2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37 static struct xhci_segment
*xhci_segment_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
39 struct xhci_segment
*seg
;
42 seg
= kzalloc(sizeof *seg
, flags
);
45 xhci_dbg(xhci
, "Allocating priv segment structure at %p\n", seg
);
47 seg
->trbs
= dma_pool_alloc(xhci
->segment_pool
, flags
, &dma
);
52 xhci_dbg(xhci
, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg
->trbs
, (unsigned long long)dma
);
55 memset(seg
->trbs
, 0, SEGMENT_SIZE
);
62 static void xhci_segment_free(struct xhci_hcd
*xhci
, struct xhci_segment
*seg
)
67 xhci_dbg(xhci
, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg
->trbs
, (unsigned long long)seg
->dma
);
69 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, seg
->dma
);
72 xhci_dbg(xhci
, "Freeing priv segment structure at %p\n", seg
);
77 * Make the prev segment point to the next segment.
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
83 static void xhci_link_segments(struct xhci_hcd
*xhci
, struct xhci_segment
*prev
,
84 struct xhci_segment
*next
, bool link_trbs
)
92 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.segment_ptr
=
93 cpu_to_le64(next
->dma
);
95 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
96 val
= le32_to_cpu(prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
);
97 val
&= ~TRB_TYPE_BITMASK
;
98 val
|= TRB_TYPE(TRB_LINK
);
99 /* Always set the chain bit with 0.95 hardware */
100 if (xhci_link_trb_quirk(xhci
))
102 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
= cpu_to_le32(val
);
104 xhci_dbg(xhci
, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105 (unsigned long long)prev
->dma
,
106 (unsigned long long)next
->dma
);
109 /* XXX: Do we need the hcd structure in all these functions? */
110 void xhci_ring_free(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
)
112 struct xhci_segment
*seg
;
113 struct xhci_segment
*first_seg
;
115 if (!ring
|| !ring
->first_seg
)
117 first_seg
= ring
->first_seg
;
118 seg
= first_seg
->next
;
119 xhci_dbg(xhci
, "Freeing ring at %p\n", ring
);
120 while (seg
!= first_seg
) {
121 struct xhci_segment
*next
= seg
->next
;
122 xhci_segment_free(xhci
, seg
);
125 xhci_segment_free(xhci
, first_seg
);
126 ring
->first_seg
= NULL
;
130 static void xhci_initialize_ring_info(struct xhci_ring
*ring
)
132 /* The ring is empty, so the enqueue pointer == dequeue pointer */
133 ring
->enqueue
= ring
->first_seg
->trbs
;
134 ring
->enq_seg
= ring
->first_seg
;
135 ring
->dequeue
= ring
->enqueue
;
136 ring
->deq_seg
= ring
->first_seg
;
137 /* The ring is initialized to 0. The producer must write 1 to the cycle
138 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
139 * compare CCS to the cycle bit to check ownership, so CCS = 1.
141 ring
->cycle_state
= 1;
142 /* Not necessary for new rings, but needed for re-initialized rings */
143 ring
->enq_updates
= 0;
144 ring
->deq_updates
= 0;
148 * Create a new ring with zero or more segments.
150 * Link each segment together into a ring.
151 * Set the end flag and the cycle toggle bit on the last segment.
152 * See section 4.9.1 and figures 15 and 16.
154 static struct xhci_ring
*xhci_ring_alloc(struct xhci_hcd
*xhci
,
155 unsigned int num_segs
, bool link_trbs
, gfp_t flags
)
157 struct xhci_ring
*ring
;
158 struct xhci_segment
*prev
;
160 ring
= kzalloc(sizeof *(ring
), flags
);
161 xhci_dbg(xhci
, "Allocating ring at %p\n", ring
);
165 INIT_LIST_HEAD(&ring
->td_list
);
169 ring
->first_seg
= xhci_segment_alloc(xhci
, flags
);
170 if (!ring
->first_seg
)
174 prev
= ring
->first_seg
;
175 while (num_segs
> 0) {
176 struct xhci_segment
*next
;
178 next
= xhci_segment_alloc(xhci
, flags
);
181 xhci_link_segments(xhci
, prev
, next
, link_trbs
);
186 xhci_link_segments(xhci
, prev
, ring
->first_seg
, link_trbs
);
189 /* See section 4.9.2.1 and 6.4.4.1 */
190 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
|=
191 cpu_to_le32(LINK_TOGGLE
);
192 xhci_dbg(xhci
, "Wrote link toggle flag to"
193 " segment %p (virtual), 0x%llx (DMA)\n",
194 prev
, (unsigned long long)prev
->dma
);
196 xhci_initialize_ring_info(ring
);
200 xhci_ring_free(xhci
, ring
);
204 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd
*xhci
,
205 struct xhci_virt_device
*virt_dev
,
206 unsigned int ep_index
)
210 rings_cached
= virt_dev
->num_rings_cached
;
211 if (rings_cached
< XHCI_MAX_RINGS_CACHED
) {
212 virt_dev
->ring_cache
[rings_cached
] =
213 virt_dev
->eps
[ep_index
].ring
;
214 virt_dev
->num_rings_cached
++;
215 xhci_dbg(xhci
, "Cached old ring, "
216 "%d ring%s cached\n",
217 virt_dev
->num_rings_cached
,
218 (virt_dev
->num_rings_cached
> 1) ? "s" : "");
220 xhci_ring_free(xhci
, virt_dev
->eps
[ep_index
].ring
);
221 xhci_dbg(xhci
, "Ring cache full (%d rings), "
223 virt_dev
->num_rings_cached
);
225 virt_dev
->eps
[ep_index
].ring
= NULL
;
228 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
229 * pointers to the beginning of the ring.
231 static void xhci_reinit_cached_ring(struct xhci_hcd
*xhci
,
232 struct xhci_ring
*ring
)
234 struct xhci_segment
*seg
= ring
->first_seg
;
237 sizeof(union xhci_trb
)*TRBS_PER_SEGMENT
);
238 /* All endpoint rings have link TRBs */
239 xhci_link_segments(xhci
, seg
, seg
->next
, 1);
241 } while (seg
!= ring
->first_seg
);
242 xhci_initialize_ring_info(ring
);
243 /* td list should be empty since all URBs have been cancelled,
244 * but just in case...
246 INIT_LIST_HEAD(&ring
->td_list
);
249 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
251 static struct xhci_container_ctx
*xhci_alloc_container_ctx(struct xhci_hcd
*xhci
,
252 int type
, gfp_t flags
)
254 struct xhci_container_ctx
*ctx
= kzalloc(sizeof(*ctx
), flags
);
258 BUG_ON((type
!= XHCI_CTX_TYPE_DEVICE
) && (type
!= XHCI_CTX_TYPE_INPUT
));
260 ctx
->size
= HCC_64BYTE_CONTEXT(xhci
->hcc_params
) ? 2048 : 1024;
261 if (type
== XHCI_CTX_TYPE_INPUT
)
262 ctx
->size
+= CTX_SIZE(xhci
->hcc_params
);
264 ctx
->bytes
= dma_pool_alloc(xhci
->device_pool
, flags
, &ctx
->dma
);
265 memset(ctx
->bytes
, 0, ctx
->size
);
269 static void xhci_free_container_ctx(struct xhci_hcd
*xhci
,
270 struct xhci_container_ctx
*ctx
)
274 dma_pool_free(xhci
->device_pool
, ctx
->bytes
, ctx
->dma
);
278 struct xhci_input_control_ctx
*xhci_get_input_control_ctx(struct xhci_hcd
*xhci
,
279 struct xhci_container_ctx
*ctx
)
281 BUG_ON(ctx
->type
!= XHCI_CTX_TYPE_INPUT
);
282 return (struct xhci_input_control_ctx
*)ctx
->bytes
;
285 struct xhci_slot_ctx
*xhci_get_slot_ctx(struct xhci_hcd
*xhci
,
286 struct xhci_container_ctx
*ctx
)
288 if (ctx
->type
== XHCI_CTX_TYPE_DEVICE
)
289 return (struct xhci_slot_ctx
*)ctx
->bytes
;
291 return (struct xhci_slot_ctx
*)
292 (ctx
->bytes
+ CTX_SIZE(xhci
->hcc_params
));
295 struct xhci_ep_ctx
*xhci_get_ep_ctx(struct xhci_hcd
*xhci
,
296 struct xhci_container_ctx
*ctx
,
297 unsigned int ep_index
)
299 /* increment ep index by offset of start of ep ctx array */
301 if (ctx
->type
== XHCI_CTX_TYPE_INPUT
)
304 return (struct xhci_ep_ctx
*)
305 (ctx
->bytes
+ (ep_index
* CTX_SIZE(xhci
->hcc_params
)));
309 /***************** Streams structures manipulation *************************/
311 static void xhci_free_stream_ctx(struct xhci_hcd
*xhci
,
312 unsigned int num_stream_ctxs
,
313 struct xhci_stream_ctx
*stream_ctx
, dma_addr_t dma
)
315 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
317 if (num_stream_ctxs
> MEDIUM_STREAM_ARRAY_SIZE
)
318 pci_free_consistent(pdev
,
319 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
,
321 else if (num_stream_ctxs
<= SMALL_STREAM_ARRAY_SIZE
)
322 return dma_pool_free(xhci
->small_streams_pool
,
325 return dma_pool_free(xhci
->medium_streams_pool
,
330 * The stream context array for each endpoint with bulk streams enabled can
331 * vary in size, based on:
332 * - how many streams the endpoint supports,
333 * - the maximum primary stream array size the host controller supports,
334 * - and how many streams the device driver asks for.
336 * The stream context array must be a power of 2, and can be as small as
337 * 64 bytes or as large as 1MB.
339 static struct xhci_stream_ctx
*xhci_alloc_stream_ctx(struct xhci_hcd
*xhci
,
340 unsigned int num_stream_ctxs
, dma_addr_t
*dma
,
343 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
345 if (num_stream_ctxs
> MEDIUM_STREAM_ARRAY_SIZE
)
346 return pci_alloc_consistent(pdev
,
347 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
,
349 else if (num_stream_ctxs
<= SMALL_STREAM_ARRAY_SIZE
)
350 return dma_pool_alloc(xhci
->small_streams_pool
,
353 return dma_pool_alloc(xhci
->medium_streams_pool
,
357 struct xhci_ring
*xhci_dma_to_transfer_ring(
358 struct xhci_virt_ep
*ep
,
361 if (ep
->ep_state
& EP_HAS_STREAMS
)
362 return radix_tree_lookup(&ep
->stream_info
->trb_address_map
,
363 address
>> SEGMENT_SHIFT
);
367 /* Only use this when you know stream_info is valid */
368 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
369 static struct xhci_ring
*dma_to_stream_ring(
370 struct xhci_stream_info
*stream_info
,
373 return radix_tree_lookup(&stream_info
->trb_address_map
,
374 address
>> SEGMENT_SHIFT
);
376 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
378 struct xhci_ring
*xhci_stream_id_to_ring(
379 struct xhci_virt_device
*dev
,
380 unsigned int ep_index
,
381 unsigned int stream_id
)
383 struct xhci_virt_ep
*ep
= &dev
->eps
[ep_index
];
387 if (!ep
->stream_info
)
390 if (stream_id
> ep
->stream_info
->num_streams
)
392 return ep
->stream_info
->stream_rings
[stream_id
];
395 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
396 static int xhci_test_radix_tree(struct xhci_hcd
*xhci
,
397 unsigned int num_streams
,
398 struct xhci_stream_info
*stream_info
)
401 struct xhci_ring
*cur_ring
;
404 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
405 struct xhci_ring
*mapped_ring
;
406 int trb_size
= sizeof(union xhci_trb
);
408 cur_ring
= stream_info
->stream_rings
[cur_stream
];
409 for (addr
= cur_ring
->first_seg
->dma
;
410 addr
< cur_ring
->first_seg
->dma
+ SEGMENT_SIZE
;
412 mapped_ring
= dma_to_stream_ring(stream_info
, addr
);
413 if (cur_ring
!= mapped_ring
) {
414 xhci_warn(xhci
, "WARN: DMA address 0x%08llx "
415 "didn't map to stream ID %u; "
416 "mapped to ring %p\n",
417 (unsigned long long) addr
,
423 /* One TRB after the end of the ring segment shouldn't return a
424 * pointer to the current ring (although it may be a part of a
427 mapped_ring
= dma_to_stream_ring(stream_info
, addr
);
428 if (mapped_ring
!= cur_ring
) {
429 /* One TRB before should also fail */
430 addr
= cur_ring
->first_seg
->dma
- trb_size
;
431 mapped_ring
= dma_to_stream_ring(stream_info
, addr
);
433 if (mapped_ring
== cur_ring
) {
434 xhci_warn(xhci
, "WARN: Bad DMA address 0x%08llx "
435 "mapped to valid stream ID %u; "
436 "mapped ring = %p\n",
437 (unsigned long long) addr
,
445 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
448 * Change an endpoint's internal structure so it supports stream IDs. The
449 * number of requested streams includes stream 0, which cannot be used by device
452 * The number of stream contexts in the stream context array may be bigger than
453 * the number of streams the driver wants to use. This is because the number of
454 * stream context array entries must be a power of two.
456 * We need a radix tree for mapping physical addresses of TRBs to which stream
457 * ID they belong to. We need to do this because the host controller won't tell
458 * us which stream ring the TRB came from. We could store the stream ID in an
459 * event data TRB, but that doesn't help us for the cancellation case, since the
460 * endpoint may stop before it reaches that event data TRB.
462 * The radix tree maps the upper portion of the TRB DMA address to a ring
463 * segment that has the same upper portion of DMA addresses. For example, say I
464 * have segments of size 1KB, that are always 64-byte aligned. A segment may
465 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
466 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
467 * pass the radix tree a key to get the right stream ID:
469 * 0x10c90fff >> 10 = 0x43243
470 * 0x10c912c0 >> 10 = 0x43244
471 * 0x10c91400 >> 10 = 0x43245
473 * Obviously, only those TRBs with DMA addresses that are within the segment
474 * will make the radix tree return the stream ID for that ring.
476 * Caveats for the radix tree:
478 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
479 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
480 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
481 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
482 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
483 * extended systems (where the DMA address can be bigger than 32-bits),
484 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
486 struct xhci_stream_info
*xhci_alloc_stream_info(struct xhci_hcd
*xhci
,
487 unsigned int num_stream_ctxs
,
488 unsigned int num_streams
, gfp_t mem_flags
)
490 struct xhci_stream_info
*stream_info
;
492 struct xhci_ring
*cur_ring
;
497 xhci_dbg(xhci
, "Allocating %u streams and %u "
498 "stream context array entries.\n",
499 num_streams
, num_stream_ctxs
);
500 if (xhci
->cmd_ring_reserved_trbs
== MAX_RSVD_CMD_TRBS
) {
501 xhci_dbg(xhci
, "Command ring has no reserved TRBs available\n");
504 xhci
->cmd_ring_reserved_trbs
++;
506 stream_info
= kzalloc(sizeof(struct xhci_stream_info
), mem_flags
);
510 stream_info
->num_streams
= num_streams
;
511 stream_info
->num_stream_ctxs
= num_stream_ctxs
;
513 /* Initialize the array of virtual pointers to stream rings. */
514 stream_info
->stream_rings
= kzalloc(
515 sizeof(struct xhci_ring
*)*num_streams
,
517 if (!stream_info
->stream_rings
)
520 /* Initialize the array of DMA addresses for stream rings for the HW. */
521 stream_info
->stream_ctx_array
= xhci_alloc_stream_ctx(xhci
,
522 num_stream_ctxs
, &stream_info
->ctx_array_dma
,
524 if (!stream_info
->stream_ctx_array
)
526 memset(stream_info
->stream_ctx_array
, 0,
527 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
);
529 /* Allocate everything needed to free the stream rings later */
530 stream_info
->free_streams_command
=
531 xhci_alloc_command(xhci
, true, true, mem_flags
);
532 if (!stream_info
->free_streams_command
)
535 INIT_RADIX_TREE(&stream_info
->trb_address_map
, GFP_ATOMIC
);
537 /* Allocate rings for all the streams that the driver will use,
538 * and add their segment DMA addresses to the radix tree.
539 * Stream 0 is reserved.
541 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
542 stream_info
->stream_rings
[cur_stream
] =
543 xhci_ring_alloc(xhci
, 1, true, mem_flags
);
544 cur_ring
= stream_info
->stream_rings
[cur_stream
];
547 cur_ring
->stream_id
= cur_stream
;
548 /* Set deq ptr, cycle bit, and stream context type */
549 addr
= cur_ring
->first_seg
->dma
|
550 SCT_FOR_CTX(SCT_PRI_TR
) |
551 cur_ring
->cycle_state
;
552 stream_info
->stream_ctx_array
[cur_stream
].stream_ring
=
554 xhci_dbg(xhci
, "Setting stream %d ring ptr to 0x%08llx\n",
555 cur_stream
, (unsigned long long) addr
);
557 key
= (unsigned long)
558 (cur_ring
->first_seg
->dma
>> SEGMENT_SHIFT
);
559 ret
= radix_tree_insert(&stream_info
->trb_address_map
,
562 xhci_ring_free(xhci
, cur_ring
);
563 stream_info
->stream_rings
[cur_stream
] = NULL
;
567 /* Leave the other unused stream ring pointers in the stream context
568 * array initialized to zero. This will cause the xHC to give us an
569 * error if the device asks for a stream ID we don't have setup (if it
570 * was any other way, the host controller would assume the ring is
571 * "empty" and wait forever for data to be queued to that stream ID).
574 /* Do a little test on the radix tree to make sure it returns the
577 if (xhci_test_radix_tree(xhci
, num_streams
, stream_info
))
584 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
585 cur_ring
= stream_info
->stream_rings
[cur_stream
];
587 addr
= cur_ring
->first_seg
->dma
;
588 radix_tree_delete(&stream_info
->trb_address_map
,
589 addr
>> SEGMENT_SHIFT
);
590 xhci_ring_free(xhci
, cur_ring
);
591 stream_info
->stream_rings
[cur_stream
] = NULL
;
594 xhci_free_command(xhci
, stream_info
->free_streams_command
);
596 kfree(stream_info
->stream_rings
);
600 xhci
->cmd_ring_reserved_trbs
--;
604 * Sets the MaxPStreams field and the Linear Stream Array field.
605 * Sets the dequeue pointer to the stream context array.
607 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
608 struct xhci_ep_ctx
*ep_ctx
,
609 struct xhci_stream_info
*stream_info
)
611 u32 max_primary_streams
;
612 /* MaxPStreams is the number of stream context array entries, not the
613 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
614 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
616 max_primary_streams
= fls(stream_info
->num_stream_ctxs
) - 2;
617 xhci_dbg(xhci
, "Setting number of stream ctx array entries to %u\n",
618 1 << (max_primary_streams
+ 1));
619 ep_ctx
->ep_info
&= cpu_to_le32(~EP_MAXPSTREAMS_MASK
);
620 ep_ctx
->ep_info
|= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams
)
622 ep_ctx
->deq
= cpu_to_le64(stream_info
->ctx_array_dma
);
626 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
627 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
628 * not at the beginning of the ring).
630 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
631 struct xhci_ep_ctx
*ep_ctx
,
632 struct xhci_virt_ep
*ep
)
635 ep_ctx
->ep_info
&= cpu_to_le32(~(EP_MAXPSTREAMS_MASK
| EP_HAS_LSA
));
636 addr
= xhci_trb_virt_to_dma(ep
->ring
->deq_seg
, ep
->ring
->dequeue
);
637 ep_ctx
->deq
= cpu_to_le64(addr
| ep
->ring
->cycle_state
);
640 /* Frees all stream contexts associated with the endpoint,
642 * Caller should fix the endpoint context streams fields.
644 void xhci_free_stream_info(struct xhci_hcd
*xhci
,
645 struct xhci_stream_info
*stream_info
)
648 struct xhci_ring
*cur_ring
;
654 for (cur_stream
= 1; cur_stream
< stream_info
->num_streams
;
656 cur_ring
= stream_info
->stream_rings
[cur_stream
];
658 addr
= cur_ring
->first_seg
->dma
;
659 radix_tree_delete(&stream_info
->trb_address_map
,
660 addr
>> SEGMENT_SHIFT
);
661 xhci_ring_free(xhci
, cur_ring
);
662 stream_info
->stream_rings
[cur_stream
] = NULL
;
665 xhci_free_command(xhci
, stream_info
->free_streams_command
);
666 xhci
->cmd_ring_reserved_trbs
--;
667 if (stream_info
->stream_ctx_array
)
668 xhci_free_stream_ctx(xhci
,
669 stream_info
->num_stream_ctxs
,
670 stream_info
->stream_ctx_array
,
671 stream_info
->ctx_array_dma
);
674 kfree(stream_info
->stream_rings
);
679 /***************** Device context manipulation *************************/
681 static void xhci_init_endpoint_timer(struct xhci_hcd
*xhci
,
682 struct xhci_virt_ep
*ep
)
684 init_timer(&ep
->stop_cmd_timer
);
685 ep
->stop_cmd_timer
.data
= (unsigned long) ep
;
686 ep
->stop_cmd_timer
.function
= xhci_stop_endpoint_command_watchdog
;
690 /* All the xhci_tds in the ring's TD list should be freed at this point */
691 void xhci_free_virt_device(struct xhci_hcd
*xhci
, int slot_id
)
693 struct xhci_virt_device
*dev
;
696 /* Slot ID 0 is reserved */
697 if (slot_id
== 0 || !xhci
->devs
[slot_id
])
700 dev
= xhci
->devs
[slot_id
];
701 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = 0;
705 for (i
= 0; i
< 31; ++i
) {
706 if (dev
->eps
[i
].ring
)
707 xhci_ring_free(xhci
, dev
->eps
[i
].ring
);
708 if (dev
->eps
[i
].stream_info
)
709 xhci_free_stream_info(xhci
,
710 dev
->eps
[i
].stream_info
);
713 if (dev
->ring_cache
) {
714 for (i
= 0; i
< dev
->num_rings_cached
; i
++)
715 xhci_ring_free(xhci
, dev
->ring_cache
[i
]);
716 kfree(dev
->ring_cache
);
720 xhci_free_container_ctx(xhci
, dev
->in_ctx
);
722 xhci_free_container_ctx(xhci
, dev
->out_ctx
);
724 kfree(xhci
->devs
[slot_id
]);
725 xhci
->devs
[slot_id
] = NULL
;
728 int xhci_alloc_virt_device(struct xhci_hcd
*xhci
, int slot_id
,
729 struct usb_device
*udev
, gfp_t flags
)
731 struct xhci_virt_device
*dev
;
734 /* Slot ID 0 is reserved */
735 if (slot_id
== 0 || xhci
->devs
[slot_id
]) {
736 xhci_warn(xhci
, "Bad Slot ID %d\n", slot_id
);
740 xhci
->devs
[slot_id
] = kzalloc(sizeof(*xhci
->devs
[slot_id
]), flags
);
741 if (!xhci
->devs
[slot_id
])
743 dev
= xhci
->devs
[slot_id
];
745 /* Allocate the (output) device context that will be used in the HC. */
746 dev
->out_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_DEVICE
, flags
);
750 xhci_dbg(xhci
, "Slot %d output ctx = 0x%llx (dma)\n", slot_id
,
751 (unsigned long long)dev
->out_ctx
->dma
);
753 /* Allocate the (input) device context for address device command */
754 dev
->in_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
, flags
);
758 xhci_dbg(xhci
, "Slot %d input ctx = 0x%llx (dma)\n", slot_id
,
759 (unsigned long long)dev
->in_ctx
->dma
);
761 /* Initialize the cancellation list and watchdog timers for each ep */
762 for (i
= 0; i
< 31; i
++) {
763 xhci_init_endpoint_timer(xhci
, &dev
->eps
[i
]);
764 INIT_LIST_HEAD(&dev
->eps
[i
].cancelled_td_list
);
767 /* Allocate endpoint 0 ring */
768 dev
->eps
[0].ring
= xhci_ring_alloc(xhci
, 1, true, flags
);
769 if (!dev
->eps
[0].ring
)
772 /* Allocate pointers to the ring cache */
773 dev
->ring_cache
= kzalloc(
774 sizeof(struct xhci_ring
*)*XHCI_MAX_RINGS_CACHED
,
776 if (!dev
->ring_cache
)
778 dev
->num_rings_cached
= 0;
780 init_completion(&dev
->cmd_completion
);
781 INIT_LIST_HEAD(&dev
->cmd_list
);
784 /* Point to output device context in dcbaa. */
785 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = cpu_to_le64(dev
->out_ctx
->dma
);
786 xhci_dbg(xhci
, "Set slot id %d dcbaa entry %p to 0x%llx\n",
788 &xhci
->dcbaa
->dev_context_ptrs
[slot_id
],
789 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[slot_id
]));
793 xhci_free_virt_device(xhci
, slot_id
);
797 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd
*xhci
,
798 struct usb_device
*udev
)
800 struct xhci_virt_device
*virt_dev
;
801 struct xhci_ep_ctx
*ep0_ctx
;
802 struct xhci_ring
*ep_ring
;
804 virt_dev
= xhci
->devs
[udev
->slot_id
];
805 ep0_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, 0);
806 ep_ring
= virt_dev
->eps
[0].ring
;
808 * FIXME we don't keep track of the dequeue pointer very well after a
809 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
810 * host to our enqueue pointer. This should only be called after a
811 * configured device has reset, so all control transfers should have
812 * been completed or cancelled before the reset.
814 ep0_ctx
->deq
= cpu_to_le64(xhci_trb_virt_to_dma(ep_ring
->enq_seg
,
816 | ep_ring
->cycle_state
);
820 * The xHCI roothub may have ports of differing speeds in any order in the port
821 * status registers. xhci->port_array provides an array of the port speed for
822 * each offset into the port status registers.
824 * The xHCI hardware wants to know the roothub port number that the USB device
825 * is attached to (or the roothub port its ancestor hub is attached to). All we
826 * know is the index of that port under either the USB 2.0 or the USB 3.0
827 * roothub, but that doesn't give us the real index into the HW port status
828 * registers. Scan through the xHCI roothub port array, looking for the Nth
829 * entry of the correct port speed. Return the port number of that entry.
831 static u32
xhci_find_real_port_number(struct xhci_hcd
*xhci
,
832 struct usb_device
*udev
)
834 struct usb_device
*top_dev
;
835 unsigned int num_similar_speed_ports
;
836 unsigned int faked_port_num
;
839 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
840 top_dev
= top_dev
->parent
)
841 /* Found device below root hub */;
842 faked_port_num
= top_dev
->portnum
;
843 for (i
= 0, num_similar_speed_ports
= 0;
844 i
< HCS_MAX_PORTS(xhci
->hcs_params1
); i
++) {
845 u8 port_speed
= xhci
->port_array
[i
];
848 * Skip ports that don't have known speeds, or have duplicate
849 * Extended Capabilities port speed entries.
851 if (port_speed
== 0 || port_speed
== DUPLICATE_ENTRY
)
855 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
856 * 1.1 ports are under the USB 2.0 hub. If the port speed
857 * matches the device speed, it's a similar speed port.
859 if ((port_speed
== 0x03) == (udev
->speed
== USB_SPEED_SUPER
))
860 num_similar_speed_ports
++;
861 if (num_similar_speed_ports
== faked_port_num
)
862 /* Roothub ports are numbered from 1 to N */
868 /* Setup an xHCI virtual device for a Set Address command */
869 int xhci_setup_addressable_virt_dev(struct xhci_hcd
*xhci
, struct usb_device
*udev
)
871 struct xhci_virt_device
*dev
;
872 struct xhci_ep_ctx
*ep0_ctx
;
873 struct xhci_slot_ctx
*slot_ctx
;
874 struct xhci_input_control_ctx
*ctrl_ctx
;
876 struct usb_device
*top_dev
;
878 dev
= xhci
->devs
[udev
->slot_id
];
879 /* Slot ID 0 is reserved */
880 if (udev
->slot_id
== 0 || !dev
) {
881 xhci_warn(xhci
, "Slot ID %d is not assigned to this device\n",
885 ep0_ctx
= xhci_get_ep_ctx(xhci
, dev
->in_ctx
, 0);
886 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, dev
->in_ctx
);
887 slot_ctx
= xhci_get_slot_ctx(xhci
, dev
->in_ctx
);
889 /* 2) New slot context and endpoint 0 context are valid*/
890 ctrl_ctx
->add_flags
= cpu_to_le32(SLOT_FLAG
| EP0_FLAG
);
892 /* 3) Only the control endpoint is valid - one endpoint context */
893 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1) | udev
->route
);
894 switch (udev
->speed
) {
895 case USB_SPEED_SUPER
:
896 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_SS
);
899 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_HS
);
902 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_FS
);
905 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_LS
);
907 case USB_SPEED_WIRELESS
:
908 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
912 /* Speed was set earlier, this shouldn't happen. */
915 /* Find the root hub port this device is under */
916 port_num
= xhci_find_real_port_number(xhci
, udev
);
919 slot_ctx
->dev_info2
|= cpu_to_le32(ROOT_HUB_PORT(port_num
));
920 /* Set the port number in the virtual_device to the faked port number */
921 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
922 top_dev
= top_dev
->parent
)
923 /* Found device below root hub */;
924 dev
->port
= top_dev
->portnum
;
925 xhci_dbg(xhci
, "Set root hub portnum to %d\n", port_num
);
926 xhci_dbg(xhci
, "Set fake root hub portnum to %d\n", dev
->port
);
928 /* Is this a LS/FS device under an external HS hub? */
929 if (udev
->tt
&& udev
->tt
->hub
->parent
) {
930 slot_ctx
->tt_info
= cpu_to_le32(udev
->tt
->hub
->slot_id
|
931 (udev
->ttport
<< 8));
933 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
935 xhci_dbg(xhci
, "udev->tt = %p\n", udev
->tt
);
936 xhci_dbg(xhci
, "udev->ttport = 0x%x\n", udev
->ttport
);
938 /* Step 4 - ring already allocated */
940 ep0_ctx
->ep_info2
= cpu_to_le32(EP_TYPE(CTRL_EP
));
942 * XXX: Not sure about wireless USB devices.
944 switch (udev
->speed
) {
945 case USB_SPEED_SUPER
:
946 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(512));
949 /* USB core guesses at a 64-byte max packet first for FS devices */
951 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(64));
954 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(8));
956 case USB_SPEED_WIRELESS
:
957 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
964 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
965 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
967 ep0_ctx
->deq
= cpu_to_le64(dev
->eps
[0].ring
->first_seg
->dma
|
968 dev
->eps
[0].ring
->cycle_state
);
970 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
976 * Convert interval expressed as 2^(bInterval - 1) == interval into
977 * straight exponent value 2^n == interval.
980 static unsigned int xhci_parse_exponent_interval(struct usb_device
*udev
,
981 struct usb_host_endpoint
*ep
)
983 unsigned int interval
;
985 interval
= clamp_val(ep
->desc
.bInterval
, 1, 16) - 1;
986 if (interval
!= ep
->desc
.bInterval
- 1)
988 "ep %#x - rounding interval to %d %sframes\n",
989 ep
->desc
.bEndpointAddress
,
991 udev
->speed
== USB_SPEED_FULL
? "" : "micro");
993 if (udev
->speed
== USB_SPEED_FULL
) {
995 * Full speed isoc endpoints specify interval in frames,
996 * not microframes. We are using microframes everywhere,
997 * so adjust accordingly.
999 interval
+= 3; /* 1 frame = 2^3 uframes */
1006 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1007 * microframes, rounded down to nearest power of 2.
1009 static unsigned int xhci_parse_frame_interval(struct usb_device
*udev
,
1010 struct usb_host_endpoint
*ep
)
1012 unsigned int interval
;
1014 interval
= fls(8 * ep
->desc
.bInterval
) - 1;
1015 interval
= clamp_val(interval
, 3, 10);
1016 if ((1 << interval
) != 8 * ep
->desc
.bInterval
)
1017 dev_warn(&udev
->dev
,
1018 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1019 ep
->desc
.bEndpointAddress
,
1021 8 * ep
->desc
.bInterval
);
1026 /* Return the polling or NAK interval.
1028 * The polling interval is expressed in "microframes". If xHCI's Interval field
1029 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1031 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1034 static unsigned int xhci_get_endpoint_interval(struct usb_device
*udev
,
1035 struct usb_host_endpoint
*ep
)
1037 unsigned int interval
= 0;
1039 switch (udev
->speed
) {
1040 case USB_SPEED_HIGH
:
1042 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1043 usb_endpoint_xfer_bulk(&ep
->desc
)) {
1044 interval
= ep
->desc
.bInterval
;
1047 /* Fall through - SS and HS isoc/int have same decoding */
1049 case USB_SPEED_SUPER
:
1050 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1051 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1052 interval
= xhci_parse_exponent_interval(udev
, ep
);
1056 case USB_SPEED_FULL
:
1057 if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1058 interval
= xhci_parse_exponent_interval(udev
, ep
);
1062 * Fall through for interrupt endpoint interval decoding
1063 * since it uses the same rules as low speed interrupt
1068 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1069 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1071 interval
= xhci_parse_frame_interval(udev
, ep
);
1078 return EP_INTERVAL(interval
);
1081 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1082 * High speed endpoint descriptors can define "the number of additional
1083 * transaction opportunities per microframe", but that goes in the Max Burst
1084 * endpoint context field.
1086 static u32
xhci_get_endpoint_mult(struct usb_device
*udev
,
1087 struct usb_host_endpoint
*ep
)
1089 if (udev
->speed
!= USB_SPEED_SUPER
||
1090 !usb_endpoint_xfer_isoc(&ep
->desc
))
1092 return ep
->ss_ep_comp
.bmAttributes
;
1095 static u32
xhci_get_endpoint_type(struct usb_device
*udev
,
1096 struct usb_host_endpoint
*ep
)
1101 in
= usb_endpoint_dir_in(&ep
->desc
);
1102 if (usb_endpoint_xfer_control(&ep
->desc
)) {
1103 type
= EP_TYPE(CTRL_EP
);
1104 } else if (usb_endpoint_xfer_bulk(&ep
->desc
)) {
1106 type
= EP_TYPE(BULK_IN_EP
);
1108 type
= EP_TYPE(BULK_OUT_EP
);
1109 } else if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1111 type
= EP_TYPE(ISOC_IN_EP
);
1113 type
= EP_TYPE(ISOC_OUT_EP
);
1114 } else if (usb_endpoint_xfer_int(&ep
->desc
)) {
1116 type
= EP_TYPE(INT_IN_EP
);
1118 type
= EP_TYPE(INT_OUT_EP
);
1125 /* Return the maximum endpoint service interval time (ESIT) payload.
1126 * Basically, this is the maxpacket size, multiplied by the burst size
1129 static u32
xhci_get_max_esit_payload(struct xhci_hcd
*xhci
,
1130 struct usb_device
*udev
,
1131 struct usb_host_endpoint
*ep
)
1136 /* Only applies for interrupt or isochronous endpoints */
1137 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1138 usb_endpoint_xfer_bulk(&ep
->desc
))
1141 if (udev
->speed
== USB_SPEED_SUPER
)
1142 return le16_to_cpu(ep
->ss_ep_comp
.wBytesPerInterval
);
1144 max_packet
= GET_MAX_PACKET(le16_to_cpu(ep
->desc
.wMaxPacketSize
));
1145 max_burst
= (le16_to_cpu(ep
->desc
.wMaxPacketSize
) & 0x1800) >> 11;
1146 /* A 0 in max burst means 1 transfer per ESIT */
1147 return max_packet
* (max_burst
+ 1);
1150 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1151 * Drivers will have to call usb_alloc_streams() to do that.
1153 int xhci_endpoint_init(struct xhci_hcd
*xhci
,
1154 struct xhci_virt_device
*virt_dev
,
1155 struct usb_device
*udev
,
1156 struct usb_host_endpoint
*ep
,
1159 unsigned int ep_index
;
1160 struct xhci_ep_ctx
*ep_ctx
;
1161 struct xhci_ring
*ep_ring
;
1162 unsigned int max_packet
;
1163 unsigned int max_burst
;
1164 u32 max_esit_payload
;
1166 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1167 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1169 /* Set up the endpoint ring */
1171 * Isochronous endpoint ring needs bigger size because one isoc URB
1172 * carries multiple packets and it will insert multiple tds to the
1174 * This should be replaced with dynamic ring resizing in the future.
1176 if (usb_endpoint_xfer_isoc(&ep
->desc
))
1177 virt_dev
->eps
[ep_index
].new_ring
=
1178 xhci_ring_alloc(xhci
, 8, true, mem_flags
);
1180 virt_dev
->eps
[ep_index
].new_ring
=
1181 xhci_ring_alloc(xhci
, 1, true, mem_flags
);
1182 if (!virt_dev
->eps
[ep_index
].new_ring
) {
1183 /* Attempt to use the ring cache */
1184 if (virt_dev
->num_rings_cached
== 0)
1186 virt_dev
->eps
[ep_index
].new_ring
=
1187 virt_dev
->ring_cache
[virt_dev
->num_rings_cached
];
1188 virt_dev
->ring_cache
[virt_dev
->num_rings_cached
] = NULL
;
1189 virt_dev
->num_rings_cached
--;
1190 xhci_reinit_cached_ring(xhci
, virt_dev
->eps
[ep_index
].new_ring
);
1192 virt_dev
->eps
[ep_index
].skip
= false;
1193 ep_ring
= virt_dev
->eps
[ep_index
].new_ring
;
1194 ep_ctx
->deq
= cpu_to_le64(ep_ring
->first_seg
->dma
| ep_ring
->cycle_state
);
1196 ep_ctx
->ep_info
= cpu_to_le32(xhci_get_endpoint_interval(udev
, ep
)
1197 | EP_MULT(xhci_get_endpoint_mult(udev
, ep
)));
1199 /* FIXME dig Mult and streams info out of ep companion desc */
1201 /* Allow 3 retries for everything but isoc;
1202 * CErr shall be set to 0 for Isoch endpoints.
1204 if (!usb_endpoint_xfer_isoc(&ep
->desc
))
1205 ep_ctx
->ep_info2
= cpu_to_le32(ERROR_COUNT(3));
1207 ep_ctx
->ep_info2
= cpu_to_le32(ERROR_COUNT(0));
1209 ep_ctx
->ep_info2
|= cpu_to_le32(xhci_get_endpoint_type(udev
, ep
));
1211 /* Set the max packet size and max burst */
1212 switch (udev
->speed
) {
1213 case USB_SPEED_SUPER
:
1214 max_packet
= le16_to_cpu(ep
->desc
.wMaxPacketSize
);
1215 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet
));
1216 /* dig out max burst from ep companion desc */
1217 max_packet
= ep
->ss_ep_comp
.bMaxBurst
;
1218 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(max_packet
));
1220 case USB_SPEED_HIGH
:
1221 /* bits 11:12 specify the number of additional transaction
1222 * opportunities per microframe (USB 2.0, section 9.6.6)
1224 if (usb_endpoint_xfer_isoc(&ep
->desc
) ||
1225 usb_endpoint_xfer_int(&ep
->desc
)) {
1226 max_burst
= (le16_to_cpu(ep
->desc
.wMaxPacketSize
)
1228 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(max_burst
));
1231 case USB_SPEED_FULL
:
1233 max_packet
= GET_MAX_PACKET(le16_to_cpu(ep
->desc
.wMaxPacketSize
));
1234 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet
));
1239 max_esit_payload
= xhci_get_max_esit_payload(xhci
, udev
, ep
);
1240 ep_ctx
->tx_info
= cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload
));
1243 * XXX no idea how to calculate the average TRB buffer length for bulk
1244 * endpoints, as the driver gives us no clue how big each scatter gather
1245 * list entry (or buffer) is going to be.
1247 * For isochronous and interrupt endpoints, we set it to the max
1248 * available, until we have new API in the USB core to allow drivers to
1249 * declare how much bandwidth they actually need.
1251 * Normally, it would be calculated by taking the total of the buffer
1252 * lengths in the TD and then dividing by the number of TRBs in a TD,
1253 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1254 * use Event Data TRBs, and we don't chain in a link TRB on short
1255 * transfers, we're basically dividing by 1.
1257 * xHCI 1.0 specification indicates that the Average TRB Length should
1258 * be set to 8 for control endpoints.
1260 if (usb_endpoint_xfer_control(&ep
->desc
) && xhci
->hci_version
== 0x100)
1261 ep_ctx
->tx_info
|= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1264 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload
));
1266 /* FIXME Debug endpoint context */
1270 void xhci_endpoint_zero(struct xhci_hcd
*xhci
,
1271 struct xhci_virt_device
*virt_dev
,
1272 struct usb_host_endpoint
*ep
)
1274 unsigned int ep_index
;
1275 struct xhci_ep_ctx
*ep_ctx
;
1277 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1278 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1280 ep_ctx
->ep_info
= 0;
1281 ep_ctx
->ep_info2
= 0;
1283 ep_ctx
->tx_info
= 0;
1284 /* Don't free the endpoint ring until the set interface or configuration
1289 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1290 * Useful when you want to change one particular aspect of the endpoint and then
1291 * issue a configure endpoint command.
1293 void xhci_endpoint_copy(struct xhci_hcd
*xhci
,
1294 struct xhci_container_ctx
*in_ctx
,
1295 struct xhci_container_ctx
*out_ctx
,
1296 unsigned int ep_index
)
1298 struct xhci_ep_ctx
*out_ep_ctx
;
1299 struct xhci_ep_ctx
*in_ep_ctx
;
1301 out_ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1302 in_ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1304 in_ep_ctx
->ep_info
= out_ep_ctx
->ep_info
;
1305 in_ep_ctx
->ep_info2
= out_ep_ctx
->ep_info2
;
1306 in_ep_ctx
->deq
= out_ep_ctx
->deq
;
1307 in_ep_ctx
->tx_info
= out_ep_ctx
->tx_info
;
1310 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1311 * Useful when you want to change one particular aspect of the endpoint and then
1312 * issue a configure endpoint command. Only the context entries field matters,
1313 * but we'll copy the whole thing anyway.
1315 void xhci_slot_copy(struct xhci_hcd
*xhci
,
1316 struct xhci_container_ctx
*in_ctx
,
1317 struct xhci_container_ctx
*out_ctx
)
1319 struct xhci_slot_ctx
*in_slot_ctx
;
1320 struct xhci_slot_ctx
*out_slot_ctx
;
1322 in_slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1323 out_slot_ctx
= xhci_get_slot_ctx(xhci
, out_ctx
);
1325 in_slot_ctx
->dev_info
= out_slot_ctx
->dev_info
;
1326 in_slot_ctx
->dev_info2
= out_slot_ctx
->dev_info2
;
1327 in_slot_ctx
->tt_info
= out_slot_ctx
->tt_info
;
1328 in_slot_ctx
->dev_state
= out_slot_ctx
->dev_state
;
1331 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1332 static int scratchpad_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
1335 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
1336 int num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1338 xhci_dbg(xhci
, "Allocating %d scratchpad buffers\n", num_sp
);
1343 xhci
->scratchpad
= kzalloc(sizeof(*xhci
->scratchpad
), flags
);
1344 if (!xhci
->scratchpad
)
1347 xhci
->scratchpad
->sp_array
=
1348 pci_alloc_consistent(to_pci_dev(dev
),
1349 num_sp
* sizeof(u64
),
1350 &xhci
->scratchpad
->sp_dma
);
1351 if (!xhci
->scratchpad
->sp_array
)
1354 xhci
->scratchpad
->sp_buffers
= kzalloc(sizeof(void *) * num_sp
, flags
);
1355 if (!xhci
->scratchpad
->sp_buffers
)
1358 xhci
->scratchpad
->sp_dma_buffers
=
1359 kzalloc(sizeof(dma_addr_t
) * num_sp
, flags
);
1361 if (!xhci
->scratchpad
->sp_dma_buffers
)
1364 xhci
->dcbaa
->dev_context_ptrs
[0] = cpu_to_le64(xhci
->scratchpad
->sp_dma
);
1365 for (i
= 0; i
< num_sp
; i
++) {
1367 void *buf
= pci_alloc_consistent(to_pci_dev(dev
),
1368 xhci
->page_size
, &dma
);
1372 xhci
->scratchpad
->sp_array
[i
] = dma
;
1373 xhci
->scratchpad
->sp_buffers
[i
] = buf
;
1374 xhci
->scratchpad
->sp_dma_buffers
[i
] = dma
;
1380 for (i
= i
- 1; i
>= 0; i
--) {
1381 pci_free_consistent(to_pci_dev(dev
), xhci
->page_size
,
1382 xhci
->scratchpad
->sp_buffers
[i
],
1383 xhci
->scratchpad
->sp_dma_buffers
[i
]);
1385 kfree(xhci
->scratchpad
->sp_dma_buffers
);
1388 kfree(xhci
->scratchpad
->sp_buffers
);
1391 pci_free_consistent(to_pci_dev(dev
), num_sp
* sizeof(u64
),
1392 xhci
->scratchpad
->sp_array
,
1393 xhci
->scratchpad
->sp_dma
);
1396 kfree(xhci
->scratchpad
);
1397 xhci
->scratchpad
= NULL
;
1403 static void scratchpad_free(struct xhci_hcd
*xhci
)
1407 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
1409 if (!xhci
->scratchpad
)
1412 num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1414 for (i
= 0; i
< num_sp
; i
++) {
1415 pci_free_consistent(pdev
, xhci
->page_size
,
1416 xhci
->scratchpad
->sp_buffers
[i
],
1417 xhci
->scratchpad
->sp_dma_buffers
[i
]);
1419 kfree(xhci
->scratchpad
->sp_dma_buffers
);
1420 kfree(xhci
->scratchpad
->sp_buffers
);
1421 pci_free_consistent(pdev
, num_sp
* sizeof(u64
),
1422 xhci
->scratchpad
->sp_array
,
1423 xhci
->scratchpad
->sp_dma
);
1424 kfree(xhci
->scratchpad
);
1425 xhci
->scratchpad
= NULL
;
1428 struct xhci_command
*xhci_alloc_command(struct xhci_hcd
*xhci
,
1429 bool allocate_in_ctx
, bool allocate_completion
,
1432 struct xhci_command
*command
;
1434 command
= kzalloc(sizeof(*command
), mem_flags
);
1438 if (allocate_in_ctx
) {
1440 xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
,
1442 if (!command
->in_ctx
) {
1448 if (allocate_completion
) {
1449 command
->completion
=
1450 kzalloc(sizeof(struct completion
), mem_flags
);
1451 if (!command
->completion
) {
1452 xhci_free_container_ctx(xhci
, command
->in_ctx
);
1456 init_completion(command
->completion
);
1459 command
->status
= 0;
1460 INIT_LIST_HEAD(&command
->cmd_list
);
1464 void xhci_urb_free_priv(struct xhci_hcd
*xhci
, struct urb_priv
*urb_priv
)
1471 last
= urb_priv
->length
- 1;
1474 for (i
= 0; i
<= last
; i
++)
1475 kfree(urb_priv
->td
[i
]);
1480 void xhci_free_command(struct xhci_hcd
*xhci
,
1481 struct xhci_command
*command
)
1483 xhci_free_container_ctx(xhci
,
1485 kfree(command
->completion
);
1489 void xhci_mem_cleanup(struct xhci_hcd
*xhci
)
1491 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
1495 /* Free the Event Ring Segment Table and the actual Event Ring */
1497 xhci_writel(xhci
, 0, &xhci
->ir_set
->erst_size
);
1498 xhci_write_64(xhci
, 0, &xhci
->ir_set
->erst_base
);
1499 xhci_write_64(xhci
, 0, &xhci
->ir_set
->erst_dequeue
);
1501 size
= sizeof(struct xhci_erst_entry
)*(xhci
->erst
.num_entries
);
1502 if (xhci
->erst
.entries
)
1503 pci_free_consistent(pdev
, size
,
1504 xhci
->erst
.entries
, xhci
->erst
.erst_dma_addr
);
1505 xhci
->erst
.entries
= NULL
;
1506 xhci_dbg(xhci
, "Freed ERST\n");
1507 if (xhci
->event_ring
)
1508 xhci_ring_free(xhci
, xhci
->event_ring
);
1509 xhci
->event_ring
= NULL
;
1510 xhci_dbg(xhci
, "Freed event ring\n");
1512 xhci_write_64(xhci
, 0, &xhci
->op_regs
->cmd_ring
);
1514 xhci_ring_free(xhci
, xhci
->cmd_ring
);
1515 xhci
->cmd_ring
= NULL
;
1516 xhci_dbg(xhci
, "Freed command ring\n");
1518 for (i
= 1; i
< MAX_HC_SLOTS
; ++i
)
1519 xhci_free_virt_device(xhci
, i
);
1521 if (xhci
->segment_pool
)
1522 dma_pool_destroy(xhci
->segment_pool
);
1523 xhci
->segment_pool
= NULL
;
1524 xhci_dbg(xhci
, "Freed segment pool\n");
1526 if (xhci
->device_pool
)
1527 dma_pool_destroy(xhci
->device_pool
);
1528 xhci
->device_pool
= NULL
;
1529 xhci_dbg(xhci
, "Freed device context pool\n");
1531 if (xhci
->small_streams_pool
)
1532 dma_pool_destroy(xhci
->small_streams_pool
);
1533 xhci
->small_streams_pool
= NULL
;
1534 xhci_dbg(xhci
, "Freed small stream array pool\n");
1536 if (xhci
->medium_streams_pool
)
1537 dma_pool_destroy(xhci
->medium_streams_pool
);
1538 xhci
->medium_streams_pool
= NULL
;
1539 xhci_dbg(xhci
, "Freed medium stream array pool\n");
1541 xhci_write_64(xhci
, 0, &xhci
->op_regs
->dcbaa_ptr
);
1543 pci_free_consistent(pdev
, sizeof(*xhci
->dcbaa
),
1544 xhci
->dcbaa
, xhci
->dcbaa
->dma
);
1547 scratchpad_free(xhci
);
1549 xhci
->num_usb2_ports
= 0;
1550 xhci
->num_usb3_ports
= 0;
1551 kfree(xhci
->usb2_ports
);
1552 kfree(xhci
->usb3_ports
);
1553 kfree(xhci
->port_array
);
1555 xhci
->page_size
= 0;
1556 xhci
->page_shift
= 0;
1557 xhci
->bus_state
[0].bus_suspended
= 0;
1558 xhci
->bus_state
[1].bus_suspended
= 0;
1561 static int xhci_test_trb_in_td(struct xhci_hcd
*xhci
,
1562 struct xhci_segment
*input_seg
,
1563 union xhci_trb
*start_trb
,
1564 union xhci_trb
*end_trb
,
1565 dma_addr_t input_dma
,
1566 struct xhci_segment
*result_seg
,
1567 char *test_name
, int test_number
)
1569 unsigned long long start_dma
;
1570 unsigned long long end_dma
;
1571 struct xhci_segment
*seg
;
1573 start_dma
= xhci_trb_virt_to_dma(input_seg
, start_trb
);
1574 end_dma
= xhci_trb_virt_to_dma(input_seg
, end_trb
);
1576 seg
= trb_in_td(input_seg
, start_trb
, end_trb
, input_dma
);
1577 if (seg
!= result_seg
) {
1578 xhci_warn(xhci
, "WARN: %s TRB math test %d failed!\n",
1579 test_name
, test_number
);
1580 xhci_warn(xhci
, "Tested TRB math w/ seg %p and "
1581 "input DMA 0x%llx\n",
1583 (unsigned long long) input_dma
);
1584 xhci_warn(xhci
, "starting TRB %p (0x%llx DMA), "
1585 "ending TRB %p (0x%llx DMA)\n",
1586 start_trb
, start_dma
,
1588 xhci_warn(xhci
, "Expected seg %p, got seg %p\n",
1595 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1596 static int xhci_check_trb_in_td_math(struct xhci_hcd
*xhci
, gfp_t mem_flags
)
1599 dma_addr_t input_dma
;
1600 struct xhci_segment
*result_seg
;
1601 } simple_test_vector
[] = {
1602 /* A zeroed DMA field should fail */
1604 /* One TRB before the ring start should fail */
1605 { xhci
->event_ring
->first_seg
->dma
- 16, NULL
},
1606 /* One byte before the ring start should fail */
1607 { xhci
->event_ring
->first_seg
->dma
- 1, NULL
},
1608 /* Starting TRB should succeed */
1609 { xhci
->event_ring
->first_seg
->dma
, xhci
->event_ring
->first_seg
},
1610 /* Ending TRB should succeed */
1611 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16,
1612 xhci
->event_ring
->first_seg
},
1613 /* One byte after the ring end should fail */
1614 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16 + 1, NULL
},
1615 /* One TRB after the ring end should fail */
1616 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
)*16, NULL
},
1617 /* An address of all ones should fail */
1618 { (dma_addr_t
) (~0), NULL
},
1621 struct xhci_segment
*input_seg
;
1622 union xhci_trb
*start_trb
;
1623 union xhci_trb
*end_trb
;
1624 dma_addr_t input_dma
;
1625 struct xhci_segment
*result_seg
;
1626 } complex_test_vector
[] = {
1627 /* Test feeding a valid DMA address from a different ring */
1628 { .input_seg
= xhci
->event_ring
->first_seg
,
1629 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1630 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1631 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1634 /* Test feeding a valid end TRB from a different ring */
1635 { .input_seg
= xhci
->event_ring
->first_seg
,
1636 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1637 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1638 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1641 /* Test feeding a valid start and end TRB from a different ring */
1642 { .input_seg
= xhci
->event_ring
->first_seg
,
1643 .start_trb
= xhci
->cmd_ring
->first_seg
->trbs
,
1644 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1645 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1648 /* TRB in this ring, but after this TD */
1649 { .input_seg
= xhci
->event_ring
->first_seg
,
1650 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[0],
1651 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1652 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 4*16,
1655 /* TRB in this ring, but before this TD */
1656 { .input_seg
= xhci
->event_ring
->first_seg
,
1657 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1658 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[6],
1659 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1662 /* TRB in this ring, but after this wrapped TD */
1663 { .input_seg
= xhci
->event_ring
->first_seg
,
1664 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1665 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1666 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1669 /* TRB in this ring, but before this wrapped TD */
1670 { .input_seg
= xhci
->event_ring
->first_seg
,
1671 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1672 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1673 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 4)*16,
1676 /* TRB not in this ring, and we have a wrapped TD */
1677 { .input_seg
= xhci
->event_ring
->first_seg
,
1678 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1679 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1680 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
+ 2*16,
1685 unsigned int num_tests
;
1688 num_tests
= ARRAY_SIZE(simple_test_vector
);
1689 for (i
= 0; i
< num_tests
; i
++) {
1690 ret
= xhci_test_trb_in_td(xhci
,
1691 xhci
->event_ring
->first_seg
,
1692 xhci
->event_ring
->first_seg
->trbs
,
1693 &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1694 simple_test_vector
[i
].input_dma
,
1695 simple_test_vector
[i
].result_seg
,
1701 num_tests
= ARRAY_SIZE(complex_test_vector
);
1702 for (i
= 0; i
< num_tests
; i
++) {
1703 ret
= xhci_test_trb_in_td(xhci
,
1704 complex_test_vector
[i
].input_seg
,
1705 complex_test_vector
[i
].start_trb
,
1706 complex_test_vector
[i
].end_trb
,
1707 complex_test_vector
[i
].input_dma
,
1708 complex_test_vector
[i
].result_seg
,
1713 xhci_dbg(xhci
, "TRB math tests passed.\n");
1717 static void xhci_set_hc_event_deq(struct xhci_hcd
*xhci
)
1722 deq
= xhci_trb_virt_to_dma(xhci
->event_ring
->deq_seg
,
1723 xhci
->event_ring
->dequeue
);
1724 if (deq
== 0 && !in_interrupt())
1725 xhci_warn(xhci
, "WARN something wrong with SW event ring "
1727 /* Update HC event ring dequeue pointer */
1728 temp
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
1729 temp
&= ERST_PTR_MASK
;
1730 /* Don't clear the EHB bit (which is RW1C) because
1731 * there might be more events to service.
1734 xhci_dbg(xhci
, "// Write event ring dequeue pointer, "
1735 "preserving EHB bit\n");
1736 xhci_write_64(xhci
, ((u64
) deq
& (u64
) ~ERST_PTR_MASK
) | temp
,
1737 &xhci
->ir_set
->erst_dequeue
);
1740 static void xhci_add_in_port(struct xhci_hcd
*xhci
, unsigned int num_ports
,
1741 __le32 __iomem
*addr
, u8 major_revision
)
1743 u32 temp
, port_offset
, port_count
;
1746 if (major_revision
> 0x03) {
1747 xhci_warn(xhci
, "Ignoring unknown port speed, "
1748 "Ext Cap %p, revision = 0x%x\n",
1749 addr
, major_revision
);
1750 /* Ignoring port protocol we can't understand. FIXME */
1754 /* Port offset and count in the third dword, see section 7.2 */
1755 temp
= xhci_readl(xhci
, addr
+ 2);
1756 port_offset
= XHCI_EXT_PORT_OFF(temp
);
1757 port_count
= XHCI_EXT_PORT_COUNT(temp
);
1758 xhci_dbg(xhci
, "Ext Cap %p, port offset = %u, "
1759 "count = %u, revision = 0x%x\n",
1760 addr
, port_offset
, port_count
, major_revision
);
1761 /* Port count includes the current port offset */
1762 if (port_offset
== 0 || (port_offset
+ port_count
- 1) > num_ports
)
1763 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1766 for (i
= port_offset
; i
< (port_offset
+ port_count
); i
++) {
1767 /* Duplicate entry. Ignore the port if the revisions differ. */
1768 if (xhci
->port_array
[i
] != 0) {
1769 xhci_warn(xhci
, "Duplicate port entry, Ext Cap %p,"
1770 " port %u\n", addr
, i
);
1771 xhci_warn(xhci
, "Port was marked as USB %u, "
1772 "duplicated as USB %u\n",
1773 xhci
->port_array
[i
], major_revision
);
1774 /* Only adjust the roothub port counts if we haven't
1775 * found a similar duplicate.
1777 if (xhci
->port_array
[i
] != major_revision
&&
1778 xhci
->port_array
[i
] != DUPLICATE_ENTRY
) {
1779 if (xhci
->port_array
[i
] == 0x03)
1780 xhci
->num_usb3_ports
--;
1782 xhci
->num_usb2_ports
--;
1783 xhci
->port_array
[i
] = DUPLICATE_ENTRY
;
1785 /* FIXME: Should we disable the port? */
1788 xhci
->port_array
[i
] = major_revision
;
1789 if (major_revision
== 0x03)
1790 xhci
->num_usb3_ports
++;
1792 xhci
->num_usb2_ports
++;
1794 /* FIXME: Should we disable ports not in the Extended Capabilities? */
1798 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1799 * specify what speeds each port is supposed to be. We can't count on the port
1800 * speed bits in the PORTSC register being correct until a device is connected,
1801 * but we need to set up the two fake roothubs with the correct number of USB
1802 * 3.0 and USB 2.0 ports at host controller initialization time.
1804 static int xhci_setup_port_arrays(struct xhci_hcd
*xhci
, gfp_t flags
)
1806 __le32 __iomem
*addr
;
1808 unsigned int num_ports
;
1811 addr
= &xhci
->cap_regs
->hcc_params
;
1812 offset
= XHCI_HCC_EXT_CAPS(xhci_readl(xhci
, addr
));
1814 xhci_err(xhci
, "No Extended Capability registers, "
1815 "unable to set up roothub.\n");
1819 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
1820 xhci
->port_array
= kzalloc(sizeof(*xhci
->port_array
)*num_ports
, flags
);
1821 if (!xhci
->port_array
)
1825 * For whatever reason, the first capability offset is from the
1826 * capability register base, not from the HCCPARAMS register.
1827 * See section 5.3.6 for offset calculation.
1829 addr
= &xhci
->cap_regs
->hc_capbase
+ offset
;
1833 cap_id
= xhci_readl(xhci
, addr
);
1834 if (XHCI_EXT_CAPS_ID(cap_id
) == XHCI_EXT_CAPS_PROTOCOL
)
1835 xhci_add_in_port(xhci
, num_ports
, addr
,
1836 (u8
) XHCI_EXT_PORT_MAJOR(cap_id
));
1837 offset
= XHCI_EXT_CAPS_NEXT(cap_id
);
1838 if (!offset
|| (xhci
->num_usb2_ports
+ xhci
->num_usb3_ports
)
1842 * Once you're into the Extended Capabilities, the offset is
1843 * always relative to the register holding the offset.
1848 if (xhci
->num_usb2_ports
== 0 && xhci
->num_usb3_ports
== 0) {
1849 xhci_warn(xhci
, "No ports on the roothubs?\n");
1852 xhci_dbg(xhci
, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1853 xhci
->num_usb2_ports
, xhci
->num_usb3_ports
);
1855 /* Place limits on the number of roothub ports so that the hub
1856 * descriptors aren't longer than the USB core will allocate.
1858 if (xhci
->num_usb3_ports
> 15) {
1859 xhci_dbg(xhci
, "Limiting USB 3.0 roothub ports to 15.\n");
1860 xhci
->num_usb3_ports
= 15;
1862 if (xhci
->num_usb2_ports
> USB_MAXCHILDREN
) {
1863 xhci_dbg(xhci
, "Limiting USB 2.0 roothub ports to %u.\n",
1865 xhci
->num_usb2_ports
= USB_MAXCHILDREN
;
1869 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1870 * Not sure how the USB core will handle a hub with no ports...
1872 if (xhci
->num_usb2_ports
) {
1873 xhci
->usb2_ports
= kmalloc(sizeof(*xhci
->usb2_ports
)*
1874 xhci
->num_usb2_ports
, flags
);
1875 if (!xhci
->usb2_ports
)
1879 for (i
= 0; i
< num_ports
; i
++) {
1880 if (xhci
->port_array
[i
] == 0x03 ||
1881 xhci
->port_array
[i
] == 0 ||
1882 xhci
->port_array
[i
] == DUPLICATE_ENTRY
)
1885 xhci
->usb2_ports
[port_index
] =
1886 &xhci
->op_regs
->port_status_base
+
1888 xhci_dbg(xhci
, "USB 2.0 port at index %u, "
1890 xhci
->usb2_ports
[port_index
]);
1892 if (port_index
== xhci
->num_usb2_ports
)
1896 if (xhci
->num_usb3_ports
) {
1897 xhci
->usb3_ports
= kmalloc(sizeof(*xhci
->usb3_ports
)*
1898 xhci
->num_usb3_ports
, flags
);
1899 if (!xhci
->usb3_ports
)
1903 for (i
= 0; i
< num_ports
; i
++)
1904 if (xhci
->port_array
[i
] == 0x03) {
1905 xhci
->usb3_ports
[port_index
] =
1906 &xhci
->op_regs
->port_status_base
+
1908 xhci_dbg(xhci
, "USB 3.0 port at index %u, "
1910 xhci
->usb3_ports
[port_index
]);
1912 if (port_index
== xhci
->num_usb3_ports
)
1919 int xhci_mem_init(struct xhci_hcd
*xhci
, gfp_t flags
)
1922 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
1923 unsigned int val
, val2
;
1925 struct xhci_segment
*seg
;
1929 page_size
= xhci_readl(xhci
, &xhci
->op_regs
->page_size
);
1930 xhci_dbg(xhci
, "Supported page size register = 0x%x\n", page_size
);
1931 for (i
= 0; i
< 16; i
++) {
1932 if ((0x1 & page_size
) != 0)
1934 page_size
= page_size
>> 1;
1937 xhci_dbg(xhci
, "Supported page size of %iK\n", (1 << (i
+12)) / 1024);
1939 xhci_warn(xhci
, "WARN: no supported page size\n");
1940 /* Use 4K pages, since that's common and the minimum the HC supports */
1941 xhci
->page_shift
= 12;
1942 xhci
->page_size
= 1 << xhci
->page_shift
;
1943 xhci_dbg(xhci
, "HCD page size set to %iK\n", xhci
->page_size
/ 1024);
1946 * Program the Number of Device Slots Enabled field in the CONFIG
1947 * register with the max value of slots the HC can handle.
1949 val
= HCS_MAX_SLOTS(xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params1
));
1950 xhci_dbg(xhci
, "// xHC can handle at most %d device slots.\n",
1951 (unsigned int) val
);
1952 val2
= xhci_readl(xhci
, &xhci
->op_regs
->config_reg
);
1953 val
|= (val2
& ~HCS_SLOTS_MASK
);
1954 xhci_dbg(xhci
, "// Setting Max device slots reg = 0x%x.\n",
1955 (unsigned int) val
);
1956 xhci_writel(xhci
, val
, &xhci
->op_regs
->config_reg
);
1959 * Section 5.4.8 - doorbell array must be
1960 * "physically contiguous and 64-byte (cache line) aligned".
1962 xhci
->dcbaa
= pci_alloc_consistent(to_pci_dev(dev
),
1963 sizeof(*xhci
->dcbaa
), &dma
);
1966 memset(xhci
->dcbaa
, 0, sizeof *(xhci
->dcbaa
));
1967 xhci
->dcbaa
->dma
= dma
;
1968 xhci_dbg(xhci
, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1969 (unsigned long long)xhci
->dcbaa
->dma
, xhci
->dcbaa
);
1970 xhci_write_64(xhci
, dma
, &xhci
->op_regs
->dcbaa_ptr
);
1973 * Initialize the ring segment pool. The ring must be a contiguous
1974 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
1975 * however, the command ring segment needs 64-byte aligned segments,
1976 * so we pick the greater alignment need.
1978 xhci
->segment_pool
= dma_pool_create("xHCI ring segments", dev
,
1979 SEGMENT_SIZE
, 64, xhci
->page_size
);
1981 /* See Table 46 and Note on Figure 55 */
1982 xhci
->device_pool
= dma_pool_create("xHCI input/output contexts", dev
,
1983 2112, 64, xhci
->page_size
);
1984 if (!xhci
->segment_pool
|| !xhci
->device_pool
)
1987 /* Linear stream context arrays don't have any boundary restrictions,
1988 * and only need to be 16-byte aligned.
1990 xhci
->small_streams_pool
=
1991 dma_pool_create("xHCI 256 byte stream ctx arrays",
1992 dev
, SMALL_STREAM_ARRAY_SIZE
, 16, 0);
1993 xhci
->medium_streams_pool
=
1994 dma_pool_create("xHCI 1KB stream ctx arrays",
1995 dev
, MEDIUM_STREAM_ARRAY_SIZE
, 16, 0);
1996 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1997 * will be allocated with pci_alloc_consistent()
2000 if (!xhci
->small_streams_pool
|| !xhci
->medium_streams_pool
)
2003 /* Set up the command ring to have one segments for now. */
2004 xhci
->cmd_ring
= xhci_ring_alloc(xhci
, 1, true, flags
);
2005 if (!xhci
->cmd_ring
)
2007 xhci_dbg(xhci
, "Allocated command ring at %p\n", xhci
->cmd_ring
);
2008 xhci_dbg(xhci
, "First segment DMA is 0x%llx\n",
2009 (unsigned long long)xhci
->cmd_ring
->first_seg
->dma
);
2011 /* Set the address in the Command Ring Control register */
2012 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
2013 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
2014 (xhci
->cmd_ring
->first_seg
->dma
& (u64
) ~CMD_RING_RSVD_BITS
) |
2015 xhci
->cmd_ring
->cycle_state
;
2016 xhci_dbg(xhci
, "// Setting command ring address to 0x%x\n", val
);
2017 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
2018 xhci_dbg_cmd_ptrs(xhci
);
2020 val
= xhci_readl(xhci
, &xhci
->cap_regs
->db_off
);
2022 xhci_dbg(xhci
, "// Doorbell array is located at offset 0x%x"
2023 " from cap regs base addr\n", val
);
2024 xhci
->dba
= (void __iomem
*) xhci
->cap_regs
+ val
;
2025 xhci_dbg_regs(xhci
);
2026 xhci_print_run_regs(xhci
);
2027 /* Set ir_set to interrupt register set 0 */
2028 xhci
->ir_set
= &xhci
->run_regs
->ir_set
[0];
2031 * Event ring setup: Allocate a normal ring, but also setup
2032 * the event ring segment table (ERST). Section 4.9.3.
2034 xhci_dbg(xhci
, "// Allocating event ring\n");
2035 xhci
->event_ring
= xhci_ring_alloc(xhci
, ERST_NUM_SEGS
, false, flags
);
2036 if (!xhci
->event_ring
)
2038 if (xhci_check_trb_in_td_math(xhci
, flags
) < 0)
2041 xhci
->erst
.entries
= pci_alloc_consistent(to_pci_dev(dev
),
2042 sizeof(struct xhci_erst_entry
)*ERST_NUM_SEGS
, &dma
);
2043 if (!xhci
->erst
.entries
)
2045 xhci_dbg(xhci
, "// Allocated event ring segment table at 0x%llx\n",
2046 (unsigned long long)dma
);
2048 memset(xhci
->erst
.entries
, 0, sizeof(struct xhci_erst_entry
)*ERST_NUM_SEGS
);
2049 xhci
->erst
.num_entries
= ERST_NUM_SEGS
;
2050 xhci
->erst
.erst_dma_addr
= dma
;
2051 xhci_dbg(xhci
, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2052 xhci
->erst
.num_entries
,
2054 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2056 /* set ring base address and size for each segment table entry */
2057 for (val
= 0, seg
= xhci
->event_ring
->first_seg
; val
< ERST_NUM_SEGS
; val
++) {
2058 struct xhci_erst_entry
*entry
= &xhci
->erst
.entries
[val
];
2059 entry
->seg_addr
= cpu_to_le64(seg
->dma
);
2060 entry
->seg_size
= cpu_to_le32(TRBS_PER_SEGMENT
);
2065 /* set ERST count with the number of entries in the segment table */
2066 val
= xhci_readl(xhci
, &xhci
->ir_set
->erst_size
);
2067 val
&= ERST_SIZE_MASK
;
2068 val
|= ERST_NUM_SEGS
;
2069 xhci_dbg(xhci
, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2071 xhci_writel(xhci
, val
, &xhci
->ir_set
->erst_size
);
2073 xhci_dbg(xhci
, "// Set ERST entries to point to event ring.\n");
2074 /* set the segment table base address */
2075 xhci_dbg(xhci
, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2076 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2077 val_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
2078 val_64
&= ERST_PTR_MASK
;
2079 val_64
|= (xhci
->erst
.erst_dma_addr
& (u64
) ~ERST_PTR_MASK
);
2080 xhci_write_64(xhci
, val_64
, &xhci
->ir_set
->erst_base
);
2082 /* Set the event ring dequeue address */
2083 xhci_set_hc_event_deq(xhci
);
2084 xhci_dbg(xhci
, "Wrote ERST address to ir_set 0.\n");
2085 xhci_print_ir_set(xhci
, 0);
2088 * XXX: Might need to set the Interrupter Moderation Register to
2089 * something other than the default (~1ms minimum between interrupts).
2090 * See section 5.5.1.2.
2092 init_completion(&xhci
->addr_dev
);
2093 for (i
= 0; i
< MAX_HC_SLOTS
; ++i
)
2094 xhci
->devs
[i
] = NULL
;
2095 for (i
= 0; i
< USB_MAXCHILDREN
; ++i
) {
2096 xhci
->bus_state
[0].resume_done
[i
] = 0;
2097 xhci
->bus_state
[1].resume_done
[i
] = 0;
2100 if (scratchpad_alloc(xhci
, flags
))
2102 if (xhci_setup_port_arrays(xhci
, flags
))
2108 xhci_warn(xhci
, "Couldn't initialize memory\n");
2109 xhci_mem_cleanup(xhci
);