300_pci) {
1141 printk(KERN_WARNING
1142 "%s(): Unable to create PCI control\n",
1143 __func__);
1144 printk(KERN_WARNING
1145 "%s(): PCI error report via EDAC not setup\n",
1146 __func__);
1149 return 0;
1151 /* Error exit unwinding stack */
1152 fail1:
1154 i7300_put_devices(mci);
1156 fail0:
1157 kfree(pvt->tmp_prt_buffer);
1158 edac_mc_free(mci);
1159 return -ENODEV;
1163 * i7300_remove_one() - Remove the driver
1164 * @pdev: struct pci_dev pointer
1166 static void __devexit i7300_remove_one(struct pci_dev *pdev)
1168 struct mem_ctl_info *mci;
1169 char *tmp;
1171 debugf0(__FILE__ ": %s()\n", __func__);
1173 if (i7300_pci)
1174 edac_pci_release_generic_ctl(i7300_pci);
1176 mci = edac_mc_del_mc(&pdev->dev);
1177 if (!mci)
1178 return;
1180 tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
1182 /* retrieve references to resources, and free those resources */
1183 i7300_put_devices(mci);
1185 kfree(tmp);
1186 edac_mc_free(mci);
1190 * pci_device_id: table for which devices we are looking for
1192 * Has only 8086:360c PCI ID
1194 static const struct pci_device_id i7300_pci_tbl[] __devinitdata = {
1195 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
1196 {0,} /* 0 terminated list. */
1199 MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
1202 * i7300_driver: pci_driver structure for this module
1204 static struct pci_driver i7300_driver = {
1205 .name = "i7300_edac",
1206 .probe = i7300_init_one,
1207 .remove = __devexit_p(i7300_remove_one),
1208 .id_table = i7300_pci_tbl,
1212 * i7300_init() - Registers the driver
1214 static int __init i7300_init(void)
1216 int pci_rc;
1218 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1220 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1221 opstate_init();
1223 pci_rc = pci_register_driver(&i7300_driver);
1225 return (pci_rc < 0) ? pci_rc : 0;
1229 * i7300_init() - Unregisters the driver
1231 static void __exit i7300_exit(void)
1233 debugf2("MC: " __FILE__ ": %s()\n", __func__);
1234 pci_unregister_driver(&i7300_driver);
1237 module_init(i7300_init);
1238 module_exit(i7300_exit);
1240 MODULE_LICENSE("GPL");
1241 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1242 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1243 MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
1244 I7300_REVISION);
1246 module_param(edac_op_state, int, 0444);
1247 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");