x86/PCI: use host bridge _CRS info on ASUS M2V-MX SE
[linux-btrfs-devel.git] / drivers / mmc / card / mmc_test.c
blob2bf229acd3b8110c3a03bc3dbb9783e2451ef099
1 /*
2 * linux/drivers/mmc/card/mmc_test.c
4 * Copyright 2007-2008 Pierre Ossman
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or (at
9 * your option) any later version.
12 #include <linux/mmc/core.h>
13 #include <linux/mmc/card.h>
14 #include <linux/mmc/host.h>
15 #include <linux/mmc/mmc.h>
16 #include <linux/slab.h>
18 #include <linux/scatterlist.h>
19 #include <linux/swap.h> /* For nr_free_buffer_pages() */
20 #include <linux/list.h>
22 #include <linux/debugfs.h>
23 #include <linux/uaccess.h>
24 #include <linux/seq_file.h>
26 #define RESULT_OK 0
27 #define RESULT_FAIL 1
28 #define RESULT_UNSUP_HOST 2
29 #define RESULT_UNSUP_CARD 3
31 #define BUFFER_ORDER 2
32 #define BUFFER_SIZE (PAGE_SIZE << BUFFER_ORDER)
35 * Limit the test area size to the maximum MMC HC erase group size. Note that
36 * the maximum SD allocation unit size is just 4MiB.
38 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
40 /**
41 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
42 * @page: first page in the allocation
43 * @order: order of the number of pages allocated
45 struct mmc_test_pages {
46 struct page *page;
47 unsigned int order;
50 /**
51 * struct mmc_test_mem - allocated memory.
52 * @arr: array of allocations
53 * @cnt: number of allocations
55 struct mmc_test_mem {
56 struct mmc_test_pages *arr;
57 unsigned int cnt;
60 /**
61 * struct mmc_test_area - information for performance tests.
62 * @max_sz: test area size (in bytes)
63 * @dev_addr: address on card at which to do performance tests
64 * @max_tfr: maximum transfer size allowed by driver (in bytes)
65 * @max_segs: maximum segments allowed by driver in scatterlist @sg
66 * @max_seg_sz: maximum segment size allowed by driver
67 * @blocks: number of (512 byte) blocks currently mapped by @sg
68 * @sg_len: length of currently mapped scatterlist @sg
69 * @mem: allocated memory
70 * @sg: scatterlist
72 struct mmc_test_area {
73 unsigned long max_sz;
74 unsigned int dev_addr;
75 unsigned int max_tfr;
76 unsigned int max_segs;
77 unsigned int max_seg_sz;
78 unsigned int blocks;
79 unsigned int sg_len;
80 struct mmc_test_mem *mem;
81 struct scatterlist *sg;
84 /**
85 * struct mmc_test_transfer_result - transfer results for performance tests.
86 * @link: double-linked list
87 * @count: amount of group of sectors to check
88 * @sectors: amount of sectors to check in one group
89 * @ts: time values of transfer
90 * @rate: calculated transfer rate
91 * @iops: I/O operations per second (times 100)
93 struct mmc_test_transfer_result {
94 struct list_head link;
95 unsigned int count;
96 unsigned int sectors;
97 struct timespec ts;
98 unsigned int rate;
99 unsigned int iops;
103 * struct mmc_test_general_result - results for tests.
104 * @link: double-linked list
105 * @card: card under test
106 * @testcase: number of test case
107 * @result: result of test run
108 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
110 struct mmc_test_general_result {
111 struct list_head link;
112 struct mmc_card *card;
113 int testcase;
114 int result;
115 struct list_head tr_lst;
119 * struct mmc_test_dbgfs_file - debugfs related file.
120 * @link: double-linked list
121 * @card: card under test
122 * @file: file created under debugfs
124 struct mmc_test_dbgfs_file {
125 struct list_head link;
126 struct mmc_card *card;
127 struct dentry *file;
131 * struct mmc_test_card - test information.
132 * @card: card under test
133 * @scratch: transfer buffer
134 * @buffer: transfer buffer
135 * @highmem: buffer for highmem tests
136 * @area: information for performance tests
137 * @gr: pointer to results of current testcase
139 struct mmc_test_card {
140 struct mmc_card *card;
142 u8 scratch[BUFFER_SIZE];
143 u8 *buffer;
144 #ifdef CONFIG_HIGHMEM
145 struct page *highmem;
146 #endif
147 struct mmc_test_area area;
148 struct mmc_test_general_result *gr;
151 enum mmc_test_prep_media {
152 MMC_TEST_PREP_NONE = 0,
153 MMC_TEST_PREP_WRITE_FULL = 1 << 0,
154 MMC_TEST_PREP_ERASE = 1 << 1,
157 struct mmc_test_multiple_rw {
158 unsigned int *sg_len;
159 unsigned int *bs;
160 unsigned int len;
161 unsigned int size;
162 bool do_write;
163 bool do_nonblock_req;
164 enum mmc_test_prep_media prepare;
167 struct mmc_test_async_req {
168 struct mmc_async_req areq;
169 struct mmc_test_card *test;
172 /*******************************************************************/
173 /* General helper functions */
174 /*******************************************************************/
177 * Configure correct block size in card
179 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
181 return mmc_set_blocklen(test->card, size);
185 * Fill in the mmc_request structure given a set of transfer parameters.
187 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
188 struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
189 unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
191 BUG_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop);
193 if (blocks > 1) {
194 mrq->cmd->opcode = write ?
195 MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
196 } else {
197 mrq->cmd->opcode = write ?
198 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
201 mrq->cmd->arg = dev_addr;
202 if (!mmc_card_blockaddr(test->card))
203 mrq->cmd->arg <<= 9;
205 mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
207 if (blocks == 1)
208 mrq->stop = NULL;
209 else {
210 mrq->stop->opcode = MMC_STOP_TRANSMISSION;
211 mrq->stop->arg = 0;
212 mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
215 mrq->data->blksz = blksz;
216 mrq->data->blocks = blocks;
217 mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
218 mrq->data->sg = sg;
219 mrq->data->sg_len = sg_len;
221 mmc_set_data_timeout(mrq->data, test->card);
224 static int mmc_test_busy(struct mmc_command *cmd)
226 return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
227 (R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
231 * Wait for the card to finish the busy state
233 static int mmc_test_wait_busy(struct mmc_test_card *test)
235 int ret, busy;
236 struct mmc_command cmd = {0};
238 busy = 0;
239 do {
240 memset(&cmd, 0, sizeof(struct mmc_command));
242 cmd.opcode = MMC_SEND_STATUS;
243 cmd.arg = test->card->rca << 16;
244 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
246 ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
247 if (ret)
248 break;
250 if (!busy && mmc_test_busy(&cmd)) {
251 busy = 1;
252 if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
253 printk(KERN_INFO "%s: Warning: Host did not "
254 "wait for busy state to end.\n",
255 mmc_hostname(test->card->host));
257 } while (mmc_test_busy(&cmd));
259 return ret;
263 * Transfer a single sector of kernel addressable data
265 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
266 u8 *buffer, unsigned addr, unsigned blksz, int write)
268 int ret;
270 struct mmc_request mrq = {0};
271 struct mmc_command cmd = {0};
272 struct mmc_command stop = {0};
273 struct mmc_data data = {0};
275 struct scatterlist sg;
277 mrq.cmd = &cmd;
278 mrq.data = &data;
279 mrq.stop = &stop;
281 sg_init_one(&sg, buffer, blksz);
283 mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
285 mmc_wait_for_req(test->card->host, &mrq);
287 if (cmd.error)
288 return cmd.error;
289 if (data.error)
290 return data.error;
292 ret = mmc_test_wait_busy(test);
293 if (ret)
294 return ret;
296 return 0;
299 static void mmc_test_free_mem(struct mmc_test_mem *mem)
301 if (!mem)
302 return;
303 while (mem->cnt--)
304 __free_pages(mem->arr[mem->cnt].page,
305 mem->arr[mem->cnt].order);
306 kfree(mem->arr);
307 kfree(mem);
311 * Allocate a lot of memory, preferably max_sz but at least min_sz. In case
312 * there isn't much memory do not exceed 1/16th total lowmem pages. Also do
313 * not exceed a maximum number of segments and try not to make segments much
314 * bigger than maximum segment size.
316 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
317 unsigned long max_sz,
318 unsigned int max_segs,
319 unsigned int max_seg_sz)
321 unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
322 unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
323 unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
324 unsigned long page_cnt = 0;
325 unsigned long limit = nr_free_buffer_pages() >> 4;
326 struct mmc_test_mem *mem;
328 if (max_page_cnt > limit)
329 max_page_cnt = limit;
330 if (min_page_cnt > max_page_cnt)
331 min_page_cnt = max_page_cnt;
333 if (max_seg_page_cnt > max_page_cnt)
334 max_seg_page_cnt = max_page_cnt;
336 if (max_segs > max_page_cnt)
337 max_segs = max_page_cnt;
339 mem = kzalloc(sizeof(struct mmc_test_mem), GFP_KERNEL);
340 if (!mem)
341 return NULL;
343 mem->arr = kzalloc(sizeof(struct mmc_test_pages) * max_segs,
344 GFP_KERNEL);
345 if (!mem->arr)
346 goto out_free;
348 while (max_page_cnt) {
349 struct page *page;
350 unsigned int order;
351 gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
352 __GFP_NORETRY;
354 order = get_order(max_seg_page_cnt << PAGE_SHIFT);
355 while (1) {
356 page = alloc_pages(flags, order);
357 if (page || !order)
358 break;
359 order -= 1;
361 if (!page) {
362 if (page_cnt < min_page_cnt)
363 goto out_free;
364 break;
366 mem->arr[mem->cnt].page = page;
367 mem->arr[mem->cnt].order = order;
368 mem->cnt += 1;
369 if (max_page_cnt <= (1UL << order))
370 break;
371 max_page_cnt -= 1UL << order;
372 page_cnt += 1UL << order;
373 if (mem->cnt >= max_segs) {
374 if (page_cnt < min_page_cnt)
375 goto out_free;
376 break;
380 return mem;
382 out_free:
383 mmc_test_free_mem(mem);
384 return NULL;
388 * Map memory into a scatterlist. Optionally allow the same memory to be
389 * mapped more than once.
391 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
392 struct scatterlist *sglist, int repeat,
393 unsigned int max_segs, unsigned int max_seg_sz,
394 unsigned int *sg_len, int min_sg_len)
396 struct scatterlist *sg = NULL;
397 unsigned int i;
398 unsigned long sz = size;
400 sg_init_table(sglist, max_segs);
401 if (min_sg_len > max_segs)
402 min_sg_len = max_segs;
404 *sg_len = 0;
405 do {
406 for (i = 0; i < mem->cnt; i++) {
407 unsigned long len = PAGE_SIZE << mem->arr[i].order;
409 if (min_sg_len && (size / min_sg_len < len))
410 len = ALIGN(size / min_sg_len, 512);
411 if (len > sz)
412 len = sz;
413 if (len > max_seg_sz)
414 len = max_seg_sz;
415 if (sg)
416 sg = sg_next(sg);
417 else
418 sg = sglist;
419 if (!sg)
420 return -EINVAL;
421 sg_set_page(sg, mem->arr[i].page, len, 0);
422 sz -= len;
423 *sg_len += 1;
424 if (!sz)
425 break;
427 } while (sz && repeat);
429 if (sz)
430 return -EINVAL;
432 if (sg)
433 sg_mark_end(sg);
435 return 0;
439 * Map memory into a scatterlist so that no pages are contiguous. Allow the
440 * same memory to be mapped more than once.
442 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
443 unsigned long sz,
444 struct scatterlist *sglist,
445 unsigned int max_segs,
446 unsigned int max_seg_sz,
447 unsigned int *sg_len)
449 struct scatterlist *sg = NULL;
450 unsigned int i = mem->cnt, cnt;
451 unsigned long len;
452 void *base, *addr, *last_addr = NULL;
454 sg_init_table(sglist, max_segs);
456 *sg_len = 0;
457 while (sz) {
458 base = page_address(mem->arr[--i].page);
459 cnt = 1 << mem->arr[i].order;
460 while (sz && cnt) {
461 addr = base + PAGE_SIZE * --cnt;
462 if (last_addr && last_addr + PAGE_SIZE == addr)
463 continue;
464 last_addr = addr;
465 len = PAGE_SIZE;
466 if (len > max_seg_sz)
467 len = max_seg_sz;
468 if (len > sz)
469 len = sz;
470 if (sg)
471 sg = sg_next(sg);
472 else
473 sg = sglist;
474 if (!sg)
475 return -EINVAL;
476 sg_set_page(sg, virt_to_page(addr), len, 0);
477 sz -= len;
478 *sg_len += 1;
480 if (i == 0)
481 i = mem->cnt;
484 if (sg)
485 sg_mark_end(sg);
487 return 0;
491 * Calculate transfer rate in bytes per second.
493 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec *ts)
495 uint64_t ns;
497 ns = ts->tv_sec;
498 ns *= 1000000000;
499 ns += ts->tv_nsec;
501 bytes *= 1000000000;
503 while (ns > UINT_MAX) {
504 bytes >>= 1;
505 ns >>= 1;
508 if (!ns)
509 return 0;
511 do_div(bytes, (uint32_t)ns);
513 return bytes;
517 * Save transfer results for future usage
519 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
520 unsigned int count, unsigned int sectors, struct timespec ts,
521 unsigned int rate, unsigned int iops)
523 struct mmc_test_transfer_result *tr;
525 if (!test->gr)
526 return;
528 tr = kmalloc(sizeof(struct mmc_test_transfer_result), GFP_KERNEL);
529 if (!tr)
530 return;
532 tr->count = count;
533 tr->sectors = sectors;
534 tr->ts = ts;
535 tr->rate = rate;
536 tr->iops = iops;
538 list_add_tail(&tr->link, &test->gr->tr_lst);
542 * Print the transfer rate.
544 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
545 struct timespec *ts1, struct timespec *ts2)
547 unsigned int rate, iops, sectors = bytes >> 9;
548 struct timespec ts;
550 ts = timespec_sub(*ts2, *ts1);
552 rate = mmc_test_rate(bytes, &ts);
553 iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
555 printk(KERN_INFO "%s: Transfer of %u sectors (%u%s KiB) took %lu.%09lu "
556 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
557 mmc_hostname(test->card->host), sectors, sectors >> 1,
558 (sectors & 1 ? ".5" : ""), (unsigned long)ts.tv_sec,
559 (unsigned long)ts.tv_nsec, rate / 1000, rate / 1024,
560 iops / 100, iops % 100);
562 mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
566 * Print the average transfer rate.
568 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
569 unsigned int count, struct timespec *ts1,
570 struct timespec *ts2)
572 unsigned int rate, iops, sectors = bytes >> 9;
573 uint64_t tot = bytes * count;
574 struct timespec ts;
576 ts = timespec_sub(*ts2, *ts1);
578 rate = mmc_test_rate(tot, &ts);
579 iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
581 printk(KERN_INFO "%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
582 "%lu.%09lu seconds (%u kB/s, %u KiB/s, "
583 "%u.%02u IOPS, sg_len %d)\n",
584 mmc_hostname(test->card->host), count, sectors, count,
585 sectors >> 1, (sectors & 1 ? ".5" : ""),
586 (unsigned long)ts.tv_sec, (unsigned long)ts.tv_nsec,
587 rate / 1000, rate / 1024, iops / 100, iops % 100,
588 test->area.sg_len);
590 mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
594 * Return the card size in sectors.
596 static unsigned int mmc_test_capacity(struct mmc_card *card)
598 if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
599 return card->ext_csd.sectors;
600 else
601 return card->csd.capacity << (card->csd.read_blkbits - 9);
604 /*******************************************************************/
605 /* Test preparation and cleanup */
606 /*******************************************************************/
609 * Fill the first couple of sectors of the card with known data
610 * so that bad reads/writes can be detected
612 static int __mmc_test_prepare(struct mmc_test_card *test, int write)
614 int ret, i;
616 ret = mmc_test_set_blksize(test, 512);
617 if (ret)
618 return ret;
620 if (write)
621 memset(test->buffer, 0xDF, 512);
622 else {
623 for (i = 0;i < 512;i++)
624 test->buffer[i] = i;
627 for (i = 0;i < BUFFER_SIZE / 512;i++) {
628 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
629 if (ret)
630 return ret;
633 return 0;
636 static int mmc_test_prepare_write(struct mmc_test_card *test)
638 return __mmc_test_prepare(test, 1);
641 static int mmc_test_prepare_read(struct mmc_test_card *test)
643 return __mmc_test_prepare(test, 0);
646 static int mmc_test_cleanup(struct mmc_test_card *test)
648 int ret, i;
650 ret = mmc_test_set_blksize(test, 512);
651 if (ret)
652 return ret;
654 memset(test->buffer, 0, 512);
656 for (i = 0;i < BUFFER_SIZE / 512;i++) {
657 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
658 if (ret)
659 return ret;
662 return 0;
665 /*******************************************************************/
666 /* Test execution helpers */
667 /*******************************************************************/
670 * Modifies the mmc_request to perform the "short transfer" tests
672 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
673 struct mmc_request *mrq, int write)
675 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
677 if (mrq->data->blocks > 1) {
678 mrq->cmd->opcode = write ?
679 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
680 mrq->stop = NULL;
681 } else {
682 mrq->cmd->opcode = MMC_SEND_STATUS;
683 mrq->cmd->arg = test->card->rca << 16;
688 * Checks that a normal transfer didn't have any errors
690 static int mmc_test_check_result(struct mmc_test_card *test,
691 struct mmc_request *mrq)
693 int ret;
695 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
697 ret = 0;
699 if (!ret && mrq->cmd->error)
700 ret = mrq->cmd->error;
701 if (!ret && mrq->data->error)
702 ret = mrq->data->error;
703 if (!ret && mrq->stop && mrq->stop->error)
704 ret = mrq->stop->error;
705 if (!ret && mrq->data->bytes_xfered !=
706 mrq->data->blocks * mrq->data->blksz)
707 ret = RESULT_FAIL;
709 if (ret == -EINVAL)
710 ret = RESULT_UNSUP_HOST;
712 return ret;
715 static int mmc_test_check_result_async(struct mmc_card *card,
716 struct mmc_async_req *areq)
718 struct mmc_test_async_req *test_async =
719 container_of(areq, struct mmc_test_async_req, areq);
721 mmc_test_wait_busy(test_async->test);
723 return mmc_test_check_result(test_async->test, areq->mrq);
727 * Checks that a "short transfer" behaved as expected
729 static int mmc_test_check_broken_result(struct mmc_test_card *test,
730 struct mmc_request *mrq)
732 int ret;
734 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
736 ret = 0;
738 if (!ret && mrq->cmd->error)
739 ret = mrq->cmd->error;
740 if (!ret && mrq->data->error == 0)
741 ret = RESULT_FAIL;
742 if (!ret && mrq->data->error != -ETIMEDOUT)
743 ret = mrq->data->error;
744 if (!ret && mrq->stop && mrq->stop->error)
745 ret = mrq->stop->error;
746 if (mrq->data->blocks > 1) {
747 if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
748 ret = RESULT_FAIL;
749 } else {
750 if (!ret && mrq->data->bytes_xfered > 0)
751 ret = RESULT_FAIL;
754 if (ret == -EINVAL)
755 ret = RESULT_UNSUP_HOST;
757 return ret;
761 * Tests nonblock transfer with certain parameters
763 static void mmc_test_nonblock_reset(struct mmc_request *mrq,
764 struct mmc_command *cmd,
765 struct mmc_command *stop,
766 struct mmc_data *data)
768 memset(mrq, 0, sizeof(struct mmc_request));
769 memset(cmd, 0, sizeof(struct mmc_command));
770 memset(data, 0, sizeof(struct mmc_data));
771 memset(stop, 0, sizeof(struct mmc_command));
773 mrq->cmd = cmd;
774 mrq->data = data;
775 mrq->stop = stop;
777 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
778 struct scatterlist *sg, unsigned sg_len,
779 unsigned dev_addr, unsigned blocks,
780 unsigned blksz, int write, int count)
782 struct mmc_request mrq1;
783 struct mmc_command cmd1;
784 struct mmc_command stop1;
785 struct mmc_data data1;
787 struct mmc_request mrq2;
788 struct mmc_command cmd2;
789 struct mmc_command stop2;
790 struct mmc_data data2;
792 struct mmc_test_async_req test_areq[2];
793 struct mmc_async_req *done_areq;
794 struct mmc_async_req *cur_areq = &test_areq[0].areq;
795 struct mmc_async_req *other_areq = &test_areq[1].areq;
796 int i;
797 int ret;
799 test_areq[0].test = test;
800 test_areq[1].test = test;
802 mmc_test_nonblock_reset(&mrq1, &cmd1, &stop1, &data1);
803 mmc_test_nonblock_reset(&mrq2, &cmd2, &stop2, &data2);
805 cur_areq->mrq = &mrq1;
806 cur_areq->err_check = mmc_test_check_result_async;
807 other_areq->mrq = &mrq2;
808 other_areq->err_check = mmc_test_check_result_async;
810 for (i = 0; i < count; i++) {
811 mmc_test_prepare_mrq(test, cur_areq->mrq, sg, sg_len, dev_addr,
812 blocks, blksz, write);
813 done_areq = mmc_start_req(test->card->host, cur_areq, &ret);
815 if (ret || (!done_areq && i > 0))
816 goto err;
818 if (done_areq) {
819 if (done_areq->mrq == &mrq2)
820 mmc_test_nonblock_reset(&mrq2, &cmd2,
821 &stop2, &data2);
822 else
823 mmc_test_nonblock_reset(&mrq1, &cmd1,
824 &stop1, &data1);
826 done_areq = cur_areq;
827 cur_areq = other_areq;
828 other_areq = done_areq;
829 dev_addr += blocks;
832 done_areq = mmc_start_req(test->card->host, NULL, &ret);
834 return ret;
835 err:
836 return ret;
840 * Tests a basic transfer with certain parameters
842 static int mmc_test_simple_transfer(struct mmc_test_card *test,
843 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
844 unsigned blocks, unsigned blksz, int write)
846 struct mmc_request mrq = {0};
847 struct mmc_command cmd = {0};
848 struct mmc_command stop = {0};
849 struct mmc_data data = {0};
851 mrq.cmd = &cmd;
852 mrq.data = &data;
853 mrq.stop = &stop;
855 mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
856 blocks, blksz, write);
858 mmc_wait_for_req(test->card->host, &mrq);
860 mmc_test_wait_busy(test);
862 return mmc_test_check_result(test, &mrq);
866 * Tests a transfer where the card will fail completely or partly
868 static int mmc_test_broken_transfer(struct mmc_test_card *test,
869 unsigned blocks, unsigned blksz, int write)
871 struct mmc_request mrq = {0};
872 struct mmc_command cmd = {0};
873 struct mmc_command stop = {0};
874 struct mmc_data data = {0};
876 struct scatterlist sg;
878 mrq.cmd = &cmd;
879 mrq.data = &data;
880 mrq.stop = &stop;
882 sg_init_one(&sg, test->buffer, blocks * blksz);
884 mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
885 mmc_test_prepare_broken_mrq(test, &mrq, write);
887 mmc_wait_for_req(test->card->host, &mrq);
889 mmc_test_wait_busy(test);
891 return mmc_test_check_broken_result(test, &mrq);
895 * Does a complete transfer test where data is also validated
897 * Note: mmc_test_prepare() must have been done before this call
899 static int mmc_test_transfer(struct mmc_test_card *test,
900 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
901 unsigned blocks, unsigned blksz, int write)
903 int ret, i;
904 unsigned long flags;
906 if (write) {
907 for (i = 0;i < blocks * blksz;i++)
908 test->scratch[i] = i;
909 } else {
910 memset(test->scratch, 0, BUFFER_SIZE);
912 local_irq_save(flags);
913 sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
914 local_irq_restore(flags);
916 ret = mmc_test_set_blksize(test, blksz);
917 if (ret)
918 return ret;
920 ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
921 blocks, blksz, write);
922 if (ret)
923 return ret;
925 if (write) {
926 int sectors;
928 ret = mmc_test_set_blksize(test, 512);
929 if (ret)
930 return ret;
932 sectors = (blocks * blksz + 511) / 512;
933 if ((sectors * 512) == (blocks * blksz))
934 sectors++;
936 if ((sectors * 512) > BUFFER_SIZE)
937 return -EINVAL;
939 memset(test->buffer, 0, sectors * 512);
941 for (i = 0;i < sectors;i++) {
942 ret = mmc_test_buffer_transfer(test,
943 test->buffer + i * 512,
944 dev_addr + i, 512, 0);
945 if (ret)
946 return ret;
949 for (i = 0;i < blocks * blksz;i++) {
950 if (test->buffer[i] != (u8)i)
951 return RESULT_FAIL;
954 for (;i < sectors * 512;i++) {
955 if (test->buffer[i] != 0xDF)
956 return RESULT_FAIL;
958 } else {
959 local_irq_save(flags);
960 sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
961 local_irq_restore(flags);
962 for (i = 0;i < blocks * blksz;i++) {
963 if (test->scratch[i] != (u8)i)
964 return RESULT_FAIL;
968 return 0;
971 /*******************************************************************/
972 /* Tests */
973 /*******************************************************************/
975 struct mmc_test_case {
976 const char *name;
978 int (*prepare)(struct mmc_test_card *);
979 int (*run)(struct mmc_test_card *);
980 int (*cleanup)(struct mmc_test_card *);
983 static int mmc_test_basic_write(struct mmc_test_card *test)
985 int ret;
986 struct scatterlist sg;
988 ret = mmc_test_set_blksize(test, 512);
989 if (ret)
990 return ret;
992 sg_init_one(&sg, test->buffer, 512);
994 ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
995 if (ret)
996 return ret;
998 return 0;
1001 static int mmc_test_basic_read(struct mmc_test_card *test)
1003 int ret;
1004 struct scatterlist sg;
1006 ret = mmc_test_set_blksize(test, 512);
1007 if (ret)
1008 return ret;
1010 sg_init_one(&sg, test->buffer, 512);
1012 ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1013 if (ret)
1014 return ret;
1016 return 0;
1019 static int mmc_test_verify_write(struct mmc_test_card *test)
1021 int ret;
1022 struct scatterlist sg;
1024 sg_init_one(&sg, test->buffer, 512);
1026 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1027 if (ret)
1028 return ret;
1030 return 0;
1033 static int mmc_test_verify_read(struct mmc_test_card *test)
1035 int ret;
1036 struct scatterlist sg;
1038 sg_init_one(&sg, test->buffer, 512);
1040 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1041 if (ret)
1042 return ret;
1044 return 0;
1047 static int mmc_test_multi_write(struct mmc_test_card *test)
1049 int ret;
1050 unsigned int size;
1051 struct scatterlist sg;
1053 if (test->card->host->max_blk_count == 1)
1054 return RESULT_UNSUP_HOST;
1056 size = PAGE_SIZE * 2;
1057 size = min(size, test->card->host->max_req_size);
1058 size = min(size, test->card->host->max_seg_size);
1059 size = min(size, test->card->host->max_blk_count * 512);
1061 if (size < 1024)
1062 return RESULT_UNSUP_HOST;
1064 sg_init_one(&sg, test->buffer, size);
1066 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1067 if (ret)
1068 return ret;
1070 return 0;
1073 static int mmc_test_multi_read(struct mmc_test_card *test)
1075 int ret;
1076 unsigned int size;
1077 struct scatterlist sg;
1079 if (test->card->host->max_blk_count == 1)
1080 return RESULT_UNSUP_HOST;
1082 size = PAGE_SIZE * 2;
1083 size = min(size, test->card->host->max_req_size);
1084 size = min(size, test->card->host->max_seg_size);
1085 size = min(size, test->card->host->max_blk_count * 512);
1087 if (size < 1024)
1088 return RESULT_UNSUP_HOST;
1090 sg_init_one(&sg, test->buffer, size);
1092 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1093 if (ret)
1094 return ret;
1096 return 0;
1099 static int mmc_test_pow2_write(struct mmc_test_card *test)
1101 int ret, i;
1102 struct scatterlist sg;
1104 if (!test->card->csd.write_partial)
1105 return RESULT_UNSUP_CARD;
1107 for (i = 1; i < 512;i <<= 1) {
1108 sg_init_one(&sg, test->buffer, i);
1109 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1110 if (ret)
1111 return ret;
1114 return 0;
1117 static int mmc_test_pow2_read(struct mmc_test_card *test)
1119 int ret, i;
1120 struct scatterlist sg;
1122 if (!test->card->csd.read_partial)
1123 return RESULT_UNSUP_CARD;
1125 for (i = 1; i < 512;i <<= 1) {
1126 sg_init_one(&sg, test->buffer, i);
1127 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1128 if (ret)
1129 return ret;
1132 return 0;
1135 static int mmc_test_weird_write(struct mmc_test_card *test)
1137 int ret, i;
1138 struct scatterlist sg;
1140 if (!test->card->csd.write_partial)
1141 return RESULT_UNSUP_CARD;
1143 for (i = 3; i < 512;i += 7) {
1144 sg_init_one(&sg, test->buffer, i);
1145 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1146 if (ret)
1147 return ret;
1150 return 0;
1153 static int mmc_test_weird_read(struct mmc_test_card *test)
1155 int ret, i;
1156 struct scatterlist sg;
1158 if (!test->card->csd.read_partial)
1159 return RESULT_UNSUP_CARD;
1161 for (i = 3; i < 512;i += 7) {
1162 sg_init_one(&sg, test->buffer, i);
1163 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1164 if (ret)
1165 return ret;
1168 return 0;
1171 static int mmc_test_align_write(struct mmc_test_card *test)
1173 int ret, i;
1174 struct scatterlist sg;
1176 for (i = 1;i < 4;i++) {
1177 sg_init_one(&sg, test->buffer + i, 512);
1178 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1179 if (ret)
1180 return ret;
1183 return 0;
1186 static int mmc_test_align_read(struct mmc_test_card *test)
1188 int ret, i;
1189 struct scatterlist sg;
1191 for (i = 1;i < 4;i++) {
1192 sg_init_one(&sg, test->buffer + i, 512);
1193 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1194 if (ret)
1195 return ret;
1198 return 0;
1201 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1203 int ret, i;
1204 unsigned int size;
1205 struct scatterlist sg;
1207 if (test->card->host->max_blk_count == 1)
1208 return RESULT_UNSUP_HOST;
1210 size = PAGE_SIZE * 2;
1211 size = min(size, test->card->host->max_req_size);
1212 size = min(size, test->card->host->max_seg_size);
1213 size = min(size, test->card->host->max_blk_count * 512);
1215 if (size < 1024)
1216 return RESULT_UNSUP_HOST;
1218 for (i = 1;i < 4;i++) {
1219 sg_init_one(&sg, test->buffer + i, size);
1220 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1221 if (ret)
1222 return ret;
1225 return 0;
1228 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1230 int ret, i;
1231 unsigned int size;
1232 struct scatterlist sg;
1234 if (test->card->host->max_blk_count == 1)
1235 return RESULT_UNSUP_HOST;
1237 size = PAGE_SIZE * 2;
1238 size = min(size, test->card->host->max_req_size);
1239 size = min(size, test->card->host->max_seg_size);
1240 size = min(size, test->card->host->max_blk_count * 512);
1242 if (size < 1024)
1243 return RESULT_UNSUP_HOST;
1245 for (i = 1;i < 4;i++) {
1246 sg_init_one(&sg, test->buffer + i, size);
1247 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1248 if (ret)
1249 return ret;
1252 return 0;
1255 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1257 int ret;
1259 ret = mmc_test_set_blksize(test, 512);
1260 if (ret)
1261 return ret;
1263 ret = mmc_test_broken_transfer(test, 1, 512, 1);
1264 if (ret)
1265 return ret;
1267 return 0;
1270 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1272 int ret;
1274 ret = mmc_test_set_blksize(test, 512);
1275 if (ret)
1276 return ret;
1278 ret = mmc_test_broken_transfer(test, 1, 512, 0);
1279 if (ret)
1280 return ret;
1282 return 0;
1285 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1287 int ret;
1289 if (test->card->host->max_blk_count == 1)
1290 return RESULT_UNSUP_HOST;
1292 ret = mmc_test_set_blksize(test, 512);
1293 if (ret)
1294 return ret;
1296 ret = mmc_test_broken_transfer(test, 2, 512, 1);
1297 if (ret)
1298 return ret;
1300 return 0;
1303 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1305 int ret;
1307 if (test->card->host->max_blk_count == 1)
1308 return RESULT_UNSUP_HOST;
1310 ret = mmc_test_set_blksize(test, 512);
1311 if (ret)
1312 return ret;
1314 ret = mmc_test_broken_transfer(test, 2, 512, 0);
1315 if (ret)
1316 return ret;
1318 return 0;
1321 #ifdef CONFIG_HIGHMEM
1323 static int mmc_test_write_high(struct mmc_test_card *test)
1325 int ret;
1326 struct scatterlist sg;
1328 sg_init_table(&sg, 1);
1329 sg_set_page(&sg, test->highmem, 512, 0);
1331 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1332 if (ret)
1333 return ret;
1335 return 0;
1338 static int mmc_test_read_high(struct mmc_test_card *test)
1340 int ret;
1341 struct scatterlist sg;
1343 sg_init_table(&sg, 1);
1344 sg_set_page(&sg, test->highmem, 512, 0);
1346 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1347 if (ret)
1348 return ret;
1350 return 0;
1353 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1355 int ret;
1356 unsigned int size;
1357 struct scatterlist sg;
1359 if (test->card->host->max_blk_count == 1)
1360 return RESULT_UNSUP_HOST;
1362 size = PAGE_SIZE * 2;
1363 size = min(size, test->card->host->max_req_size);
1364 size = min(size, test->card->host->max_seg_size);
1365 size = min(size, test->card->host->max_blk_count * 512);
1367 if (size < 1024)
1368 return RESULT_UNSUP_HOST;
1370 sg_init_table(&sg, 1);
1371 sg_set_page(&sg, test->highmem, size, 0);
1373 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1374 if (ret)
1375 return ret;
1377 return 0;
1380 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1382 int ret;
1383 unsigned int size;
1384 struct scatterlist sg;
1386 if (test->card->host->max_blk_count == 1)
1387 return RESULT_UNSUP_HOST;
1389 size = PAGE_SIZE * 2;
1390 size = min(size, test->card->host->max_req_size);
1391 size = min(size, test->card->host->max_seg_size);
1392 size = min(size, test->card->host->max_blk_count * 512);
1394 if (size < 1024)
1395 return RESULT_UNSUP_HOST;
1397 sg_init_table(&sg, 1);
1398 sg_set_page(&sg, test->highmem, size, 0);
1400 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1401 if (ret)
1402 return ret;
1404 return 0;
1407 #else
1409 static int mmc_test_no_highmem(struct mmc_test_card *test)
1411 printk(KERN_INFO "%s: Highmem not configured - test skipped\n",
1412 mmc_hostname(test->card->host));
1413 return 0;
1416 #endif /* CONFIG_HIGHMEM */
1419 * Map sz bytes so that it can be transferred.
1421 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1422 int max_scatter, int min_sg_len)
1424 struct mmc_test_area *t = &test->area;
1425 int err;
1427 t->blocks = sz >> 9;
1429 if (max_scatter) {
1430 err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1431 t->max_segs, t->max_seg_sz,
1432 &t->sg_len);
1433 } else {
1434 err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1435 t->max_seg_sz, &t->sg_len, min_sg_len);
1437 if (err)
1438 printk(KERN_INFO "%s: Failed to map sg list\n",
1439 mmc_hostname(test->card->host));
1440 return err;
1444 * Transfer bytes mapped by mmc_test_area_map().
1446 static int mmc_test_area_transfer(struct mmc_test_card *test,
1447 unsigned int dev_addr, int write)
1449 struct mmc_test_area *t = &test->area;
1451 return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1452 t->blocks, 512, write);
1456 * Map and transfer bytes for multiple transfers.
1458 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1459 unsigned int dev_addr, int write,
1460 int max_scatter, int timed, int count,
1461 bool nonblock, int min_sg_len)
1463 struct timespec ts1, ts2;
1464 int ret = 0;
1465 int i;
1466 struct mmc_test_area *t = &test->area;
1469 * In the case of a maximally scattered transfer, the maximum transfer
1470 * size is further limited by using PAGE_SIZE segments.
1472 if (max_scatter) {
1473 struct mmc_test_area *t = &test->area;
1474 unsigned long max_tfr;
1476 if (t->max_seg_sz >= PAGE_SIZE)
1477 max_tfr = t->max_segs * PAGE_SIZE;
1478 else
1479 max_tfr = t->max_segs * t->max_seg_sz;
1480 if (sz > max_tfr)
1481 sz = max_tfr;
1484 ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len);
1485 if (ret)
1486 return ret;
1488 if (timed)
1489 getnstimeofday(&ts1);
1490 if (nonblock)
1491 ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len,
1492 dev_addr, t->blocks, 512, write, count);
1493 else
1494 for (i = 0; i < count && ret == 0; i++) {
1495 ret = mmc_test_area_transfer(test, dev_addr, write);
1496 dev_addr += sz >> 9;
1499 if (ret)
1500 return ret;
1502 if (timed)
1503 getnstimeofday(&ts2);
1505 if (timed)
1506 mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1508 return 0;
1511 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1512 unsigned int dev_addr, int write, int max_scatter,
1513 int timed)
1515 return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1516 timed, 1, false, 0);
1520 * Write the test area entirely.
1522 static int mmc_test_area_fill(struct mmc_test_card *test)
1524 struct mmc_test_area *t = &test->area;
1526 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1530 * Erase the test area entirely.
1532 static int mmc_test_area_erase(struct mmc_test_card *test)
1534 struct mmc_test_area *t = &test->area;
1536 if (!mmc_can_erase(test->card))
1537 return 0;
1539 return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1540 MMC_ERASE_ARG);
1544 * Cleanup struct mmc_test_area.
1546 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1548 struct mmc_test_area *t = &test->area;
1550 kfree(t->sg);
1551 mmc_test_free_mem(t->mem);
1553 return 0;
1557 * Initialize an area for testing large transfers. The test area is set to the
1558 * middle of the card because cards may have different charateristics at the
1559 * front (for FAT file system optimization). Optionally, the area is erased
1560 * (if the card supports it) which may improve write performance. Optionally,
1561 * the area is filled with data for subsequent read tests.
1563 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1565 struct mmc_test_area *t = &test->area;
1566 unsigned long min_sz = 64 * 1024, sz;
1567 int ret;
1569 ret = mmc_test_set_blksize(test, 512);
1570 if (ret)
1571 return ret;
1573 /* Make the test area size about 4MiB */
1574 sz = (unsigned long)test->card->pref_erase << 9;
1575 t->max_sz = sz;
1576 while (t->max_sz < 4 * 1024 * 1024)
1577 t->max_sz += sz;
1578 while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1579 t->max_sz -= sz;
1581 t->max_segs = test->card->host->max_segs;
1582 t->max_seg_sz = test->card->host->max_seg_size;
1584 t->max_tfr = t->max_sz;
1585 if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1586 t->max_tfr = test->card->host->max_blk_count << 9;
1587 if (t->max_tfr > test->card->host->max_req_size)
1588 t->max_tfr = test->card->host->max_req_size;
1589 if (t->max_tfr / t->max_seg_sz > t->max_segs)
1590 t->max_tfr = t->max_segs * t->max_seg_sz;
1593 * Try to allocate enough memory for a max. sized transfer. Less is OK
1594 * because the same memory can be mapped into the scatterlist more than
1595 * once. Also, take into account the limits imposed on scatterlist
1596 * segments by the host driver.
1598 t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1599 t->max_seg_sz);
1600 if (!t->mem)
1601 return -ENOMEM;
1603 t->sg = kmalloc(sizeof(struct scatterlist) * t->max_segs, GFP_KERNEL);
1604 if (!t->sg) {
1605 ret = -ENOMEM;
1606 goto out_free;
1609 t->dev_addr = mmc_test_capacity(test->card) / 2;
1610 t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1612 if (erase) {
1613 ret = mmc_test_area_erase(test);
1614 if (ret)
1615 goto out_free;
1618 if (fill) {
1619 ret = mmc_test_area_fill(test);
1620 if (ret)
1621 goto out_free;
1624 return 0;
1626 out_free:
1627 mmc_test_area_cleanup(test);
1628 return ret;
1632 * Prepare for large transfers. Do not erase the test area.
1634 static int mmc_test_area_prepare(struct mmc_test_card *test)
1636 return mmc_test_area_init(test, 0, 0);
1640 * Prepare for large transfers. Do erase the test area.
1642 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1644 return mmc_test_area_init(test, 1, 0);
1648 * Prepare for large transfers. Erase and fill the test area.
1650 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1652 return mmc_test_area_init(test, 1, 1);
1656 * Test best-case performance. Best-case performance is expected from
1657 * a single large transfer.
1659 * An additional option (max_scatter) allows the measurement of the same
1660 * transfer but with no contiguous pages in the scatter list. This tests
1661 * the efficiency of DMA to handle scattered pages.
1663 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1664 int max_scatter)
1666 struct mmc_test_area *t = &test->area;
1668 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1669 max_scatter, 1);
1673 * Best-case read performance.
1675 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1677 return mmc_test_best_performance(test, 0, 0);
1681 * Best-case write performance.
1683 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1685 return mmc_test_best_performance(test, 1, 0);
1689 * Best-case read performance into scattered pages.
1691 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1693 return mmc_test_best_performance(test, 0, 1);
1697 * Best-case write performance from scattered pages.
1699 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1701 return mmc_test_best_performance(test, 1, 1);
1705 * Single read performance by transfer size.
1707 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1709 struct mmc_test_area *t = &test->area;
1710 unsigned long sz;
1711 unsigned int dev_addr;
1712 int ret;
1714 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1715 dev_addr = t->dev_addr + (sz >> 9);
1716 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1717 if (ret)
1718 return ret;
1720 sz = t->max_tfr;
1721 dev_addr = t->dev_addr;
1722 return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1726 * Single write performance by transfer size.
1728 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1730 struct mmc_test_area *t = &test->area;
1731 unsigned long sz;
1732 unsigned int dev_addr;
1733 int ret;
1735 ret = mmc_test_area_erase(test);
1736 if (ret)
1737 return ret;
1738 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1739 dev_addr = t->dev_addr + (sz >> 9);
1740 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1741 if (ret)
1742 return ret;
1744 ret = mmc_test_area_erase(test);
1745 if (ret)
1746 return ret;
1747 sz = t->max_tfr;
1748 dev_addr = t->dev_addr;
1749 return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1753 * Single trim performance by transfer size.
1755 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1757 struct mmc_test_area *t = &test->area;
1758 unsigned long sz;
1759 unsigned int dev_addr;
1760 struct timespec ts1, ts2;
1761 int ret;
1763 if (!mmc_can_trim(test->card))
1764 return RESULT_UNSUP_CARD;
1766 if (!mmc_can_erase(test->card))
1767 return RESULT_UNSUP_HOST;
1769 for (sz = 512; sz < t->max_sz; sz <<= 1) {
1770 dev_addr = t->dev_addr + (sz >> 9);
1771 getnstimeofday(&ts1);
1772 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1773 if (ret)
1774 return ret;
1775 getnstimeofday(&ts2);
1776 mmc_test_print_rate(test, sz, &ts1, &ts2);
1778 dev_addr = t->dev_addr;
1779 getnstimeofday(&ts1);
1780 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1781 if (ret)
1782 return ret;
1783 getnstimeofday(&ts2);
1784 mmc_test_print_rate(test, sz, &ts1, &ts2);
1785 return 0;
1788 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1790 struct mmc_test_area *t = &test->area;
1791 unsigned int dev_addr, i, cnt;
1792 struct timespec ts1, ts2;
1793 int ret;
1795 cnt = t->max_sz / sz;
1796 dev_addr = t->dev_addr;
1797 getnstimeofday(&ts1);
1798 for (i = 0; i < cnt; i++) {
1799 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1800 if (ret)
1801 return ret;
1802 dev_addr += (sz >> 9);
1804 getnstimeofday(&ts2);
1805 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1806 return 0;
1810 * Consecutive read performance by transfer size.
1812 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1814 struct mmc_test_area *t = &test->area;
1815 unsigned long sz;
1816 int ret;
1818 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1819 ret = mmc_test_seq_read_perf(test, sz);
1820 if (ret)
1821 return ret;
1823 sz = t->max_tfr;
1824 return mmc_test_seq_read_perf(test, sz);
1827 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1829 struct mmc_test_area *t = &test->area;
1830 unsigned int dev_addr, i, cnt;
1831 struct timespec ts1, ts2;
1832 int ret;
1834 ret = mmc_test_area_erase(test);
1835 if (ret)
1836 return ret;
1837 cnt = t->max_sz / sz;
1838 dev_addr = t->dev_addr;
1839 getnstimeofday(&ts1);
1840 for (i = 0; i < cnt; i++) {
1841 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1842 if (ret)
1843 return ret;
1844 dev_addr += (sz >> 9);
1846 getnstimeofday(&ts2);
1847 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1848 return 0;
1852 * Consecutive write performance by transfer size.
1854 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1856 struct mmc_test_area *t = &test->area;
1857 unsigned long sz;
1858 int ret;
1860 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1861 ret = mmc_test_seq_write_perf(test, sz);
1862 if (ret)
1863 return ret;
1865 sz = t->max_tfr;
1866 return mmc_test_seq_write_perf(test, sz);
1870 * Consecutive trim performance by transfer size.
1872 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1874 struct mmc_test_area *t = &test->area;
1875 unsigned long sz;
1876 unsigned int dev_addr, i, cnt;
1877 struct timespec ts1, ts2;
1878 int ret;
1880 if (!mmc_can_trim(test->card))
1881 return RESULT_UNSUP_CARD;
1883 if (!mmc_can_erase(test->card))
1884 return RESULT_UNSUP_HOST;
1886 for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1887 ret = mmc_test_area_erase(test);
1888 if (ret)
1889 return ret;
1890 ret = mmc_test_area_fill(test);
1891 if (ret)
1892 return ret;
1893 cnt = t->max_sz / sz;
1894 dev_addr = t->dev_addr;
1895 getnstimeofday(&ts1);
1896 for (i = 0; i < cnt; i++) {
1897 ret = mmc_erase(test->card, dev_addr, sz >> 9,
1898 MMC_TRIM_ARG);
1899 if (ret)
1900 return ret;
1901 dev_addr += (sz >> 9);
1903 getnstimeofday(&ts2);
1904 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1906 return 0;
1909 static unsigned int rnd_next = 1;
1911 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1913 uint64_t r;
1915 rnd_next = rnd_next * 1103515245 + 12345;
1916 r = (rnd_next >> 16) & 0x7fff;
1917 return (r * rnd_cnt) >> 15;
1920 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1921 unsigned long sz)
1923 unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1924 unsigned int ssz;
1925 struct timespec ts1, ts2, ts;
1926 int ret;
1928 ssz = sz >> 9;
1930 rnd_addr = mmc_test_capacity(test->card) / 4;
1931 range1 = rnd_addr / test->card->pref_erase;
1932 range2 = range1 / ssz;
1934 getnstimeofday(&ts1);
1935 for (cnt = 0; cnt < UINT_MAX; cnt++) {
1936 getnstimeofday(&ts2);
1937 ts = timespec_sub(ts2, ts1);
1938 if (ts.tv_sec >= 10)
1939 break;
1940 ea = mmc_test_rnd_num(range1);
1941 if (ea == last_ea)
1942 ea -= 1;
1943 last_ea = ea;
1944 dev_addr = rnd_addr + test->card->pref_erase * ea +
1945 ssz * mmc_test_rnd_num(range2);
1946 ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1947 if (ret)
1948 return ret;
1950 if (print)
1951 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1952 return 0;
1955 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1957 struct mmc_test_area *t = &test->area;
1958 unsigned int next;
1959 unsigned long sz;
1960 int ret;
1962 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1964 * When writing, try to get more consistent results by running
1965 * the test twice with exactly the same I/O but outputting the
1966 * results only for the 2nd run.
1968 if (write) {
1969 next = rnd_next;
1970 ret = mmc_test_rnd_perf(test, write, 0, sz);
1971 if (ret)
1972 return ret;
1973 rnd_next = next;
1975 ret = mmc_test_rnd_perf(test, write, 1, sz);
1976 if (ret)
1977 return ret;
1979 sz = t->max_tfr;
1980 if (write) {
1981 next = rnd_next;
1982 ret = mmc_test_rnd_perf(test, write, 0, sz);
1983 if (ret)
1984 return ret;
1985 rnd_next = next;
1987 return mmc_test_rnd_perf(test, write, 1, sz);
1991 * Random read performance by transfer size.
1993 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1995 return mmc_test_random_perf(test, 0);
1999 * Random write performance by transfer size.
2001 static int mmc_test_random_write_perf(struct mmc_test_card *test)
2003 return mmc_test_random_perf(test, 1);
2006 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
2007 unsigned int tot_sz, int max_scatter)
2009 struct mmc_test_area *t = &test->area;
2010 unsigned int dev_addr, i, cnt, sz, ssz;
2011 struct timespec ts1, ts2;
2012 int ret;
2014 sz = t->max_tfr;
2017 * In the case of a maximally scattered transfer, the maximum transfer
2018 * size is further limited by using PAGE_SIZE segments.
2020 if (max_scatter) {
2021 unsigned long max_tfr;
2023 if (t->max_seg_sz >= PAGE_SIZE)
2024 max_tfr = t->max_segs * PAGE_SIZE;
2025 else
2026 max_tfr = t->max_segs * t->max_seg_sz;
2027 if (sz > max_tfr)
2028 sz = max_tfr;
2031 ssz = sz >> 9;
2032 dev_addr = mmc_test_capacity(test->card) / 4;
2033 if (tot_sz > dev_addr << 9)
2034 tot_sz = dev_addr << 9;
2035 cnt = tot_sz / sz;
2036 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2038 getnstimeofday(&ts1);
2039 for (i = 0; i < cnt; i++) {
2040 ret = mmc_test_area_io(test, sz, dev_addr, write,
2041 max_scatter, 0);
2042 if (ret)
2043 return ret;
2044 dev_addr += ssz;
2046 getnstimeofday(&ts2);
2048 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2050 return 0;
2053 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2055 int ret, i;
2057 for (i = 0; i < 10; i++) {
2058 ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2059 if (ret)
2060 return ret;
2062 for (i = 0; i < 5; i++) {
2063 ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2064 if (ret)
2065 return ret;
2067 for (i = 0; i < 3; i++) {
2068 ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2069 if (ret)
2070 return ret;
2073 return ret;
2077 * Large sequential read performance.
2079 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2081 return mmc_test_large_seq_perf(test, 0);
2085 * Large sequential write performance.
2087 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2089 return mmc_test_large_seq_perf(test, 1);
2092 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2093 struct mmc_test_multiple_rw *tdata,
2094 unsigned int reqsize, unsigned int size,
2095 int min_sg_len)
2097 unsigned int dev_addr;
2098 struct mmc_test_area *t = &test->area;
2099 int ret = 0;
2101 /* Set up test area */
2102 if (size > mmc_test_capacity(test->card) / 2 * 512)
2103 size = mmc_test_capacity(test->card) / 2 * 512;
2104 if (reqsize > t->max_tfr)
2105 reqsize = t->max_tfr;
2106 dev_addr = mmc_test_capacity(test->card) / 4;
2107 if ((dev_addr & 0xffff0000))
2108 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2109 else
2110 dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2111 if (!dev_addr)
2112 goto err;
2114 if (reqsize > size)
2115 return 0;
2117 /* prepare test area */
2118 if (mmc_can_erase(test->card) &&
2119 tdata->prepare & MMC_TEST_PREP_ERASE) {
2120 ret = mmc_erase(test->card, dev_addr,
2121 size / 512, MMC_SECURE_ERASE_ARG);
2122 if (ret)
2123 ret = mmc_erase(test->card, dev_addr,
2124 size / 512, MMC_ERASE_ARG);
2125 if (ret)
2126 goto err;
2129 /* Run test */
2130 ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2131 tdata->do_write, 0, 1, size / reqsize,
2132 tdata->do_nonblock_req, min_sg_len);
2133 if (ret)
2134 goto err;
2136 return ret;
2137 err:
2138 printk(KERN_INFO "[%s] error\n", __func__);
2139 return ret;
2142 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2143 struct mmc_test_multiple_rw *rw)
2145 int ret = 0;
2146 int i;
2147 void *pre_req = test->card->host->ops->pre_req;
2148 void *post_req = test->card->host->ops->post_req;
2150 if (rw->do_nonblock_req &&
2151 ((!pre_req && post_req) || (pre_req && !post_req))) {
2152 printk(KERN_INFO "error: only one of pre/post is defined\n");
2153 return -EINVAL;
2156 for (i = 0 ; i < rw->len && ret == 0; i++) {
2157 ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2158 if (ret)
2159 break;
2161 return ret;
2164 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2165 struct mmc_test_multiple_rw *rw)
2167 int ret = 0;
2168 int i;
2170 for (i = 0 ; i < rw->len && ret == 0; i++) {
2171 ret = mmc_test_rw_multiple(test, rw, 512*1024, rw->size,
2172 rw->sg_len[i]);
2173 if (ret)
2174 break;
2176 return ret;
2180 * Multiple blocking write 4k to 4 MB chunks
2182 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2184 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2185 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2186 struct mmc_test_multiple_rw test_data = {
2187 .bs = bs,
2188 .size = TEST_AREA_MAX_SIZE,
2189 .len = ARRAY_SIZE(bs),
2190 .do_write = true,
2191 .do_nonblock_req = false,
2192 .prepare = MMC_TEST_PREP_ERASE,
2195 return mmc_test_rw_multiple_size(test, &test_data);
2199 * Multiple non-blocking write 4k to 4 MB chunks
2201 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2203 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2204 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2205 struct mmc_test_multiple_rw test_data = {
2206 .bs = bs,
2207 .size = TEST_AREA_MAX_SIZE,
2208 .len = ARRAY_SIZE(bs),
2209 .do_write = true,
2210 .do_nonblock_req = true,
2211 .prepare = MMC_TEST_PREP_ERASE,
2214 return mmc_test_rw_multiple_size(test, &test_data);
2218 * Multiple blocking read 4k to 4 MB chunks
2220 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2222 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2223 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2224 struct mmc_test_multiple_rw test_data = {
2225 .bs = bs,
2226 .size = TEST_AREA_MAX_SIZE,
2227 .len = ARRAY_SIZE(bs),
2228 .do_write = false,
2229 .do_nonblock_req = false,
2230 .prepare = MMC_TEST_PREP_NONE,
2233 return mmc_test_rw_multiple_size(test, &test_data);
2237 * Multiple non-blocking read 4k to 4 MB chunks
2239 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2241 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2242 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2243 struct mmc_test_multiple_rw test_data = {
2244 .bs = bs,
2245 .size = TEST_AREA_MAX_SIZE,
2246 .len = ARRAY_SIZE(bs),
2247 .do_write = false,
2248 .do_nonblock_req = true,
2249 .prepare = MMC_TEST_PREP_NONE,
2252 return mmc_test_rw_multiple_size(test, &test_data);
2256 * Multiple blocking write 1 to 512 sg elements
2258 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2260 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2261 1 << 7, 1 << 8, 1 << 9};
2262 struct mmc_test_multiple_rw test_data = {
2263 .sg_len = sg_len,
2264 .size = TEST_AREA_MAX_SIZE,
2265 .len = ARRAY_SIZE(sg_len),
2266 .do_write = true,
2267 .do_nonblock_req = false,
2268 .prepare = MMC_TEST_PREP_ERASE,
2271 return mmc_test_rw_multiple_sg_len(test, &test_data);
2275 * Multiple non-blocking write 1 to 512 sg elements
2277 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2279 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2280 1 << 7, 1 << 8, 1 << 9};
2281 struct mmc_test_multiple_rw test_data = {
2282 .sg_len = sg_len,
2283 .size = TEST_AREA_MAX_SIZE,
2284 .len = ARRAY_SIZE(sg_len),
2285 .do_write = true,
2286 .do_nonblock_req = true,
2287 .prepare = MMC_TEST_PREP_ERASE,
2290 return mmc_test_rw_multiple_sg_len(test, &test_data);
2294 * Multiple blocking read 1 to 512 sg elements
2296 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2298 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2299 1 << 7, 1 << 8, 1 << 9};
2300 struct mmc_test_multiple_rw test_data = {
2301 .sg_len = sg_len,
2302 .size = TEST_AREA_MAX_SIZE,
2303 .len = ARRAY_SIZE(sg_len),
2304 .do_write = false,
2305 .do_nonblock_req = false,
2306 .prepare = MMC_TEST_PREP_NONE,
2309 return mmc_test_rw_multiple_sg_len(test, &test_data);
2313 * Multiple non-blocking read 1 to 512 sg elements
2315 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2317 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2318 1 << 7, 1 << 8, 1 << 9};
2319 struct mmc_test_multiple_rw test_data = {
2320 .sg_len = sg_len,
2321 .size = TEST_AREA_MAX_SIZE,
2322 .len = ARRAY_SIZE(sg_len),
2323 .do_write = false,
2324 .do_nonblock_req = true,
2325 .prepare = MMC_TEST_PREP_NONE,
2328 return mmc_test_rw_multiple_sg_len(test, &test_data);
2331 static const struct mmc_test_case mmc_test_cases[] = {
2333 .name = "Basic write (no data verification)",
2334 .run = mmc_test_basic_write,
2338 .name = "Basic read (no data verification)",
2339 .run = mmc_test_basic_read,
2343 .name = "Basic write (with data verification)",
2344 .prepare = mmc_test_prepare_write,
2345 .run = mmc_test_verify_write,
2346 .cleanup = mmc_test_cleanup,
2350 .name = "Basic read (with data verification)",
2351 .prepare = mmc_test_prepare_read,
2352 .run = mmc_test_verify_read,
2353 .cleanup = mmc_test_cleanup,
2357 .name = "Multi-block write",
2358 .prepare = mmc_test_prepare_write,
2359 .run = mmc_test_multi_write,
2360 .cleanup = mmc_test_cleanup,
2364 .name = "Multi-block read",
2365 .prepare = mmc_test_prepare_read,
2366 .run = mmc_test_multi_read,
2367 .cleanup = mmc_test_cleanup,
2371 .name = "Power of two block writes",
2372 .prepare = mmc_test_prepare_write,
2373 .run = mmc_test_pow2_write,
2374 .cleanup = mmc_test_cleanup,
2378 .name = "Power of two block reads",
2379 .prepare = mmc_test_prepare_read,
2380 .run = mmc_test_pow2_read,
2381 .cleanup = mmc_test_cleanup,
2385 .name = "Weird sized block writes",
2386 .prepare = mmc_test_prepare_write,
2387 .run = mmc_test_weird_write,
2388 .cleanup = mmc_test_cleanup,
2392 .name = "Weird sized block reads",
2393 .prepare = mmc_test_prepare_read,
2394 .run = mmc_test_weird_read,
2395 .cleanup = mmc_test_cleanup,
2399 .name = "Badly aligned write",
2400 .prepare = mmc_test_prepare_write,
2401 .run = mmc_test_align_write,
2402 .cleanup = mmc_test_cleanup,
2406 .name = "Badly aligned read",
2407 .prepare = mmc_test_prepare_read,
2408 .run = mmc_test_align_read,
2409 .cleanup = mmc_test_cleanup,
2413 .name = "Badly aligned multi-block write",
2414 .prepare = mmc_test_prepare_write,
2415 .run = mmc_test_align_multi_write,
2416 .cleanup = mmc_test_cleanup,
2420 .name = "Badly aligned multi-block read",
2421 .prepare = mmc_test_prepare_read,
2422 .run = mmc_test_align_multi_read,
2423 .cleanup = mmc_test_cleanup,
2427 .name = "Correct xfer_size at write (start failure)",
2428 .run = mmc_test_xfersize_write,
2432 .name = "Correct xfer_size at read (start failure)",
2433 .run = mmc_test_xfersize_read,
2437 .name = "Correct xfer_size at write (midway failure)",
2438 .run = mmc_test_multi_xfersize_write,
2442 .name = "Correct xfer_size at read (midway failure)",
2443 .run = mmc_test_multi_xfersize_read,
2446 #ifdef CONFIG_HIGHMEM
2449 .name = "Highmem write",
2450 .prepare = mmc_test_prepare_write,
2451 .run = mmc_test_write_high,
2452 .cleanup = mmc_test_cleanup,
2456 .name = "Highmem read",
2457 .prepare = mmc_test_prepare_read,
2458 .run = mmc_test_read_high,
2459 .cleanup = mmc_test_cleanup,
2463 .name = "Multi-block highmem write",
2464 .prepare = mmc_test_prepare_write,
2465 .run = mmc_test_multi_write_high,
2466 .cleanup = mmc_test_cleanup,
2470 .name = "Multi-block highmem read",
2471 .prepare = mmc_test_prepare_read,
2472 .run = mmc_test_multi_read_high,
2473 .cleanup = mmc_test_cleanup,
2476 #else
2479 .name = "Highmem write",
2480 .run = mmc_test_no_highmem,
2484 .name = "Highmem read",
2485 .run = mmc_test_no_highmem,
2489 .name = "Multi-block highmem write",
2490 .run = mmc_test_no_highmem,
2494 .name = "Multi-block highmem read",
2495 .run = mmc_test_no_highmem,
2498 #endif /* CONFIG_HIGHMEM */
2501 .name = "Best-case read performance",
2502 .prepare = mmc_test_area_prepare_fill,
2503 .run = mmc_test_best_read_performance,
2504 .cleanup = mmc_test_area_cleanup,
2508 .name = "Best-case write performance",
2509 .prepare = mmc_test_area_prepare_erase,
2510 .run = mmc_test_best_write_performance,
2511 .cleanup = mmc_test_area_cleanup,
2515 .name = "Best-case read performance into scattered pages",
2516 .prepare = mmc_test_area_prepare_fill,
2517 .run = mmc_test_best_read_perf_max_scatter,
2518 .cleanup = mmc_test_area_cleanup,
2522 .name = "Best-case write performance from scattered pages",
2523 .prepare = mmc_test_area_prepare_erase,
2524 .run = mmc_test_best_write_perf_max_scatter,
2525 .cleanup = mmc_test_area_cleanup,
2529 .name = "Single read performance by transfer size",
2530 .prepare = mmc_test_area_prepare_fill,
2531 .run = mmc_test_profile_read_perf,
2532 .cleanup = mmc_test_area_cleanup,
2536 .name = "Single write performance by transfer size",
2537 .prepare = mmc_test_area_prepare,
2538 .run = mmc_test_profile_write_perf,
2539 .cleanup = mmc_test_area_cleanup,
2543 .name = "Single trim performance by transfer size",
2544 .prepare = mmc_test_area_prepare_fill,
2545 .run = mmc_test_profile_trim_perf,
2546 .cleanup = mmc_test_area_cleanup,
2550 .name = "Consecutive read performance by transfer size",
2551 .prepare = mmc_test_area_prepare_fill,
2552 .run = mmc_test_profile_seq_read_perf,
2553 .cleanup = mmc_test_area_cleanup,
2557 .name = "Consecutive write performance by transfer size",
2558 .prepare = mmc_test_area_prepare,
2559 .run = mmc_test_profile_seq_write_perf,
2560 .cleanup = mmc_test_area_cleanup,
2564 .name = "Consecutive trim performance by transfer size",
2565 .prepare = mmc_test_area_prepare,
2566 .run = mmc_test_profile_seq_trim_perf,
2567 .cleanup = mmc_test_area_cleanup,
2571 .name = "Random read performance by transfer size",
2572 .prepare = mmc_test_area_prepare,
2573 .run = mmc_test_random_read_perf,
2574 .cleanup = mmc_test_area_cleanup,
2578 .name = "Random write performance by transfer size",
2579 .prepare = mmc_test_area_prepare,
2580 .run = mmc_test_random_write_perf,
2581 .cleanup = mmc_test_area_cleanup,
2585 .name = "Large sequential read into scattered pages",
2586 .prepare = mmc_test_area_prepare,
2587 .run = mmc_test_large_seq_read_perf,
2588 .cleanup = mmc_test_area_cleanup,
2592 .name = "Large sequential write from scattered pages",
2593 .prepare = mmc_test_area_prepare,
2594 .run = mmc_test_large_seq_write_perf,
2595 .cleanup = mmc_test_area_cleanup,
2599 .name = "Write performance with blocking req 4k to 4MB",
2600 .prepare = mmc_test_area_prepare,
2601 .run = mmc_test_profile_mult_write_blocking_perf,
2602 .cleanup = mmc_test_area_cleanup,
2606 .name = "Write performance with non-blocking req 4k to 4MB",
2607 .prepare = mmc_test_area_prepare,
2608 .run = mmc_test_profile_mult_write_nonblock_perf,
2609 .cleanup = mmc_test_area_cleanup,
2613 .name = "Read performance with blocking req 4k to 4MB",
2614 .prepare = mmc_test_area_prepare,
2615 .run = mmc_test_profile_mult_read_blocking_perf,
2616 .cleanup = mmc_test_area_cleanup,
2620 .name = "Read performance with non-blocking req 4k to 4MB",
2621 .prepare = mmc_test_area_prepare,
2622 .run = mmc_test_profile_mult_read_nonblock_perf,
2623 .cleanup = mmc_test_area_cleanup,
2627 .name = "Write performance blocking req 1 to 512 sg elems",
2628 .prepare = mmc_test_area_prepare,
2629 .run = mmc_test_profile_sglen_wr_blocking_perf,
2630 .cleanup = mmc_test_area_cleanup,
2634 .name = "Write performance non-blocking req 1 to 512 sg elems",
2635 .prepare = mmc_test_area_prepare,
2636 .run = mmc_test_profile_sglen_wr_nonblock_perf,
2637 .cleanup = mmc_test_area_cleanup,
2641 .name = "Read performance blocking req 1 to 512 sg elems",
2642 .prepare = mmc_test_area_prepare,
2643 .run = mmc_test_profile_sglen_r_blocking_perf,
2644 .cleanup = mmc_test_area_cleanup,
2648 .name = "Read performance non-blocking req 1 to 512 sg elems",
2649 .prepare = mmc_test_area_prepare,
2650 .run = mmc_test_profile_sglen_r_nonblock_perf,
2651 .cleanup = mmc_test_area_cleanup,
2655 static DEFINE_MUTEX(mmc_test_lock);
2657 static LIST_HEAD(mmc_test_result);
2659 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2661 int i, ret;
2663 printk(KERN_INFO "%s: Starting tests of card %s...\n",
2664 mmc_hostname(test->card->host), mmc_card_id(test->card));
2666 mmc_claim_host(test->card->host);
2668 for (i = 0;i < ARRAY_SIZE(mmc_test_cases);i++) {
2669 struct mmc_test_general_result *gr;
2671 if (testcase && ((i + 1) != testcase))
2672 continue;
2674 printk(KERN_INFO "%s: Test case %d. %s...\n",
2675 mmc_hostname(test->card->host), i + 1,
2676 mmc_test_cases[i].name);
2678 if (mmc_test_cases[i].prepare) {
2679 ret = mmc_test_cases[i].prepare(test);
2680 if (ret) {
2681 printk(KERN_INFO "%s: Result: Prepare "
2682 "stage failed! (%d)\n",
2683 mmc_hostname(test->card->host),
2684 ret);
2685 continue;
2689 gr = kzalloc(sizeof(struct mmc_test_general_result),
2690 GFP_KERNEL);
2691 if (gr) {
2692 INIT_LIST_HEAD(&gr->tr_lst);
2694 /* Assign data what we know already */
2695 gr->card = test->card;
2696 gr->testcase = i;
2698 /* Append container to global one */
2699 list_add_tail(&gr->link, &mmc_test_result);
2702 * Save the pointer to created container in our private
2703 * structure.
2705 test->gr = gr;
2708 ret = mmc_test_cases[i].run(test);
2709 switch (ret) {
2710 case RESULT_OK:
2711 printk(KERN_INFO "%s: Result: OK\n",
2712 mmc_hostname(test->card->host));
2713 break;
2714 case RESULT_FAIL:
2715 printk(KERN_INFO "%s: Result: FAILED\n",
2716 mmc_hostname(test->card->host));
2717 break;
2718 case RESULT_UNSUP_HOST:
2719 printk(KERN_INFO "%s: Result: UNSUPPORTED "
2720 "(by host)\n",
2721 mmc_hostname(test->card->host));
2722 break;
2723 case RESULT_UNSUP_CARD:
2724 printk(KERN_INFO "%s: Result: UNSUPPORTED "
2725 "(by card)\n",
2726 mmc_hostname(test->card->host));
2727 break;
2728 default:
2729 printk(KERN_INFO "%s: Result: ERROR (%d)\n",
2730 mmc_hostname(test->card->host), ret);
2733 /* Save the result */
2734 if (gr)
2735 gr->result = ret;
2737 if (mmc_test_cases[i].cleanup) {
2738 ret = mmc_test_cases[i].cleanup(test);
2739 if (ret) {
2740 printk(KERN_INFO "%s: Warning: Cleanup "
2741 "stage failed! (%d)\n",
2742 mmc_hostname(test->card->host),
2743 ret);
2748 mmc_release_host(test->card->host);
2750 printk(KERN_INFO "%s: Tests completed.\n",
2751 mmc_hostname(test->card->host));
2754 static void mmc_test_free_result(struct mmc_card *card)
2756 struct mmc_test_general_result *gr, *grs;
2758 mutex_lock(&mmc_test_lock);
2760 list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
2761 struct mmc_test_transfer_result *tr, *trs;
2763 if (card && gr->card != card)
2764 continue;
2766 list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
2767 list_del(&tr->link);
2768 kfree(tr);
2771 list_del(&gr->link);
2772 kfree(gr);
2775 mutex_unlock(&mmc_test_lock);
2778 static LIST_HEAD(mmc_test_file_test);
2780 static int mtf_test_show(struct seq_file *sf, void *data)
2782 struct mmc_card *card = (struct mmc_card *)sf->private;
2783 struct mmc_test_general_result *gr;
2785 mutex_lock(&mmc_test_lock);
2787 list_for_each_entry(gr, &mmc_test_result, link) {
2788 struct mmc_test_transfer_result *tr;
2790 if (gr->card != card)
2791 continue;
2793 seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
2795 list_for_each_entry(tr, &gr->tr_lst, link) {
2796 seq_printf(sf, "%u %d %lu.%09lu %u %u.%02u\n",
2797 tr->count, tr->sectors,
2798 (unsigned long)tr->ts.tv_sec,
2799 (unsigned long)tr->ts.tv_nsec,
2800 tr->rate, tr->iops / 100, tr->iops % 100);
2804 mutex_unlock(&mmc_test_lock);
2806 return 0;
2809 static int mtf_test_open(struct inode *inode, struct file *file)
2811 return single_open(file, mtf_test_show, inode->i_private);
2814 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
2815 size_t count, loff_t *pos)
2817 struct seq_file *sf = (struct seq_file *)file->private_data;
2818 struct mmc_card *card = (struct mmc_card *)sf->private;
2819 struct mmc_test_card *test;
2820 char lbuf[12];
2821 long testcase;
2823 if (count >= sizeof(lbuf))
2824 return -EINVAL;
2826 if (copy_from_user(lbuf, buf, count))
2827 return -EFAULT;
2828 lbuf[count] = '\0';
2830 if (strict_strtol(lbuf, 10, &testcase))
2831 return -EINVAL;
2833 test = kzalloc(sizeof(struct mmc_test_card), GFP_KERNEL);
2834 if (!test)
2835 return -ENOMEM;
2838 * Remove all test cases associated with given card. Thus we have only
2839 * actual data of the last run.
2841 mmc_test_free_result(card);
2843 test->card = card;
2845 test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
2846 #ifdef CONFIG_HIGHMEM
2847 test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
2848 #endif
2850 #ifdef CONFIG_HIGHMEM
2851 if (test->buffer && test->highmem) {
2852 #else
2853 if (test->buffer) {
2854 #endif
2855 mutex_lock(&mmc_test_lock);
2856 mmc_test_run(test, testcase);
2857 mutex_unlock(&mmc_test_lock);
2860 #ifdef CONFIG_HIGHMEM
2861 __free_pages(test->highmem, BUFFER_ORDER);
2862 #endif
2863 kfree(test->buffer);
2864 kfree(test);
2866 return count;
2869 static const struct file_operations mmc_test_fops_test = {
2870 .open = mtf_test_open,
2871 .read = seq_read,
2872 .write = mtf_test_write,
2873 .llseek = seq_lseek,
2874 .release = single_release,
2877 static int mtf_testlist_show(struct seq_file *sf, void *data)
2879 int i;
2881 mutex_lock(&mmc_test_lock);
2883 for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
2884 seq_printf(sf, "%d:\t%s\n", i+1, mmc_test_cases[i].name);
2886 mutex_unlock(&mmc_test_lock);
2888 return 0;
2891 static int mtf_testlist_open(struct inode *inode, struct file *file)
2893 return single_open(file, mtf_testlist_show, inode->i_private);
2896 static const struct file_operations mmc_test_fops_testlist = {
2897 .open = mtf_testlist_open,
2898 .read = seq_read,
2899 .llseek = seq_lseek,
2900 .release = single_release,
2903 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
2905 struct mmc_test_dbgfs_file *df, *dfs;
2907 mutex_lock(&mmc_test_lock);
2909 list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
2910 if (card && df->card != card)
2911 continue;
2912 debugfs_remove(df->file);
2913 list_del(&df->link);
2914 kfree(df);
2917 mutex_unlock(&mmc_test_lock);
2920 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
2921 const char *name, mode_t mode, const struct file_operations *fops)
2923 struct dentry *file = NULL;
2924 struct mmc_test_dbgfs_file *df;
2926 if (card->debugfs_root)
2927 file = debugfs_create_file(name, mode, card->debugfs_root,
2928 card, fops);
2930 if (IS_ERR_OR_NULL(file)) {
2931 dev_err(&card->dev,
2932 "Can't create %s. Perhaps debugfs is disabled.\n",
2933 name);
2934 return -ENODEV;
2937 df = kmalloc(sizeof(struct mmc_test_dbgfs_file), GFP_KERNEL);
2938 if (!df) {
2939 debugfs_remove(file);
2940 dev_err(&card->dev,
2941 "Can't allocate memory for internal usage.\n");
2942 return -ENOMEM;
2945 df->card = card;
2946 df->file = file;
2948 list_add(&df->link, &mmc_test_file_test);
2949 return 0;
2952 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
2954 int ret;
2956 mutex_lock(&mmc_test_lock);
2958 ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
2959 &mmc_test_fops_test);
2960 if (ret)
2961 goto err;
2963 ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
2964 &mmc_test_fops_testlist);
2965 if (ret)
2966 goto err;
2968 err:
2969 mutex_unlock(&mmc_test_lock);
2971 return ret;
2974 static int mmc_test_probe(struct mmc_card *card)
2976 int ret;
2978 if (!mmc_card_mmc(card) && !mmc_card_sd(card))
2979 return -ENODEV;
2981 ret = mmc_test_register_dbgfs_file(card);
2982 if (ret)
2983 return ret;
2985 dev_info(&card->dev, "Card claimed for testing.\n");
2987 return 0;
2990 static void mmc_test_remove(struct mmc_card *card)
2992 mmc_test_free_result(card);
2993 mmc_test_free_dbgfs_file(card);
2996 static struct mmc_driver mmc_driver = {
2997 .drv = {
2998 .name = "mmc_test",
3000 .probe = mmc_test_probe,
3001 .remove = mmc_test_remove,
3004 static int __init mmc_test_init(void)
3006 return mmc_register_driver(&mmc_driver);
3009 static void __exit mmc_test_exit(void)
3011 /* Clear stalled data if card is still plugged */
3012 mmc_test_free_result(NULL);
3013 mmc_test_free_dbgfs_file(NULL);
3015 mmc_unregister_driver(&mmc_driver);
3018 module_init(mmc_test_init);
3019 module_exit(mmc_test_exit);
3021 MODULE_LICENSE("GPL");
3022 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3023 MODULE_AUTHOR("Pierre Ossman");