3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright * 2005 Agere Systems Inc.
9 *------------------------------------------------------------------------------
11 * et1310_phy.c - Routines for configuring and accessing the PHY
13 *------------------------------------------------------------------------------
17 * This software is provided subject to the following terms and conditions,
18 * which you should read carefully before using the software. Using this
19 * software indicates your acceptance of these terms and conditions. If you do
20 * not agree with these terms and conditions, do not use the software.
22 * Copyright * 2005 Agere Systems Inc.
23 * All rights reserved.
25 * Redistribution and use in source or binary forms, with or without
26 * modifications, are permitted provided that the following conditions are met:
28 * . Redistributions of source code must retain the above copyright notice, this
29 * list of conditions and the following Disclaimer as comments in the code as
30 * well as in the documentation and/or other materials provided with the
33 * . Redistributions in binary form must reproduce the above copyright notice,
34 * this list of conditions and the following Disclaimer in the documentation
35 * and/or other materials provided with the distribution.
37 * . Neither the name of Agere Systems Inc. nor the names of the contributors
38 * may be used to endorse or promote products derived from this software
39 * without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
44 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
46 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
47 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
48 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
49 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
50 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
51 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
53 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
58 #include "et131x_version.h"
59 #include "et131x_defs.h"
61 #include <linux/pci.h>
62 #include <linux/init.h>
63 #include <linux/module.h>
64 #include <linux/types.h>
65 #include <linux/kernel.h>
67 #include <linux/sched.h>
68 #include <linux/ptrace.h>
69 #include <linux/ctype.h>
70 #include <linux/string.h>
71 #include <linux/timer.h>
72 #include <linux/interrupt.h>
74 #include <linux/delay.h>
76 #include <linux/bitops.h>
77 #include <asm/system.h>
79 #include <linux/netdevice.h>
80 #include <linux/etherdevice.h>
81 #include <linux/skbuff.h>
82 #include <linux/if_arp.h>
83 #include <linux/ioport.h>
84 #include <linux/random.h>
86 #include "et1310_phy.h"
88 #include "et131x_adapter.h"
90 #include "et1310_address_map.h"
91 #include "et1310_tx.h"
92 #include "et1310_rx.h"
96 /* Prototypes for functions with local scope */
97 static void et131x_xcvr_init(struct et131x_adapter
*etdev
);
100 * PhyMiRead - Read from the PHY through the MII Interface on the MAC
101 * @etdev: pointer to our private adapter structure
102 * @xcvrAddr: the address of the transceiver
103 * @xcvrReg: the register to read
104 * @value: pointer to a 16-bit value in which the value will be stored
106 * Returns 0 on success, errno on failure (as defined in errno.h)
108 int PhyMiRead(struct et131x_adapter
*etdev
, u8 xcvrAddr
,
109 u8 xcvrReg
, u16
*value
)
111 struct mac_regs __iomem
*mac
= &etdev
->regs
->mac
;
118 /* Save a local copy of the registers we are dealing with so we can
121 miiAddr
= readl(&mac
->mii_mgmt_addr
);
122 miiCmd
= readl(&mac
->mii_mgmt_cmd
);
124 /* Stop the current operation */
125 writel(0, &mac
->mii_mgmt_cmd
);
127 /* Set up the register we need to read from on the correct PHY */
128 writel(MII_ADDR(xcvrAddr
, xcvrReg
), &mac
->mii_mgmt_addr
);
130 /* Kick the read cycle off */
133 writel(0x1, &mac
->mii_mgmt_cmd
);
138 miiIndicator
= readl(&mac
->mii_mgmt_indicator
);
139 } while ((miiIndicator
& MGMT_WAIT
) && delay
< 50);
141 /* If we hit the max delay, we could not read the register */
143 dev_warn(&etdev
->pdev
->dev
,
144 "xcvrReg 0x%08x could not be read\n", xcvrReg
);
145 dev_warn(&etdev
->pdev
->dev
, "status is 0x%08x\n",
151 /* If we hit here we were able to read the register and we need to
152 * return the value to the caller */
153 *value
= readl(&mac
->mii_mgmt_stat
) & 0xFFFF;
155 /* Stop the read operation */
156 writel(0, &mac
->mii_mgmt_cmd
);
158 /* set the registers we touched back to the state at which we entered
161 writel(miiAddr
, &mac
->mii_mgmt_addr
);
162 writel(miiCmd
, &mac
->mii_mgmt_cmd
);
168 * MiWrite - Write to a PHY register through the MII interface of the MAC
169 * @etdev: pointer to our private adapter structure
170 * @xcvrReg: the register to read
171 * @value: 16-bit value to write
173 * FIXME: one caller in netdev still
175 * Return 0 on success, errno on failure (as defined in errno.h)
177 int MiWrite(struct et131x_adapter
*etdev
, u8 xcvrReg
, u16 value
)
179 struct mac_regs __iomem
*mac
= &etdev
->regs
->mac
;
181 u8 xcvrAddr
= etdev
->stats
.xcvr_addr
;
187 /* Save a local copy of the registers we are dealing with so we can
190 miiAddr
= readl(&mac
->mii_mgmt_addr
);
191 miiCmd
= readl(&mac
->mii_mgmt_cmd
);
193 /* Stop the current operation */
194 writel(0, &mac
->mii_mgmt_cmd
);
196 /* Set up the register we need to write to on the correct PHY */
197 writel(MII_ADDR(xcvrAddr
, xcvrReg
), &mac
->mii_mgmt_addr
);
199 /* Add the value to write to the registers to the mac */
200 writel(value
, &mac
->mii_mgmt_ctrl
);
206 miiIndicator
= readl(&mac
->mii_mgmt_indicator
);
207 } while ((miiIndicator
& MGMT_BUSY
) && delay
< 100);
209 /* If we hit the max delay, we could not write the register */
213 dev_warn(&etdev
->pdev
->dev
,
214 "xcvrReg 0x%08x could not be written", xcvrReg
);
215 dev_warn(&etdev
->pdev
->dev
, "status is 0x%08x\n",
217 dev_warn(&etdev
->pdev
->dev
, "command is 0x%08x\n",
218 readl(&mac
->mii_mgmt_cmd
));
220 MiRead(etdev
, xcvrReg
, &TempValue
);
224 /* Stop the write operation */
225 writel(0, &mac
->mii_mgmt_cmd
);
227 /* set the registers we touched back to the state at which we entered
230 writel(miiAddr
, &mac
->mii_mgmt_addr
);
231 writel(miiCmd
, &mac
->mii_mgmt_cmd
);
237 * et131x_xcvr_find - Find the PHY ID
238 * @etdev: pointer to our private adapter structure
240 * Returns 0 on success, errno on failure (as defined in errno.h)
242 int et131x_xcvr_find(struct et131x_adapter
*etdev
)
249 /* We need to get xcvr id and address we just get the first one */
250 for (xcvr_addr
= 0; xcvr_addr
< 32; xcvr_addr
++) {
251 /* Read the ID from the PHY */
252 PhyMiRead(etdev
, xcvr_addr
,
253 (u8
) offsetof(struct mi_regs
, idr1
),
255 PhyMiRead(etdev
, xcvr_addr
,
256 (u8
) offsetof(struct mi_regs
, idr2
),
259 xcvr_id
= (u32
) ((idr1
<< 16) | idr2
);
261 if (idr1
!= 0 && idr1
!= 0xffff) {
262 etdev
->stats
.xcvr_id
= xcvr_id
;
263 etdev
->stats
.xcvr_addr
= xcvr_addr
;
270 void ET1310_PhyReset(struct et131x_adapter
*etdev
)
272 MiWrite(etdev
, PHY_CONTROL
, 0x8000);
276 * ET1310_PhyPowerDown - PHY power control
277 * @etdev: device to control
278 * @down: true for off/false for back on
280 * one hundred, ten, one thousand megs
281 * How would you like to have your LAN accessed
282 * Can't you see that this code processed
283 * Phy power, phy power..
286 void ET1310_PhyPowerDown(struct et131x_adapter
*etdev
, bool down
)
290 MiRead(etdev
, PHY_CONTROL
, &data
);
291 data
&= ~0x0800; /* Power UP */
292 if (down
) /* Power DOWN */
294 MiWrite(etdev
, PHY_CONTROL
, data
);
298 * ET130_PhyAutoNEg - autonegotiate control
299 * @etdev: device to control
300 * @enabe: autoneg on/off
302 * Set up the autonegotiation state according to whether we will be
303 * negotiating the state or forcing a speed.
306 static void ET1310_PhyAutoNeg(struct et131x_adapter
*etdev
, bool enable
)
310 MiRead(etdev
, PHY_CONTROL
, &data
);
311 data
&= ~0x1000; /* Autonegotiation OFF */
313 data
|= 0x1000; /* Autonegotiation ON */
314 MiWrite(etdev
, PHY_CONTROL
, data
);
318 * ET130_PhyDuplexMode - duplex control
319 * @etdev: device to control
320 * @duplex: duplex on/off
322 * Set up the duplex state on the PHY
325 static void ET1310_PhyDuplexMode(struct et131x_adapter
*etdev
, u16 duplex
)
329 MiRead(etdev
, PHY_CONTROL
, &data
);
330 data
&= ~0x100; /* Set Half Duplex */
331 if (duplex
== TRUEPHY_DUPLEX_FULL
)
332 data
|= 0x100; /* Set Full Duplex */
333 MiWrite(etdev
, PHY_CONTROL
, data
);
337 * ET130_PhySpeedSelect - speed control
338 * @etdev: device to control
339 * @duplex: duplex on/off
341 * Set the speed of our PHY.
344 static void ET1310_PhySpeedSelect(struct et131x_adapter
*etdev
, u16 speed
)
347 static const u16 bits
[3] = {0x0000, 0x2000, 0x0040};
349 /* Read the PHY control register */
350 MiRead(etdev
, PHY_CONTROL
, &data
);
351 /* Clear all Speed settings (Bits 6, 13) */
353 /* Write back the new speed */
354 MiWrite(etdev
, PHY_CONTROL
, data
| bits
[speed
]);
358 * ET1310_PhyLinkStatus - read link state
359 * @etdev: device to read
360 * @link_status: reported link state
361 * @autoneg: reported autonegotiation state (complete/incomplete/disabled)
362 * @linkspeed: returnedlink speed in use
363 * @duplex_mode: reported half/full duplex state
364 * @mdi_mdix: not yet working
365 * @masterslave: report whether we are master or slave
366 * @polarity: link polarity
368 * I can read your lan like a magazine
370 * I know your link speed
371 * I see all the setting that you'd rather keep
374 static void ET1310_PhyLinkStatus(struct et131x_adapter
*etdev
,
380 u32
*masterslave
, u32
*polarity
)
384 u16 vmi_phystatus
= 0;
387 MiRead(etdev
, PHY_STATUS
, &mistatus
);
388 MiRead(etdev
, PHY_1000_STATUS
, &is1000BaseT
);
389 MiRead(etdev
, PHY_PHY_STATUS
, &vmi_phystatus
);
390 MiRead(etdev
, PHY_CONTROL
, &control
);
392 *link_status
= (vmi_phystatus
& 0x0040) ? 1 : 0;
393 *autoneg
= (control
& 0x1000) ? ((vmi_phystatus
& 0x0020) ?
394 TRUEPHY_ANEG_COMPLETE
:
395 TRUEPHY_ANEG_NOT_COMPLETE
) :
396 TRUEPHY_ANEG_DISABLED
;
397 *linkspeed
= (vmi_phystatus
& 0x0300) >> 8;
398 *duplex_mode
= (vmi_phystatus
& 0x0080) >> 7;
399 /* NOTE: Need to complete this */
402 *masterslave
= (is1000BaseT
& 0x4000) ?
403 TRUEPHY_CFG_MASTER
: TRUEPHY_CFG_SLAVE
;
404 *polarity
= (vmi_phystatus
& 0x0400) ?
405 TRUEPHY_POLARITY_INVERTED
: TRUEPHY_POLARITY_NORMAL
;
408 static void ET1310_PhyAndOrReg(struct et131x_adapter
*etdev
,
409 u16 regnum
, u16 andMask
, u16 orMask
)
413 MiRead(etdev
, regnum
, ®
);
416 MiWrite(etdev
, regnum
, reg
);
419 /* Still used from _mac for BIT_READ */
420 void ET1310_PhyAccessMiBit(struct et131x_adapter
*etdev
, u16 action
,
421 u16 regnum
, u16 bitnum
, u8
*value
)
424 u16 mask
= 0x0001 << bitnum
;
426 /* Read the requested register */
427 MiRead(etdev
, regnum
, ®
);
430 case TRUEPHY_BIT_READ
:
431 *value
= (reg
& mask
) >> bitnum
;
434 case TRUEPHY_BIT_SET
:
435 MiWrite(etdev
, regnum
, reg
| mask
);
438 case TRUEPHY_BIT_CLEAR
:
439 MiWrite(etdev
, regnum
, reg
& ~mask
);
447 void ET1310_PhyAdvertise1000BaseT(struct et131x_adapter
*etdev
,
452 /* Read the PHY 1000 Base-T Control Register */
453 MiRead(etdev
, PHY_1000_CONTROL
, &data
);
459 case TRUEPHY_ADV_DUPLEX_NONE
:
460 /* Duplex already cleared, do nothing */
463 case TRUEPHY_ADV_DUPLEX_FULL
:
468 case TRUEPHY_ADV_DUPLEX_HALF
:
473 case TRUEPHY_ADV_DUPLEX_BOTH
:
479 /* Write back advertisement */
480 MiWrite(etdev
, PHY_1000_CONTROL
, data
);
483 static void ET1310_PhyAdvertise100BaseT(struct et131x_adapter
*etdev
,
488 /* Read the Autonegotiation Register (10/100) */
489 MiRead(etdev
, PHY_AUTO_ADVERTISEMENT
, &data
);
495 case TRUEPHY_ADV_DUPLEX_NONE
:
496 /* Duplex already cleared, do nothing */
499 case TRUEPHY_ADV_DUPLEX_FULL
:
504 case TRUEPHY_ADV_DUPLEX_HALF
:
509 case TRUEPHY_ADV_DUPLEX_BOTH
:
516 /* Write back advertisement */
517 MiWrite(etdev
, PHY_AUTO_ADVERTISEMENT
, data
);
520 static void ET1310_PhyAdvertise10BaseT(struct et131x_adapter
*etdev
,
525 /* Read the Autonegotiation Register (10/100) */
526 MiRead(etdev
, PHY_AUTO_ADVERTISEMENT
, &data
);
532 case TRUEPHY_ADV_DUPLEX_NONE
:
533 /* Duplex already cleared, do nothing */
536 case TRUEPHY_ADV_DUPLEX_FULL
:
541 case TRUEPHY_ADV_DUPLEX_HALF
:
546 case TRUEPHY_ADV_DUPLEX_BOTH
:
553 /* Write back advertisement */
554 MiWrite(etdev
, PHY_AUTO_ADVERTISEMENT
, data
);
558 * et131x_setphy_normal - Set PHY for normal operation.
559 * @etdev: pointer to our private adapter structure
561 * Used by Power Management to force the PHY into 10 Base T half-duplex mode,
562 * when going to D3 in WOL mode. Also used during initialization to set the
563 * PHY for normal operation.
565 void et131x_setphy_normal(struct et131x_adapter
*etdev
)
567 /* Make sure the PHY is powered up */
568 ET1310_PhyPowerDown(etdev
, 0);
569 et131x_xcvr_init(etdev
);
574 * et131x_xcvr_init - Init the phy if we are setting it into force mode
575 * @etdev: pointer to our private adapter structure
578 static void et131x_xcvr_init(struct et131x_adapter
*etdev
)
584 /* Zero out the adapter structure variable representing BMSR */
587 MiRead(etdev
, (u8
) offsetof(struct mi_regs
, isr
), &isr
);
588 MiRead(etdev
, (u8
) offsetof(struct mi_regs
, imr
), &imr
);
590 /* Set the link status interrupt only. Bad behavior when link status
591 * and auto neg are set, we run into a nested interrupt problem
595 MiWrite(etdev
, (u8
) offsetof(struct mi_regs
, imr
), imr
);
597 /* Set the LED behavior such that LED 1 indicates speed (off =
598 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
599 * link and activity (on for link, blink off for activity).
601 * NOTE: Some customizations have been added here for specific
602 * vendors; The LED behavior is now determined by vendor data in the
603 * EEPROM. However, the above description is the default.
605 if ((etdev
->eeprom_data
[1] & 0x4) == 0) {
606 MiRead(etdev
, (u8
) offsetof(struct mi_regs
, lcr2
),
610 lcr2
|= 0xA000; /* led link */
612 if ((etdev
->eeprom_data
[1] & 0x8) == 0)
617 MiWrite(etdev
, (u8
) offsetof(struct mi_regs
, lcr2
),
621 /* Determine if we need to go into a force mode and set it */
622 if (etdev
->AiForceSpeed
== 0 && etdev
->AiForceDpx
== 0) {
623 if (etdev
->wanted_flow
== FLOW_TXONLY
||
624 etdev
->wanted_flow
== FLOW_BOTH
)
625 ET1310_PhyAccessMiBit(etdev
,
626 TRUEPHY_BIT_SET
, 4, 11, NULL
);
628 ET1310_PhyAccessMiBit(etdev
,
629 TRUEPHY_BIT_CLEAR
, 4, 11, NULL
);
631 if (etdev
->wanted_flow
== FLOW_BOTH
)
632 ET1310_PhyAccessMiBit(etdev
,
633 TRUEPHY_BIT_SET
, 4, 10, NULL
);
635 ET1310_PhyAccessMiBit(etdev
,
636 TRUEPHY_BIT_CLEAR
, 4, 10, NULL
);
638 /* Set the phy to autonegotiation */
639 ET1310_PhyAutoNeg(etdev
, true);
641 /* NOTE - Do we need this? */
642 ET1310_PhyAccessMiBit(etdev
, TRUEPHY_BIT_SET
, 0, 9, NULL
);
646 ET1310_PhyAutoNeg(etdev
, false);
648 /* Set to the correct force mode. */
649 if (etdev
->AiForceDpx
!= 1) {
650 if (etdev
->wanted_flow
== FLOW_TXONLY
||
651 etdev
->wanted_flow
== FLOW_BOTH
)
652 ET1310_PhyAccessMiBit(etdev
,
653 TRUEPHY_BIT_SET
, 4, 11, NULL
);
655 ET1310_PhyAccessMiBit(etdev
,
656 TRUEPHY_BIT_CLEAR
, 4, 11, NULL
);
658 if (etdev
->wanted_flow
== FLOW_BOTH
)
659 ET1310_PhyAccessMiBit(etdev
,
660 TRUEPHY_BIT_SET
, 4, 10, NULL
);
662 ET1310_PhyAccessMiBit(etdev
,
663 TRUEPHY_BIT_CLEAR
, 4, 10, NULL
);
665 ET1310_PhyAccessMiBit(etdev
, TRUEPHY_BIT_CLEAR
, 4, 10, NULL
);
666 ET1310_PhyAccessMiBit(etdev
, TRUEPHY_BIT_CLEAR
, 4, 11, NULL
);
668 ET1310_PhyPowerDown(etdev
, 1);
669 switch (etdev
->AiForceSpeed
) {
671 /* First we need to turn off all other advertisement */
672 ET1310_PhyAdvertise1000BaseT(etdev
, TRUEPHY_ADV_DUPLEX_NONE
);
673 ET1310_PhyAdvertise100BaseT(etdev
, TRUEPHY_ADV_DUPLEX_NONE
);
674 if (etdev
->AiForceDpx
== 1) {
675 /* Set our advertise values accordingly */
676 ET1310_PhyAdvertise10BaseT(etdev
,
677 TRUEPHY_ADV_DUPLEX_HALF
);
678 } else if (etdev
->AiForceDpx
== 2) {
679 /* Set our advertise values accordingly */
680 ET1310_PhyAdvertise10BaseT(etdev
,
681 TRUEPHY_ADV_DUPLEX_FULL
);
683 /* Disable autoneg */
684 ET1310_PhyAutoNeg(etdev
, false);
685 /* Disable rest of the advertisements */
686 ET1310_PhyAdvertise10BaseT(etdev
,
687 TRUEPHY_ADV_DUPLEX_NONE
);
689 ET1310_PhySpeedSelect(etdev
, TRUEPHY_SPEED_10MBPS
);
690 /* Force Full duplex */
691 ET1310_PhyDuplexMode(etdev
, TRUEPHY_DUPLEX_FULL
);
695 /* first we need to turn off all other advertisement */
696 ET1310_PhyAdvertise1000BaseT(etdev
, TRUEPHY_ADV_DUPLEX_NONE
);
697 ET1310_PhyAdvertise10BaseT(etdev
, TRUEPHY_ADV_DUPLEX_NONE
);
698 if (etdev
->AiForceDpx
== 1) {
699 /* Set our advertise values accordingly */
700 ET1310_PhyAdvertise100BaseT(etdev
,
701 TRUEPHY_ADV_DUPLEX_HALF
);
703 ET1310_PhySpeedSelect(etdev
, TRUEPHY_SPEED_100MBPS
);
704 } else if (etdev
->AiForceDpx
== 2) {
705 /* Set our advertise values accordingly */
706 ET1310_PhyAdvertise100BaseT(etdev
,
707 TRUEPHY_ADV_DUPLEX_FULL
);
709 /* Disable autoneg */
710 ET1310_PhyAutoNeg(etdev
, false);
711 /* Disable other advertisement */
712 ET1310_PhyAdvertise100BaseT(etdev
,
713 TRUEPHY_ADV_DUPLEX_NONE
);
715 ET1310_PhySpeedSelect(etdev
, TRUEPHY_SPEED_100MBPS
);
716 /* Force Full duplex */
717 ET1310_PhyDuplexMode(etdev
, TRUEPHY_DUPLEX_FULL
);
721 /* first we need to turn off all other advertisement */
722 ET1310_PhyAdvertise100BaseT(etdev
, TRUEPHY_ADV_DUPLEX_NONE
);
723 ET1310_PhyAdvertise10BaseT(etdev
, TRUEPHY_ADV_DUPLEX_NONE
);
724 /* set our advertise values accordingly */
725 ET1310_PhyAdvertise1000BaseT(etdev
, TRUEPHY_ADV_DUPLEX_FULL
);
728 ET1310_PhyPowerDown(etdev
, 0);
731 void et131x_Mii_check(struct et131x_adapter
*etdev
,
732 u16 bmsr
, u16 bmsr_ints
)
743 if (bmsr_ints
& MI_BMSR_LINK_STATUS
) {
744 if (bmsr
& MI_BMSR_LINK_STATUS
) {
745 etdev
->boot_coma
= 20;
747 /* Update our state variables and indicate the
750 spin_lock_irqsave(&etdev
->Lock
, flags
);
752 etdev
->MediaState
= NETIF_STATUS_MEDIA_CONNECT
;
754 spin_unlock_irqrestore(&etdev
->Lock
, flags
);
756 netif_carrier_on(etdev
->netdev
);
758 dev_warn(&etdev
->pdev
->dev
,
759 "Link down - cable problem ?\n");
761 if (etdev
->linkspeed
== TRUEPHY_SPEED_10MBPS
) {
762 /* NOTE - Is there a way to query this without
764 * && TRU_QueryCoreType(etdev->hTruePhy, 0) ==
765 * EMI_TRUEPHY_A13O) {
769 MiRead(etdev
, 0x12, &Register18
);
770 MiWrite(etdev
, 0x12, Register18
| 0x4);
771 MiWrite(etdev
, 0x10, Register18
| 0x8402);
772 MiWrite(etdev
, 0x11, Register18
| 511);
773 MiWrite(etdev
, 0x12, Register18
);
776 /* For the first N seconds of life, we are in "link
777 * detection" When we are in this state, we should
778 * only report "connected". When the LinkDetection
779 * Timer expires, we can report disconnected (handled
780 * in the LinkDetectionDPC).
782 if ((etdev
->MediaState
== NETIF_STATUS_MEDIA_DISCONNECT
)) {
783 spin_lock_irqsave(&etdev
->Lock
, flags
);
785 NETIF_STATUS_MEDIA_DISCONNECT
;
786 spin_unlock_irqrestore(&etdev
->Lock
,
789 netif_carrier_off(etdev
->netdev
);
792 etdev
->linkspeed
= 0;
793 etdev
->duplex_mode
= 0;
795 /* Free the packets being actively sent & stopped */
796 et131x_free_busy_send_packets(etdev
);
798 /* Re-initialize the send structures */
799 et131x_init_send(etdev
);
801 /* Reset the RFD list and re-start RU */
802 et131x_reset_recv(etdev
);
805 * Bring the device back to the state it was during
806 * init prior to autonegotiation being complete. This
807 * way, when we get the auto-neg complete interrupt,
808 * we can complete init by calling ConfigMacREGS2.
810 et131x_soft_reset(etdev
);
812 /* Setup ET1310 as per the documentation */
813 et131x_adapter_setup(etdev
);
815 /* Setup the PHY into coma mode until the cable is
818 if (etdev
->RegistryPhyComa
== 1)
819 EnablePhyComa(etdev
);
823 if ((bmsr_ints
& MI_BMSR_AUTO_NEG_COMPLETE
) ||
824 (etdev
->AiForceDpx
== 3 && (bmsr_ints
& MI_BMSR_LINK_STATUS
))) {
825 if ((bmsr
& MI_BMSR_AUTO_NEG_COMPLETE
) ||
826 etdev
->AiForceDpx
== 3) {
827 ET1310_PhyLinkStatus(etdev
,
828 &link_status
, &autoneg_status
,
829 &speed
, &duplex
, &mdi_mdix
,
830 &masterslave
, &polarity
);
832 etdev
->linkspeed
= speed
;
833 etdev
->duplex_mode
= duplex
;
835 etdev
->boot_coma
= 20;
837 if (etdev
->linkspeed
== TRUEPHY_SPEED_10MBPS
) {
839 * NOTE - Is there a way to query this without
841 * && TRU_QueryCoreType(etdev->hTruePhy, 0)==
842 * EMI_TRUEPHY_A13O) {
846 MiRead(etdev
, 0x12, &Register18
);
847 MiWrite(etdev
, 0x12, Register18
| 0x4);
848 MiWrite(etdev
, 0x10, Register18
| 0x8402);
849 MiWrite(etdev
, 0x11, Register18
| 511);
850 MiWrite(etdev
, 0x12, Register18
);
853 ConfigFlowControl(etdev
);
855 if (etdev
->linkspeed
== TRUEPHY_SPEED_1000MBPS
&&
856 etdev
->RegistryJumboPacket
> 2048)
857 ET1310_PhyAndOrReg(etdev
, 0x16, 0xcfff,
860 SetRxDmaTimer(etdev
);
861 ConfigMACRegs2(etdev
);
867 * The routines which follow provide low-level access to the PHY, and are used
868 * primarily by the routines above (although there are a few places elsewhere
869 * in the driver where this level of access is required).
872 static const u16 ConfigPhy
[25][2] = {
873 /* Reg Value Register */
875 {0x880B, 0x0926}, /* AfeIfCreg4B1000Msbs */
876 {0x880C, 0x0926}, /* AfeIfCreg4B100Msbs */
877 {0x880D, 0x0926}, /* AfeIfCreg4B10Msbs */
879 {0x880E, 0xB4D3}, /* AfeIfCreg4B1000Lsbs */
880 {0x880F, 0xB4D3}, /* AfeIfCreg4B100Lsbs */
881 {0x8810, 0xB4D3}, /* AfeIfCreg4B10Lsbs */
883 {0x8805, 0xB03E}, /* AfeIfCreg3B1000Msbs */
884 {0x8806, 0xB03E}, /* AfeIfCreg3B100Msbs */
885 {0x8807, 0xFF00}, /* AfeIfCreg3B10Msbs */
887 {0x8808, 0xE090}, /* AfeIfCreg3B1000Lsbs */
888 {0x8809, 0xE110}, /* AfeIfCreg3B100Lsbs */
889 {0x880A, 0x0000}, /* AfeIfCreg3B10Lsbs */
891 {0x300D, 1}, /* DisableNorm */
893 {0x280C, 0x0180}, /* LinkHoldEnd */
895 {0x1C21, 0x0002}, /* AlphaM */
897 {0x3821, 6}, /* FfeLkgTx0 */
898 {0x381D, 1}, /* FfeLkg1g4 */
899 {0x381E, 1}, /* FfeLkg1g5 */
900 {0x381F, 1}, /* FfeLkg1g6 */
901 {0x3820, 1}, /* FfeLkg1g7 */
903 {0x8402, 0x01F0}, /* Btinact */
904 {0x800E, 20}, /* LftrainTime */
905 {0x800F, 24}, /* DvguardTime */
906 {0x8010, 46}, /* IdlguardTime */
912 /* condensed version of the phy initialization routine */
913 void ET1310_PhyInit(struct et131x_adapter
*etdev
)
920 /* get the identity (again ?) */
921 MiRead(etdev
, PHY_ID_1
, &data
);
922 MiRead(etdev
, PHY_ID_2
, &data
);
924 /* what does this do/achieve ? */
925 MiRead(etdev
, PHY_MPHY_CONTROL_REG
, &data
); /* should read 0002 */
926 MiWrite(etdev
, PHY_MPHY_CONTROL_REG
, 0x0006);
928 /* read modem register 0402, should I do something with the return
930 MiWrite(etdev
, PHY_INDEX_REG
, 0x0402);
931 MiRead(etdev
, PHY_DATA_REG
, &data
);
933 /* what does this do/achieve ? */
934 MiWrite(etdev
, PHY_MPHY_CONTROL_REG
, 0x0002);
936 /* get the identity (again ?) */
937 MiRead(etdev
, PHY_ID_1
, &data
);
938 MiRead(etdev
, PHY_ID_2
, &data
);
940 /* what does this achieve ? */
941 MiRead(etdev
, PHY_MPHY_CONTROL_REG
, &data
); /* should read 0002 */
942 MiWrite(etdev
, PHY_MPHY_CONTROL_REG
, 0x0006);
944 /* read modem register 0402, should I do something with
946 MiWrite(etdev
, PHY_INDEX_REG
, 0x0402);
947 MiRead(etdev
, PHY_DATA_REG
, &data
);
949 MiWrite(etdev
, PHY_MPHY_CONTROL_REG
, 0x0002);
951 /* what does this achieve (should return 0x1040) */
952 MiRead(etdev
, PHY_CONTROL
, &data
);
953 MiRead(etdev
, PHY_MPHY_CONTROL_REG
, &data
); /* should read 0002 */
954 MiWrite(etdev
, PHY_CONTROL
, 0x1840);
956 MiWrite(etdev
, PHY_MPHY_CONTROL_REG
, 0x0007);
958 /* here the writing of the array starts.... */
960 while (ConfigPhy
[index
][0] != 0x0000) {
962 MiWrite(etdev
, PHY_INDEX_REG
, ConfigPhy
[index
][0]);
963 MiWrite(etdev
, PHY_DATA_REG
, ConfigPhy
[index
][1]);
966 MiWrite(etdev
, PHY_INDEX_REG
, ConfigPhy
[index
][0]);
967 MiRead(etdev
, PHY_DATA_REG
, &data
);
969 /* do a check on the value read back ? */
972 /* here the writing of the array ends... */
974 MiRead(etdev
, PHY_CONTROL
, &data
); /* 0x1840 */
975 MiRead(etdev
, PHY_MPHY_CONTROL_REG
, &data
);/* should read 0007 */
976 MiWrite(etdev
, PHY_CONTROL
, 0x1040);
977 MiWrite(etdev
, PHY_MPHY_CONTROL_REG
, 0x0002);