x86/PCI: use host bridge _CRS info on ASUS M2V-MX SE
[linux-btrfs-devel.git] / drivers / usb / host / uhci-q.c
blob84ed28b34f934d86ecef647d73580309baf3f2b8
1 /*
2 * Universal Host Controller Interface driver for USB.
4 * Maintainer: Alan Stern <stern@rowland.harvard.edu>
6 * (C) Copyright 1999 Linus Torvalds
7 * (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com
8 * (C) Copyright 1999 Randy Dunlap
9 * (C) Copyright 1999 Georg Acher, acher@in.tum.de
10 * (C) Copyright 1999 Deti Fliegl, deti@fliegl.de
11 * (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch
12 * (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at
13 * (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface
14 * support from usb-ohci.c by Adam Richter, adam@yggdrasil.com).
15 * (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c)
16 * (C) Copyright 2004-2007 Alan Stern, stern@rowland.harvard.edu
21 * Technically, updating td->status here is a race, but it's not really a
22 * problem. The worst that can happen is that we set the IOC bit again
23 * generating a spurious interrupt. We could fix this by creating another
24 * QH and leaving the IOC bit always set, but then we would have to play
25 * games with the FSBR code to make sure we get the correct order in all
26 * the cases. I don't think it's worth the effort
28 static void uhci_set_next_interrupt(struct uhci_hcd *uhci)
30 if (uhci->is_stopped)
31 mod_timer(&uhci_to_hcd(uhci)->rh_timer, jiffies);
32 uhci->term_td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC);
35 static inline void uhci_clear_next_interrupt(struct uhci_hcd *uhci)
37 uhci->term_td->status &= ~cpu_to_hc32(uhci, TD_CTRL_IOC);
42 * Full-Speed Bandwidth Reclamation (FSBR).
43 * We turn on FSBR whenever a queue that wants it is advancing,
44 * and leave it on for a short time thereafter.
46 static void uhci_fsbr_on(struct uhci_hcd *uhci)
48 struct uhci_qh *lqh;
50 /* The terminating skeleton QH always points back to the first
51 * FSBR QH. Make the last async QH point to the terminating
52 * skeleton QH. */
53 uhci->fsbr_is_on = 1;
54 lqh = list_entry(uhci->skel_async_qh->node.prev,
55 struct uhci_qh, node);
56 lqh->link = LINK_TO_QH(uhci, uhci->skel_term_qh);
59 static void uhci_fsbr_off(struct uhci_hcd *uhci)
61 struct uhci_qh *lqh;
63 /* Remove the link from the last async QH to the terminating
64 * skeleton QH. */
65 uhci->fsbr_is_on = 0;
66 lqh = list_entry(uhci->skel_async_qh->node.prev,
67 struct uhci_qh, node);
68 lqh->link = UHCI_PTR_TERM(uhci);
71 static void uhci_add_fsbr(struct uhci_hcd *uhci, struct urb *urb)
73 struct urb_priv *urbp = urb->hcpriv;
75 if (!(urb->transfer_flags & URB_NO_FSBR))
76 urbp->fsbr = 1;
79 static void uhci_urbp_wants_fsbr(struct uhci_hcd *uhci, struct urb_priv *urbp)
81 if (urbp->fsbr) {
82 uhci->fsbr_is_wanted = 1;
83 if (!uhci->fsbr_is_on)
84 uhci_fsbr_on(uhci);
85 else if (uhci->fsbr_expiring) {
86 uhci->fsbr_expiring = 0;
87 del_timer(&uhci->fsbr_timer);
92 static void uhci_fsbr_timeout(unsigned long _uhci)
94 struct uhci_hcd *uhci = (struct uhci_hcd *) _uhci;
95 unsigned long flags;
97 spin_lock_irqsave(&uhci->lock, flags);
98 if (uhci->fsbr_expiring) {
99 uhci->fsbr_expiring = 0;
100 uhci_fsbr_off(uhci);
102 spin_unlock_irqrestore(&uhci->lock, flags);
106 static struct uhci_td *uhci_alloc_td(struct uhci_hcd *uhci)
108 dma_addr_t dma_handle;
109 struct uhci_td *td;
111 td = dma_pool_alloc(uhci->td_pool, GFP_ATOMIC, &dma_handle);
112 if (!td)
113 return NULL;
115 td->dma_handle = dma_handle;
116 td->frame = -1;
118 INIT_LIST_HEAD(&td->list);
119 INIT_LIST_HEAD(&td->fl_list);
121 return td;
124 static void uhci_free_td(struct uhci_hcd *uhci, struct uhci_td *td)
126 if (!list_empty(&td->list))
127 dev_WARN(uhci_dev(uhci), "td %p still in list!\n", td);
128 if (!list_empty(&td->fl_list))
129 dev_WARN(uhci_dev(uhci), "td %p still in fl_list!\n", td);
131 dma_pool_free(uhci->td_pool, td, td->dma_handle);
134 static inline void uhci_fill_td(struct uhci_hcd *uhci, struct uhci_td *td,
135 u32 status, u32 token, u32 buffer)
137 td->status = cpu_to_hc32(uhci, status);
138 td->token = cpu_to_hc32(uhci, token);
139 td->buffer = cpu_to_hc32(uhci, buffer);
142 static void uhci_add_td_to_urbp(struct uhci_td *td, struct urb_priv *urbp)
144 list_add_tail(&td->list, &urbp->td_list);
147 static void uhci_remove_td_from_urbp(struct uhci_td *td)
149 list_del_init(&td->list);
153 * We insert Isochronous URBs directly into the frame list at the beginning
155 static inline void uhci_insert_td_in_frame_list(struct uhci_hcd *uhci,
156 struct uhci_td *td, unsigned framenum)
158 framenum &= (UHCI_NUMFRAMES - 1);
160 td->frame = framenum;
162 /* Is there a TD already mapped there? */
163 if (uhci->frame_cpu[framenum]) {
164 struct uhci_td *ftd, *ltd;
166 ftd = uhci->frame_cpu[framenum];
167 ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list);
169 list_add_tail(&td->fl_list, &ftd->fl_list);
171 td->link = ltd->link;
172 wmb();
173 ltd->link = LINK_TO_TD(uhci, td);
174 } else {
175 td->link = uhci->frame[framenum];
176 wmb();
177 uhci->frame[framenum] = LINK_TO_TD(uhci, td);
178 uhci->frame_cpu[framenum] = td;
182 static inline void uhci_remove_td_from_frame_list(struct uhci_hcd *uhci,
183 struct uhci_td *td)
185 /* If it's not inserted, don't remove it */
186 if (td->frame == -1) {
187 WARN_ON(!list_empty(&td->fl_list));
188 return;
191 if (uhci->frame_cpu[td->frame] == td) {
192 if (list_empty(&td->fl_list)) {
193 uhci->frame[td->frame] = td->link;
194 uhci->frame_cpu[td->frame] = NULL;
195 } else {
196 struct uhci_td *ntd;
198 ntd = list_entry(td->fl_list.next,
199 struct uhci_td,
200 fl_list);
201 uhci->frame[td->frame] = LINK_TO_TD(uhci, ntd);
202 uhci->frame_cpu[td->frame] = ntd;
204 } else {
205 struct uhci_td *ptd;
207 ptd = list_entry(td->fl_list.prev, struct uhci_td, fl_list);
208 ptd->link = td->link;
211 list_del_init(&td->fl_list);
212 td->frame = -1;
215 static inline void uhci_remove_tds_from_frame(struct uhci_hcd *uhci,
216 unsigned int framenum)
218 struct uhci_td *ftd, *ltd;
220 framenum &= (UHCI_NUMFRAMES - 1);
222 ftd = uhci->frame_cpu[framenum];
223 if (ftd) {
224 ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list);
225 uhci->frame[framenum] = ltd->link;
226 uhci->frame_cpu[framenum] = NULL;
228 while (!list_empty(&ftd->fl_list))
229 list_del_init(ftd->fl_list.prev);
234 * Remove all the TDs for an Isochronous URB from the frame list
236 static void uhci_unlink_isochronous_tds(struct uhci_hcd *uhci, struct urb *urb)
238 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv;
239 struct uhci_td *td;
241 list_for_each_entry(td, &urbp->td_list, list)
242 uhci_remove_td_from_frame_list(uhci, td);
245 static struct uhci_qh *uhci_alloc_qh(struct uhci_hcd *uhci,
246 struct usb_device *udev, struct usb_host_endpoint *hep)
248 dma_addr_t dma_handle;
249 struct uhci_qh *qh;
251 qh = dma_pool_alloc(uhci->qh_pool, GFP_ATOMIC, &dma_handle);
252 if (!qh)
253 return NULL;
255 memset(qh, 0, sizeof(*qh));
256 qh->dma_handle = dma_handle;
258 qh->element = UHCI_PTR_TERM(uhci);
259 qh->link = UHCI_PTR_TERM(uhci);
261 INIT_LIST_HEAD(&qh->queue);
262 INIT_LIST_HEAD(&qh->node);
264 if (udev) { /* Normal QH */
265 qh->type = usb_endpoint_type(&hep->desc);
266 if (qh->type != USB_ENDPOINT_XFER_ISOC) {
267 qh->dummy_td = uhci_alloc_td(uhci);
268 if (!qh->dummy_td) {
269 dma_pool_free(uhci->qh_pool, qh, dma_handle);
270 return NULL;
273 qh->state = QH_STATE_IDLE;
274 qh->hep = hep;
275 qh->udev = udev;
276 hep->hcpriv = qh;
278 if (qh->type == USB_ENDPOINT_XFER_INT ||
279 qh->type == USB_ENDPOINT_XFER_ISOC)
280 qh->load = usb_calc_bus_time(udev->speed,
281 usb_endpoint_dir_in(&hep->desc),
282 qh->type == USB_ENDPOINT_XFER_ISOC,
283 le16_to_cpu(hep->desc.wMaxPacketSize))
284 / 1000 + 1;
286 } else { /* Skeleton QH */
287 qh->state = QH_STATE_ACTIVE;
288 qh->type = -1;
290 return qh;
293 static void uhci_free_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
295 WARN_ON(qh->state != QH_STATE_IDLE && qh->udev);
296 if (!list_empty(&qh->queue))
297 dev_WARN(uhci_dev(uhci), "qh %p list not empty!\n", qh);
299 list_del(&qh->node);
300 if (qh->udev) {
301 qh->hep->hcpriv = NULL;
302 if (qh->dummy_td)
303 uhci_free_td(uhci, qh->dummy_td);
305 dma_pool_free(uhci->qh_pool, qh, qh->dma_handle);
309 * When a queue is stopped and a dequeued URB is given back, adjust
310 * the previous TD link (if the URB isn't first on the queue) or
311 * save its toggle value (if it is first and is currently executing).
313 * Returns 0 if the URB should not yet be given back, 1 otherwise.
315 static int uhci_cleanup_queue(struct uhci_hcd *uhci, struct uhci_qh *qh,
316 struct urb *urb)
318 struct urb_priv *urbp = urb->hcpriv;
319 struct uhci_td *td;
320 int ret = 1;
322 /* Isochronous pipes don't use toggles and their TD link pointers
323 * get adjusted during uhci_urb_dequeue(). But since their queues
324 * cannot truly be stopped, we have to watch out for dequeues
325 * occurring after the nominal unlink frame. */
326 if (qh->type == USB_ENDPOINT_XFER_ISOC) {
327 ret = (uhci->frame_number + uhci->is_stopped !=
328 qh->unlink_frame);
329 goto done;
332 /* If the URB isn't first on its queue, adjust the link pointer
333 * of the last TD in the previous URB. The toggle doesn't need
334 * to be saved since this URB can't be executing yet. */
335 if (qh->queue.next != &urbp->node) {
336 struct urb_priv *purbp;
337 struct uhci_td *ptd;
339 purbp = list_entry(urbp->node.prev, struct urb_priv, node);
340 WARN_ON(list_empty(&purbp->td_list));
341 ptd = list_entry(purbp->td_list.prev, struct uhci_td,
342 list);
343 td = list_entry(urbp->td_list.prev, struct uhci_td,
344 list);
345 ptd->link = td->link;
346 goto done;
349 /* If the QH element pointer is UHCI_PTR_TERM then then currently
350 * executing URB has already been unlinked, so this one isn't it. */
351 if (qh_element(qh) == UHCI_PTR_TERM(uhci))
352 goto done;
353 qh->element = UHCI_PTR_TERM(uhci);
355 /* Control pipes don't have to worry about toggles */
356 if (qh->type == USB_ENDPOINT_XFER_CONTROL)
357 goto done;
359 /* Save the next toggle value */
360 WARN_ON(list_empty(&urbp->td_list));
361 td = list_entry(urbp->td_list.next, struct uhci_td, list);
362 qh->needs_fixup = 1;
363 qh->initial_toggle = uhci_toggle(td_token(uhci, td));
365 done:
366 return ret;
370 * Fix up the data toggles for URBs in a queue, when one of them
371 * terminates early (short transfer, error, or dequeued).
373 static void uhci_fixup_toggles(struct uhci_hcd *uhci, struct uhci_qh *qh,
374 int skip_first)
376 struct urb_priv *urbp = NULL;
377 struct uhci_td *td;
378 unsigned int toggle = qh->initial_toggle;
379 unsigned int pipe;
381 /* Fixups for a short transfer start with the second URB in the
382 * queue (the short URB is the first). */
383 if (skip_first)
384 urbp = list_entry(qh->queue.next, struct urb_priv, node);
386 /* When starting with the first URB, if the QH element pointer is
387 * still valid then we know the URB's toggles are okay. */
388 else if (qh_element(qh) != UHCI_PTR_TERM(uhci))
389 toggle = 2;
391 /* Fix up the toggle for the URBs in the queue. Normally this
392 * loop won't run more than once: When an error or short transfer
393 * occurs, the queue usually gets emptied. */
394 urbp = list_prepare_entry(urbp, &qh->queue, node);
395 list_for_each_entry_continue(urbp, &qh->queue, node) {
397 /* If the first TD has the right toggle value, we don't
398 * need to change any toggles in this URB */
399 td = list_entry(urbp->td_list.next, struct uhci_td, list);
400 if (toggle > 1 || uhci_toggle(td_token(uhci, td)) == toggle) {
401 td = list_entry(urbp->td_list.prev, struct uhci_td,
402 list);
403 toggle = uhci_toggle(td_token(uhci, td)) ^ 1;
405 /* Otherwise all the toggles in the URB have to be switched */
406 } else {
407 list_for_each_entry(td, &urbp->td_list, list) {
408 td->token ^= cpu_to_hc32(uhci,
409 TD_TOKEN_TOGGLE);
410 toggle ^= 1;
415 wmb();
416 pipe = list_entry(qh->queue.next, struct urb_priv, node)->urb->pipe;
417 usb_settoggle(qh->udev, usb_pipeendpoint(pipe),
418 usb_pipeout(pipe), toggle);
419 qh->needs_fixup = 0;
423 * Link an Isochronous QH into its skeleton's list
425 static inline void link_iso(struct uhci_hcd *uhci, struct uhci_qh *qh)
427 list_add_tail(&qh->node, &uhci->skel_iso_qh->node);
429 /* Isochronous QHs aren't linked by the hardware */
433 * Link a high-period interrupt QH into the schedule at the end of its
434 * skeleton's list
436 static void link_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh)
438 struct uhci_qh *pqh;
440 list_add_tail(&qh->node, &uhci->skelqh[qh->skel]->node);
442 pqh = list_entry(qh->node.prev, struct uhci_qh, node);
443 qh->link = pqh->link;
444 wmb();
445 pqh->link = LINK_TO_QH(uhci, qh);
449 * Link a period-1 interrupt or async QH into the schedule at the
450 * correct spot in the async skeleton's list, and update the FSBR link
452 static void link_async(struct uhci_hcd *uhci, struct uhci_qh *qh)
454 struct uhci_qh *pqh;
455 __hc32 link_to_new_qh;
457 /* Find the predecessor QH for our new one and insert it in the list.
458 * The list of QHs is expected to be short, so linear search won't
459 * take too long. */
460 list_for_each_entry_reverse(pqh, &uhci->skel_async_qh->node, node) {
461 if (pqh->skel <= qh->skel)
462 break;
464 list_add(&qh->node, &pqh->node);
466 /* Link it into the schedule */
467 qh->link = pqh->link;
468 wmb();
469 link_to_new_qh = LINK_TO_QH(uhci, qh);
470 pqh->link = link_to_new_qh;
472 /* If this is now the first FSBR QH, link the terminating skeleton
473 * QH to it. */
474 if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR)
475 uhci->skel_term_qh->link = link_to_new_qh;
479 * Put a QH on the schedule in both hardware and software
481 static void uhci_activate_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
483 WARN_ON(list_empty(&qh->queue));
485 /* Set the element pointer if it isn't set already.
486 * This isn't needed for Isochronous queues, but it doesn't hurt. */
487 if (qh_element(qh) == UHCI_PTR_TERM(uhci)) {
488 struct urb_priv *urbp = list_entry(qh->queue.next,
489 struct urb_priv, node);
490 struct uhci_td *td = list_entry(urbp->td_list.next,
491 struct uhci_td, list);
493 qh->element = LINK_TO_TD(uhci, td);
496 /* Treat the queue as if it has just advanced */
497 qh->wait_expired = 0;
498 qh->advance_jiffies = jiffies;
500 if (qh->state == QH_STATE_ACTIVE)
501 return;
502 qh->state = QH_STATE_ACTIVE;
504 /* Move the QH from its old list to the correct spot in the appropriate
505 * skeleton's list */
506 if (qh == uhci->next_qh)
507 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh,
508 node);
509 list_del(&qh->node);
511 if (qh->skel == SKEL_ISO)
512 link_iso(uhci, qh);
513 else if (qh->skel < SKEL_ASYNC)
514 link_interrupt(uhci, qh);
515 else
516 link_async(uhci, qh);
520 * Unlink a high-period interrupt QH from the schedule
522 static void unlink_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh)
524 struct uhci_qh *pqh;
526 pqh = list_entry(qh->node.prev, struct uhci_qh, node);
527 pqh->link = qh->link;
528 mb();
532 * Unlink a period-1 interrupt or async QH from the schedule
534 static void unlink_async(struct uhci_hcd *uhci, struct uhci_qh *qh)
536 struct uhci_qh *pqh;
537 __hc32 link_to_next_qh = qh->link;
539 pqh = list_entry(qh->node.prev, struct uhci_qh, node);
540 pqh->link = link_to_next_qh;
542 /* If this was the old first FSBR QH, link the terminating skeleton
543 * QH to the next (new first FSBR) QH. */
544 if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR)
545 uhci->skel_term_qh->link = link_to_next_qh;
546 mb();
550 * Take a QH off the hardware schedule
552 static void uhci_unlink_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
554 if (qh->state == QH_STATE_UNLINKING)
555 return;
556 WARN_ON(qh->state != QH_STATE_ACTIVE || !qh->udev);
557 qh->state = QH_STATE_UNLINKING;
559 /* Unlink the QH from the schedule and record when we did it */
560 if (qh->skel == SKEL_ISO)
562 else if (qh->skel < SKEL_ASYNC)
563 unlink_interrupt(uhci, qh);
564 else
565 unlink_async(uhci, qh);
567 uhci_get_current_frame_number(uhci);
568 qh->unlink_frame = uhci->frame_number;
570 /* Force an interrupt so we know when the QH is fully unlinked */
571 if (list_empty(&uhci->skel_unlink_qh->node) || uhci->is_stopped)
572 uhci_set_next_interrupt(uhci);
574 /* Move the QH from its old list to the end of the unlinking list */
575 if (qh == uhci->next_qh)
576 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh,
577 node);
578 list_move_tail(&qh->node, &uhci->skel_unlink_qh->node);
582 * When we and the controller are through with a QH, it becomes IDLE.
583 * This happens when a QH has been off the schedule (on the unlinking
584 * list) for more than one frame, or when an error occurs while adding
585 * the first URB onto a new QH.
587 static void uhci_make_qh_idle(struct uhci_hcd *uhci, struct uhci_qh *qh)
589 WARN_ON(qh->state == QH_STATE_ACTIVE);
591 if (qh == uhci->next_qh)
592 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh,
593 node);
594 list_move(&qh->node, &uhci->idle_qh_list);
595 qh->state = QH_STATE_IDLE;
597 /* Now that the QH is idle, its post_td isn't being used */
598 if (qh->post_td) {
599 uhci_free_td(uhci, qh->post_td);
600 qh->post_td = NULL;
603 /* If anyone is waiting for a QH to become idle, wake them up */
604 if (uhci->num_waiting)
605 wake_up_all(&uhci->waitqh);
609 * Find the highest existing bandwidth load for a given phase and period.
611 static int uhci_highest_load(struct uhci_hcd *uhci, int phase, int period)
613 int highest_load = uhci->load[phase];
615 for (phase += period; phase < MAX_PHASE; phase += period)
616 highest_load = max_t(int, highest_load, uhci->load[phase]);
617 return highest_load;
621 * Set qh->phase to the optimal phase for a periodic transfer and
622 * check whether the bandwidth requirement is acceptable.
624 static int uhci_check_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh)
626 int minimax_load;
628 /* Find the optimal phase (unless it is already set) and get
629 * its load value. */
630 if (qh->phase >= 0)
631 minimax_load = uhci_highest_load(uhci, qh->phase, qh->period);
632 else {
633 int phase, load;
634 int max_phase = min_t(int, MAX_PHASE, qh->period);
636 qh->phase = 0;
637 minimax_load = uhci_highest_load(uhci, qh->phase, qh->period);
638 for (phase = 1; phase < max_phase; ++phase) {
639 load = uhci_highest_load(uhci, phase, qh->period);
640 if (load < minimax_load) {
641 minimax_load = load;
642 qh->phase = phase;
647 /* Maximum allowable periodic bandwidth is 90%, or 900 us per frame */
648 if (minimax_load + qh->load > 900) {
649 dev_dbg(uhci_dev(uhci), "bandwidth allocation failed: "
650 "period %d, phase %d, %d + %d us\n",
651 qh->period, qh->phase, minimax_load, qh->load);
652 return -ENOSPC;
654 return 0;
658 * Reserve a periodic QH's bandwidth in the schedule
660 static void uhci_reserve_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh)
662 int i;
663 int load = qh->load;
664 char *p = "??";
666 for (i = qh->phase; i < MAX_PHASE; i += qh->period) {
667 uhci->load[i] += load;
668 uhci->total_load += load;
670 uhci_to_hcd(uhci)->self.bandwidth_allocated =
671 uhci->total_load / MAX_PHASE;
672 switch (qh->type) {
673 case USB_ENDPOINT_XFER_INT:
674 ++uhci_to_hcd(uhci)->self.bandwidth_int_reqs;
675 p = "INT";
676 break;
677 case USB_ENDPOINT_XFER_ISOC:
678 ++uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs;
679 p = "ISO";
680 break;
682 qh->bandwidth_reserved = 1;
683 dev_dbg(uhci_dev(uhci),
684 "%s dev %d ep%02x-%s, period %d, phase %d, %d us\n",
685 "reserve", qh->udev->devnum,
686 qh->hep->desc.bEndpointAddress, p,
687 qh->period, qh->phase, load);
691 * Release a periodic QH's bandwidth reservation
693 static void uhci_release_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh)
695 int i;
696 int load = qh->load;
697 char *p = "??";
699 for (i = qh->phase; i < MAX_PHASE; i += qh->period) {
700 uhci->load[i] -= load;
701 uhci->total_load -= load;
703 uhci_to_hcd(uhci)->self.bandwidth_allocated =
704 uhci->total_load / MAX_PHASE;
705 switch (qh->type) {
706 case USB_ENDPOINT_XFER_INT:
707 --uhci_to_hcd(uhci)->self.bandwidth_int_reqs;
708 p = "INT";
709 break;
710 case USB_ENDPOINT_XFER_ISOC:
711 --uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs;
712 p = "ISO";
713 break;
715 qh->bandwidth_reserved = 0;
716 dev_dbg(uhci_dev(uhci),
717 "%s dev %d ep%02x-%s, period %d, phase %d, %d us\n",
718 "release", qh->udev->devnum,
719 qh->hep->desc.bEndpointAddress, p,
720 qh->period, qh->phase, load);
723 static inline struct urb_priv *uhci_alloc_urb_priv(struct uhci_hcd *uhci,
724 struct urb *urb)
726 struct urb_priv *urbp;
728 urbp = kmem_cache_zalloc(uhci_up_cachep, GFP_ATOMIC);
729 if (!urbp)
730 return NULL;
732 urbp->urb = urb;
733 urb->hcpriv = urbp;
735 INIT_LIST_HEAD(&urbp->node);
736 INIT_LIST_HEAD(&urbp->td_list);
738 return urbp;
741 static void uhci_free_urb_priv(struct uhci_hcd *uhci,
742 struct urb_priv *urbp)
744 struct uhci_td *td, *tmp;
746 if (!list_empty(&urbp->node))
747 dev_WARN(uhci_dev(uhci), "urb %p still on QH's list!\n",
748 urbp->urb);
750 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) {
751 uhci_remove_td_from_urbp(td);
752 uhci_free_td(uhci, td);
755 kmem_cache_free(uhci_up_cachep, urbp);
759 * Map status to standard result codes
761 * <status> is (td_status(uhci, td) & 0xF60000), a.k.a.
762 * uhci_status_bits(td_status(uhci, td)).
763 * Note: <status> does not include the TD_CTRL_NAK bit.
764 * <dir_out> is True for output TDs and False for input TDs.
766 static int uhci_map_status(int status, int dir_out)
768 if (!status)
769 return 0;
770 if (status & TD_CTRL_BITSTUFF) /* Bitstuff error */
771 return -EPROTO;
772 if (status & TD_CTRL_CRCTIMEO) { /* CRC/Timeout */
773 if (dir_out)
774 return -EPROTO;
775 else
776 return -EILSEQ;
778 if (status & TD_CTRL_BABBLE) /* Babble */
779 return -EOVERFLOW;
780 if (status & TD_CTRL_DBUFERR) /* Buffer error */
781 return -ENOSR;
782 if (status & TD_CTRL_STALLED) /* Stalled */
783 return -EPIPE;
784 return 0;
788 * Control transfers
790 static int uhci_submit_control(struct uhci_hcd *uhci, struct urb *urb,
791 struct uhci_qh *qh)
793 struct uhci_td *td;
794 unsigned long destination, status;
795 int maxsze = le16_to_cpu(qh->hep->desc.wMaxPacketSize);
796 int len = urb->transfer_buffer_length;
797 dma_addr_t data = urb->transfer_dma;
798 __hc32 *plink;
799 struct urb_priv *urbp = urb->hcpriv;
800 int skel;
802 /* The "pipe" thing contains the destination in bits 8--18 */
803 destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP;
805 /* 3 errors, dummy TD remains inactive */
806 status = uhci_maxerr(3);
807 if (urb->dev->speed == USB_SPEED_LOW)
808 status |= TD_CTRL_LS;
811 * Build the TD for the control request setup packet
813 td = qh->dummy_td;
814 uhci_add_td_to_urbp(td, urbp);
815 uhci_fill_td(uhci, td, status, destination | uhci_explen(8),
816 urb->setup_dma);
817 plink = &td->link;
818 status |= TD_CTRL_ACTIVE;
821 * If direction is "send", change the packet ID from SETUP (0x2D)
822 * to OUT (0xE1). Else change it from SETUP to IN (0x69) and
823 * set Short Packet Detect (SPD) for all data packets.
825 * 0-length transfers always get treated as "send".
827 if (usb_pipeout(urb->pipe) || len == 0)
828 destination ^= (USB_PID_SETUP ^ USB_PID_OUT);
829 else {
830 destination ^= (USB_PID_SETUP ^ USB_PID_IN);
831 status |= TD_CTRL_SPD;
835 * Build the DATA TDs
837 while (len > 0) {
838 int pktsze = maxsze;
840 if (len <= pktsze) { /* The last data packet */
841 pktsze = len;
842 status &= ~TD_CTRL_SPD;
845 td = uhci_alloc_td(uhci);
846 if (!td)
847 goto nomem;
848 *plink = LINK_TO_TD(uhci, td);
850 /* Alternate Data0/1 (start with Data1) */
851 destination ^= TD_TOKEN_TOGGLE;
853 uhci_add_td_to_urbp(td, urbp);
854 uhci_fill_td(uhci, td, status,
855 destination | uhci_explen(pktsze), data);
856 plink = &td->link;
858 data += pktsze;
859 len -= pktsze;
863 * Build the final TD for control status
865 td = uhci_alloc_td(uhci);
866 if (!td)
867 goto nomem;
868 *plink = LINK_TO_TD(uhci, td);
870 /* Change direction for the status transaction */
871 destination ^= (USB_PID_IN ^ USB_PID_OUT);
872 destination |= TD_TOKEN_TOGGLE; /* End in Data1 */
874 uhci_add_td_to_urbp(td, urbp);
875 uhci_fill_td(uhci, td, status | TD_CTRL_IOC,
876 destination | uhci_explen(0), 0);
877 plink = &td->link;
880 * Build the new dummy TD and activate the old one
882 td = uhci_alloc_td(uhci);
883 if (!td)
884 goto nomem;
885 *plink = LINK_TO_TD(uhci, td);
887 uhci_fill_td(uhci, td, 0, USB_PID_OUT | uhci_explen(0), 0);
888 wmb();
889 qh->dummy_td->status |= cpu_to_hc32(uhci, TD_CTRL_ACTIVE);
890 qh->dummy_td = td;
892 /* Low-speed transfers get a different queue, and won't hog the bus.
893 * Also, some devices enumerate better without FSBR; the easiest way
894 * to do that is to put URBs on the low-speed queue while the device
895 * isn't in the CONFIGURED state. */
896 if (urb->dev->speed == USB_SPEED_LOW ||
897 urb->dev->state != USB_STATE_CONFIGURED)
898 skel = SKEL_LS_CONTROL;
899 else {
900 skel = SKEL_FS_CONTROL;
901 uhci_add_fsbr(uhci, urb);
903 if (qh->state != QH_STATE_ACTIVE)
904 qh->skel = skel;
905 return 0;
907 nomem:
908 /* Remove the dummy TD from the td_list so it doesn't get freed */
909 uhci_remove_td_from_urbp(qh->dummy_td);
910 return -ENOMEM;
914 * Common submit for bulk and interrupt
916 static int uhci_submit_common(struct uhci_hcd *uhci, struct urb *urb,
917 struct uhci_qh *qh)
919 struct uhci_td *td;
920 unsigned long destination, status;
921 int maxsze = le16_to_cpu(qh->hep->desc.wMaxPacketSize);
922 int len = urb->transfer_buffer_length;
923 int this_sg_len;
924 dma_addr_t data;
925 __hc32 *plink;
926 struct urb_priv *urbp = urb->hcpriv;
927 unsigned int toggle;
928 struct scatterlist *sg;
929 int i;
931 if (len < 0)
932 return -EINVAL;
934 /* The "pipe" thing contains the destination in bits 8--18 */
935 destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);
936 toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe),
937 usb_pipeout(urb->pipe));
939 /* 3 errors, dummy TD remains inactive */
940 status = uhci_maxerr(3);
941 if (urb->dev->speed == USB_SPEED_LOW)
942 status |= TD_CTRL_LS;
943 if (usb_pipein(urb->pipe))
944 status |= TD_CTRL_SPD;
946 i = urb->num_sgs;
947 if (len > 0 && i > 0) {
948 sg = urb->sg;
949 data = sg_dma_address(sg);
951 /* urb->transfer_buffer_length may be smaller than the
952 * size of the scatterlist (or vice versa)
954 this_sg_len = min_t(int, sg_dma_len(sg), len);
955 } else {
956 sg = NULL;
957 data = urb->transfer_dma;
958 this_sg_len = len;
961 * Build the DATA TDs
963 plink = NULL;
964 td = qh->dummy_td;
965 for (;;) { /* Allow zero length packets */
966 int pktsze = maxsze;
968 if (len <= pktsze) { /* The last packet */
969 pktsze = len;
970 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
971 status &= ~TD_CTRL_SPD;
974 if (plink) {
975 td = uhci_alloc_td(uhci);
976 if (!td)
977 goto nomem;
978 *plink = LINK_TO_TD(uhci, td);
980 uhci_add_td_to_urbp(td, urbp);
981 uhci_fill_td(uhci, td, status,
982 destination | uhci_explen(pktsze) |
983 (toggle << TD_TOKEN_TOGGLE_SHIFT),
984 data);
985 plink = &td->link;
986 status |= TD_CTRL_ACTIVE;
988 toggle ^= 1;
989 data += pktsze;
990 this_sg_len -= pktsze;
991 len -= maxsze;
992 if (this_sg_len <= 0) {
993 if (--i <= 0 || len <= 0)
994 break;
995 sg = sg_next(sg);
996 data = sg_dma_address(sg);
997 this_sg_len = min_t(int, sg_dma_len(sg), len);
1002 * URB_ZERO_PACKET means adding a 0-length packet, if direction
1003 * is OUT and the transfer_length was an exact multiple of maxsze,
1004 * hence (len = transfer_length - N * maxsze) == 0
1005 * however, if transfer_length == 0, the zero packet was already
1006 * prepared above.
1008 if ((urb->transfer_flags & URB_ZERO_PACKET) &&
1009 usb_pipeout(urb->pipe) && len == 0 &&
1010 urb->transfer_buffer_length > 0) {
1011 td = uhci_alloc_td(uhci);
1012 if (!td)
1013 goto nomem;
1014 *plink = LINK_TO_TD(uhci, td);
1016 uhci_add_td_to_urbp(td, urbp);
1017 uhci_fill_td(uhci, td, status,
1018 destination | uhci_explen(0) |
1019 (toggle << TD_TOKEN_TOGGLE_SHIFT),
1020 data);
1021 plink = &td->link;
1023 toggle ^= 1;
1026 /* Set the interrupt-on-completion flag on the last packet.
1027 * A more-or-less typical 4 KB URB (= size of one memory page)
1028 * will require about 3 ms to transfer; that's a little on the
1029 * fast side but not enough to justify delaying an interrupt
1030 * more than 2 or 3 URBs, so we will ignore the URB_NO_INTERRUPT
1031 * flag setting. */
1032 td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC);
1035 * Build the new dummy TD and activate the old one
1037 td = uhci_alloc_td(uhci);
1038 if (!td)
1039 goto nomem;
1040 *plink = LINK_TO_TD(uhci, td);
1042 uhci_fill_td(uhci, td, 0, USB_PID_OUT | uhci_explen(0), 0);
1043 wmb();
1044 qh->dummy_td->status |= cpu_to_hc32(uhci, TD_CTRL_ACTIVE);
1045 qh->dummy_td = td;
1047 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
1048 usb_pipeout(urb->pipe), toggle);
1049 return 0;
1051 nomem:
1052 /* Remove the dummy TD from the td_list so it doesn't get freed */
1053 uhci_remove_td_from_urbp(qh->dummy_td);
1054 return -ENOMEM;
1057 static int uhci_submit_bulk(struct uhci_hcd *uhci, struct urb *urb,
1058 struct uhci_qh *qh)
1060 int ret;
1062 /* Can't have low-speed bulk transfers */
1063 if (urb->dev->speed == USB_SPEED_LOW)
1064 return -EINVAL;
1066 if (qh->state != QH_STATE_ACTIVE)
1067 qh->skel = SKEL_BULK;
1068 ret = uhci_submit_common(uhci, urb, qh);
1069 if (ret == 0)
1070 uhci_add_fsbr(uhci, urb);
1071 return ret;
1074 static int uhci_submit_interrupt(struct uhci_hcd *uhci, struct urb *urb,
1075 struct uhci_qh *qh)
1077 int ret;
1079 /* USB 1.1 interrupt transfers only involve one packet per interval.
1080 * Drivers can submit URBs of any length, but longer ones will need
1081 * multiple intervals to complete.
1084 if (!qh->bandwidth_reserved) {
1085 int exponent;
1087 /* Figure out which power-of-two queue to use */
1088 for (exponent = 7; exponent >= 0; --exponent) {
1089 if ((1 << exponent) <= urb->interval)
1090 break;
1092 if (exponent < 0)
1093 return -EINVAL;
1095 /* If the slot is full, try a lower period */
1096 do {
1097 qh->period = 1 << exponent;
1098 qh->skel = SKEL_INDEX(exponent);
1100 /* For now, interrupt phase is fixed by the layout
1101 * of the QH lists.
1103 qh->phase = (qh->period / 2) & (MAX_PHASE - 1);
1104 ret = uhci_check_bandwidth(uhci, qh);
1105 } while (ret != 0 && --exponent >= 0);
1106 if (ret)
1107 return ret;
1108 } else if (qh->period > urb->interval)
1109 return -EINVAL; /* Can't decrease the period */
1111 ret = uhci_submit_common(uhci, urb, qh);
1112 if (ret == 0) {
1113 urb->interval = qh->period;
1114 if (!qh->bandwidth_reserved)
1115 uhci_reserve_bandwidth(uhci, qh);
1117 return ret;
1121 * Fix up the data structures following a short transfer
1123 static int uhci_fixup_short_transfer(struct uhci_hcd *uhci,
1124 struct uhci_qh *qh, struct urb_priv *urbp)
1126 struct uhci_td *td;
1127 struct list_head *tmp;
1128 int ret;
1130 td = list_entry(urbp->td_list.prev, struct uhci_td, list);
1131 if (qh->type == USB_ENDPOINT_XFER_CONTROL) {
1133 /* When a control transfer is short, we have to restart
1134 * the queue at the status stage transaction, which is
1135 * the last TD. */
1136 WARN_ON(list_empty(&urbp->td_list));
1137 qh->element = LINK_TO_TD(uhci, td);
1138 tmp = td->list.prev;
1139 ret = -EINPROGRESS;
1141 } else {
1143 /* When a bulk/interrupt transfer is short, we have to
1144 * fix up the toggles of the following URBs on the queue
1145 * before restarting the queue at the next URB. */
1146 qh->initial_toggle =
1147 uhci_toggle(td_token(uhci, qh->post_td)) ^ 1;
1148 uhci_fixup_toggles(uhci, qh, 1);
1150 if (list_empty(&urbp->td_list))
1151 td = qh->post_td;
1152 qh->element = td->link;
1153 tmp = urbp->td_list.prev;
1154 ret = 0;
1157 /* Remove all the TDs we skipped over, from tmp back to the start */
1158 while (tmp != &urbp->td_list) {
1159 td = list_entry(tmp, struct uhci_td, list);
1160 tmp = tmp->prev;
1162 uhci_remove_td_from_urbp(td);
1163 uhci_free_td(uhci, td);
1165 return ret;
1169 * Common result for control, bulk, and interrupt
1171 static int uhci_result_common(struct uhci_hcd *uhci, struct urb *urb)
1173 struct urb_priv *urbp = urb->hcpriv;
1174 struct uhci_qh *qh = urbp->qh;
1175 struct uhci_td *td, *tmp;
1176 unsigned status;
1177 int ret = 0;
1179 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) {
1180 unsigned int ctrlstat;
1181 int len;
1183 ctrlstat = td_status(uhci, td);
1184 status = uhci_status_bits(ctrlstat);
1185 if (status & TD_CTRL_ACTIVE)
1186 return -EINPROGRESS;
1188 len = uhci_actual_length(ctrlstat);
1189 urb->actual_length += len;
1191 if (status) {
1192 ret = uhci_map_status(status,
1193 uhci_packetout(td_token(uhci, td)));
1194 if ((debug == 1 && ret != -EPIPE) || debug > 1) {
1195 /* Some debugging code */
1196 dev_dbg(&urb->dev->dev,
1197 "%s: failed with status %x\n",
1198 __func__, status);
1200 if (debug > 1 && errbuf) {
1201 /* Print the chain for debugging */
1202 uhci_show_qh(uhci, urbp->qh, errbuf,
1203 ERRBUF_LEN, 0);
1204 lprintk(errbuf);
1208 /* Did we receive a short packet? */
1209 } else if (len < uhci_expected_length(td_token(uhci, td))) {
1211 /* For control transfers, go to the status TD if
1212 * this isn't already the last data TD */
1213 if (qh->type == USB_ENDPOINT_XFER_CONTROL) {
1214 if (td->list.next != urbp->td_list.prev)
1215 ret = 1;
1218 /* For bulk and interrupt, this may be an error */
1219 else if (urb->transfer_flags & URB_SHORT_NOT_OK)
1220 ret = -EREMOTEIO;
1222 /* Fixup needed only if this isn't the URB's last TD */
1223 else if (&td->list != urbp->td_list.prev)
1224 ret = 1;
1227 uhci_remove_td_from_urbp(td);
1228 if (qh->post_td)
1229 uhci_free_td(uhci, qh->post_td);
1230 qh->post_td = td;
1232 if (ret != 0)
1233 goto err;
1235 return ret;
1237 err:
1238 if (ret < 0) {
1239 /* Note that the queue has stopped and save
1240 * the next toggle value */
1241 qh->element = UHCI_PTR_TERM(uhci);
1242 qh->is_stopped = 1;
1243 qh->needs_fixup = (qh->type != USB_ENDPOINT_XFER_CONTROL);
1244 qh->initial_toggle = uhci_toggle(td_token(uhci, td)) ^
1245 (ret == -EREMOTEIO);
1247 } else /* Short packet received */
1248 ret = uhci_fixup_short_transfer(uhci, qh, urbp);
1249 return ret;
1253 * Isochronous transfers
1255 static int uhci_submit_isochronous(struct uhci_hcd *uhci, struct urb *urb,
1256 struct uhci_qh *qh)
1258 struct uhci_td *td = NULL; /* Since urb->number_of_packets > 0 */
1259 int i, frame;
1260 unsigned long destination, status;
1261 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv;
1263 /* Values must not be too big (could overflow below) */
1264 if (urb->interval >= UHCI_NUMFRAMES ||
1265 urb->number_of_packets >= UHCI_NUMFRAMES)
1266 return -EFBIG;
1268 /* Check the period and figure out the starting frame number */
1269 if (!qh->bandwidth_reserved) {
1270 qh->period = urb->interval;
1271 if (urb->transfer_flags & URB_ISO_ASAP) {
1272 qh->phase = -1; /* Find the best phase */
1273 i = uhci_check_bandwidth(uhci, qh);
1274 if (i)
1275 return i;
1277 /* Allow a little time to allocate the TDs */
1278 uhci_get_current_frame_number(uhci);
1279 frame = uhci->frame_number + 10;
1281 /* Move forward to the first frame having the
1282 * correct phase */
1283 urb->start_frame = frame + ((qh->phase - frame) &
1284 (qh->period - 1));
1285 } else {
1286 i = urb->start_frame - uhci->last_iso_frame;
1287 if (i <= 0 || i >= UHCI_NUMFRAMES)
1288 return -EINVAL;
1289 qh->phase = urb->start_frame & (qh->period - 1);
1290 i = uhci_check_bandwidth(uhci, qh);
1291 if (i)
1292 return i;
1295 } else if (qh->period != urb->interval) {
1296 return -EINVAL; /* Can't change the period */
1298 } else {
1299 /* Find the next unused frame */
1300 if (list_empty(&qh->queue)) {
1301 frame = qh->iso_frame;
1302 } else {
1303 struct urb *lurb;
1305 lurb = list_entry(qh->queue.prev,
1306 struct urb_priv, node)->urb;
1307 frame = lurb->start_frame +
1308 lurb->number_of_packets *
1309 lurb->interval;
1311 if (urb->transfer_flags & URB_ISO_ASAP) {
1312 /* Skip some frames if necessary to insure
1313 * the start frame is in the future.
1315 uhci_get_current_frame_number(uhci);
1316 if (uhci_frame_before_eq(frame, uhci->frame_number)) {
1317 frame = uhci->frame_number + 1;
1318 frame += ((qh->phase - frame) &
1319 (qh->period - 1));
1321 } /* Otherwise pick up where the last URB leaves off */
1322 urb->start_frame = frame;
1325 /* Make sure we won't have to go too far into the future */
1326 if (uhci_frame_before_eq(uhci->last_iso_frame + UHCI_NUMFRAMES,
1327 urb->start_frame + urb->number_of_packets *
1328 urb->interval))
1329 return -EFBIG;
1331 status = TD_CTRL_ACTIVE | TD_CTRL_IOS;
1332 destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);
1334 for (i = 0; i < urb->number_of_packets; i++) {
1335 td = uhci_alloc_td(uhci);
1336 if (!td)
1337 return -ENOMEM;
1339 uhci_add_td_to_urbp(td, urbp);
1340 uhci_fill_td(uhci, td, status, destination |
1341 uhci_explen(urb->iso_frame_desc[i].length),
1342 urb->transfer_dma +
1343 urb->iso_frame_desc[i].offset);
1346 /* Set the interrupt-on-completion flag on the last packet. */
1347 td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC);
1349 /* Add the TDs to the frame list */
1350 frame = urb->start_frame;
1351 list_for_each_entry(td, &urbp->td_list, list) {
1352 uhci_insert_td_in_frame_list(uhci, td, frame);
1353 frame += qh->period;
1356 if (list_empty(&qh->queue)) {
1357 qh->iso_packet_desc = &urb->iso_frame_desc[0];
1358 qh->iso_frame = urb->start_frame;
1361 qh->skel = SKEL_ISO;
1362 if (!qh->bandwidth_reserved)
1363 uhci_reserve_bandwidth(uhci, qh);
1364 return 0;
1367 static int uhci_result_isochronous(struct uhci_hcd *uhci, struct urb *urb)
1369 struct uhci_td *td, *tmp;
1370 struct urb_priv *urbp = urb->hcpriv;
1371 struct uhci_qh *qh = urbp->qh;
1373 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) {
1374 unsigned int ctrlstat;
1375 int status;
1376 int actlength;
1378 if (uhci_frame_before_eq(uhci->cur_iso_frame, qh->iso_frame))
1379 return -EINPROGRESS;
1381 uhci_remove_tds_from_frame(uhci, qh->iso_frame);
1383 ctrlstat = td_status(uhci, td);
1384 if (ctrlstat & TD_CTRL_ACTIVE) {
1385 status = -EXDEV; /* TD was added too late? */
1386 } else {
1387 status = uhci_map_status(uhci_status_bits(ctrlstat),
1388 usb_pipeout(urb->pipe));
1389 actlength = uhci_actual_length(ctrlstat);
1391 urb->actual_length += actlength;
1392 qh->iso_packet_desc->actual_length = actlength;
1393 qh->iso_packet_desc->status = status;
1395 if (status)
1396 urb->error_count++;
1398 uhci_remove_td_from_urbp(td);
1399 uhci_free_td(uhci, td);
1400 qh->iso_frame += qh->period;
1401 ++qh->iso_packet_desc;
1403 return 0;
1406 static int uhci_urb_enqueue(struct usb_hcd *hcd,
1407 struct urb *urb, gfp_t mem_flags)
1409 int ret;
1410 struct uhci_hcd *uhci = hcd_to_uhci(hcd);
1411 unsigned long flags;
1412 struct urb_priv *urbp;
1413 struct uhci_qh *qh;
1415 spin_lock_irqsave(&uhci->lock, flags);
1417 ret = usb_hcd_link_urb_to_ep(hcd, urb);
1418 if (ret)
1419 goto done_not_linked;
1421 ret = -ENOMEM;
1422 urbp = uhci_alloc_urb_priv(uhci, urb);
1423 if (!urbp)
1424 goto done;
1426 if (urb->ep->hcpriv)
1427 qh = urb->ep->hcpriv;
1428 else {
1429 qh = uhci_alloc_qh(uhci, urb->dev, urb->ep);
1430 if (!qh)
1431 goto err_no_qh;
1433 urbp->qh = qh;
1435 switch (qh->type) {
1436 case USB_ENDPOINT_XFER_CONTROL:
1437 ret = uhci_submit_control(uhci, urb, qh);
1438 break;
1439 case USB_ENDPOINT_XFER_BULK:
1440 ret = uhci_submit_bulk(uhci, urb, qh);
1441 break;
1442 case USB_ENDPOINT_XFER_INT:
1443 ret = uhci_submit_interrupt(uhci, urb, qh);
1444 break;
1445 case USB_ENDPOINT_XFER_ISOC:
1446 urb->error_count = 0;
1447 ret = uhci_submit_isochronous(uhci, urb, qh);
1448 break;
1450 if (ret != 0)
1451 goto err_submit_failed;
1453 /* Add this URB to the QH */
1454 list_add_tail(&urbp->node, &qh->queue);
1456 /* If the new URB is the first and only one on this QH then either
1457 * the QH is new and idle or else it's unlinked and waiting to
1458 * become idle, so we can activate it right away. But only if the
1459 * queue isn't stopped. */
1460 if (qh->queue.next == &urbp->node && !qh->is_stopped) {
1461 uhci_activate_qh(uhci, qh);
1462 uhci_urbp_wants_fsbr(uhci, urbp);
1464 goto done;
1466 err_submit_failed:
1467 if (qh->state == QH_STATE_IDLE)
1468 uhci_make_qh_idle(uhci, qh); /* Reclaim unused QH */
1469 err_no_qh:
1470 uhci_free_urb_priv(uhci, urbp);
1471 done:
1472 if (ret)
1473 usb_hcd_unlink_urb_from_ep(hcd, urb);
1474 done_not_linked:
1475 spin_unlock_irqrestore(&uhci->lock, flags);
1476 return ret;
1479 static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1481 struct uhci_hcd *uhci = hcd_to_uhci(hcd);
1482 unsigned long flags;
1483 struct uhci_qh *qh;
1484 int rc;
1486 spin_lock_irqsave(&uhci->lock, flags);
1487 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
1488 if (rc)
1489 goto done;
1491 qh = ((struct urb_priv *) urb->hcpriv)->qh;
1493 /* Remove Isochronous TDs from the frame list ASAP */
1494 if (qh->type == USB_ENDPOINT_XFER_ISOC) {
1495 uhci_unlink_isochronous_tds(uhci, urb);
1496 mb();
1498 /* If the URB has already started, update the QH unlink time */
1499 uhci_get_current_frame_number(uhci);
1500 if (uhci_frame_before_eq(urb->start_frame, uhci->frame_number))
1501 qh->unlink_frame = uhci->frame_number;
1504 uhci_unlink_qh(uhci, qh);
1506 done:
1507 spin_unlock_irqrestore(&uhci->lock, flags);
1508 return rc;
1512 * Finish unlinking an URB and give it back
1514 static void uhci_giveback_urb(struct uhci_hcd *uhci, struct uhci_qh *qh,
1515 struct urb *urb, int status)
1516 __releases(uhci->lock)
1517 __acquires(uhci->lock)
1519 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv;
1521 if (qh->type == USB_ENDPOINT_XFER_CONTROL) {
1523 /* Subtract off the length of the SETUP packet from
1524 * urb->actual_length.
1526 urb->actual_length -= min_t(u32, 8, urb->actual_length);
1529 /* When giving back the first URB in an Isochronous queue,
1530 * reinitialize the QH's iso-related members for the next URB. */
1531 else if (qh->type == USB_ENDPOINT_XFER_ISOC &&
1532 urbp->node.prev == &qh->queue &&
1533 urbp->node.next != &qh->queue) {
1534 struct urb *nurb = list_entry(urbp->node.next,
1535 struct urb_priv, node)->urb;
1537 qh->iso_packet_desc = &nurb->iso_frame_desc[0];
1538 qh->iso_frame = nurb->start_frame;
1541 /* Take the URB off the QH's queue. If the queue is now empty,
1542 * this is a perfect time for a toggle fixup. */
1543 list_del_init(&urbp->node);
1544 if (list_empty(&qh->queue) && qh->needs_fixup) {
1545 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
1546 usb_pipeout(urb->pipe), qh->initial_toggle);
1547 qh->needs_fixup = 0;
1550 uhci_free_urb_priv(uhci, urbp);
1551 usb_hcd_unlink_urb_from_ep(uhci_to_hcd(uhci), urb);
1553 spin_unlock(&uhci->lock);
1554 usb_hcd_giveback_urb(uhci_to_hcd(uhci), urb, status);
1555 spin_lock(&uhci->lock);
1557 /* If the queue is now empty, we can unlink the QH and give up its
1558 * reserved bandwidth. */
1559 if (list_empty(&qh->queue)) {
1560 uhci_unlink_qh(uhci, qh);
1561 if (qh->bandwidth_reserved)
1562 uhci_release_bandwidth(uhci, qh);
1567 * Scan the URBs in a QH's queue
1569 #define QH_FINISHED_UNLINKING(qh) \
1570 (qh->state == QH_STATE_UNLINKING && \
1571 uhci->frame_number + uhci->is_stopped != qh->unlink_frame)
1573 static void uhci_scan_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
1575 struct urb_priv *urbp;
1576 struct urb *urb;
1577 int status;
1579 while (!list_empty(&qh->queue)) {
1580 urbp = list_entry(qh->queue.next, struct urb_priv, node);
1581 urb = urbp->urb;
1583 if (qh->type == USB_ENDPOINT_XFER_ISOC)
1584 status = uhci_result_isochronous(uhci, urb);
1585 else
1586 status = uhci_result_common(uhci, urb);
1587 if (status == -EINPROGRESS)
1588 break;
1590 /* Dequeued but completed URBs can't be given back unless
1591 * the QH is stopped or has finished unlinking. */
1592 if (urb->unlinked) {
1593 if (QH_FINISHED_UNLINKING(qh))
1594 qh->is_stopped = 1;
1595 else if (!qh->is_stopped)
1596 return;
1599 uhci_giveback_urb(uhci, qh, urb, status);
1600 if (status < 0)
1601 break;
1604 /* If the QH is neither stopped nor finished unlinking (normal case),
1605 * our work here is done. */
1606 if (QH_FINISHED_UNLINKING(qh))
1607 qh->is_stopped = 1;
1608 else if (!qh->is_stopped)
1609 return;
1611 /* Otherwise give back each of the dequeued URBs */
1612 restart:
1613 list_for_each_entry(urbp, &qh->queue, node) {
1614 urb = urbp->urb;
1615 if (urb->unlinked) {
1617 /* Fix up the TD links and save the toggles for
1618 * non-Isochronous queues. For Isochronous queues,
1619 * test for too-recent dequeues. */
1620 if (!uhci_cleanup_queue(uhci, qh, urb)) {
1621 qh->is_stopped = 0;
1622 return;
1624 uhci_giveback_urb(uhci, qh, urb, 0);
1625 goto restart;
1628 qh->is_stopped = 0;
1630 /* There are no more dequeued URBs. If there are still URBs on the
1631 * queue, the QH can now be re-activated. */
1632 if (!list_empty(&qh->queue)) {
1633 if (qh->needs_fixup)
1634 uhci_fixup_toggles(uhci, qh, 0);
1636 /* If the first URB on the queue wants FSBR but its time
1637 * limit has expired, set the next TD to interrupt on
1638 * completion before reactivating the QH. */
1639 urbp = list_entry(qh->queue.next, struct urb_priv, node);
1640 if (urbp->fsbr && qh->wait_expired) {
1641 struct uhci_td *td = list_entry(urbp->td_list.next,
1642 struct uhci_td, list);
1644 td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC);
1647 uhci_activate_qh(uhci, qh);
1650 /* The queue is empty. The QH can become idle if it is fully
1651 * unlinked. */
1652 else if (QH_FINISHED_UNLINKING(qh))
1653 uhci_make_qh_idle(uhci, qh);
1657 * Check for queues that have made some forward progress.
1658 * Returns 0 if the queue is not Isochronous, is ACTIVE, and
1659 * has not advanced since last examined; 1 otherwise.
1661 * Early Intel controllers have a bug which causes qh->element sometimes
1662 * not to advance when a TD completes successfully. The queue remains
1663 * stuck on the inactive completed TD. We detect such cases and advance
1664 * the element pointer by hand.
1666 static int uhci_advance_check(struct uhci_hcd *uhci, struct uhci_qh *qh)
1668 struct urb_priv *urbp = NULL;
1669 struct uhci_td *td;
1670 int ret = 1;
1671 unsigned status;
1673 if (qh->type == USB_ENDPOINT_XFER_ISOC)
1674 goto done;
1676 /* Treat an UNLINKING queue as though it hasn't advanced.
1677 * This is okay because reactivation will treat it as though
1678 * it has advanced, and if it is going to become IDLE then
1679 * this doesn't matter anyway. Furthermore it's possible
1680 * for an UNLINKING queue not to have any URBs at all, or
1681 * for its first URB not to have any TDs (if it was dequeued
1682 * just as it completed). So it's not easy in any case to
1683 * test whether such queues have advanced. */
1684 if (qh->state != QH_STATE_ACTIVE) {
1685 urbp = NULL;
1686 status = 0;
1688 } else {
1689 urbp = list_entry(qh->queue.next, struct urb_priv, node);
1690 td = list_entry(urbp->td_list.next, struct uhci_td, list);
1691 status = td_status(uhci, td);
1692 if (!(status & TD_CTRL_ACTIVE)) {
1694 /* We're okay, the queue has advanced */
1695 qh->wait_expired = 0;
1696 qh->advance_jiffies = jiffies;
1697 goto done;
1699 ret = uhci->is_stopped;
1702 /* The queue hasn't advanced; check for timeout */
1703 if (qh->wait_expired)
1704 goto done;
1706 if (time_after(jiffies, qh->advance_jiffies + QH_WAIT_TIMEOUT)) {
1708 /* Detect the Intel bug and work around it */
1709 if (qh->post_td && qh_element(qh) ==
1710 LINK_TO_TD(uhci, qh->post_td)) {
1711 qh->element = qh->post_td->link;
1712 qh->advance_jiffies = jiffies;
1713 ret = 1;
1714 goto done;
1717 qh->wait_expired = 1;
1719 /* If the current URB wants FSBR, unlink it temporarily
1720 * so that we can safely set the next TD to interrupt on
1721 * completion. That way we'll know as soon as the queue
1722 * starts moving again. */
1723 if (urbp && urbp->fsbr && !(status & TD_CTRL_IOC))
1724 uhci_unlink_qh(uhci, qh);
1726 } else {
1727 /* Unmoving but not-yet-expired queues keep FSBR alive */
1728 if (urbp)
1729 uhci_urbp_wants_fsbr(uhci, urbp);
1732 done:
1733 return ret;
1737 * Process events in the schedule, but only in one thread at a time
1739 static void uhci_scan_schedule(struct uhci_hcd *uhci)
1741 int i;
1742 struct uhci_qh *qh;
1744 /* Don't allow re-entrant calls */
1745 if (uhci->scan_in_progress) {
1746 uhci->need_rescan = 1;
1747 return;
1749 uhci->scan_in_progress = 1;
1750 rescan:
1751 uhci->need_rescan = 0;
1752 uhci->fsbr_is_wanted = 0;
1754 uhci_clear_next_interrupt(uhci);
1755 uhci_get_current_frame_number(uhci);
1756 uhci->cur_iso_frame = uhci->frame_number;
1758 /* Go through all the QH queues and process the URBs in each one */
1759 for (i = 0; i < UHCI_NUM_SKELQH - 1; ++i) {
1760 uhci->next_qh = list_entry(uhci->skelqh[i]->node.next,
1761 struct uhci_qh, node);
1762 while ((qh = uhci->next_qh) != uhci->skelqh[i]) {
1763 uhci->next_qh = list_entry(qh->node.next,
1764 struct uhci_qh, node);
1766 if (uhci_advance_check(uhci, qh)) {
1767 uhci_scan_qh(uhci, qh);
1768 if (qh->state == QH_STATE_ACTIVE) {
1769 uhci_urbp_wants_fsbr(uhci,
1770 list_entry(qh->queue.next, struct urb_priv, node));
1776 uhci->last_iso_frame = uhci->cur_iso_frame;
1777 if (uhci->need_rescan)
1778 goto rescan;
1779 uhci->scan_in_progress = 0;
1781 if (uhci->fsbr_is_on && !uhci->fsbr_is_wanted &&
1782 !uhci->fsbr_expiring) {
1783 uhci->fsbr_expiring = 1;
1784 mod_timer(&uhci->fsbr_timer, jiffies + FSBR_OFF_DELAY);
1787 if (list_empty(&uhci->skel_unlink_qh->node))
1788 uhci_clear_next_interrupt(uhci);
1789 else
1790 uhci_set_next_interrupt(uhci);