3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright © 2005 Agere Systems Inc.
9 *------------------------------------------------------------------------------
11 * et1310_rx.c - Routines used to perform data reception
13 *------------------------------------------------------------------------------
17 * This software is provided subject to the following terms and conditions,
18 * which you should read carefully before using the software. Using this
19 * software indicates your acceptance of these terms and conditions. If you do
20 * not agree with these terms and conditions, do not use the software.
22 * Copyright © 2005 Agere Systems Inc.
23 * All rights reserved.
25 * Redistribution and use in source or binary forms, with or without
26 * modifications, are permitted provided that the following conditions are met:
28 * . Redistributions of source code must retain the above copyright notice, this
29 * list of conditions and the following Disclaimer as comments in the code as
30 * well as in the documentation and/or other materials provided with the
33 * . Redistributions in binary form must reproduce the above copyright notice,
34 * this list of conditions and the following Disclaimer in the documentation
35 * and/or other materials provided with the distribution.
37 * . Neither the name of Agere Systems Inc. nor the names of the contributors
38 * may be used to endorse or promote products derived from this software
39 * without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
44 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
46 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
47 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
48 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
49 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
50 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
51 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
53 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
58 #include "et131x_version.h"
59 #include "et131x_defs.h"
61 #include <linux/pci.h>
62 #include <linux/init.h>
63 #include <linux/module.h>
64 #include <linux/types.h>
65 #include <linux/kernel.h>
67 #include <linux/sched.h>
68 #include <linux/ptrace.h>
69 #include <linux/slab.h>
70 #include <linux/ctype.h>
71 #include <linux/string.h>
72 #include <linux/timer.h>
73 #include <linux/interrupt.h>
75 #include <linux/delay.h>
77 #include <linux/bitops.h>
78 #include <asm/system.h>
80 #include <linux/netdevice.h>
81 #include <linux/etherdevice.h>
82 #include <linux/skbuff.h>
83 #include <linux/if_arp.h>
84 #include <linux/ioport.h>
86 #include "et1310_phy.h"
87 #include "et131x_adapter.h"
88 #include "et1310_rx.h"
91 static inline u32
bump_fbr(u32
*fbr
, u32 limit
)
95 /* This works for all cases where limit < 1024. The 1023 case
96 works because 1023++ is 1024 which means the if condition is not
97 taken but the carry of the bit into the wrap bit toggles the wrap
99 if ((v
& ET_DMA10_MASK
) > limit
) {
103 /* For the 1023 case */
104 v
&= (ET_DMA10_MASK
|ET_DMA10_WRAP
);
110 * et131x_rx_dma_memory_alloc
111 * @adapter: pointer to our private adapter structure
113 * Returns 0 on success and errno on failure (as defined in errno.h)
115 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
116 * and the Packet Status Ring.
118 int et131x_rx_dma_memory_alloc(struct et131x_adapter
*adapter
)
122 u32 pktStatRingSize
, FBRChunkSize
;
123 struct rx_ring
*rx_ring
;
125 /* Setup some convenience pointers */
126 rx_ring
= &adapter
->rx_ring
;
128 /* Alloc memory for the lookup table */
130 rx_ring
->fbr
[0] = kmalloc(sizeof(struct fbr_lookup
), GFP_KERNEL
);
132 rx_ring
->fbr
[1] = kmalloc(sizeof(struct fbr_lookup
), GFP_KERNEL
);
134 /* The first thing we will do is configure the sizes of the buffer
135 * rings. These will change based on jumbo packet support. Larger
136 * jumbo packets increases the size of each entry in FBR0, and the
137 * number of entries in FBR0, while at the same time decreasing the
138 * number of entries in FBR1.
140 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
141 * entries are huge in order to accommodate a "jumbo" frame, then it
142 * will have less entries. Conversely, FBR1 will now be relied upon
143 * to carry more "normal" frames, thus it's entry size also increases
144 * and the number of entries goes up too (since it now carries
145 * "small" + "regular" packets.
147 * In this scheme, we try to maintain 512 entries between the two
148 * rings. Also, FBR1 remains a constant size - when it's size doubles
149 * the number of entries halves. FBR0 increases in size, however.
152 if (adapter
->RegistryJumboPacket
< 2048) {
154 rx_ring
->Fbr0BufferSize
= 256;
155 rx_ring
->Fbr0NumEntries
= 512;
157 rx_ring
->Fbr1BufferSize
= 2048;
158 rx_ring
->Fbr1NumEntries
= 512;
159 } else if (adapter
->RegistryJumboPacket
< 4096) {
161 rx_ring
->Fbr0BufferSize
= 512;
162 rx_ring
->Fbr0NumEntries
= 1024;
164 rx_ring
->Fbr1BufferSize
= 4096;
165 rx_ring
->Fbr1NumEntries
= 512;
168 rx_ring
->Fbr0BufferSize
= 1024;
169 rx_ring
->Fbr0NumEntries
= 768;
171 rx_ring
->Fbr1BufferSize
= 16384;
172 rx_ring
->Fbr1NumEntries
= 128;
176 adapter
->rx_ring
.PsrNumEntries
= adapter
->rx_ring
.Fbr0NumEntries
+
177 adapter
->rx_ring
.Fbr1NumEntries
;
179 adapter
->rx_ring
.PsrNumEntries
= adapter
->rx_ring
.Fbr1NumEntries
;
182 /* Allocate an area of memory for Free Buffer Ring 1 */
183 bufsize
= (sizeof(struct fbr_desc
) * rx_ring
->Fbr1NumEntries
) + 0xfff;
184 rx_ring
->pFbr1RingVa
= pci_alloc_consistent(adapter
->pdev
,
186 &rx_ring
->pFbr1RingPa
);
187 if (!rx_ring
->pFbr1RingVa
) {
188 dev_err(&adapter
->pdev
->dev
,
189 "Cannot alloc memory for Free Buffer Ring 1\n");
193 /* Save physical address
195 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
196 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
197 * are ever returned, make sure the high part is retrieved here
198 * before storing the adjusted address.
200 rx_ring
->Fbr1Realpa
= rx_ring
->pFbr1RingPa
;
202 /* Align Free Buffer Ring 1 on a 4K boundary */
203 et131x_align_allocated_memory(adapter
,
204 &rx_ring
->Fbr1Realpa
,
205 &rx_ring
->Fbr1offset
, 0x0FFF);
207 rx_ring
->pFbr1RingVa
= (void *)((u8
*) rx_ring
->pFbr1RingVa
+
208 rx_ring
->Fbr1offset
);
211 /* Allocate an area of memory for Free Buffer Ring 0 */
212 bufsize
= (sizeof(struct fbr_desc
) * rx_ring
->Fbr0NumEntries
) + 0xfff;
213 rx_ring
->pFbr0RingVa
= pci_alloc_consistent(adapter
->pdev
,
215 &rx_ring
->pFbr0RingPa
);
216 if (!rx_ring
->pFbr0RingVa
) {
217 dev_err(&adapter
->pdev
->dev
,
218 "Cannot alloc memory for Free Buffer Ring 0\n");
222 /* Save physical address
224 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
225 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
226 * are ever returned, make sure the high part is retrieved here before
227 * storing the adjusted address.
229 rx_ring
->Fbr0Realpa
= rx_ring
->pFbr0RingPa
;
231 /* Align Free Buffer Ring 0 on a 4K boundary */
232 et131x_align_allocated_memory(adapter
,
233 &rx_ring
->Fbr0Realpa
,
234 &rx_ring
->Fbr0offset
, 0x0FFF);
236 rx_ring
->pFbr0RingVa
= (void *)((u8
*) rx_ring
->pFbr0RingVa
+
237 rx_ring
->Fbr0offset
);
240 for (i
= 0; i
< (rx_ring
->Fbr1NumEntries
/ FBR_CHUNKS
);
246 /* This code allocates an area of memory big enough for N
247 * free buffers + (buffer_size - 1) so that the buffers can
248 * be aligned on 4k boundaries. If each buffer were aligned
249 * to a buffer_size boundary, the effect would be to double
250 * the size of FBR0. By allocating N buffers at once, we
251 * reduce this overhead.
253 if (rx_ring
->Fbr1BufferSize
> 4096)
256 Fbr1Align
= rx_ring
->Fbr1BufferSize
;
259 (FBR_CHUNKS
* rx_ring
->Fbr1BufferSize
) + Fbr1Align
- 1;
260 rx_ring
->Fbr1MemVa
[i
] =
261 pci_alloc_consistent(adapter
->pdev
, FBRChunkSize
,
262 &rx_ring
->Fbr1MemPa
[i
]);
264 if (!rx_ring
->Fbr1MemVa
[i
]) {
265 dev_err(&adapter
->pdev
->dev
,
266 "Could not alloc memory\n");
270 /* See NOTE in "Save Physical Address" comment above */
271 Fbr1TempPa
= rx_ring
->Fbr1MemPa
[i
];
273 et131x_align_allocated_memory(adapter
,
275 &Fbr1Offset
, (Fbr1Align
- 1));
277 for (j
= 0; j
< FBR_CHUNKS
; j
++) {
278 u32 index
= (i
* FBR_CHUNKS
) + j
;
280 /* Save the Virtual address of this index for quick
283 rx_ring
->fbr
[1]->virt
[index
] =
284 (u8
*) rx_ring
->Fbr1MemVa
[i
] +
285 (j
* rx_ring
->Fbr1BufferSize
) + Fbr1Offset
;
287 /* now store the physical address in the descriptor
288 * so the device can access it
290 rx_ring
->fbr
[1]->bus_high
[index
] =
291 (u32
) (Fbr1TempPa
>> 32);
292 rx_ring
->fbr
[1]->bus_low
[index
] = (u32
) Fbr1TempPa
;
294 Fbr1TempPa
+= rx_ring
->Fbr1BufferSize
;
296 rx_ring
->fbr
[1]->buffer1
[index
] =
297 rx_ring
->fbr
[1]->virt
[index
];
298 rx_ring
->fbr
[1]->buffer2
[index
] =
299 rx_ring
->fbr
[1]->virt
[index
] - 4;
304 /* Same for FBR0 (if in use) */
305 for (i
= 0; i
< (rx_ring
->Fbr0NumEntries
/ FBR_CHUNKS
);
310 FBRChunkSize
= ((FBR_CHUNKS
+ 1) * rx_ring
->Fbr0BufferSize
) - 1;
311 rx_ring
->Fbr0MemVa
[i
] =
312 pci_alloc_consistent(adapter
->pdev
, FBRChunkSize
,
313 &rx_ring
->Fbr0MemPa
[i
]);
315 if (!rx_ring
->Fbr0MemVa
[i
]) {
316 dev_err(&adapter
->pdev
->dev
,
317 "Could not alloc memory\n");
321 /* See NOTE in "Save Physical Address" comment above */
322 Fbr0TempPa
= rx_ring
->Fbr0MemPa
[i
];
324 et131x_align_allocated_memory(adapter
,
327 rx_ring
->Fbr0BufferSize
- 1);
329 for (j
= 0; j
< FBR_CHUNKS
; j
++) {
330 u32 index
= (i
* FBR_CHUNKS
) + j
;
332 rx_ring
->fbr
[0]->virt
[index
] =
333 (u8
*) rx_ring
->Fbr0MemVa
[i
] +
334 (j
* rx_ring
->Fbr0BufferSize
) + Fbr0Offset
;
336 rx_ring
->fbr
[0]->bus_high
[index
] =
337 (u32
) (Fbr0TempPa
>> 32);
338 rx_ring
->fbr
[0]->bus_low
[index
] = (u32
) Fbr0TempPa
;
340 Fbr0TempPa
+= rx_ring
->Fbr0BufferSize
;
342 rx_ring
->fbr
[0]->buffer1
[index
] =
343 rx_ring
->fbr
[0]->virt
[index
];
344 rx_ring
->fbr
[0]->buffer2
[index
] =
345 rx_ring
->fbr
[0]->virt
[index
] - 4;
350 /* Allocate an area of memory for FIFO of Packet Status ring entries */
352 sizeof(struct pkt_stat_desc
) * adapter
->rx_ring
.PsrNumEntries
;
354 rx_ring
->pPSRingVa
= pci_alloc_consistent(adapter
->pdev
,
356 &rx_ring
->pPSRingPa
);
358 if (!rx_ring
->pPSRingVa
) {
359 dev_err(&adapter
->pdev
->dev
,
360 "Cannot alloc memory for Packet Status Ring\n");
363 printk(KERN_INFO
"PSR %lx\n", (unsigned long) rx_ring
->pPSRingPa
);
366 * NOTE : pci_alloc_consistent(), used above to alloc DMA regions,
367 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
368 * are ever returned, make sure the high part is retrieved here before
369 * storing the adjusted address.
372 /* Allocate an area of memory for writeback of status information */
373 rx_ring
->rx_status_block
= pci_alloc_consistent(adapter
->pdev
,
374 sizeof(struct rx_status_block
),
375 &rx_ring
->rx_status_bus
);
376 if (!rx_ring
->rx_status_block
) {
377 dev_err(&adapter
->pdev
->dev
,
378 "Cannot alloc memory for Status Block\n");
381 rx_ring
->NumRfd
= NIC_DEFAULT_NUM_RFD
;
382 printk(KERN_INFO
"PRS %lx\n", (unsigned long)rx_ring
->rx_status_bus
);
385 * pci_pool_create initializes a lookaside list. After successful
386 * creation, nonpaged fixed-size blocks can be allocated from and
387 * freed to the lookaside list.
388 * RFDs will be allocated from this pool.
390 rx_ring
->RecvLookaside
= kmem_cache_create(adapter
->netdev
->name
,
397 adapter
->flags
|= fMP_ADAPTER_RECV_LOOKASIDE
;
399 /* The RFDs are going to be put on lists later on, so initialize the
402 INIT_LIST_HEAD(&rx_ring
->RecvList
);
407 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
408 * @adapter: pointer to our private adapter structure
410 void et131x_rx_dma_memory_free(struct et131x_adapter
*adapter
)
416 struct rx_ring
*rx_ring
;
418 /* Setup some convenience pointers */
419 rx_ring
= &adapter
->rx_ring
;
421 /* Free RFDs and associated packet descriptors */
422 WARN_ON(rx_ring
->nReadyRecv
!= rx_ring
->NumRfd
);
424 while (!list_empty(&rx_ring
->RecvList
)) {
425 rfd
= (struct rfd
*) list_entry(rx_ring
->RecvList
.next
,
426 struct rfd
, list_node
);
428 list_del(&rfd
->list_node
);
430 kmem_cache_free(adapter
->rx_ring
.RecvLookaside
, rfd
);
433 /* Free Free Buffer Ring 1 */
434 if (rx_ring
->pFbr1RingVa
) {
435 /* First the packet memory */
436 for (index
= 0; index
<
437 (rx_ring
->Fbr1NumEntries
/ FBR_CHUNKS
); index
++) {
438 if (rx_ring
->Fbr1MemVa
[index
]) {
441 if (rx_ring
->Fbr1BufferSize
> 4096)
444 Fbr1Align
= rx_ring
->Fbr1BufferSize
;
447 (rx_ring
->Fbr1BufferSize
* FBR_CHUNKS
) +
450 pci_free_consistent(adapter
->pdev
,
452 rx_ring
->Fbr1MemVa
[index
],
453 rx_ring
->Fbr1MemPa
[index
]);
455 rx_ring
->Fbr1MemVa
[index
] = NULL
;
459 /* Now the FIFO itself */
460 rx_ring
->pFbr1RingVa
= (void *)((u8
*)
461 rx_ring
->pFbr1RingVa
- rx_ring
->Fbr1offset
);
463 bufsize
= (sizeof(struct fbr_desc
) * rx_ring
->Fbr1NumEntries
)
466 pci_free_consistent(adapter
->pdev
, bufsize
,
467 rx_ring
->pFbr1RingVa
, rx_ring
->pFbr1RingPa
);
469 rx_ring
->pFbr1RingVa
= NULL
;
473 /* Now the same for Free Buffer Ring 0 */
474 if (rx_ring
->pFbr0RingVa
) {
475 /* First the packet memory */
476 for (index
= 0; index
<
477 (rx_ring
->Fbr0NumEntries
/ FBR_CHUNKS
); index
++) {
478 if (rx_ring
->Fbr0MemVa
[index
]) {
480 (rx_ring
->Fbr0BufferSize
*
481 (FBR_CHUNKS
+ 1)) - 1;
483 pci_free_consistent(adapter
->pdev
,
485 rx_ring
->Fbr0MemVa
[index
],
486 rx_ring
->Fbr0MemPa
[index
]);
488 rx_ring
->Fbr0MemVa
[index
] = NULL
;
492 /* Now the FIFO itself */
493 rx_ring
->pFbr0RingVa
= (void *)((u8
*)
494 rx_ring
->pFbr0RingVa
- rx_ring
->Fbr0offset
);
496 bufsize
= (sizeof(struct fbr_desc
) * rx_ring
->Fbr0NumEntries
)
499 pci_free_consistent(adapter
->pdev
,
501 rx_ring
->pFbr0RingVa
, rx_ring
->pFbr0RingPa
);
503 rx_ring
->pFbr0RingVa
= NULL
;
507 /* Free Packet Status Ring */
508 if (rx_ring
->pPSRingVa
) {
510 sizeof(struct pkt_stat_desc
) * adapter
->rx_ring
.PsrNumEntries
;
512 pci_free_consistent(adapter
->pdev
, pktStatRingSize
,
513 rx_ring
->pPSRingVa
, rx_ring
->pPSRingPa
);
515 rx_ring
->pPSRingVa
= NULL
;
518 /* Free area of memory for the writeback of status information */
519 if (rx_ring
->rx_status_block
) {
520 pci_free_consistent(adapter
->pdev
,
521 sizeof(struct rx_status_block
),
522 rx_ring
->rx_status_block
, rx_ring
->rx_status_bus
);
523 rx_ring
->rx_status_block
= NULL
;
526 /* Free receive buffer pool */
528 /* Free receive packet pool */
530 /* Destroy the lookaside (RFD) pool */
531 if (adapter
->flags
& fMP_ADAPTER_RECV_LOOKASIDE
) {
532 kmem_cache_destroy(rx_ring
->RecvLookaside
);
533 adapter
->flags
&= ~fMP_ADAPTER_RECV_LOOKASIDE
;
536 /* Free the FBR Lookup Table */
538 kfree(rx_ring
->fbr
[0]);
541 kfree(rx_ring
->fbr
[1]);
544 rx_ring
->nReadyRecv
= 0;
548 * et131x_init_recv - Initialize receive data structures.
549 * @adapter: pointer to our private adapter structure
551 * Returns 0 on success and errno on failure (as defined in errno.h)
553 int et131x_init_recv(struct et131x_adapter
*adapter
)
555 int status
= -ENOMEM
;
556 struct rfd
*rfd
= NULL
;
559 struct rx_ring
*rx_ring
;
561 /* Setup some convenience pointers */
562 rx_ring
= &adapter
->rx_ring
;
565 for (rfdct
= 0; rfdct
< rx_ring
->NumRfd
; rfdct
++) {
566 rfd
= kmem_cache_alloc(rx_ring
->RecvLookaside
,
567 GFP_ATOMIC
| GFP_DMA
);
570 dev_err(&adapter
->pdev
->dev
,
571 "Couldn't alloc RFD out of kmem_cache\n");
578 /* Add this RFD to the RecvList */
579 list_add_tail(&rfd
->list_node
, &rx_ring
->RecvList
);
581 /* Increment both the available RFD's, and the total RFD's. */
582 rx_ring
->nReadyRecv
++;
586 if (numrfd
> NIC_MIN_NUM_RFD
)
589 rx_ring
->NumRfd
= numrfd
;
592 kmem_cache_free(rx_ring
->RecvLookaside
, rfd
);
593 dev_err(&adapter
->pdev
->dev
,
594 "Allocation problems in et131x_init_recv\n");
600 * ConfigRxDmaRegs - Start of Rx_DMA init sequence
601 * @etdev: pointer to our adapter structure
603 void ConfigRxDmaRegs(struct et131x_adapter
*etdev
)
605 struct rxdma_regs __iomem
*rx_dma
= &etdev
->regs
->rxdma
;
606 struct rx_ring
*rx_local
= &etdev
->rx_ring
;
607 struct fbr_desc
*fbr_entry
;
612 /* Halt RXDMA to perform the reconfigure. */
613 et131x_rx_dma_disable(etdev
);
615 /* Load the completion writeback physical address
617 * NOTE : pci_alloc_consistent(), used above to alloc DMA regions,
618 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
619 * are ever returned, make sure the high part is retrieved here
620 * before storing the adjusted address.
622 writel((u32
) ((u64
)rx_local
->rx_status_bus
>> 32),
623 &rx_dma
->dma_wb_base_hi
);
624 writel((u32
) rx_local
->rx_status_bus
, &rx_dma
->dma_wb_base_lo
);
626 memset(rx_local
->rx_status_block
, 0, sizeof(struct rx_status_block
));
628 /* Set the address and parameters of the packet status ring into the
631 writel((u32
) ((u64
)rx_local
->pPSRingPa
>> 32),
632 &rx_dma
->psr_base_hi
);
633 writel((u32
) rx_local
->pPSRingPa
, &rx_dma
->psr_base_lo
);
634 writel(rx_local
->PsrNumEntries
- 1, &rx_dma
->psr_num_des
);
635 writel(0, &rx_dma
->psr_full_offset
);
637 psr_num_des
= readl(&rx_dma
->psr_num_des
) & 0xFFF;
638 writel((psr_num_des
* LO_MARK_PERCENT_FOR_PSR
) / 100,
639 &rx_dma
->psr_min_des
);
641 spin_lock_irqsave(&etdev
->rcv_lock
, flags
);
643 /* These local variables track the PSR in the adapter structure */
644 rx_local
->local_psr_full
= 0;
646 /* Now's the best time to initialize FBR1 contents */
647 fbr_entry
= (struct fbr_desc
*) rx_local
->pFbr1RingVa
;
648 for (entry
= 0; entry
< rx_local
->Fbr1NumEntries
; entry
++) {
649 fbr_entry
->addr_hi
= rx_local
->fbr
[1]->bus_high
[entry
];
650 fbr_entry
->addr_lo
= rx_local
->fbr
[1]->bus_low
[entry
];
651 fbr_entry
->word2
= entry
;
655 /* Set the address and parameters of Free buffer ring 1 (and 0 if
656 * required) into the 1310's registers
658 writel((u32
) (rx_local
->Fbr1Realpa
>> 32), &rx_dma
->fbr1_base_hi
);
659 writel((u32
) rx_local
->Fbr1Realpa
, &rx_dma
->fbr1_base_lo
);
660 writel(rx_local
->Fbr1NumEntries
- 1, &rx_dma
->fbr1_num_des
);
661 writel(ET_DMA10_WRAP
, &rx_dma
->fbr1_full_offset
);
663 /* This variable tracks the free buffer ring 1 full position, so it
664 * has to match the above.
666 rx_local
->local_Fbr1_full
= ET_DMA10_WRAP
;
667 writel(((rx_local
->Fbr1NumEntries
* LO_MARK_PERCENT_FOR_RX
) / 100) - 1,
668 &rx_dma
->fbr1_min_des
);
671 /* Now's the best time to initialize FBR0 contents */
672 fbr_entry
= (struct fbr_desc
*) rx_local
->pFbr0RingVa
;
673 for (entry
= 0; entry
< rx_local
->Fbr0NumEntries
; entry
++) {
674 fbr_entry
->addr_hi
= rx_local
->fbr
[0]->bus_high
[entry
];
675 fbr_entry
->addr_lo
= rx_local
->fbr
[0]->bus_low
[entry
];
676 fbr_entry
->word2
= entry
;
680 writel((u32
) (rx_local
->Fbr0Realpa
>> 32), &rx_dma
->fbr0_base_hi
);
681 writel((u32
) rx_local
->Fbr0Realpa
, &rx_dma
->fbr0_base_lo
);
682 writel(rx_local
->Fbr0NumEntries
- 1, &rx_dma
->fbr0_num_des
);
683 writel(ET_DMA10_WRAP
, &rx_dma
->fbr0_full_offset
);
685 /* This variable tracks the free buffer ring 0 full position, so it
686 * has to match the above.
688 rx_local
->local_Fbr0_full
= ET_DMA10_WRAP
;
689 writel(((rx_local
->Fbr0NumEntries
* LO_MARK_PERCENT_FOR_RX
) / 100) - 1,
690 &rx_dma
->fbr0_min_des
);
693 /* Program the number of packets we will receive before generating an
695 * For version B silicon, this value gets updated once autoneg is
698 writel(PARM_RX_NUM_BUFS_DEF
, &rx_dma
->num_pkt_done
);
700 /* The "time_done" is not working correctly to coalesce interrupts
701 * after a given time period, but rather is giving us an interrupt
702 * regardless of whether we have received packets.
703 * This value gets updated once autoneg is complete.
705 writel(PARM_RX_TIME_INT_DEF
, &rx_dma
->max_pkt_time
);
707 spin_unlock_irqrestore(&etdev
->rcv_lock
, flags
);
711 * SetRxDmaTimer - Set the heartbeat timer according to line rate.
712 * @etdev: pointer to our adapter structure
714 void SetRxDmaTimer(struct et131x_adapter
*etdev
)
716 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
717 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
719 if ((etdev
->linkspeed
== TRUEPHY_SPEED_100MBPS
) ||
720 (etdev
->linkspeed
== TRUEPHY_SPEED_10MBPS
)) {
721 writel(0, &etdev
->regs
->rxdma
.max_pkt_time
);
722 writel(1, &etdev
->regs
->rxdma
.num_pkt_done
);
727 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
728 * @etdev: pointer to our adapter
729 * @rfd: pointer to the RFD
731 void nic_return_rfd(struct et131x_adapter
*etdev
, struct rfd
*rfd
)
733 struct rx_ring
*rx_local
= &etdev
->rx_ring
;
734 struct rxdma_regs __iomem
*rx_dma
= &etdev
->regs
->rxdma
;
735 u16 bi
= rfd
->bufferindex
;
736 u8 ri
= rfd
->ringindex
;
739 /* We don't use any of the OOB data besides status. Otherwise, we
740 * need to clean up OOB data
744 (ri
== 0 && bi
< rx_local
->Fbr0NumEntries
) ||
746 (ri
== 1 && bi
< rx_local
->Fbr1NumEntries
)) {
747 spin_lock_irqsave(&etdev
->FbrLock
, flags
);
750 struct fbr_desc
*next
=
751 (struct fbr_desc
*) (rx_local
->pFbr1RingVa
) +
752 INDEX10(rx_local
->local_Fbr1_full
);
754 /* Handle the Free Buffer Ring advancement here. Write
755 * the PA / Buffer Index for the returned buffer into
756 * the oldest (next to be freed)FBR entry
758 next
->addr_hi
= rx_local
->fbr
[1]->bus_high
[bi
];
759 next
->addr_lo
= rx_local
->fbr
[1]->bus_low
[bi
];
762 writel(bump_fbr(&rx_local
->local_Fbr1_full
,
763 rx_local
->Fbr1NumEntries
- 1),
764 &rx_dma
->fbr1_full_offset
);
768 struct fbr_desc
*next
= (struct fbr_desc
*)
769 rx_local
->pFbr0RingVa
+
770 INDEX10(rx_local
->local_Fbr0_full
);
772 /* Handle the Free Buffer Ring advancement here. Write
773 * the PA / Buffer Index for the returned buffer into
774 * the oldest (next to be freed) FBR entry
776 next
->addr_hi
= rx_local
->fbr
[0]->bus_high
[bi
];
777 next
->addr_lo
= rx_local
->fbr
[0]->bus_low
[bi
];
780 writel(bump_fbr(&rx_local
->local_Fbr0_full
,
781 rx_local
->Fbr0NumEntries
- 1),
782 &rx_dma
->fbr0_full_offset
);
785 spin_unlock_irqrestore(&etdev
->FbrLock
, flags
);
787 dev_err(&etdev
->pdev
->dev
,
788 "NICReturnRFD illegal Buffer Index returned\n");
791 /* The processing on this RFD is done, so put it back on the tail of
794 spin_lock_irqsave(&etdev
->rcv_lock
, flags
);
795 list_add_tail(&rfd
->list_node
, &rx_local
->RecvList
);
796 rx_local
->nReadyRecv
++;
797 spin_unlock_irqrestore(&etdev
->rcv_lock
, flags
);
799 WARN_ON(rx_local
->nReadyRecv
> rx_local
->NumRfd
);
803 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
804 * @etdev: pointer to our adapter structure
806 void et131x_rx_dma_disable(struct et131x_adapter
*etdev
)
809 /* Setup the receive dma configuration register */
810 writel(0x00002001, &etdev
->regs
->rxdma
.csr
);
811 csr
= readl(&etdev
->regs
->rxdma
.csr
);
812 if ((csr
& 0x00020000) == 0) { /* Check halt status (bit 17) */
814 csr
= readl(&etdev
->regs
->rxdma
.csr
);
815 if ((csr
& 0x00020000) == 0)
816 dev_err(&etdev
->pdev
->dev
,
817 "RX Dma failed to enter halt state. CSR 0x%08x\n",
823 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
824 * @etdev: pointer to our adapter structure
826 void et131x_rx_dma_enable(struct et131x_adapter
*etdev
)
828 /* Setup the receive dma configuration register for normal operation */
829 u32 csr
= 0x2000; /* FBR1 enable */
831 if (etdev
->rx_ring
.Fbr1BufferSize
== 4096)
833 else if (etdev
->rx_ring
.Fbr1BufferSize
== 8192)
835 else if (etdev
->rx_ring
.Fbr1BufferSize
== 16384)
838 csr
|= 0x0400; /* FBR0 enable */
839 if (etdev
->rx_ring
.Fbr0BufferSize
== 256)
841 else if (etdev
->rx_ring
.Fbr0BufferSize
== 512)
843 else if (etdev
->rx_ring
.Fbr0BufferSize
== 1024)
846 writel(csr
, &etdev
->regs
->rxdma
.csr
);
848 csr
= readl(&etdev
->regs
->rxdma
.csr
);
849 if ((csr
& 0x00020000) != 0) {
851 csr
= readl(&etdev
->regs
->rxdma
.csr
);
852 if ((csr
& 0x00020000) != 0) {
853 dev_err(&etdev
->pdev
->dev
,
854 "RX Dma failed to exit halt state. CSR 0x%08x\n",
861 * nic_rx_pkts - Checks the hardware for available packets
862 * @etdev: pointer to our adapter
864 * Returns rfd, a pointer to our MPRFD.
866 * Checks the hardware for available packets, using completion ring
867 * If packets are available, it gets an RFD from the RecvList, attaches
868 * the packet to it, puts the RFD in the RecvPendList, and also returns
869 * the pointer to the RFD.
871 struct rfd
*nic_rx_pkts(struct et131x_adapter
*etdev
)
873 struct rx_ring
*rx_local
= &etdev
->rx_ring
;
874 struct rx_status_block
*status
;
875 struct pkt_stat_desc
*psr
;
880 struct list_head
*element
;
887 /* RX Status block is written by the DMA engine prior to every
888 * interrupt. It contains the next to be used entry in the Packet
889 * Status Ring, and also the two Free Buffer rings.
891 status
= rx_local
->rx_status_block
;
892 word1
= status
->Word1
>> 16; /* Get the useful bits */
894 /* Check the PSR and wrap bits do not match */
895 if ((word1
& 0x1FFF) == (rx_local
->local_psr_full
& 0x1FFF))
896 /* Looks like this ring is not updated yet */
899 /* The packet status ring indicates that data is available. */
900 psr
= (struct pkt_stat_desc
*) (rx_local
->pPSRingVa
) +
901 (rx_local
->local_psr_full
& 0xFFF);
903 /* Grab any information that is required once the PSR is
904 * advanced, since we can no longer rely on the memory being
907 len
= psr
->word1
& 0xFFFF;
908 rindex
= (psr
->word1
>> 26) & 0x03;
909 bindex
= (psr
->word1
>> 16) & 0x3FF;
912 /* Indicate that we have used this PSR entry. */
914 add_12bit(&rx_local
->local_psr_full
, 1);
915 if ((rx_local
->local_psr_full
& 0xFFF) > rx_local
->PsrNumEntries
- 1) {
916 /* Clear psr full and toggle the wrap bit */
917 rx_local
->local_psr_full
&= ~0xFFF;
918 rx_local
->local_psr_full
^= 0x1000;
921 writel(rx_local
->local_psr_full
,
922 &etdev
->regs
->rxdma
.psr_full_offset
);
932 bindex
> rx_local
->Fbr0NumEntries
- 1) ||
934 bindex
> rx_local
->Fbr1NumEntries
- 1))
936 if (rindex
!= 1 || bindex
> rx_local
->Fbr1NumEntries
- 1)
939 /* Illegal buffer or ring index cannot be used by S/W*/
940 dev_err(&etdev
->pdev
->dev
,
941 "NICRxPkts PSR Entry %d indicates "
942 "length of %d and/or bad bi(%d)\n",
943 rx_local
->local_psr_full
& 0xFFF,
948 /* Get and fill the RFD. */
949 spin_lock_irqsave(&etdev
->rcv_lock
, flags
);
952 element
= rx_local
->RecvList
.next
;
953 rfd
= (struct rfd
*) list_entry(element
, struct rfd
, list_node
);
956 spin_unlock_irqrestore(&etdev
->rcv_lock
, flags
);
960 list_del(&rfd
->list_node
);
961 rx_local
->nReadyRecv
--;
963 spin_unlock_irqrestore(&etdev
->rcv_lock
, flags
);
965 rfd
->bufferindex
= bindex
;
966 rfd
->ringindex
= rindex
;
968 /* In V1 silicon, there is a bug which screws up filtering of
969 * runt packets. Therefore runt packet filtering is disabled
970 * in the MAC and the packets are dropped here. They are
973 if (len
< (NIC_MIN_PACKET_SIZE
+ 4)) {
974 etdev
->stats
.other_errors
++;
979 if (etdev
->ReplicaPhyLoopbk
== 1) {
980 buf
= rx_local
->fbr
[rindex
]->virt
[bindex
];
982 if (memcmp(&buf
[6], etdev
->addr
, ETH_ALEN
) == 0) {
983 if (memcmp(&buf
[42], "Replica packet",
985 etdev
->ReplicaPhyLoopbkPF
= 1;
990 /* Determine if this is a multicast packet coming in */
991 if ((word0
& ALCATEL_MULTICAST_PKT
) &&
992 !(word0
& ALCATEL_BROADCAST_PKT
)) {
993 /* Promiscuous mode and Multicast mode are
994 * not mutually exclusive as was first
995 * thought. I guess Promiscuous is just
996 * considered a super-set of the other
997 * filters. Generally filter is 0x2b when in
1000 if ((etdev
->PacketFilter
& ET131X_PACKET_TYPE_MULTICAST
)
1001 && !(etdev
->PacketFilter
& ET131X_PACKET_TYPE_PROMISCUOUS
)
1002 && !(etdev
->PacketFilter
& ET131X_PACKET_TYPE_ALL_MULTICAST
)) {
1003 buf
= rx_local
->fbr
[rindex
]->
1006 /* Loop through our list to see if the
1007 * destination address of this packet
1008 * matches one in our list.
1011 i
< etdev
->MCAddressCount
;
1024 etdev
->MCList
[i
][5]) {
1029 /* If our index is equal to the number
1030 * of Multicast address we have, then
1031 * this means we did not find this
1032 * packet's matching address in our
1033 * list. Set the len to zero,
1034 * so we free our RFD when we return
1035 * from this function.
1037 if (i
== etdev
->MCAddressCount
)
1042 etdev
->stats
.multircv
++;
1043 } else if (word0
& ALCATEL_BROADCAST_PKT
)
1044 etdev
->stats
.brdcstrcv
++;
1046 /* Not sure what this counter measures in
1047 * promiscuous mode. Perhaps we should check
1048 * the MAC address to see if it is directed
1049 * to us in promiscuous mode.
1051 etdev
->stats
.unircv
++;
1055 struct sk_buff
*skb
= NULL
;
1057 /*rfd->len = len - 4; */
1060 skb
= dev_alloc_skb(rfd
->len
+ 2);
1062 dev_err(&etdev
->pdev
->dev
,
1063 "Couldn't alloc an SKB for Rx\n");
1067 etdev
->net_stats
.rx_bytes
+= rfd
->len
;
1069 memcpy(skb_put(skb
, rfd
->len
),
1070 rx_local
->fbr
[rindex
]->virt
[bindex
],
1073 skb
->dev
= etdev
->netdev
;
1074 skb
->protocol
= eth_type_trans(skb
, etdev
->netdev
);
1075 skb
->ip_summed
= CHECKSUM_NONE
;
1082 nic_return_rfd(etdev
, rfd
);
1087 * et131x_reset_recv - Reset the receive list
1088 * @etdev: pointer to our adapter
1090 * Assumption, Rcv spinlock has been acquired.
1092 void et131x_reset_recv(struct et131x_adapter
*etdev
)
1094 WARN_ON(list_empty(&etdev
->rx_ring
.RecvList
));
1099 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
1100 * @etdev: pointer to our adapter
1102 * Assumption, Rcv spinlock has been acquired.
1104 void et131x_handle_recv_interrupt(struct et131x_adapter
*etdev
)
1106 struct rfd
*rfd
= NULL
;
1110 /* Process up to available RFD's */
1111 while (count
< NUM_PACKETS_HANDLED
) {
1112 if (list_empty(&etdev
->rx_ring
.RecvList
)) {
1113 WARN_ON(etdev
->rx_ring
.nReadyRecv
!= 0);
1118 rfd
= nic_rx_pkts(etdev
);
1123 /* Do not receive any packets until a filter has been set.
1124 * Do not receive any packets until we have link.
1125 * If length is zero, return the RFD in order to advance the
1128 if (!etdev
->PacketFilter
||
1129 !netif_carrier_ok(etdev
->netdev
) ||
1133 /* Increment the number of packets we received */
1134 etdev
->net_stats
.rx_packets
++;
1136 /* Set the status on the packet, either resources or success */
1137 if (etdev
->rx_ring
.nReadyRecv
< RFD_LOW_WATER_MARK
) {
1138 dev_warn(&etdev
->pdev
->dev
,
1139 "RFD's are running out\n");
1144 if (count
== NUM_PACKETS_HANDLED
|| !done
) {
1145 etdev
->rx_ring
.UnfinishedReceives
= true;
1146 writel(PARM_TX_TIME_INT_DEF
* NANO_IN_A_MICRO
,
1147 &etdev
->regs
->global
.watchdog_timer
);
1149 /* Watchdog timer will disable itself if appropriate. */
1150 etdev
->rx_ring
.UnfinishedReceives
= false;