2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd
*xhci
,
72 struct xhci_virt_device
*virt_dev
,
73 struct xhci_event_cmd
*event
);
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
79 dma_addr_t
xhci_trb_virt_to_dma(struct xhci_segment
*seg
,
82 unsigned long segment_offset
;
84 if (!seg
|| !trb
|| trb
< seg
->trbs
)
87 segment_offset
= trb
- seg
->trbs
;
88 if (segment_offset
> TRBS_PER_SEGMENT
)
90 return seg
->dma
+ (segment_offset
* sizeof(*trb
));
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
96 static bool last_trb_on_last_seg(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
97 struct xhci_segment
*seg
, union xhci_trb
*trb
)
99 if (ring
== xhci
->event_ring
)
100 return (trb
== &seg
->trbs
[TRBS_PER_SEGMENT
]) &&
101 (seg
->next
== xhci
->event_ring
->first_seg
);
103 return le32_to_cpu(trb
->link
.control
) & LINK_TOGGLE
;
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
110 static int last_trb(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
111 struct xhci_segment
*seg
, union xhci_trb
*trb
)
113 if (ring
== xhci
->event_ring
)
114 return trb
== &seg
->trbs
[TRBS_PER_SEGMENT
];
116 return TRB_TYPE_LINK_LE32(trb
->link
.control
);
119 static int enqueue_is_link_trb(struct xhci_ring
*ring
)
121 struct xhci_link_trb
*link
= &ring
->enqueue
->link
;
122 return TRB_TYPE_LINK_LE32(link
->control
);
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
129 static void next_trb(struct xhci_hcd
*xhci
,
130 struct xhci_ring
*ring
,
131 struct xhci_segment
**seg
,
132 union xhci_trb
**trb
)
134 if (last_trb(xhci
, ring
, *seg
, *trb
)) {
136 *trb
= ((*seg
)->trbs
);
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
146 static void inc_deq(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
, bool consumer
)
148 union xhci_trb
*next
= ++(ring
->dequeue
);
149 unsigned long long addr
;
152 /* Update the dequeue pointer further if that was a link TRB or we're at
153 * the end of an event ring segment (which doesn't have link TRBS)
155 while (last_trb(xhci
, ring
, ring
->deq_seg
, next
)) {
156 if (consumer
&& last_trb_on_last_seg(xhci
, ring
, ring
->deq_seg
, next
)) {
157 ring
->cycle_state
= (ring
->cycle_state
? 0 : 1);
159 xhci_dbg(xhci
, "Toggle cycle state for ring %p = %i\n",
161 (unsigned int) ring
->cycle_state
);
163 ring
->deq_seg
= ring
->deq_seg
->next
;
164 ring
->dequeue
= ring
->deq_seg
->trbs
;
165 next
= ring
->dequeue
;
167 addr
= (unsigned long long) xhci_trb_virt_to_dma(ring
->deq_seg
, ring
->dequeue
);
171 * See Cycle bit rules. SW is the consumer for the event ring only.
172 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
174 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
175 * chain bit is set), then set the chain bit in all the following link TRBs.
176 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
177 * have their chain bit cleared (so that each Link TRB is a separate TD).
179 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
180 * set, but other sections talk about dealing with the chain bit set. This was
181 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
182 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
184 * @more_trbs_coming: Will you enqueue more TRBs before calling
185 * prepare_transfer()?
187 static void inc_enq(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
188 bool consumer
, bool more_trbs_coming
)
191 union xhci_trb
*next
;
192 unsigned long long addr
;
194 chain
= le32_to_cpu(ring
->enqueue
->generic
.field
[3]) & TRB_CHAIN
;
195 next
= ++(ring
->enqueue
);
198 /* Update the dequeue pointer further if that was a link TRB or we're at
199 * the end of an event ring segment (which doesn't have link TRBS)
201 while (last_trb(xhci
, ring
, ring
->enq_seg
, next
)) {
203 if (ring
!= xhci
->event_ring
) {
205 * If the caller doesn't plan on enqueueing more
206 * TDs before ringing the doorbell, then we
207 * don't want to give the link TRB to the
208 * hardware just yet. We'll give the link TRB
209 * back in prepare_ring() just before we enqueue
210 * the TD at the top of the ring.
212 if (!chain
&& !more_trbs_coming
)
215 /* If we're not dealing with 0.95 hardware,
216 * carry over the chain bit of the previous TRB
217 * (which may mean the chain bit is cleared).
219 if (!xhci_link_trb_quirk(xhci
)) {
220 next
->link
.control
&=
221 cpu_to_le32(~TRB_CHAIN
);
222 next
->link
.control
|=
225 /* Give this link TRB to the hardware */
227 next
->link
.control
^= cpu_to_le32(TRB_CYCLE
);
229 /* Toggle the cycle bit after the last ring segment. */
230 if (last_trb_on_last_seg(xhci
, ring
, ring
->enq_seg
, next
)) {
231 ring
->cycle_state
= (ring
->cycle_state
? 0 : 1);
233 xhci_dbg(xhci
, "Toggle cycle state for ring %p = %i\n",
235 (unsigned int) ring
->cycle_state
);
238 ring
->enq_seg
= ring
->enq_seg
->next
;
239 ring
->enqueue
= ring
->enq_seg
->trbs
;
240 next
= ring
->enqueue
;
242 addr
= (unsigned long long) xhci_trb_virt_to_dma(ring
->enq_seg
, ring
->enqueue
);
246 * Check to see if there's room to enqueue num_trbs on the ring. See rules
248 * FIXME: this would be simpler and faster if we just kept track of the number
249 * of free TRBs in a ring.
251 static int room_on_ring(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
252 unsigned int num_trbs
)
255 union xhci_trb
*enq
= ring
->enqueue
;
256 struct xhci_segment
*enq_seg
= ring
->enq_seg
;
257 struct xhci_segment
*cur_seg
;
258 unsigned int left_on_ring
;
260 /* If we are currently pointing to a link TRB, advance the
261 * enqueue pointer before checking for space */
262 while (last_trb(xhci
, ring
, enq_seg
, enq
)) {
263 enq_seg
= enq_seg
->next
;
267 /* Check if ring is empty */
268 if (enq
== ring
->dequeue
) {
269 /* Can't use link trbs */
270 left_on_ring
= TRBS_PER_SEGMENT
- 1;
271 for (cur_seg
= enq_seg
->next
; cur_seg
!= enq_seg
;
272 cur_seg
= cur_seg
->next
)
273 left_on_ring
+= TRBS_PER_SEGMENT
- 1;
275 /* Always need one TRB free in the ring. */
277 if (num_trbs
> left_on_ring
) {
278 xhci_warn(xhci
, "Not enough room on ring; "
279 "need %u TRBs, %u TRBs left\n",
280 num_trbs
, left_on_ring
);
285 /* Make sure there's an extra empty TRB available */
286 for (i
= 0; i
<= num_trbs
; ++i
) {
287 if (enq
== ring
->dequeue
)
290 while (last_trb(xhci
, ring
, enq_seg
, enq
)) {
291 enq_seg
= enq_seg
->next
;
298 /* Ring the host controller doorbell after placing a command on the ring */
299 void xhci_ring_cmd_db(struct xhci_hcd
*xhci
)
301 xhci_dbg(xhci
, "// Ding dong!\n");
302 xhci_writel(xhci
, DB_VALUE_HOST
, &xhci
->dba
->doorbell
[0]);
303 /* Flush PCI posted writes */
304 xhci_readl(xhci
, &xhci
->dba
->doorbell
[0]);
307 void xhci_ring_ep_doorbell(struct xhci_hcd
*xhci
,
308 unsigned int slot_id
,
309 unsigned int ep_index
,
310 unsigned int stream_id
)
312 __le32 __iomem
*db_addr
= &xhci
->dba
->doorbell
[slot_id
];
313 struct xhci_virt_ep
*ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
314 unsigned int ep_state
= ep
->ep_state
;
316 /* Don't ring the doorbell for this endpoint if there are pending
317 * cancellations because we don't want to interrupt processing.
318 * We don't want to restart any stream rings if there's a set dequeue
319 * pointer command pending because the device can choose to start any
320 * stream once the endpoint is on the HW schedule.
321 * FIXME - check all the stream rings for pending cancellations.
323 if ((ep_state
& EP_HALT_PENDING
) || (ep_state
& SET_DEQ_PENDING
) ||
324 (ep_state
& EP_HALTED
))
326 xhci_writel(xhci
, DB_VALUE(ep_index
, stream_id
), db_addr
);
327 /* The CPU has better things to do at this point than wait for a
328 * write-posting flush. It'll get there soon enough.
332 /* Ring the doorbell for any rings with pending URBs */
333 static void ring_doorbell_for_active_rings(struct xhci_hcd
*xhci
,
334 unsigned int slot_id
,
335 unsigned int ep_index
)
337 unsigned int stream_id
;
338 struct xhci_virt_ep
*ep
;
340 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
342 /* A ring has pending URBs if its TD list is not empty */
343 if (!(ep
->ep_state
& EP_HAS_STREAMS
)) {
344 if (!(list_empty(&ep
->ring
->td_list
)))
345 xhci_ring_ep_doorbell(xhci
, slot_id
, ep_index
, 0);
349 for (stream_id
= 1; stream_id
< ep
->stream_info
->num_streams
;
351 struct xhci_stream_info
*stream_info
= ep
->stream_info
;
352 if (!list_empty(&stream_info
->stream_rings
[stream_id
]->td_list
))
353 xhci_ring_ep_doorbell(xhci
, slot_id
, ep_index
,
359 * Find the segment that trb is in. Start searching in start_seg.
360 * If we must move past a segment that has a link TRB with a toggle cycle state
361 * bit set, then we will toggle the value pointed at by cycle_state.
363 static struct xhci_segment
*find_trb_seg(
364 struct xhci_segment
*start_seg
,
365 union xhci_trb
*trb
, int *cycle_state
)
367 struct xhci_segment
*cur_seg
= start_seg
;
368 struct xhci_generic_trb
*generic_trb
;
370 while (cur_seg
->trbs
> trb
||
371 &cur_seg
->trbs
[TRBS_PER_SEGMENT
- 1] < trb
) {
372 generic_trb
= &cur_seg
->trbs
[TRBS_PER_SEGMENT
- 1].generic
;
373 if (generic_trb
->field
[3] & cpu_to_le32(LINK_TOGGLE
))
375 cur_seg
= cur_seg
->next
;
376 if (cur_seg
== start_seg
)
377 /* Looped over the entire list. Oops! */
384 static struct xhci_ring
*xhci_triad_to_transfer_ring(struct xhci_hcd
*xhci
,
385 unsigned int slot_id
, unsigned int ep_index
,
386 unsigned int stream_id
)
388 struct xhci_virt_ep
*ep
;
390 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
391 /* Common case: no streams */
392 if (!(ep
->ep_state
& EP_HAS_STREAMS
))
395 if (stream_id
== 0) {
397 "WARN: Slot ID %u, ep index %u has streams, "
398 "but URB has no stream ID.\n",
403 if (stream_id
< ep
->stream_info
->num_streams
)
404 return ep
->stream_info
->stream_rings
[stream_id
];
407 "WARN: Slot ID %u, ep index %u has "
408 "stream IDs 1 to %u allocated, "
409 "but stream ID %u is requested.\n",
411 ep
->stream_info
->num_streams
- 1,
416 /* Get the right ring for the given URB.
417 * If the endpoint supports streams, boundary check the URB's stream ID.
418 * If the endpoint doesn't support streams, return the singular endpoint ring.
420 static struct xhci_ring
*xhci_urb_to_transfer_ring(struct xhci_hcd
*xhci
,
423 return xhci_triad_to_transfer_ring(xhci
, urb
->dev
->slot_id
,
424 xhci_get_endpoint_index(&urb
->ep
->desc
), urb
->stream_id
);
428 * Move the xHC's endpoint ring dequeue pointer past cur_td.
429 * Record the new state of the xHC's endpoint ring dequeue segment,
430 * dequeue pointer, and new consumer cycle state in state.
431 * Update our internal representation of the ring's dequeue pointer.
433 * We do this in three jumps:
434 * - First we update our new ring state to be the same as when the xHC stopped.
435 * - Then we traverse the ring to find the segment that contains
436 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
437 * any link TRBs with the toggle cycle bit set.
438 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
439 * if we've moved it past a link TRB with the toggle cycle bit set.
441 * Some of the uses of xhci_generic_trb are grotty, but if they're done
442 * with correct __le32 accesses they should work fine. Only users of this are
445 void xhci_find_new_dequeue_state(struct xhci_hcd
*xhci
,
446 unsigned int slot_id
, unsigned int ep_index
,
447 unsigned int stream_id
, struct xhci_td
*cur_td
,
448 struct xhci_dequeue_state
*state
)
450 struct xhci_virt_device
*dev
= xhci
->devs
[slot_id
];
451 struct xhci_ring
*ep_ring
;
452 struct xhci_generic_trb
*trb
;
453 struct xhci_ep_ctx
*ep_ctx
;
456 ep_ring
= xhci_triad_to_transfer_ring(xhci
, slot_id
,
457 ep_index
, stream_id
);
459 xhci_warn(xhci
, "WARN can't find new dequeue state "
460 "for invalid stream ID %u.\n",
464 state
->new_cycle_state
= 0;
465 xhci_dbg(xhci
, "Finding segment containing stopped TRB.\n");
466 state
->new_deq_seg
= find_trb_seg(cur_td
->start_seg
,
467 dev
->eps
[ep_index
].stopped_trb
,
468 &state
->new_cycle_state
);
469 if (!state
->new_deq_seg
) {
474 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
475 xhci_dbg(xhci
, "Finding endpoint context\n");
476 ep_ctx
= xhci_get_ep_ctx(xhci
, dev
->out_ctx
, ep_index
);
477 state
->new_cycle_state
= 0x1 & le64_to_cpu(ep_ctx
->deq
);
479 state
->new_deq_ptr
= cur_td
->last_trb
;
480 xhci_dbg(xhci
, "Finding segment containing last TRB in TD.\n");
481 state
->new_deq_seg
= find_trb_seg(state
->new_deq_seg
,
483 &state
->new_cycle_state
);
484 if (!state
->new_deq_seg
) {
489 trb
= &state
->new_deq_ptr
->generic
;
490 if (TRB_TYPE_LINK_LE32(trb
->field
[3]) &&
491 (trb
->field
[3] & cpu_to_le32(LINK_TOGGLE
)))
492 state
->new_cycle_state
^= 0x1;
493 next_trb(xhci
, ep_ring
, &state
->new_deq_seg
, &state
->new_deq_ptr
);
496 * If there is only one segment in a ring, find_trb_seg()'s while loop
497 * will not run, and it will return before it has a chance to see if it
498 * needs to toggle the cycle bit. It can't tell if the stalled transfer
499 * ended just before the link TRB on a one-segment ring, or if the TD
500 * wrapped around the top of the ring, because it doesn't have the TD in
501 * question. Look for the one-segment case where stalled TRB's address
502 * is greater than the new dequeue pointer address.
504 if (ep_ring
->first_seg
== ep_ring
->first_seg
->next
&&
505 state
->new_deq_ptr
< dev
->eps
[ep_index
].stopped_trb
)
506 state
->new_cycle_state
^= 0x1;
507 xhci_dbg(xhci
, "Cycle state = 0x%x\n", state
->new_cycle_state
);
509 /* Don't update the ring cycle state for the producer (us). */
510 xhci_dbg(xhci
, "New dequeue segment = %p (virtual)\n",
512 addr
= xhci_trb_virt_to_dma(state
->new_deq_seg
, state
->new_deq_ptr
);
513 xhci_dbg(xhci
, "New dequeue pointer = 0x%llx (DMA)\n",
514 (unsigned long long) addr
);
517 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
518 * (The last TRB actually points to the ring enqueue pointer, which is not part
519 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
521 static void td_to_noop(struct xhci_hcd
*xhci
, struct xhci_ring
*ep_ring
,
522 struct xhci_td
*cur_td
, bool flip_cycle
)
524 struct xhci_segment
*cur_seg
;
525 union xhci_trb
*cur_trb
;
527 for (cur_seg
= cur_td
->start_seg
, cur_trb
= cur_td
->first_trb
;
529 next_trb(xhci
, ep_ring
, &cur_seg
, &cur_trb
)) {
530 if (TRB_TYPE_LINK_LE32(cur_trb
->generic
.field
[3])) {
531 /* Unchain any chained Link TRBs, but
532 * leave the pointers intact.
534 cur_trb
->generic
.field
[3] &= cpu_to_le32(~TRB_CHAIN
);
535 /* Flip the cycle bit (link TRBs can't be the first
539 cur_trb
->generic
.field
[3] ^=
540 cpu_to_le32(TRB_CYCLE
);
541 xhci_dbg(xhci
, "Cancel (unchain) link TRB\n");
542 xhci_dbg(xhci
, "Address = %p (0x%llx dma); "
543 "in seg %p (0x%llx dma)\n",
545 (unsigned long long)xhci_trb_virt_to_dma(cur_seg
, cur_trb
),
547 (unsigned long long)cur_seg
->dma
);
549 cur_trb
->generic
.field
[0] = 0;
550 cur_trb
->generic
.field
[1] = 0;
551 cur_trb
->generic
.field
[2] = 0;
552 /* Preserve only the cycle bit of this TRB */
553 cur_trb
->generic
.field
[3] &= cpu_to_le32(TRB_CYCLE
);
554 /* Flip the cycle bit except on the first or last TRB */
555 if (flip_cycle
&& cur_trb
!= cur_td
->first_trb
&&
556 cur_trb
!= cur_td
->last_trb
)
557 cur_trb
->generic
.field
[3] ^=
558 cpu_to_le32(TRB_CYCLE
);
559 cur_trb
->generic
.field
[3] |= cpu_to_le32(
560 TRB_TYPE(TRB_TR_NOOP
));
561 xhci_dbg(xhci
, "Cancel TRB %p (0x%llx dma) "
562 "in seg %p (0x%llx dma)\n",
564 (unsigned long long)xhci_trb_virt_to_dma(cur_seg
, cur_trb
),
566 (unsigned long long)cur_seg
->dma
);
568 if (cur_trb
== cur_td
->last_trb
)
573 static int queue_set_tr_deq(struct xhci_hcd
*xhci
, int slot_id
,
574 unsigned int ep_index
, unsigned int stream_id
,
575 struct xhci_segment
*deq_seg
,
576 union xhci_trb
*deq_ptr
, u32 cycle_state
);
578 void xhci_queue_new_dequeue_state(struct xhci_hcd
*xhci
,
579 unsigned int slot_id
, unsigned int ep_index
,
580 unsigned int stream_id
,
581 struct xhci_dequeue_state
*deq_state
)
583 struct xhci_virt_ep
*ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
585 xhci_dbg(xhci
, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
586 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
587 deq_state
->new_deq_seg
,
588 (unsigned long long)deq_state
->new_deq_seg
->dma
,
589 deq_state
->new_deq_ptr
,
590 (unsigned long long)xhci_trb_virt_to_dma(deq_state
->new_deq_seg
, deq_state
->new_deq_ptr
),
591 deq_state
->new_cycle_state
);
592 queue_set_tr_deq(xhci
, slot_id
, ep_index
, stream_id
,
593 deq_state
->new_deq_seg
,
594 deq_state
->new_deq_ptr
,
595 (u32
) deq_state
->new_cycle_state
);
596 /* Stop the TD queueing code from ringing the doorbell until
597 * this command completes. The HC won't set the dequeue pointer
598 * if the ring is running, and ringing the doorbell starts the
601 ep
->ep_state
|= SET_DEQ_PENDING
;
604 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd
*xhci
,
605 struct xhci_virt_ep
*ep
)
607 ep
->ep_state
&= ~EP_HALT_PENDING
;
608 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
609 * timer is running on another CPU, we don't decrement stop_cmds_pending
610 * (since we didn't successfully stop the watchdog timer).
612 if (del_timer(&ep
->stop_cmd_timer
))
613 ep
->stop_cmds_pending
--;
616 /* Must be called with xhci->lock held in interrupt context */
617 static void xhci_giveback_urb_in_irq(struct xhci_hcd
*xhci
,
618 struct xhci_td
*cur_td
, int status
, char *adjective
)
622 struct urb_priv
*urb_priv
;
625 urb_priv
= urb
->hcpriv
;
627 hcd
= bus_to_hcd(urb
->dev
->bus
);
629 /* Only giveback urb when this is the last td in urb */
630 if (urb_priv
->td_cnt
== urb_priv
->length
) {
631 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
) {
632 xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
--;
633 if (xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
== 0) {
634 if (xhci
->quirks
& XHCI_AMD_PLL_FIX
)
635 usb_amd_quirk_pll_enable();
638 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
640 spin_unlock(&xhci
->lock
);
641 usb_hcd_giveback_urb(hcd
, urb
, status
);
642 xhci_urb_free_priv(xhci
, urb_priv
);
643 spin_lock(&xhci
->lock
);
648 * When we get a command completion for a Stop Endpoint Command, we need to
649 * unlink any cancelled TDs from the ring. There are two ways to do that:
651 * 1. If the HW was in the middle of processing the TD that needs to be
652 * cancelled, then we must move the ring's dequeue pointer past the last TRB
653 * in the TD with a Set Dequeue Pointer Command.
654 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
655 * bit cleared) so that the HW will skip over them.
657 static void handle_stopped_endpoint(struct xhci_hcd
*xhci
,
658 union xhci_trb
*trb
, struct xhci_event_cmd
*event
)
660 unsigned int slot_id
;
661 unsigned int ep_index
;
662 struct xhci_virt_device
*virt_dev
;
663 struct xhci_ring
*ep_ring
;
664 struct xhci_virt_ep
*ep
;
665 struct list_head
*entry
;
666 struct xhci_td
*cur_td
= NULL
;
667 struct xhci_td
*last_unlinked_td
;
669 struct xhci_dequeue_state deq_state
;
671 if (unlikely(TRB_TO_SUSPEND_PORT(
672 le32_to_cpu(xhci
->cmd_ring
->dequeue
->generic
.field
[3])))) {
673 slot_id
= TRB_TO_SLOT_ID(
674 le32_to_cpu(xhci
->cmd_ring
->dequeue
->generic
.field
[3]));
675 virt_dev
= xhci
->devs
[slot_id
];
677 handle_cmd_in_cmd_wait_list(xhci
, virt_dev
,
680 xhci_warn(xhci
, "Stop endpoint command "
681 "completion for disabled slot %u\n",
686 memset(&deq_state
, 0, sizeof(deq_state
));
687 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(trb
->generic
.field
[3]));
688 ep_index
= TRB_TO_EP_INDEX(le32_to_cpu(trb
->generic
.field
[3]));
689 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
691 if (list_empty(&ep
->cancelled_td_list
)) {
692 xhci_stop_watchdog_timer_in_irq(xhci
, ep
);
693 ep
->stopped_td
= NULL
;
694 ep
->stopped_trb
= NULL
;
695 ring_doorbell_for_active_rings(xhci
, slot_id
, ep_index
);
699 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
700 * We have the xHCI lock, so nothing can modify this list until we drop
701 * it. We're also in the event handler, so we can't get re-interrupted
702 * if another Stop Endpoint command completes
704 list_for_each(entry
, &ep
->cancelled_td_list
) {
705 cur_td
= list_entry(entry
, struct xhci_td
, cancelled_td_list
);
706 xhci_dbg(xhci
, "Cancelling TD starting at %p, 0x%llx (dma).\n",
708 (unsigned long long)xhci_trb_virt_to_dma(cur_td
->start_seg
, cur_td
->first_trb
));
709 ep_ring
= xhci_urb_to_transfer_ring(xhci
, cur_td
->urb
);
711 /* This shouldn't happen unless a driver is mucking
712 * with the stream ID after submission. This will
713 * leave the TD on the hardware ring, and the hardware
714 * will try to execute it, and may access a buffer
715 * that has already been freed. In the best case, the
716 * hardware will execute it, and the event handler will
717 * ignore the completion event for that TD, since it was
718 * removed from the td_list for that endpoint. In
719 * short, don't muck with the stream ID after
722 xhci_warn(xhci
, "WARN Cancelled URB %p "
723 "has invalid stream ID %u.\n",
725 cur_td
->urb
->stream_id
);
726 goto remove_finished_td
;
729 * If we stopped on the TD we need to cancel, then we have to
730 * move the xHC endpoint ring dequeue pointer past this TD.
732 if (cur_td
== ep
->stopped_td
)
733 xhci_find_new_dequeue_state(xhci
, slot_id
, ep_index
,
734 cur_td
->urb
->stream_id
,
737 td_to_noop(xhci
, ep_ring
, cur_td
, false);
740 * The event handler won't see a completion for this TD anymore,
741 * so remove it from the endpoint ring's TD list. Keep it in
742 * the cancelled TD list for URB completion later.
744 list_del_init(&cur_td
->td_list
);
746 last_unlinked_td
= cur_td
;
747 xhci_stop_watchdog_timer_in_irq(xhci
, ep
);
749 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
750 if (deq_state
.new_deq_ptr
&& deq_state
.new_deq_seg
) {
751 xhci_queue_new_dequeue_state(xhci
,
753 ep
->stopped_td
->urb
->stream_id
,
755 xhci_ring_cmd_db(xhci
);
757 /* Otherwise ring the doorbell(s) to restart queued transfers */
758 ring_doorbell_for_active_rings(xhci
, slot_id
, ep_index
);
760 ep
->stopped_td
= NULL
;
761 ep
->stopped_trb
= NULL
;
764 * Drop the lock and complete the URBs in the cancelled TD list.
765 * New TDs to be cancelled might be added to the end of the list before
766 * we can complete all the URBs for the TDs we already unlinked.
767 * So stop when we've completed the URB for the last TD we unlinked.
770 cur_td
= list_entry(ep
->cancelled_td_list
.next
,
771 struct xhci_td
, cancelled_td_list
);
772 list_del_init(&cur_td
->cancelled_td_list
);
774 /* Clean up the cancelled URB */
775 /* Doesn't matter what we pass for status, since the core will
776 * just overwrite it (because the URB has been unlinked).
778 xhci_giveback_urb_in_irq(xhci
, cur_td
, 0, "cancelled");
780 /* Stop processing the cancelled list if the watchdog timer is
783 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
785 } while (cur_td
!= last_unlinked_td
);
787 /* Return to the event handler with xhci->lock re-acquired */
790 /* Watchdog timer function for when a stop endpoint command fails to complete.
791 * In this case, we assume the host controller is broken or dying or dead. The
792 * host may still be completing some other events, so we have to be careful to
793 * let the event ring handler and the URB dequeueing/enqueueing functions know
794 * through xhci->state.
796 * The timer may also fire if the host takes a very long time to respond to the
797 * command, and the stop endpoint command completion handler cannot delete the
798 * timer before the timer function is called. Another endpoint cancellation may
799 * sneak in before the timer function can grab the lock, and that may queue
800 * another stop endpoint command and add the timer back. So we cannot use a
801 * simple flag to say whether there is a pending stop endpoint command for a
802 * particular endpoint.
804 * Instead we use a combination of that flag and a counter for the number of
805 * pending stop endpoint commands. If the timer is the tail end of the last
806 * stop endpoint command, and the endpoint's command is still pending, we assume
809 void xhci_stop_endpoint_command_watchdog(unsigned long arg
)
811 struct xhci_hcd
*xhci
;
812 struct xhci_virt_ep
*ep
;
813 struct xhci_virt_ep
*temp_ep
;
814 struct xhci_ring
*ring
;
815 struct xhci_td
*cur_td
;
818 ep
= (struct xhci_virt_ep
*) arg
;
821 spin_lock(&xhci
->lock
);
823 ep
->stop_cmds_pending
--;
824 if (xhci
->xhc_state
& XHCI_STATE_DYING
) {
825 xhci_dbg(xhci
, "Stop EP timer ran, but another timer marked "
826 "xHCI as DYING, exiting.\n");
827 spin_unlock(&xhci
->lock
);
830 if (!(ep
->stop_cmds_pending
== 0 && (ep
->ep_state
& EP_HALT_PENDING
))) {
831 xhci_dbg(xhci
, "Stop EP timer ran, but no command pending, "
833 spin_unlock(&xhci
->lock
);
837 xhci_warn(xhci
, "xHCI host not responding to stop endpoint command.\n");
838 xhci_warn(xhci
, "Assuming host is dying, halting host.\n");
839 /* Oops, HC is dead or dying or at least not responding to the stop
842 xhci
->xhc_state
|= XHCI_STATE_DYING
;
843 /* Disable interrupts from the host controller and start halting it */
845 spin_unlock(&xhci
->lock
);
847 ret
= xhci_halt(xhci
);
849 spin_lock(&xhci
->lock
);
851 /* This is bad; the host is not responding to commands and it's
852 * not allowing itself to be halted. At least interrupts are
853 * disabled. If we call usb_hc_died(), it will attempt to
854 * disconnect all device drivers under this host. Those
855 * disconnect() methods will wait for all URBs to be unlinked,
856 * so we must complete them.
858 xhci_warn(xhci
, "Non-responsive xHCI host is not halting.\n");
859 xhci_warn(xhci
, "Completing active URBs anyway.\n");
860 /* We could turn all TDs on the rings to no-ops. This won't
861 * help if the host has cached part of the ring, and is slow if
862 * we want to preserve the cycle bit. Skip it and hope the host
863 * doesn't touch the memory.
866 for (i
= 0; i
< MAX_HC_SLOTS
; i
++) {
869 for (j
= 0; j
< 31; j
++) {
870 temp_ep
= &xhci
->devs
[i
]->eps
[j
];
871 ring
= temp_ep
->ring
;
874 xhci_dbg(xhci
, "Killing URBs for slot ID %u, "
875 "ep index %u\n", i
, j
);
876 while (!list_empty(&ring
->td_list
)) {
877 cur_td
= list_first_entry(&ring
->td_list
,
880 list_del_init(&cur_td
->td_list
);
881 if (!list_empty(&cur_td
->cancelled_td_list
))
882 list_del_init(&cur_td
->cancelled_td_list
);
883 xhci_giveback_urb_in_irq(xhci
, cur_td
,
884 -ESHUTDOWN
, "killed");
886 while (!list_empty(&temp_ep
->cancelled_td_list
)) {
887 cur_td
= list_first_entry(
888 &temp_ep
->cancelled_td_list
,
891 list_del_init(&cur_td
->cancelled_td_list
);
892 xhci_giveback_urb_in_irq(xhci
, cur_td
,
893 -ESHUTDOWN
, "killed");
897 spin_unlock(&xhci
->lock
);
898 xhci_dbg(xhci
, "Calling usb_hc_died()\n");
899 usb_hc_died(xhci_to_hcd(xhci
)->primary_hcd
);
900 xhci_dbg(xhci
, "xHCI host controller is dead.\n");
904 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
905 * we need to clear the set deq pending flag in the endpoint ring state, so that
906 * the TD queueing code can ring the doorbell again. We also need to ring the
907 * endpoint doorbell to restart the ring, but only if there aren't more
908 * cancellations pending.
910 static void handle_set_deq_completion(struct xhci_hcd
*xhci
,
911 struct xhci_event_cmd
*event
,
914 unsigned int slot_id
;
915 unsigned int ep_index
;
916 unsigned int stream_id
;
917 struct xhci_ring
*ep_ring
;
918 struct xhci_virt_device
*dev
;
919 struct xhci_ep_ctx
*ep_ctx
;
920 struct xhci_slot_ctx
*slot_ctx
;
922 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(trb
->generic
.field
[3]));
923 ep_index
= TRB_TO_EP_INDEX(le32_to_cpu(trb
->generic
.field
[3]));
924 stream_id
= TRB_TO_STREAM_ID(le32_to_cpu(trb
->generic
.field
[2]));
925 dev
= xhci
->devs
[slot_id
];
927 ep_ring
= xhci_stream_id_to_ring(dev
, ep_index
, stream_id
);
929 xhci_warn(xhci
, "WARN Set TR deq ptr command for "
930 "freed stream ID %u\n",
932 /* XXX: Harmless??? */
933 dev
->eps
[ep_index
].ep_state
&= ~SET_DEQ_PENDING
;
937 ep_ctx
= xhci_get_ep_ctx(xhci
, dev
->out_ctx
, ep_index
);
938 slot_ctx
= xhci_get_slot_ctx(xhci
, dev
->out_ctx
);
940 if (GET_COMP_CODE(le32_to_cpu(event
->status
)) != COMP_SUCCESS
) {
941 unsigned int ep_state
;
942 unsigned int slot_state
;
944 switch (GET_COMP_CODE(le32_to_cpu(event
->status
))) {
946 xhci_warn(xhci
, "WARN Set TR Deq Ptr cmd invalid because "
947 "of stream ID configuration\n");
950 xhci_warn(xhci
, "WARN Set TR Deq Ptr cmd failed due "
951 "to incorrect slot or ep state.\n");
952 ep_state
= le32_to_cpu(ep_ctx
->ep_info
);
953 ep_state
&= EP_STATE_MASK
;
954 slot_state
= le32_to_cpu(slot_ctx
->dev_state
);
955 slot_state
= GET_SLOT_STATE(slot_state
);
956 xhci_dbg(xhci
, "Slot state = %u, EP state = %u\n",
957 slot_state
, ep_state
);
960 xhci_warn(xhci
, "WARN Set TR Deq Ptr cmd failed because "
961 "slot %u was not enabled.\n", slot_id
);
964 xhci_warn(xhci
, "WARN Set TR Deq Ptr cmd with unknown "
965 "completion code of %u.\n",
966 GET_COMP_CODE(le32_to_cpu(event
->status
)));
969 /* OK what do we do now? The endpoint state is hosed, and we
970 * should never get to this point if the synchronization between
971 * queueing, and endpoint state are correct. This might happen
972 * if the device gets disconnected after we've finished
973 * cancelling URBs, which might not be an error...
976 xhci_dbg(xhci
, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
977 le64_to_cpu(ep_ctx
->deq
));
978 if (xhci_trb_virt_to_dma(dev
->eps
[ep_index
].queued_deq_seg
,
979 dev
->eps
[ep_index
].queued_deq_ptr
) ==
980 (le64_to_cpu(ep_ctx
->deq
) & ~(EP_CTX_CYCLE_MASK
))) {
981 /* Update the ring's dequeue segment and dequeue pointer
982 * to reflect the new position.
984 ep_ring
->deq_seg
= dev
->eps
[ep_index
].queued_deq_seg
;
985 ep_ring
->dequeue
= dev
->eps
[ep_index
].queued_deq_ptr
;
987 xhci_warn(xhci
, "Mismatch between completed Set TR Deq "
988 "Ptr command & xHCI internal state.\n");
989 xhci_warn(xhci
, "ep deq seg = %p, deq ptr = %p\n",
990 dev
->eps
[ep_index
].queued_deq_seg
,
991 dev
->eps
[ep_index
].queued_deq_ptr
);
995 dev
->eps
[ep_index
].ep_state
&= ~SET_DEQ_PENDING
;
996 dev
->eps
[ep_index
].queued_deq_seg
= NULL
;
997 dev
->eps
[ep_index
].queued_deq_ptr
= NULL
;
998 /* Restart any rings with pending URBs */
999 ring_doorbell_for_active_rings(xhci
, slot_id
, ep_index
);
1002 static void handle_reset_ep_completion(struct xhci_hcd
*xhci
,
1003 struct xhci_event_cmd
*event
,
1004 union xhci_trb
*trb
)
1007 unsigned int ep_index
;
1009 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(trb
->generic
.field
[3]));
1010 ep_index
= TRB_TO_EP_INDEX(le32_to_cpu(trb
->generic
.field
[3]));
1011 /* This command will only fail if the endpoint wasn't halted,
1012 * but we don't care.
1014 xhci_dbg(xhci
, "Ignoring reset ep completion code of %u\n",
1015 GET_COMP_CODE(le32_to_cpu(event
->status
)));
1017 /* HW with the reset endpoint quirk needs to have a configure endpoint
1018 * command complete before the endpoint can be used. Queue that here
1019 * because the HW can't handle two commands being queued in a row.
1021 if (xhci
->quirks
& XHCI_RESET_EP_QUIRK
) {
1022 xhci_dbg(xhci
, "Queueing configure endpoint command\n");
1023 xhci_queue_configure_endpoint(xhci
,
1024 xhci
->devs
[slot_id
]->in_ctx
->dma
, slot_id
,
1026 xhci_ring_cmd_db(xhci
);
1028 /* Clear our internal halted state and restart the ring(s) */
1029 xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&= ~EP_HALTED
;
1030 ring_doorbell_for_active_rings(xhci
, slot_id
, ep_index
);
1034 /* Check to see if a command in the device's command queue matches this one.
1035 * Signal the completion or free the command, and return 1. Return 0 if the
1036 * completed command isn't at the head of the command list.
1038 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd
*xhci
,
1039 struct xhci_virt_device
*virt_dev
,
1040 struct xhci_event_cmd
*event
)
1042 struct xhci_command
*command
;
1044 if (list_empty(&virt_dev
->cmd_list
))
1047 command
= list_entry(virt_dev
->cmd_list
.next
,
1048 struct xhci_command
, cmd_list
);
1049 if (xhci
->cmd_ring
->dequeue
!= command
->command_trb
)
1052 command
->status
= GET_COMP_CODE(le32_to_cpu(event
->status
));
1053 list_del(&command
->cmd_list
);
1054 if (command
->completion
)
1055 complete(command
->completion
);
1057 xhci_free_command(xhci
, command
);
1061 static void handle_cmd_completion(struct xhci_hcd
*xhci
,
1062 struct xhci_event_cmd
*event
)
1064 int slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
));
1066 dma_addr_t cmd_dequeue_dma
;
1067 struct xhci_input_control_ctx
*ctrl_ctx
;
1068 struct xhci_virt_device
*virt_dev
;
1069 unsigned int ep_index
;
1070 struct xhci_ring
*ep_ring
;
1071 unsigned int ep_state
;
1073 cmd_dma
= le64_to_cpu(event
->cmd_trb
);
1074 cmd_dequeue_dma
= xhci_trb_virt_to_dma(xhci
->cmd_ring
->deq_seg
,
1075 xhci
->cmd_ring
->dequeue
);
1076 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1077 if (cmd_dequeue_dma
== 0) {
1078 xhci
->error_bitmask
|= 1 << 4;
1081 /* Does the DMA address match our internal dequeue pointer address? */
1082 if (cmd_dma
!= (u64
) cmd_dequeue_dma
) {
1083 xhci
->error_bitmask
|= 1 << 5;
1086 switch (le32_to_cpu(xhci
->cmd_ring
->dequeue
->generic
.field
[3])
1087 & TRB_TYPE_BITMASK
) {
1088 case TRB_TYPE(TRB_ENABLE_SLOT
):
1089 if (GET_COMP_CODE(le32_to_cpu(event
->status
)) == COMP_SUCCESS
)
1090 xhci
->slot_id
= slot_id
;
1093 complete(&xhci
->addr_dev
);
1095 case TRB_TYPE(TRB_DISABLE_SLOT
):
1096 if (xhci
->devs
[slot_id
]) {
1097 if (xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)
1098 /* Delete default control endpoint resources */
1099 xhci_free_device_endpoint_resources(xhci
,
1100 xhci
->devs
[slot_id
], true);
1101 xhci_free_virt_device(xhci
, slot_id
);
1104 case TRB_TYPE(TRB_CONFIG_EP
):
1105 virt_dev
= xhci
->devs
[slot_id
];
1106 if (handle_cmd_in_cmd_wait_list(xhci
, virt_dev
, event
))
1109 * Configure endpoint commands can come from the USB core
1110 * configuration or alt setting changes, or because the HW
1111 * needed an extra configure endpoint command after a reset
1112 * endpoint command or streams were being configured.
1113 * If the command was for a halted endpoint, the xHCI driver
1114 * is not waiting on the configure endpoint command.
1116 ctrl_ctx
= xhci_get_input_control_ctx(xhci
,
1118 /* Input ctx add_flags are the endpoint index plus one */
1119 ep_index
= xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx
->add_flags
)) - 1;
1120 /* A usb_set_interface() call directly after clearing a halted
1121 * condition may race on this quirky hardware. Not worth
1122 * worrying about, since this is prototype hardware. Not sure
1123 * if this will work for streams, but streams support was
1124 * untested on this prototype.
1126 if (xhci
->quirks
& XHCI_RESET_EP_QUIRK
&&
1127 ep_index
!= (unsigned int) -1 &&
1128 le32_to_cpu(ctrl_ctx
->add_flags
) - SLOT_FLAG
==
1129 le32_to_cpu(ctrl_ctx
->drop_flags
)) {
1130 ep_ring
= xhci
->devs
[slot_id
]->eps
[ep_index
].ring
;
1131 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
1132 if (!(ep_state
& EP_HALTED
))
1133 goto bandwidth_change
;
1134 xhci_dbg(xhci
, "Completed config ep cmd - "
1135 "last ep index = %d, state = %d\n",
1136 ep_index
, ep_state
);
1137 /* Clear internal halted state and restart ring(s) */
1138 xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&=
1140 ring_doorbell_for_active_rings(xhci
, slot_id
, ep_index
);
1144 xhci_dbg(xhci
, "Completed config ep cmd\n");
1145 xhci
->devs
[slot_id
]->cmd_status
=
1146 GET_COMP_CODE(le32_to_cpu(event
->status
));
1147 complete(&xhci
->devs
[slot_id
]->cmd_completion
);
1149 case TRB_TYPE(TRB_EVAL_CONTEXT
):
1150 virt_dev
= xhci
->devs
[slot_id
];
1151 if (handle_cmd_in_cmd_wait_list(xhci
, virt_dev
, event
))
1153 xhci
->devs
[slot_id
]->cmd_status
= GET_COMP_CODE(le32_to_cpu(event
->status
));
1154 complete(&xhci
->devs
[slot_id
]->cmd_completion
);
1156 case TRB_TYPE(TRB_ADDR_DEV
):
1157 xhci
->devs
[slot_id
]->cmd_status
= GET_COMP_CODE(le32_to_cpu(event
->status
));
1158 complete(&xhci
->addr_dev
);
1160 case TRB_TYPE(TRB_STOP_RING
):
1161 handle_stopped_endpoint(xhci
, xhci
->cmd_ring
->dequeue
, event
);
1163 case TRB_TYPE(TRB_SET_DEQ
):
1164 handle_set_deq_completion(xhci
, event
, xhci
->cmd_ring
->dequeue
);
1166 case TRB_TYPE(TRB_CMD_NOOP
):
1168 case TRB_TYPE(TRB_RESET_EP
):
1169 handle_reset_ep_completion(xhci
, event
, xhci
->cmd_ring
->dequeue
);
1171 case TRB_TYPE(TRB_RESET_DEV
):
1172 xhci_dbg(xhci
, "Completed reset device command.\n");
1173 slot_id
= TRB_TO_SLOT_ID(
1174 le32_to_cpu(xhci
->cmd_ring
->dequeue
->generic
.field
[3]));
1175 virt_dev
= xhci
->devs
[slot_id
];
1177 handle_cmd_in_cmd_wait_list(xhci
, virt_dev
, event
);
1179 xhci_warn(xhci
, "Reset device command completion "
1180 "for disabled slot %u\n", slot_id
);
1182 case TRB_TYPE(TRB_NEC_GET_FW
):
1183 if (!(xhci
->quirks
& XHCI_NEC_HOST
)) {
1184 xhci
->error_bitmask
|= 1 << 6;
1187 xhci_dbg(xhci
, "NEC firmware version %2x.%02x\n",
1188 NEC_FW_MAJOR(le32_to_cpu(event
->status
)),
1189 NEC_FW_MINOR(le32_to_cpu(event
->status
)));
1192 /* Skip over unknown commands on the event ring */
1193 xhci
->error_bitmask
|= 1 << 6;
1196 inc_deq(xhci
, xhci
->cmd_ring
, false);
1199 static void handle_vendor_event(struct xhci_hcd
*xhci
,
1200 union xhci_trb
*event
)
1204 trb_type
= TRB_FIELD_TO_TYPE(le32_to_cpu(event
->generic
.field
[3]));
1205 xhci_dbg(xhci
, "Vendor specific event TRB type = %u\n", trb_type
);
1206 if (trb_type
== TRB_NEC_CMD_COMP
&& (xhci
->quirks
& XHCI_NEC_HOST
))
1207 handle_cmd_completion(xhci
, &event
->event_cmd
);
1210 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1211 * port registers -- USB 3.0 and USB 2.0).
1213 * Returns a zero-based port number, which is suitable for indexing into each of
1214 * the split roothubs' port arrays and bus state arrays.
1216 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd
*hcd
,
1217 struct xhci_hcd
*xhci
, u32 port_id
)
1220 unsigned int num_similar_speed_ports
= 0;
1222 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1223 * and usb2_ports are 0-based indexes. Count the number of similar
1224 * speed ports, up to 1 port before this port.
1226 for (i
= 0; i
< (port_id
- 1); i
++) {
1227 u8 port_speed
= xhci
->port_array
[i
];
1230 * Skip ports that don't have known speeds, or have duplicate
1231 * Extended Capabilities port speed entries.
1233 if (port_speed
== 0 || port_speed
== DUPLICATE_ENTRY
)
1237 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1238 * 1.1 ports are under the USB 2.0 hub. If the port speed
1239 * matches the device speed, it's a similar speed port.
1241 if ((port_speed
== 0x03) == (hcd
->speed
== HCD_USB3
))
1242 num_similar_speed_ports
++;
1244 return num_similar_speed_ports
;
1247 static void handle_port_status(struct xhci_hcd
*xhci
,
1248 union xhci_trb
*event
)
1250 struct usb_hcd
*hcd
;
1255 unsigned int faked_port_index
;
1257 struct xhci_bus_state
*bus_state
;
1258 __le32 __iomem
**port_array
;
1259 bool bogus_port_status
= false;
1261 /* Port status change events always have a successful completion code */
1262 if (GET_COMP_CODE(le32_to_cpu(event
->generic
.field
[2])) != COMP_SUCCESS
) {
1263 xhci_warn(xhci
, "WARN: xHC returned failed port status event\n");
1264 xhci
->error_bitmask
|= 1 << 8;
1266 port_id
= GET_PORT_ID(le32_to_cpu(event
->generic
.field
[0]));
1267 xhci_dbg(xhci
, "Port Status Change Event for port %d\n", port_id
);
1269 max_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
1270 if ((port_id
<= 0) || (port_id
> max_ports
)) {
1271 xhci_warn(xhci
, "Invalid port id %d\n", port_id
);
1272 bogus_port_status
= true;
1276 /* Figure out which usb_hcd this port is attached to:
1277 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1279 major_revision
= xhci
->port_array
[port_id
- 1];
1280 if (major_revision
== 0) {
1281 xhci_warn(xhci
, "Event for port %u not in "
1282 "Extended Capabilities, ignoring.\n",
1284 bogus_port_status
= true;
1287 if (major_revision
== DUPLICATE_ENTRY
) {
1288 xhci_warn(xhci
, "Event for port %u duplicated in"
1289 "Extended Capabilities, ignoring.\n",
1291 bogus_port_status
= true;
1296 * Hardware port IDs reported by a Port Status Change Event include USB
1297 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1298 * resume event, but we first need to translate the hardware port ID
1299 * into the index into the ports on the correct split roothub, and the
1300 * correct bus_state structure.
1302 /* Find the right roothub. */
1303 hcd
= xhci_to_hcd(xhci
);
1304 if ((major_revision
== 0x03) != (hcd
->speed
== HCD_USB3
))
1305 hcd
= xhci
->shared_hcd
;
1306 bus_state
= &xhci
->bus_state
[hcd_index(hcd
)];
1307 if (hcd
->speed
== HCD_USB3
)
1308 port_array
= xhci
->usb3_ports
;
1310 port_array
= xhci
->usb2_ports
;
1311 /* Find the faked port hub number */
1312 faked_port_index
= find_faked_portnum_from_hw_portnum(hcd
, xhci
,
1315 temp
= xhci_readl(xhci
, port_array
[faked_port_index
]);
1316 if (hcd
->state
== HC_STATE_SUSPENDED
) {
1317 xhci_dbg(xhci
, "resume root hub\n");
1318 usb_hcd_resume_root_hub(hcd
);
1321 if ((temp
& PORT_PLC
) && (temp
& PORT_PLS_MASK
) == XDEV_RESUME
) {
1322 xhci_dbg(xhci
, "port resume event for port %d\n", port_id
);
1324 temp1
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
1325 if (!(temp1
& CMD_RUN
)) {
1326 xhci_warn(xhci
, "xHC is not running.\n");
1330 if (DEV_SUPERSPEED(temp
)) {
1331 xhci_dbg(xhci
, "resume SS port %d\n", port_id
);
1332 temp
= xhci_port_state_to_neutral(temp
);
1333 temp
&= ~PORT_PLS_MASK
;
1334 temp
|= PORT_LINK_STROBE
| XDEV_U0
;
1335 xhci_writel(xhci
, temp
, port_array
[faked_port_index
]);
1336 slot_id
= xhci_find_slot_id_by_port(hcd
, xhci
,
1339 xhci_dbg(xhci
, "slot_id is zero\n");
1342 xhci_ring_device(xhci
, slot_id
);
1343 xhci_dbg(xhci
, "resume SS port %d finished\n", port_id
);
1344 /* Clear PORT_PLC */
1345 temp
= xhci_readl(xhci
, port_array
[faked_port_index
]);
1346 temp
= xhci_port_state_to_neutral(temp
);
1348 xhci_writel(xhci
, temp
, port_array
[faked_port_index
]);
1350 xhci_dbg(xhci
, "resume HS port %d\n", port_id
);
1351 bus_state
->resume_done
[faked_port_index
] = jiffies
+
1352 msecs_to_jiffies(20);
1353 mod_timer(&hcd
->rh_timer
,
1354 bus_state
->resume_done
[faked_port_index
]);
1355 /* Do the rest in GetPortStatus */
1360 /* Update event ring dequeue pointer before dropping the lock */
1361 inc_deq(xhci
, xhci
->event_ring
, true);
1363 /* Don't make the USB core poll the roothub if we got a bad port status
1364 * change event. Besides, at that point we can't tell which roothub
1365 * (USB 2.0 or USB 3.0) to kick.
1367 if (bogus_port_status
)
1370 spin_unlock(&xhci
->lock
);
1371 /* Pass this up to the core */
1372 usb_hcd_poll_rh_status(hcd
);
1373 spin_lock(&xhci
->lock
);
1377 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1378 * at end_trb, which may be in another segment. If the suspect DMA address is a
1379 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1382 struct xhci_segment
*trb_in_td(struct xhci_segment
*start_seg
,
1383 union xhci_trb
*start_trb
,
1384 union xhci_trb
*end_trb
,
1385 dma_addr_t suspect_dma
)
1387 dma_addr_t start_dma
;
1388 dma_addr_t end_seg_dma
;
1389 dma_addr_t end_trb_dma
;
1390 struct xhci_segment
*cur_seg
;
1392 start_dma
= xhci_trb_virt_to_dma(start_seg
, start_trb
);
1393 cur_seg
= start_seg
;
1398 /* We may get an event for a Link TRB in the middle of a TD */
1399 end_seg_dma
= xhci_trb_virt_to_dma(cur_seg
,
1400 &cur_seg
->trbs
[TRBS_PER_SEGMENT
- 1]);
1401 /* If the end TRB isn't in this segment, this is set to 0 */
1402 end_trb_dma
= xhci_trb_virt_to_dma(cur_seg
, end_trb
);
1404 if (end_trb_dma
> 0) {
1405 /* The end TRB is in this segment, so suspect should be here */
1406 if (start_dma
<= end_trb_dma
) {
1407 if (suspect_dma
>= start_dma
&& suspect_dma
<= end_trb_dma
)
1410 /* Case for one segment with
1411 * a TD wrapped around to the top
1413 if ((suspect_dma
>= start_dma
&&
1414 suspect_dma
<= end_seg_dma
) ||
1415 (suspect_dma
>= cur_seg
->dma
&&
1416 suspect_dma
<= end_trb_dma
))
1421 /* Might still be somewhere in this segment */
1422 if (suspect_dma
>= start_dma
&& suspect_dma
<= end_seg_dma
)
1425 cur_seg
= cur_seg
->next
;
1426 start_dma
= xhci_trb_virt_to_dma(cur_seg
, &cur_seg
->trbs
[0]);
1427 } while (cur_seg
!= start_seg
);
1432 static void xhci_cleanup_halted_endpoint(struct xhci_hcd
*xhci
,
1433 unsigned int slot_id
, unsigned int ep_index
,
1434 unsigned int stream_id
,
1435 struct xhci_td
*td
, union xhci_trb
*event_trb
)
1437 struct xhci_virt_ep
*ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
1438 ep
->ep_state
|= EP_HALTED
;
1439 ep
->stopped_td
= td
;
1440 ep
->stopped_trb
= event_trb
;
1441 ep
->stopped_stream
= stream_id
;
1443 xhci_queue_reset_ep(xhci
, slot_id
, ep_index
);
1444 xhci_cleanup_stalled_ring(xhci
, td
->urb
->dev
, ep_index
);
1446 ep
->stopped_td
= NULL
;
1447 ep
->stopped_trb
= NULL
;
1448 ep
->stopped_stream
= 0;
1450 xhci_ring_cmd_db(xhci
);
1453 /* Check if an error has halted the endpoint ring. The class driver will
1454 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1455 * However, a babble and other errors also halt the endpoint ring, and the class
1456 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1457 * Ring Dequeue Pointer command manually.
1459 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd
*xhci
,
1460 struct xhci_ep_ctx
*ep_ctx
,
1461 unsigned int trb_comp_code
)
1463 /* TRB completion codes that may require a manual halt cleanup */
1464 if (trb_comp_code
== COMP_TX_ERR
||
1465 trb_comp_code
== COMP_BABBLE
||
1466 trb_comp_code
== COMP_SPLIT_ERR
)
1467 /* The 0.96 spec says a babbling control endpoint
1468 * is not halted. The 0.96 spec says it is. Some HW
1469 * claims to be 0.95 compliant, but it halts the control
1470 * endpoint anyway. Check if a babble halted the
1473 if ((ep_ctx
->ep_info
& cpu_to_le32(EP_STATE_MASK
)) ==
1474 cpu_to_le32(EP_STATE_HALTED
))
1480 int xhci_is_vendor_info_code(struct xhci_hcd
*xhci
, unsigned int trb_comp_code
)
1482 if (trb_comp_code
>= 224 && trb_comp_code
<= 255) {
1483 /* Vendor defined "informational" completion code,
1484 * treat as not-an-error.
1486 xhci_dbg(xhci
, "Vendor defined info completion code %u\n",
1488 xhci_dbg(xhci
, "Treating code as success.\n");
1495 * Finish the td processing, remove the td from td list;
1496 * Return 1 if the urb can be given back.
1498 static int finish_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
1499 union xhci_trb
*event_trb
, struct xhci_transfer_event
*event
,
1500 struct xhci_virt_ep
*ep
, int *status
, bool skip
)
1502 struct xhci_virt_device
*xdev
;
1503 struct xhci_ring
*ep_ring
;
1504 unsigned int slot_id
;
1506 struct urb
*urb
= NULL
;
1507 struct xhci_ep_ctx
*ep_ctx
;
1509 struct urb_priv
*urb_priv
;
1512 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
));
1513 xdev
= xhci
->devs
[slot_id
];
1514 ep_index
= TRB_TO_EP_ID(le32_to_cpu(event
->flags
)) - 1;
1515 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
1516 ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
1517 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
1522 if (trb_comp_code
== COMP_STOP_INVAL
||
1523 trb_comp_code
== COMP_STOP
) {
1524 /* The Endpoint Stop Command completion will take care of any
1525 * stopped TDs. A stopped TD may be restarted, so don't update
1526 * the ring dequeue pointer or take this TD off any lists yet.
1528 ep
->stopped_td
= td
;
1529 ep
->stopped_trb
= event_trb
;
1532 if (trb_comp_code
== COMP_STALL
) {
1533 /* The transfer is completed from the driver's
1534 * perspective, but we need to issue a set dequeue
1535 * command for this stalled endpoint to move the dequeue
1536 * pointer past the TD. We can't do that here because
1537 * the halt condition must be cleared first. Let the
1538 * USB class driver clear the stall later.
1540 ep
->stopped_td
= td
;
1541 ep
->stopped_trb
= event_trb
;
1542 ep
->stopped_stream
= ep_ring
->stream_id
;
1543 } else if (xhci_requires_manual_halt_cleanup(xhci
,
1544 ep_ctx
, trb_comp_code
)) {
1545 /* Other types of errors halt the endpoint, but the
1546 * class driver doesn't call usb_reset_endpoint() unless
1547 * the error is -EPIPE. Clear the halted status in the
1548 * xHCI hardware manually.
1550 xhci_cleanup_halted_endpoint(xhci
,
1551 slot_id
, ep_index
, ep_ring
->stream_id
,
1554 /* Update ring dequeue pointer */
1555 while (ep_ring
->dequeue
!= td
->last_trb
)
1556 inc_deq(xhci
, ep_ring
, false);
1557 inc_deq(xhci
, ep_ring
, false);
1561 /* Clean up the endpoint's TD list */
1563 urb_priv
= urb
->hcpriv
;
1565 /* Do one last check of the actual transfer length.
1566 * If the host controller said we transferred more data than
1567 * the buffer length, urb->actual_length will be a very big
1568 * number (since it's unsigned). Play it safe and say we didn't
1569 * transfer anything.
1571 if (urb
->actual_length
> urb
->transfer_buffer_length
) {
1572 xhci_warn(xhci
, "URB transfer length is wrong, "
1573 "xHC issue? req. len = %u, "
1575 urb
->transfer_buffer_length
,
1576 urb
->actual_length
);
1577 urb
->actual_length
= 0;
1578 if (td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
)
1579 *status
= -EREMOTEIO
;
1583 list_del_init(&td
->td_list
);
1584 /* Was this TD slated to be cancelled but completed anyway? */
1585 if (!list_empty(&td
->cancelled_td_list
))
1586 list_del_init(&td
->cancelled_td_list
);
1589 /* Giveback the urb when all the tds are completed */
1590 if (urb_priv
->td_cnt
== urb_priv
->length
) {
1592 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
) {
1593 xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
--;
1594 if (xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
1596 if (xhci
->quirks
& XHCI_AMD_PLL_FIX
)
1597 usb_amd_quirk_pll_enable();
1607 * Process control tds, update urb status and actual_length.
1609 static int process_ctrl_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
1610 union xhci_trb
*event_trb
, struct xhci_transfer_event
*event
,
1611 struct xhci_virt_ep
*ep
, int *status
)
1613 struct xhci_virt_device
*xdev
;
1614 struct xhci_ring
*ep_ring
;
1615 unsigned int slot_id
;
1617 struct xhci_ep_ctx
*ep_ctx
;
1620 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
));
1621 xdev
= xhci
->devs
[slot_id
];
1622 ep_index
= TRB_TO_EP_ID(le32_to_cpu(event
->flags
)) - 1;
1623 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
1624 ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
1625 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
1627 xhci_debug_trb(xhci
, xhci
->event_ring
->dequeue
);
1628 switch (trb_comp_code
) {
1630 if (event_trb
== ep_ring
->dequeue
) {
1631 xhci_warn(xhci
, "WARN: Success on ctrl setup TRB "
1632 "without IOC set??\n");
1633 *status
= -ESHUTDOWN
;
1634 } else if (event_trb
!= td
->last_trb
) {
1635 xhci_warn(xhci
, "WARN: Success on ctrl data TRB "
1636 "without IOC set??\n");
1637 *status
= -ESHUTDOWN
;
1643 xhci_warn(xhci
, "WARN: short transfer on control ep\n");
1644 if (td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
)
1645 *status
= -EREMOTEIO
;
1649 case COMP_STOP_INVAL
:
1651 return finish_td(xhci
, td
, event_trb
, event
, ep
, status
, false);
1653 if (!xhci_requires_manual_halt_cleanup(xhci
,
1654 ep_ctx
, trb_comp_code
))
1656 xhci_dbg(xhci
, "TRB error code %u, "
1657 "halted endpoint index = %u\n",
1658 trb_comp_code
, ep_index
);
1659 /* else fall through */
1661 /* Did we transfer part of the data (middle) phase? */
1662 if (event_trb
!= ep_ring
->dequeue
&&
1663 event_trb
!= td
->last_trb
)
1664 td
->urb
->actual_length
=
1665 td
->urb
->transfer_buffer_length
1666 - TRB_LEN(le32_to_cpu(event
->transfer_len
));
1668 td
->urb
->actual_length
= 0;
1670 xhci_cleanup_halted_endpoint(xhci
,
1671 slot_id
, ep_index
, 0, td
, event_trb
);
1672 return finish_td(xhci
, td
, event_trb
, event
, ep
, status
, true);
1675 * Did we transfer any data, despite the errors that might have
1676 * happened? I.e. did we get past the setup stage?
1678 if (event_trb
!= ep_ring
->dequeue
) {
1679 /* The event was for the status stage */
1680 if (event_trb
== td
->last_trb
) {
1681 if (td
->urb
->actual_length
!= 0) {
1682 /* Don't overwrite a previously set error code
1684 if ((*status
== -EINPROGRESS
|| *status
== 0) &&
1685 (td
->urb
->transfer_flags
1686 & URB_SHORT_NOT_OK
))
1687 /* Did we already see a short data
1689 *status
= -EREMOTEIO
;
1691 td
->urb
->actual_length
=
1692 td
->urb
->transfer_buffer_length
;
1695 /* Maybe the event was for the data stage? */
1696 td
->urb
->actual_length
=
1697 td
->urb
->transfer_buffer_length
-
1698 TRB_LEN(le32_to_cpu(event
->transfer_len
));
1699 xhci_dbg(xhci
, "Waiting for status "
1705 return finish_td(xhci
, td
, event_trb
, event
, ep
, status
, false);
1709 * Process isochronous tds, update urb packet status and actual_length.
1711 static int process_isoc_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
1712 union xhci_trb
*event_trb
, struct xhci_transfer_event
*event
,
1713 struct xhci_virt_ep
*ep
, int *status
)
1715 struct xhci_ring
*ep_ring
;
1716 struct urb_priv
*urb_priv
;
1719 union xhci_trb
*cur_trb
;
1720 struct xhci_segment
*cur_seg
;
1721 struct usb_iso_packet_descriptor
*frame
;
1723 bool skip_td
= false;
1725 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
1726 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
1727 urb_priv
= td
->urb
->hcpriv
;
1728 idx
= urb_priv
->td_cnt
;
1729 frame
= &td
->urb
->iso_frame_desc
[idx
];
1731 /* handle completion code */
1732 switch (trb_comp_code
) {
1737 frame
->status
= td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
?
1741 frame
->status
= -ECOMM
;
1744 case COMP_BUFF_OVER
:
1746 frame
->status
= -EOVERFLOW
;
1751 frame
->status
= -EPROTO
;
1755 case COMP_STOP_INVAL
:
1762 if (trb_comp_code
== COMP_SUCCESS
|| skip_td
) {
1763 frame
->actual_length
= frame
->length
;
1764 td
->urb
->actual_length
+= frame
->length
;
1766 for (cur_trb
= ep_ring
->dequeue
,
1767 cur_seg
= ep_ring
->deq_seg
; cur_trb
!= event_trb
;
1768 next_trb(xhci
, ep_ring
, &cur_seg
, &cur_trb
)) {
1769 if (!TRB_TYPE_NOOP_LE32(cur_trb
->generic
.field
[3]) &&
1770 !TRB_TYPE_LINK_LE32(cur_trb
->generic
.field
[3]))
1771 len
+= TRB_LEN(le32_to_cpu(cur_trb
->generic
.field
[2]));
1773 len
+= TRB_LEN(le32_to_cpu(cur_trb
->generic
.field
[2])) -
1774 TRB_LEN(le32_to_cpu(event
->transfer_len
));
1776 if (trb_comp_code
!= COMP_STOP_INVAL
) {
1777 frame
->actual_length
= len
;
1778 td
->urb
->actual_length
+= len
;
1782 return finish_td(xhci
, td
, event_trb
, event
, ep
, status
, false);
1785 static int skip_isoc_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
1786 struct xhci_transfer_event
*event
,
1787 struct xhci_virt_ep
*ep
, int *status
)
1789 struct xhci_ring
*ep_ring
;
1790 struct urb_priv
*urb_priv
;
1791 struct usb_iso_packet_descriptor
*frame
;
1794 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
1795 urb_priv
= td
->urb
->hcpriv
;
1796 idx
= urb_priv
->td_cnt
;
1797 frame
= &td
->urb
->iso_frame_desc
[idx
];
1799 /* The transfer is partly done. */
1800 frame
->status
= -EXDEV
;
1802 /* calc actual length */
1803 frame
->actual_length
= 0;
1805 /* Update ring dequeue pointer */
1806 while (ep_ring
->dequeue
!= td
->last_trb
)
1807 inc_deq(xhci
, ep_ring
, false);
1808 inc_deq(xhci
, ep_ring
, false);
1810 return finish_td(xhci
, td
, NULL
, event
, ep
, status
, true);
1814 * Process bulk and interrupt tds, update urb status and actual_length.
1816 static int process_bulk_intr_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
1817 union xhci_trb
*event_trb
, struct xhci_transfer_event
*event
,
1818 struct xhci_virt_ep
*ep
, int *status
)
1820 struct xhci_ring
*ep_ring
;
1821 union xhci_trb
*cur_trb
;
1822 struct xhci_segment
*cur_seg
;
1825 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
1826 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
1828 switch (trb_comp_code
) {
1830 /* Double check that the HW transferred everything. */
1831 if (event_trb
!= td
->last_trb
) {
1832 xhci_warn(xhci
, "WARN Successful completion "
1834 if (td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
)
1835 *status
= -EREMOTEIO
;
1843 if (td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
)
1844 *status
= -EREMOTEIO
;
1849 /* Others already handled above */
1852 if (trb_comp_code
== COMP_SHORT_TX
)
1853 xhci_dbg(xhci
, "ep %#x - asked for %d bytes, "
1854 "%d bytes untransferred\n",
1855 td
->urb
->ep
->desc
.bEndpointAddress
,
1856 td
->urb
->transfer_buffer_length
,
1857 TRB_LEN(le32_to_cpu(event
->transfer_len
)));
1858 /* Fast path - was this the last TRB in the TD for this URB? */
1859 if (event_trb
== td
->last_trb
) {
1860 if (TRB_LEN(le32_to_cpu(event
->transfer_len
)) != 0) {
1861 td
->urb
->actual_length
=
1862 td
->urb
->transfer_buffer_length
-
1863 TRB_LEN(le32_to_cpu(event
->transfer_len
));
1864 if (td
->urb
->transfer_buffer_length
<
1865 td
->urb
->actual_length
) {
1866 xhci_warn(xhci
, "HC gave bad length "
1867 "of %d bytes left\n",
1868 TRB_LEN(le32_to_cpu(event
->transfer_len
)));
1869 td
->urb
->actual_length
= 0;
1870 if (td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
)
1871 *status
= -EREMOTEIO
;
1875 /* Don't overwrite a previously set error code */
1876 if (*status
== -EINPROGRESS
) {
1877 if (td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
)
1878 *status
= -EREMOTEIO
;
1883 td
->urb
->actual_length
=
1884 td
->urb
->transfer_buffer_length
;
1885 /* Ignore a short packet completion if the
1886 * untransferred length was zero.
1888 if (*status
== -EREMOTEIO
)
1892 /* Slow path - walk the list, starting from the dequeue
1893 * pointer, to get the actual length transferred.
1895 td
->urb
->actual_length
= 0;
1896 for (cur_trb
= ep_ring
->dequeue
, cur_seg
= ep_ring
->deq_seg
;
1897 cur_trb
!= event_trb
;
1898 next_trb(xhci
, ep_ring
, &cur_seg
, &cur_trb
)) {
1899 if (!TRB_TYPE_NOOP_LE32(cur_trb
->generic
.field
[3]) &&
1900 !TRB_TYPE_LINK_LE32(cur_trb
->generic
.field
[3]))
1901 td
->urb
->actual_length
+=
1902 TRB_LEN(le32_to_cpu(cur_trb
->generic
.field
[2]));
1904 /* If the ring didn't stop on a Link or No-op TRB, add
1905 * in the actual bytes transferred from the Normal TRB
1907 if (trb_comp_code
!= COMP_STOP_INVAL
)
1908 td
->urb
->actual_length
+=
1909 TRB_LEN(le32_to_cpu(cur_trb
->generic
.field
[2])) -
1910 TRB_LEN(le32_to_cpu(event
->transfer_len
));
1913 return finish_td(xhci
, td
, event_trb
, event
, ep
, status
, false);
1917 * If this function returns an error condition, it means it got a Transfer
1918 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1919 * At this point, the host controller is probably hosed and should be reset.
1921 static int handle_tx_event(struct xhci_hcd
*xhci
,
1922 struct xhci_transfer_event
*event
)
1924 struct xhci_virt_device
*xdev
;
1925 struct xhci_virt_ep
*ep
;
1926 struct xhci_ring
*ep_ring
;
1927 unsigned int slot_id
;
1929 struct xhci_td
*td
= NULL
;
1930 dma_addr_t event_dma
;
1931 struct xhci_segment
*event_seg
;
1932 union xhci_trb
*event_trb
;
1933 struct urb
*urb
= NULL
;
1934 int status
= -EINPROGRESS
;
1935 struct urb_priv
*urb_priv
;
1936 struct xhci_ep_ctx
*ep_ctx
;
1937 struct list_head
*tmp
;
1942 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
));
1943 xdev
= xhci
->devs
[slot_id
];
1945 xhci_err(xhci
, "ERROR Transfer event pointed to bad slot\n");
1949 /* Endpoint ID is 1 based, our index is zero based */
1950 ep_index
= TRB_TO_EP_ID(le32_to_cpu(event
->flags
)) - 1;
1951 ep
= &xdev
->eps
[ep_index
];
1952 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
1953 ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
1955 (le32_to_cpu(ep_ctx
->ep_info
) & EP_STATE_MASK
) ==
1956 EP_STATE_DISABLED
) {
1957 xhci_err(xhci
, "ERROR Transfer event for disabled endpoint "
1958 "or incorrect stream ring\n");
1962 /* Count current td numbers if ep->skip is set */
1964 list_for_each(tmp
, &ep_ring
->td_list
)
1968 event_dma
= le64_to_cpu(event
->buffer
);
1969 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
1970 /* Look for common error cases */
1971 switch (trb_comp_code
) {
1972 /* Skip codes that require special handling depending on
1979 xhci_dbg(xhci
, "Stopped on Transfer TRB\n");
1981 case COMP_STOP_INVAL
:
1982 xhci_dbg(xhci
, "Stopped on No-op or Link TRB\n");
1985 xhci_warn(xhci
, "WARN: Stalled endpoint\n");
1986 ep
->ep_state
|= EP_HALTED
;
1990 xhci_warn(xhci
, "WARN: TRB error on endpoint\n");
1993 case COMP_SPLIT_ERR
:
1995 xhci_warn(xhci
, "WARN: transfer error on endpoint\n");
1999 xhci_warn(xhci
, "WARN: babble error on endpoint\n");
2000 status
= -EOVERFLOW
;
2003 xhci_warn(xhci
, "WARN: HC couldn't access mem fast enough\n");
2007 xhci_warn(xhci
, "WARN: bandwidth overrun event on endpoint\n");
2009 case COMP_BUFF_OVER
:
2010 xhci_warn(xhci
, "WARN: buffer overrun event on endpoint\n");
2014 * When the Isoch ring is empty, the xHC will generate
2015 * a Ring Overrun Event for IN Isoch endpoint or Ring
2016 * Underrun Event for OUT Isoch endpoint.
2018 xhci_dbg(xhci
, "underrun event on endpoint\n");
2019 if (!list_empty(&ep_ring
->td_list
))
2020 xhci_dbg(xhci
, "Underrun Event for slot %d ep %d "
2021 "still with TDs queued?\n",
2022 TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
)),
2026 xhci_dbg(xhci
, "overrun event on endpoint\n");
2027 if (!list_empty(&ep_ring
->td_list
))
2028 xhci_dbg(xhci
, "Overrun Event for slot %d ep %d "
2029 "still with TDs queued?\n",
2030 TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
)),
2034 xhci_warn(xhci
, "WARN: detect an incompatible device");
2037 case COMP_MISSED_INT
:
2039 * When encounter missed service error, one or more isoc tds
2040 * may be missed by xHC.
2041 * Set skip flag of the ep_ring; Complete the missed tds as
2042 * short transfer when process the ep_ring next time.
2045 xhci_dbg(xhci
, "Miss service interval error, set skip flag\n");
2048 if (xhci_is_vendor_info_code(xhci
, trb_comp_code
)) {
2052 xhci_warn(xhci
, "ERROR Unknown event condition, HC probably "
2058 /* This TRB should be in the TD at the head of this ring's
2061 if (list_empty(&ep_ring
->td_list
)) {
2062 xhci_warn(xhci
, "WARN Event TRB for slot %d ep %d "
2063 "with no TDs queued?\n",
2064 TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
)),
2066 xhci_dbg(xhci
, "Event TRB with TRB type ID %u\n",
2067 (le32_to_cpu(event
->flags
) &
2068 TRB_TYPE_BITMASK
)>>10);
2069 xhci_print_trb_offsets(xhci
, (union xhci_trb
*) event
);
2072 xhci_dbg(xhci
, "td_list is empty while skip "
2073 "flag set. Clear skip flag.\n");
2079 /* We've skipped all the TDs on the ep ring when ep->skip set */
2080 if (ep
->skip
&& td_num
== 0) {
2082 xhci_dbg(xhci
, "All tds on the ep_ring skipped. "
2083 "Clear skip flag.\n");
2088 td
= list_entry(ep_ring
->td_list
.next
, struct xhci_td
, td_list
);
2092 /* Is this a TRB in the currently executing TD? */
2093 event_seg
= trb_in_td(ep_ring
->deq_seg
, ep_ring
->dequeue
,
2094 td
->last_trb
, event_dma
);
2097 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2098 * is not in the current TD pointed by ep_ring->dequeue because
2099 * that the hardware dequeue pointer still at the previous TRB
2100 * of the current TD. The previous TRB maybe a Link TD or the
2101 * last TRB of the previous TD. The command completion handle
2102 * will take care the rest.
2104 if (!event_seg
&& trb_comp_code
== COMP_STOP_INVAL
) {
2111 !usb_endpoint_xfer_isoc(&td
->urb
->ep
->desc
)) {
2112 /* Some host controllers give a spurious
2113 * successful event after a short transfer.
2116 if ((xhci
->quirks
& XHCI_SPURIOUS_SUCCESS
) &&
2117 ep_ring
->last_td_was_short
) {
2118 ep_ring
->last_td_was_short
= false;
2122 /* HC is busted, give up! */
2124 "ERROR Transfer event TRB DMA ptr not "
2125 "part of current TD\n");
2129 ret
= skip_isoc_td(xhci
, td
, event
, ep
, &status
);
2132 if (trb_comp_code
== COMP_SHORT_TX
)
2133 ep_ring
->last_td_was_short
= true;
2135 ep_ring
->last_td_was_short
= false;
2138 xhci_dbg(xhci
, "Found td. Clear skip flag.\n");
2142 event_trb
= &event_seg
->trbs
[(event_dma
- event_seg
->dma
) /
2143 sizeof(*event_trb
)];
2145 * No-op TRB should not trigger interrupts.
2146 * If event_trb is a no-op TRB, it means the
2147 * corresponding TD has been cancelled. Just ignore
2150 if (TRB_TYPE_NOOP_LE32(event_trb
->generic
.field
[3])) {
2152 "event_trb is a no-op TRB. Skip it\n");
2156 /* Now update the urb's actual_length and give back to
2159 if (usb_endpoint_xfer_control(&td
->urb
->ep
->desc
))
2160 ret
= process_ctrl_td(xhci
, td
, event_trb
, event
, ep
,
2162 else if (usb_endpoint_xfer_isoc(&td
->urb
->ep
->desc
))
2163 ret
= process_isoc_td(xhci
, td
, event_trb
, event
, ep
,
2166 ret
= process_bulk_intr_td(xhci
, td
, event_trb
, event
,
2171 * Do not update event ring dequeue pointer if ep->skip is set.
2172 * Will roll back to continue process missed tds.
2174 if (trb_comp_code
== COMP_MISSED_INT
|| !ep
->skip
) {
2175 inc_deq(xhci
, xhci
->event_ring
, true);
2180 urb_priv
= urb
->hcpriv
;
2181 /* Leave the TD around for the reset endpoint function
2182 * to use(but only if it's not a control endpoint,
2183 * since we already queued the Set TR dequeue pointer
2184 * command for stalled control endpoints).
2186 if (usb_endpoint_xfer_control(&urb
->ep
->desc
) ||
2187 (trb_comp_code
!= COMP_STALL
&&
2188 trb_comp_code
!= COMP_BABBLE
))
2189 xhci_urb_free_priv(xhci
, urb_priv
);
2191 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb
->dev
->bus
), urb
);
2192 if ((urb
->actual_length
!= urb
->transfer_buffer_length
&&
2193 (urb
->transfer_flags
&
2194 URB_SHORT_NOT_OK
)) ||
2196 xhci_dbg(xhci
, "Giveback URB %p, len = %d, "
2197 "expected = %x, status = %d\n",
2198 urb
, urb
->actual_length
,
2199 urb
->transfer_buffer_length
,
2201 spin_unlock(&xhci
->lock
);
2202 /* EHCI, UHCI, and OHCI always unconditionally set the
2203 * urb->status of an isochronous endpoint to 0.
2205 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
)
2207 usb_hcd_giveback_urb(bus_to_hcd(urb
->dev
->bus
), urb
, status
);
2208 spin_lock(&xhci
->lock
);
2212 * If ep->skip is set, it means there are missed tds on the
2213 * endpoint ring need to take care of.
2214 * Process them as short transfer until reach the td pointed by
2217 } while (ep
->skip
&& trb_comp_code
!= COMP_MISSED_INT
);
2223 * This function handles all OS-owned events on the event ring. It may drop
2224 * xhci->lock between event processing (e.g. to pass up port status changes).
2225 * Returns >0 for "possibly more events to process" (caller should call again),
2226 * otherwise 0 if done. In future, <0 returns should indicate error code.
2228 static int xhci_handle_event(struct xhci_hcd
*xhci
)
2230 union xhci_trb
*event
;
2231 int update_ptrs
= 1;
2234 if (!xhci
->event_ring
|| !xhci
->event_ring
->dequeue
) {
2235 xhci
->error_bitmask
|= 1 << 1;
2239 event
= xhci
->event_ring
->dequeue
;
2240 /* Does the HC or OS own the TRB? */
2241 if ((le32_to_cpu(event
->event_cmd
.flags
) & TRB_CYCLE
) !=
2242 xhci
->event_ring
->cycle_state
) {
2243 xhci
->error_bitmask
|= 1 << 2;
2248 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2249 * speculative reads of the event's flags/data below.
2252 /* FIXME: Handle more event types. */
2253 switch ((le32_to_cpu(event
->event_cmd
.flags
) & TRB_TYPE_BITMASK
)) {
2254 case TRB_TYPE(TRB_COMPLETION
):
2255 handle_cmd_completion(xhci
, &event
->event_cmd
);
2257 case TRB_TYPE(TRB_PORT_STATUS
):
2258 handle_port_status(xhci
, event
);
2261 case TRB_TYPE(TRB_TRANSFER
):
2262 ret
= handle_tx_event(xhci
, &event
->trans_event
);
2264 xhci
->error_bitmask
|= 1 << 9;
2269 if ((le32_to_cpu(event
->event_cmd
.flags
) & TRB_TYPE_BITMASK
) >=
2271 handle_vendor_event(xhci
, event
);
2273 xhci
->error_bitmask
|= 1 << 3;
2275 /* Any of the above functions may drop and re-acquire the lock, so check
2276 * to make sure a watchdog timer didn't mark the host as non-responsive.
2278 if (xhci
->xhc_state
& XHCI_STATE_DYING
) {
2279 xhci_dbg(xhci
, "xHCI host dying, returning from "
2280 "event handler.\n");
2285 /* Update SW event ring dequeue pointer */
2286 inc_deq(xhci
, xhci
->event_ring
, true);
2288 /* Are there more items on the event ring? Caller will call us again to
2295 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2296 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2297 * indicators of an event TRB error, but we check the status *first* to be safe.
2299 irqreturn_t
xhci_irq(struct usb_hcd
*hcd
)
2301 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
2303 union xhci_trb
*trb
;
2305 union xhci_trb
*event_ring_deq
;
2308 spin_lock(&xhci
->lock
);
2309 trb
= xhci
->event_ring
->dequeue
;
2310 /* Check if the xHC generated the interrupt, or the irq is shared */
2311 status
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
2312 if (status
== 0xffffffff)
2315 if (!(status
& STS_EINT
)) {
2316 spin_unlock(&xhci
->lock
);
2319 if (status
& STS_FATAL
) {
2320 xhci_warn(xhci
, "WARNING: Host System Error\n");
2323 spin_unlock(&xhci
->lock
);
2328 * Clear the op reg interrupt status first,
2329 * so we can receive interrupts from other MSI-X interrupters.
2330 * Write 1 to clear the interrupt status.
2333 xhci_writel(xhci
, status
, &xhci
->op_regs
->status
);
2334 /* FIXME when MSI-X is supported and there are multiple vectors */
2335 /* Clear the MSI-X event interrupt status */
2337 if (hcd
->irq
!= -1) {
2339 /* Acknowledge the PCI interrupt */
2340 irq_pending
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
2342 xhci_writel(xhci
, irq_pending
, &xhci
->ir_set
->irq_pending
);
2345 if (xhci
->xhc_state
& XHCI_STATE_DYING
) {
2346 xhci_dbg(xhci
, "xHCI dying, ignoring interrupt. "
2347 "Shouldn't IRQs be disabled?\n");
2348 /* Clear the event handler busy flag (RW1C);
2349 * the event ring should be empty.
2351 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
2352 xhci_write_64(xhci
, temp_64
| ERST_EHB
,
2353 &xhci
->ir_set
->erst_dequeue
);
2354 spin_unlock(&xhci
->lock
);
2359 event_ring_deq
= xhci
->event_ring
->dequeue
;
2360 /* FIXME this should be a delayed service routine
2361 * that clears the EHB.
2363 while (xhci_handle_event(xhci
) > 0) {}
2365 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
2366 /* If necessary, update the HW's version of the event ring deq ptr. */
2367 if (event_ring_deq
!= xhci
->event_ring
->dequeue
) {
2368 deq
= xhci_trb_virt_to_dma(xhci
->event_ring
->deq_seg
,
2369 xhci
->event_ring
->dequeue
);
2371 xhci_warn(xhci
, "WARN something wrong with SW event "
2372 "ring dequeue ptr.\n");
2373 /* Update HC event ring dequeue pointer */
2374 temp_64
&= ERST_PTR_MASK
;
2375 temp_64
|= ((u64
) deq
& (u64
) ~ERST_PTR_MASK
);
2378 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2379 temp_64
|= ERST_EHB
;
2380 xhci_write_64(xhci
, temp_64
, &xhci
->ir_set
->erst_dequeue
);
2382 spin_unlock(&xhci
->lock
);
2387 irqreturn_t
xhci_msi_irq(int irq
, struct usb_hcd
*hcd
)
2390 struct xhci_hcd
*xhci
;
2392 xhci
= hcd_to_xhci(hcd
);
2393 set_bit(HCD_FLAG_SAW_IRQ
, &hcd
->flags
);
2394 if (xhci
->shared_hcd
)
2395 set_bit(HCD_FLAG_SAW_IRQ
, &xhci
->shared_hcd
->flags
);
2397 ret
= xhci_irq(hcd
);
2402 /**** Endpoint Ring Operations ****/
2405 * Generic function for queueing a TRB on a ring.
2406 * The caller must have checked to make sure there's room on the ring.
2408 * @more_trbs_coming: Will you enqueue more TRBs before calling
2409 * prepare_transfer()?
2411 static void queue_trb(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
2412 bool consumer
, bool more_trbs_coming
,
2413 u32 field1
, u32 field2
, u32 field3
, u32 field4
)
2415 struct xhci_generic_trb
*trb
;
2417 trb
= &ring
->enqueue
->generic
;
2418 trb
->field
[0] = cpu_to_le32(field1
);
2419 trb
->field
[1] = cpu_to_le32(field2
);
2420 trb
->field
[2] = cpu_to_le32(field3
);
2421 trb
->field
[3] = cpu_to_le32(field4
);
2422 inc_enq(xhci
, ring
, consumer
, more_trbs_coming
);
2426 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2427 * FIXME allocate segments if the ring is full.
2429 static int prepare_ring(struct xhci_hcd
*xhci
, struct xhci_ring
*ep_ring
,
2430 u32 ep_state
, unsigned int num_trbs
, gfp_t mem_flags
)
2432 /* Make sure the endpoint has been added to xHC schedule */
2434 case EP_STATE_DISABLED
:
2436 * USB core changed config/interfaces without notifying us,
2437 * or hardware is reporting the wrong state.
2439 xhci_warn(xhci
, "WARN urb submitted to disabled ep\n");
2441 case EP_STATE_ERROR
:
2442 xhci_warn(xhci
, "WARN waiting for error on ep to be cleared\n");
2443 /* FIXME event handling code for error needs to clear it */
2444 /* XXX not sure if this should be -ENOENT or not */
2446 case EP_STATE_HALTED
:
2447 xhci_dbg(xhci
, "WARN halted endpoint, queueing URB anyway.\n");
2448 case EP_STATE_STOPPED
:
2449 case EP_STATE_RUNNING
:
2452 xhci_err(xhci
, "ERROR unknown endpoint state for ep\n");
2454 * FIXME issue Configure Endpoint command to try to get the HC
2455 * back into a known state.
2459 if (!room_on_ring(xhci
, ep_ring
, num_trbs
)) {
2460 /* FIXME allocate more room */
2461 xhci_err(xhci
, "ERROR no room on ep ring\n");
2465 if (enqueue_is_link_trb(ep_ring
)) {
2466 struct xhci_ring
*ring
= ep_ring
;
2467 union xhci_trb
*next
;
2469 next
= ring
->enqueue
;
2471 while (last_trb(xhci
, ring
, ring
->enq_seg
, next
)) {
2472 /* If we're not dealing with 0.95 hardware,
2473 * clear the chain bit.
2475 if (!xhci_link_trb_quirk(xhci
))
2476 next
->link
.control
&= cpu_to_le32(~TRB_CHAIN
);
2478 next
->link
.control
|= cpu_to_le32(TRB_CHAIN
);
2481 next
->link
.control
^= cpu_to_le32(TRB_CYCLE
);
2483 /* Toggle the cycle bit after the last ring segment. */
2484 if (last_trb_on_last_seg(xhci
, ring
, ring
->enq_seg
, next
)) {
2485 ring
->cycle_state
= (ring
->cycle_state
? 0 : 1);
2486 if (!in_interrupt()) {
2487 xhci_dbg(xhci
, "queue_trb: Toggle cycle "
2488 "state for ring %p = %i\n",
2489 ring
, (unsigned int)ring
->cycle_state
);
2492 ring
->enq_seg
= ring
->enq_seg
->next
;
2493 ring
->enqueue
= ring
->enq_seg
->trbs
;
2494 next
= ring
->enqueue
;
2501 static int prepare_transfer(struct xhci_hcd
*xhci
,
2502 struct xhci_virt_device
*xdev
,
2503 unsigned int ep_index
,
2504 unsigned int stream_id
,
2505 unsigned int num_trbs
,
2507 unsigned int td_index
,
2511 struct urb_priv
*urb_priv
;
2513 struct xhci_ring
*ep_ring
;
2514 struct xhci_ep_ctx
*ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
2516 ep_ring
= xhci_stream_id_to_ring(xdev
, ep_index
, stream_id
);
2518 xhci_dbg(xhci
, "Can't prepare ring for bad stream ID %u\n",
2523 ret
= prepare_ring(xhci
, ep_ring
,
2524 le32_to_cpu(ep_ctx
->ep_info
) & EP_STATE_MASK
,
2525 num_trbs
, mem_flags
);
2529 urb_priv
= urb
->hcpriv
;
2530 td
= urb_priv
->td
[td_index
];
2532 INIT_LIST_HEAD(&td
->td_list
);
2533 INIT_LIST_HEAD(&td
->cancelled_td_list
);
2535 if (td_index
== 0) {
2536 ret
= usb_hcd_link_urb_to_ep(bus_to_hcd(urb
->dev
->bus
), urb
);
2542 /* Add this TD to the tail of the endpoint ring's TD list */
2543 list_add_tail(&td
->td_list
, &ep_ring
->td_list
);
2544 td
->start_seg
= ep_ring
->enq_seg
;
2545 td
->first_trb
= ep_ring
->enqueue
;
2547 urb_priv
->td
[td_index
] = td
;
2552 static unsigned int count_sg_trbs_needed(struct xhci_hcd
*xhci
, struct urb
*urb
)
2554 int num_sgs
, num_trbs
, running_total
, temp
, i
;
2555 struct scatterlist
*sg
;
2558 num_sgs
= urb
->num_sgs
;
2559 temp
= urb
->transfer_buffer_length
;
2561 xhci_dbg(xhci
, "count sg list trbs: \n");
2563 for_each_sg(urb
->sg
, sg
, num_sgs
, i
) {
2564 unsigned int previous_total_trbs
= num_trbs
;
2565 unsigned int len
= sg_dma_len(sg
);
2567 /* Scatter gather list entries may cross 64KB boundaries */
2568 running_total
= TRB_MAX_BUFF_SIZE
-
2569 (sg_dma_address(sg
) & (TRB_MAX_BUFF_SIZE
- 1));
2570 running_total
&= TRB_MAX_BUFF_SIZE
- 1;
2571 if (running_total
!= 0)
2574 /* How many more 64KB chunks to transfer, how many more TRBs? */
2575 while (running_total
< sg_dma_len(sg
) && running_total
< temp
) {
2577 running_total
+= TRB_MAX_BUFF_SIZE
;
2579 xhci_dbg(xhci
, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2580 i
, (unsigned long long)sg_dma_address(sg
),
2581 len
, len
, num_trbs
- previous_total_trbs
);
2583 len
= min_t(int, len
, temp
);
2588 xhci_dbg(xhci
, "\n");
2589 if (!in_interrupt())
2590 xhci_dbg(xhci
, "ep %#x - urb len = %d, sglist used, "
2592 urb
->ep
->desc
.bEndpointAddress
,
2593 urb
->transfer_buffer_length
,
2598 static void check_trb_math(struct urb
*urb
, int num_trbs
, int running_total
)
2601 dev_err(&urb
->dev
->dev
, "%s - ep %#x - Miscalculated number of "
2602 "TRBs, %d left\n", __func__
,
2603 urb
->ep
->desc
.bEndpointAddress
, num_trbs
);
2604 if (running_total
!= urb
->transfer_buffer_length
)
2605 dev_err(&urb
->dev
->dev
, "%s - ep %#x - Miscalculated tx length, "
2606 "queued %#x (%d), asked for %#x (%d)\n",
2608 urb
->ep
->desc
.bEndpointAddress
,
2609 running_total
, running_total
,
2610 urb
->transfer_buffer_length
,
2611 urb
->transfer_buffer_length
);
2614 static void giveback_first_trb(struct xhci_hcd
*xhci
, int slot_id
,
2615 unsigned int ep_index
, unsigned int stream_id
, int start_cycle
,
2616 struct xhci_generic_trb
*start_trb
)
2619 * Pass all the TRBs to the hardware at once and make sure this write
2624 start_trb
->field
[3] |= cpu_to_le32(start_cycle
);
2626 start_trb
->field
[3] &= cpu_to_le32(~TRB_CYCLE
);
2627 xhci_ring_ep_doorbell(xhci
, slot_id
, ep_index
, stream_id
);
2631 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2632 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2633 * (comprised of sg list entries) can take several service intervals to
2636 int xhci_queue_intr_tx(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
2637 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
2639 struct xhci_ep_ctx
*ep_ctx
= xhci_get_ep_ctx(xhci
,
2640 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
2644 xhci_interval
= EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx
->ep_info
));
2645 ep_interval
= urb
->interval
;
2646 /* Convert to microframes */
2647 if (urb
->dev
->speed
== USB_SPEED_LOW
||
2648 urb
->dev
->speed
== USB_SPEED_FULL
)
2650 /* FIXME change this to a warning and a suggestion to use the new API
2651 * to set the polling interval (once the API is added).
2653 if (xhci_interval
!= ep_interval
) {
2654 if (printk_ratelimit())
2655 dev_dbg(&urb
->dev
->dev
, "Driver uses different interval"
2656 " (%d microframe%s) than xHCI "
2657 "(%d microframe%s)\n",
2659 ep_interval
== 1 ? "" : "s",
2661 xhci_interval
== 1 ? "" : "s");
2662 urb
->interval
= xhci_interval
;
2663 /* Convert back to frames for LS/FS devices */
2664 if (urb
->dev
->speed
== USB_SPEED_LOW
||
2665 urb
->dev
->speed
== USB_SPEED_FULL
)
2668 return xhci_queue_bulk_tx(xhci
, GFP_ATOMIC
, urb
, slot_id
, ep_index
);
2672 * The TD size is the number of bytes remaining in the TD (including this TRB),
2673 * right shifted by 10.
2674 * It must fit in bits 21:17, so it can't be bigger than 31.
2676 static u32
xhci_td_remainder(unsigned int remainder
)
2678 u32 max
= (1 << (21 - 17 + 1)) - 1;
2680 if ((remainder
>> 10) >= max
)
2683 return (remainder
>> 10) << 17;
2687 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2688 * the TD (*not* including this TRB).
2690 * Total TD packet count = total_packet_count =
2691 * roundup(TD size in bytes / wMaxPacketSize)
2693 * Packets transferred up to and including this TRB = packets_transferred =
2694 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2696 * TD size = total_packet_count - packets_transferred
2698 * It must fit in bits 21:17, so it can't be bigger than 31.
2701 static u32
xhci_v1_0_td_remainder(int running_total
, int trb_buff_len
,
2702 unsigned int total_packet_count
, struct urb
*urb
)
2704 int packets_transferred
;
2706 /* One TRB with a zero-length data packet. */
2707 if (running_total
== 0 && trb_buff_len
== 0)
2710 /* All the TRB queueing functions don't count the current TRB in
2713 packets_transferred
= (running_total
+ trb_buff_len
) /
2714 le16_to_cpu(urb
->ep
->desc
.wMaxPacketSize
);
2716 return xhci_td_remainder(total_packet_count
- packets_transferred
);
2719 static int queue_bulk_sg_tx(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
2720 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
2722 struct xhci_ring
*ep_ring
;
2723 unsigned int num_trbs
;
2724 struct urb_priv
*urb_priv
;
2726 struct scatterlist
*sg
;
2728 int trb_buff_len
, this_sg_len
, running_total
;
2729 unsigned int total_packet_count
;
2732 bool more_trbs_coming
;
2734 struct xhci_generic_trb
*start_trb
;
2737 ep_ring
= xhci_urb_to_transfer_ring(xhci
, urb
);
2741 num_trbs
= count_sg_trbs_needed(xhci
, urb
);
2742 num_sgs
= urb
->num_sgs
;
2743 total_packet_count
= roundup(urb
->transfer_buffer_length
,
2744 le16_to_cpu(urb
->ep
->desc
.wMaxPacketSize
));
2746 trb_buff_len
= prepare_transfer(xhci
, xhci
->devs
[slot_id
],
2747 ep_index
, urb
->stream_id
,
2748 num_trbs
, urb
, 0, mem_flags
);
2749 if (trb_buff_len
< 0)
2750 return trb_buff_len
;
2752 urb_priv
= urb
->hcpriv
;
2753 td
= urb_priv
->td
[0];
2756 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2757 * until we've finished creating all the other TRBs. The ring's cycle
2758 * state may change as we enqueue the other TRBs, so save it too.
2760 start_trb
= &ep_ring
->enqueue
->generic
;
2761 start_cycle
= ep_ring
->cycle_state
;
2765 * How much data is in the first TRB?
2767 * There are three forces at work for TRB buffer pointers and lengths:
2768 * 1. We don't want to walk off the end of this sg-list entry buffer.
2769 * 2. The transfer length that the driver requested may be smaller than
2770 * the amount of memory allocated for this scatter-gather list.
2771 * 3. TRBs buffers can't cross 64KB boundaries.
2774 addr
= (u64
) sg_dma_address(sg
);
2775 this_sg_len
= sg_dma_len(sg
);
2776 trb_buff_len
= TRB_MAX_BUFF_SIZE
- (addr
& (TRB_MAX_BUFF_SIZE
- 1));
2777 trb_buff_len
= min_t(int, trb_buff_len
, this_sg_len
);
2778 if (trb_buff_len
> urb
->transfer_buffer_length
)
2779 trb_buff_len
= urb
->transfer_buffer_length
;
2780 xhci_dbg(xhci
, "First length to xfer from 1st sglist entry = %u\n",
2784 /* Queue the first TRB, even if it's zero-length */
2787 u32 length_field
= 0;
2790 /* Don't change the cycle bit of the first TRB until later */
2793 if (start_cycle
== 0)
2796 field
|= ep_ring
->cycle_state
;
2798 /* Chain all the TRBs together; clear the chain bit in the last
2799 * TRB to indicate it's the last TRB in the chain.
2804 /* FIXME - add check for ZERO_PACKET flag before this */
2805 td
->last_trb
= ep_ring
->enqueue
;
2809 /* Only set interrupt on short packet for IN endpoints */
2810 if (usb_urb_dir_in(urb
))
2813 xhci_dbg(xhci
, " sg entry: dma = %#x, len = %#x (%d), "
2814 "64KB boundary at %#x, end dma = %#x\n",
2815 (unsigned int) addr
, trb_buff_len
, trb_buff_len
,
2816 (unsigned int) (addr
+ TRB_MAX_BUFF_SIZE
) & ~(TRB_MAX_BUFF_SIZE
- 1),
2817 (unsigned int) addr
+ trb_buff_len
);
2818 if (TRB_MAX_BUFF_SIZE
-
2819 (addr
& (TRB_MAX_BUFF_SIZE
- 1)) < trb_buff_len
) {
2820 xhci_warn(xhci
, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2821 xhci_dbg(xhci
, "Next boundary at %#x, end dma = %#x\n",
2822 (unsigned int) (addr
+ TRB_MAX_BUFF_SIZE
) & ~(TRB_MAX_BUFF_SIZE
- 1),
2823 (unsigned int) addr
+ trb_buff_len
);
2826 /* Set the TRB length, TD size, and interrupter fields. */
2827 if (xhci
->hci_version
< 0x100) {
2828 remainder
= xhci_td_remainder(
2829 urb
->transfer_buffer_length
-
2832 remainder
= xhci_v1_0_td_remainder(running_total
,
2833 trb_buff_len
, total_packet_count
, urb
);
2835 length_field
= TRB_LEN(trb_buff_len
) |
2840 more_trbs_coming
= true;
2842 more_trbs_coming
= false;
2843 queue_trb(xhci
, ep_ring
, false, more_trbs_coming
,
2844 lower_32_bits(addr
),
2845 upper_32_bits(addr
),
2847 field
| TRB_TYPE(TRB_NORMAL
));
2849 running_total
+= trb_buff_len
;
2851 /* Calculate length for next transfer --
2852 * Are we done queueing all the TRBs for this sg entry?
2854 this_sg_len
-= trb_buff_len
;
2855 if (this_sg_len
== 0) {
2860 addr
= (u64
) sg_dma_address(sg
);
2861 this_sg_len
= sg_dma_len(sg
);
2863 addr
+= trb_buff_len
;
2866 trb_buff_len
= TRB_MAX_BUFF_SIZE
-
2867 (addr
& (TRB_MAX_BUFF_SIZE
- 1));
2868 trb_buff_len
= min_t(int, trb_buff_len
, this_sg_len
);
2869 if (running_total
+ trb_buff_len
> urb
->transfer_buffer_length
)
2871 urb
->transfer_buffer_length
- running_total
;
2872 } while (running_total
< urb
->transfer_buffer_length
);
2874 check_trb_math(urb
, num_trbs
, running_total
);
2875 giveback_first_trb(xhci
, slot_id
, ep_index
, urb
->stream_id
,
2876 start_cycle
, start_trb
);
2880 /* This is very similar to what ehci-q.c qtd_fill() does */
2881 int xhci_queue_bulk_tx(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
2882 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
2884 struct xhci_ring
*ep_ring
;
2885 struct urb_priv
*urb_priv
;
2888 struct xhci_generic_trb
*start_trb
;
2890 bool more_trbs_coming
;
2892 u32 field
, length_field
;
2894 int running_total
, trb_buff_len
, ret
;
2895 unsigned int total_packet_count
;
2899 return queue_bulk_sg_tx(xhci
, mem_flags
, urb
, slot_id
, ep_index
);
2901 ep_ring
= xhci_urb_to_transfer_ring(xhci
, urb
);
2906 /* How much data is (potentially) left before the 64KB boundary? */
2907 running_total
= TRB_MAX_BUFF_SIZE
-
2908 (urb
->transfer_dma
& (TRB_MAX_BUFF_SIZE
- 1));
2909 running_total
&= TRB_MAX_BUFF_SIZE
- 1;
2911 /* If there's some data on this 64KB chunk, or we have to send a
2912 * zero-length transfer, we need at least one TRB
2914 if (running_total
!= 0 || urb
->transfer_buffer_length
== 0)
2916 /* How many more 64KB chunks to transfer, how many more TRBs? */
2917 while (running_total
< urb
->transfer_buffer_length
) {
2919 running_total
+= TRB_MAX_BUFF_SIZE
;
2921 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2923 if (!in_interrupt())
2924 xhci_dbg(xhci
, "ep %#x - urb len = %#x (%d), "
2925 "addr = %#llx, num_trbs = %d\n",
2926 urb
->ep
->desc
.bEndpointAddress
,
2927 urb
->transfer_buffer_length
,
2928 urb
->transfer_buffer_length
,
2929 (unsigned long long)urb
->transfer_dma
,
2932 ret
= prepare_transfer(xhci
, xhci
->devs
[slot_id
],
2933 ep_index
, urb
->stream_id
,
2934 num_trbs
, urb
, 0, mem_flags
);
2938 urb_priv
= urb
->hcpriv
;
2939 td
= urb_priv
->td
[0];
2942 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2943 * until we've finished creating all the other TRBs. The ring's cycle
2944 * state may change as we enqueue the other TRBs, so save it too.
2946 start_trb
= &ep_ring
->enqueue
->generic
;
2947 start_cycle
= ep_ring
->cycle_state
;
2950 total_packet_count
= roundup(urb
->transfer_buffer_length
,
2951 le16_to_cpu(urb
->ep
->desc
.wMaxPacketSize
));
2952 /* How much data is in the first TRB? */
2953 addr
= (u64
) urb
->transfer_dma
;
2954 trb_buff_len
= TRB_MAX_BUFF_SIZE
-
2955 (urb
->transfer_dma
& (TRB_MAX_BUFF_SIZE
- 1));
2956 if (trb_buff_len
> urb
->transfer_buffer_length
)
2957 trb_buff_len
= urb
->transfer_buffer_length
;
2961 /* Queue the first TRB, even if it's zero-length */
2966 /* Don't change the cycle bit of the first TRB until later */
2969 if (start_cycle
== 0)
2972 field
|= ep_ring
->cycle_state
;
2974 /* Chain all the TRBs together; clear the chain bit in the last
2975 * TRB to indicate it's the last TRB in the chain.
2980 /* FIXME - add check for ZERO_PACKET flag before this */
2981 td
->last_trb
= ep_ring
->enqueue
;
2985 /* Only set interrupt on short packet for IN endpoints */
2986 if (usb_urb_dir_in(urb
))
2989 /* Set the TRB length, TD size, and interrupter fields. */
2990 if (xhci
->hci_version
< 0x100) {
2991 remainder
= xhci_td_remainder(
2992 urb
->transfer_buffer_length
-
2995 remainder
= xhci_v1_0_td_remainder(running_total
,
2996 trb_buff_len
, total_packet_count
, urb
);
2998 length_field
= TRB_LEN(trb_buff_len
) |
3003 more_trbs_coming
= true;
3005 more_trbs_coming
= false;
3006 queue_trb(xhci
, ep_ring
, false, more_trbs_coming
,
3007 lower_32_bits(addr
),
3008 upper_32_bits(addr
),
3010 field
| TRB_TYPE(TRB_NORMAL
));
3012 running_total
+= trb_buff_len
;
3014 /* Calculate length for next transfer */
3015 addr
+= trb_buff_len
;
3016 trb_buff_len
= urb
->transfer_buffer_length
- running_total
;
3017 if (trb_buff_len
> TRB_MAX_BUFF_SIZE
)
3018 trb_buff_len
= TRB_MAX_BUFF_SIZE
;
3019 } while (running_total
< urb
->transfer_buffer_length
);
3021 check_trb_math(urb
, num_trbs
, running_total
);
3022 giveback_first_trb(xhci
, slot_id
, ep_index
, urb
->stream_id
,
3023 start_cycle
, start_trb
);
3027 /* Caller must have locked xhci->lock */
3028 int xhci_queue_ctrl_tx(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
3029 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
3031 struct xhci_ring
*ep_ring
;
3034 struct usb_ctrlrequest
*setup
;
3035 struct xhci_generic_trb
*start_trb
;
3037 u32 field
, length_field
;
3038 struct urb_priv
*urb_priv
;
3041 ep_ring
= xhci_urb_to_transfer_ring(xhci
, urb
);
3046 * Need to copy setup packet into setup TRB, so we can't use the setup
3049 if (!urb
->setup_packet
)
3052 if (!in_interrupt())
3053 xhci_dbg(xhci
, "Queueing ctrl tx for slot id %d, ep %d\n",
3055 /* 1 TRB for setup, 1 for status */
3058 * Don't need to check if we need additional event data and normal TRBs,
3059 * since data in control transfers will never get bigger than 16MB
3060 * XXX: can we get a buffer that crosses 64KB boundaries?
3062 if (urb
->transfer_buffer_length
> 0)
3064 ret
= prepare_transfer(xhci
, xhci
->devs
[slot_id
],
3065 ep_index
, urb
->stream_id
,
3066 num_trbs
, urb
, 0, mem_flags
);
3070 urb_priv
= urb
->hcpriv
;
3071 td
= urb_priv
->td
[0];
3074 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3075 * until we've finished creating all the other TRBs. The ring's cycle
3076 * state may change as we enqueue the other TRBs, so save it too.
3078 start_trb
= &ep_ring
->enqueue
->generic
;
3079 start_cycle
= ep_ring
->cycle_state
;
3081 /* Queue setup TRB - see section 6.4.1.2.1 */
3082 /* FIXME better way to translate setup_packet into two u32 fields? */
3083 setup
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
3085 field
|= TRB_IDT
| TRB_TYPE(TRB_SETUP
);
3086 if (start_cycle
== 0)
3089 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3090 if (xhci
->hci_version
== 0x100) {
3091 if (urb
->transfer_buffer_length
> 0) {
3092 if (setup
->bRequestType
& USB_DIR_IN
)
3093 field
|= TRB_TX_TYPE(TRB_DATA_IN
);
3095 field
|= TRB_TX_TYPE(TRB_DATA_OUT
);
3099 queue_trb(xhci
, ep_ring
, false, true,
3100 setup
->bRequestType
| setup
->bRequest
<< 8 | le16_to_cpu(setup
->wValue
) << 16,
3101 le16_to_cpu(setup
->wIndex
) | le16_to_cpu(setup
->wLength
) << 16,
3102 TRB_LEN(8) | TRB_INTR_TARGET(0),
3103 /* Immediate data in pointer */
3106 /* If there's data, queue data TRBs */
3107 /* Only set interrupt on short packet for IN endpoints */
3108 if (usb_urb_dir_in(urb
))
3109 field
= TRB_ISP
| TRB_TYPE(TRB_DATA
);
3111 field
= TRB_TYPE(TRB_DATA
);
3113 length_field
= TRB_LEN(urb
->transfer_buffer_length
) |
3114 xhci_td_remainder(urb
->transfer_buffer_length
) |
3116 if (urb
->transfer_buffer_length
> 0) {
3117 if (setup
->bRequestType
& USB_DIR_IN
)
3118 field
|= TRB_DIR_IN
;
3119 queue_trb(xhci
, ep_ring
, false, true,
3120 lower_32_bits(urb
->transfer_dma
),
3121 upper_32_bits(urb
->transfer_dma
),
3123 field
| ep_ring
->cycle_state
);
3126 /* Save the DMA address of the last TRB in the TD */
3127 td
->last_trb
= ep_ring
->enqueue
;
3129 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3130 /* If the device sent data, the status stage is an OUT transfer */
3131 if (urb
->transfer_buffer_length
> 0 && setup
->bRequestType
& USB_DIR_IN
)
3135 queue_trb(xhci
, ep_ring
, false, false,
3139 /* Event on completion */
3140 field
| TRB_IOC
| TRB_TYPE(TRB_STATUS
) | ep_ring
->cycle_state
);
3142 giveback_first_trb(xhci
, slot_id
, ep_index
, 0,
3143 start_cycle
, start_trb
);
3147 static int count_isoc_trbs_needed(struct xhci_hcd
*xhci
,
3148 struct urb
*urb
, int i
)
3153 addr
= (u64
) (urb
->transfer_dma
+ urb
->iso_frame_desc
[i
].offset
);
3154 td_len
= urb
->iso_frame_desc
[i
].length
;
3156 num_trbs
= DIV_ROUND_UP(td_len
+ (addr
& (TRB_MAX_BUFF_SIZE
- 1)),
3165 * The transfer burst count field of the isochronous TRB defines the number of
3166 * bursts that are required to move all packets in this TD. Only SuperSpeed
3167 * devices can burst up to bMaxBurst number of packets per service interval.
3168 * This field is zero based, meaning a value of zero in the field means one
3169 * burst. Basically, for everything but SuperSpeed devices, this field will be
3170 * zero. Only xHCI 1.0 host controllers support this field.
3172 static unsigned int xhci_get_burst_count(struct xhci_hcd
*xhci
,
3173 struct usb_device
*udev
,
3174 struct urb
*urb
, unsigned int total_packet_count
)
3176 unsigned int max_burst
;
3178 if (xhci
->hci_version
< 0x100 || udev
->speed
!= USB_SPEED_SUPER
)
3181 max_burst
= urb
->ep
->ss_ep_comp
.bMaxBurst
;
3182 return roundup(total_packet_count
, max_burst
+ 1) - 1;
3186 * Returns the number of packets in the last "burst" of packets. This field is
3187 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3188 * the last burst packet count is equal to the total number of packets in the
3189 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3190 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3191 * contain 1 to (bMaxBurst + 1) packets.
3193 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd
*xhci
,
3194 struct usb_device
*udev
,
3195 struct urb
*urb
, unsigned int total_packet_count
)
3197 unsigned int max_burst
;
3198 unsigned int residue
;
3200 if (xhci
->hci_version
< 0x100)
3203 switch (udev
->speed
) {
3204 case USB_SPEED_SUPER
:
3205 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3206 max_burst
= urb
->ep
->ss_ep_comp
.bMaxBurst
;
3207 residue
= total_packet_count
% (max_burst
+ 1);
3208 /* If residue is zero, the last burst contains (max_burst + 1)
3209 * number of packets, but the TLBPC field is zero-based.
3215 if (total_packet_count
== 0)
3217 return total_packet_count
- 1;
3221 /* This is for isoc transfer */
3222 static int xhci_queue_isoc_tx(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
3223 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
3225 struct xhci_ring
*ep_ring
;
3226 struct urb_priv
*urb_priv
;
3228 int num_tds
, trbs_per_td
;
3229 struct xhci_generic_trb
*start_trb
;
3232 u32 field
, length_field
;
3233 int running_total
, trb_buff_len
, td_len
, td_remain_len
, ret
;
3234 u64 start_addr
, addr
;
3236 bool more_trbs_coming
;
3238 ep_ring
= xhci
->devs
[slot_id
]->eps
[ep_index
].ring
;
3240 num_tds
= urb
->number_of_packets
;
3242 xhci_dbg(xhci
, "Isoc URB with zero packets?\n");
3246 if (!in_interrupt())
3247 xhci_dbg(xhci
, "ep %#x - urb len = %#x (%d),"
3248 " addr = %#llx, num_tds = %d\n",
3249 urb
->ep
->desc
.bEndpointAddress
,
3250 urb
->transfer_buffer_length
,
3251 urb
->transfer_buffer_length
,
3252 (unsigned long long)urb
->transfer_dma
,
3255 start_addr
= (u64
) urb
->transfer_dma
;
3256 start_trb
= &ep_ring
->enqueue
->generic
;
3257 start_cycle
= ep_ring
->cycle_state
;
3259 urb_priv
= urb
->hcpriv
;
3260 /* Queue the first TRB, even if it's zero-length */
3261 for (i
= 0; i
< num_tds
; i
++) {
3262 unsigned int total_packet_count
;
3263 unsigned int burst_count
;
3264 unsigned int residue
;
3268 addr
= start_addr
+ urb
->iso_frame_desc
[i
].offset
;
3269 td_len
= urb
->iso_frame_desc
[i
].length
;
3270 td_remain_len
= td_len
;
3271 total_packet_count
= roundup(td_len
,
3272 le16_to_cpu(urb
->ep
->desc
.wMaxPacketSize
));
3273 /* A zero-length transfer still involves at least one packet. */
3274 if (total_packet_count
== 0)
3275 total_packet_count
++;
3276 burst_count
= xhci_get_burst_count(xhci
, urb
->dev
, urb
,
3277 total_packet_count
);
3278 residue
= xhci_get_last_burst_packet_count(xhci
,
3279 urb
->dev
, urb
, total_packet_count
);
3281 trbs_per_td
= count_isoc_trbs_needed(xhci
, urb
, i
);
3283 ret
= prepare_transfer(xhci
, xhci
->devs
[slot_id
], ep_index
,
3284 urb
->stream_id
, trbs_per_td
, urb
, i
, mem_flags
);
3291 td
= urb_priv
->td
[i
];
3292 for (j
= 0; j
< trbs_per_td
; j
++) {
3294 field
= TRB_TBC(burst_count
) | TRB_TLBPC(residue
);
3297 /* Queue the isoc TRB */
3298 field
|= TRB_TYPE(TRB_ISOC
);
3299 /* Assume URB_ISO_ASAP is set */
3302 if (start_cycle
== 0)
3305 field
|= ep_ring
->cycle_state
;
3308 /* Queue other normal TRBs */
3309 field
|= TRB_TYPE(TRB_NORMAL
);
3310 field
|= ep_ring
->cycle_state
;
3313 /* Only set interrupt on short packet for IN EPs */
3314 if (usb_urb_dir_in(urb
))
3317 /* Chain all the TRBs together; clear the chain bit in
3318 * the last TRB to indicate it's the last TRB in the
3321 if (j
< trbs_per_td
- 1) {
3323 more_trbs_coming
= true;
3325 td
->last_trb
= ep_ring
->enqueue
;
3327 if (xhci
->hci_version
== 0x100) {
3328 /* Set BEI bit except for the last td */
3329 if (i
< num_tds
- 1)
3332 more_trbs_coming
= false;
3335 /* Calculate TRB length */
3336 trb_buff_len
= TRB_MAX_BUFF_SIZE
-
3337 (addr
& ((1 << TRB_MAX_BUFF_SHIFT
) - 1));
3338 if (trb_buff_len
> td_remain_len
)
3339 trb_buff_len
= td_remain_len
;
3341 /* Set the TRB length, TD size, & interrupter fields. */
3342 if (xhci
->hci_version
< 0x100) {
3343 remainder
= xhci_td_remainder(
3344 td_len
- running_total
);
3346 remainder
= xhci_v1_0_td_remainder(
3347 running_total
, trb_buff_len
,
3348 total_packet_count
, urb
);
3350 length_field
= TRB_LEN(trb_buff_len
) |
3354 queue_trb(xhci
, ep_ring
, false, more_trbs_coming
,
3355 lower_32_bits(addr
),
3356 upper_32_bits(addr
),
3359 running_total
+= trb_buff_len
;
3361 addr
+= trb_buff_len
;
3362 td_remain_len
-= trb_buff_len
;
3365 /* Check TD length */
3366 if (running_total
!= td_len
) {
3367 xhci_err(xhci
, "ISOC TD length unmatch\n");
3372 if (xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
== 0) {
3373 if (xhci
->quirks
& XHCI_AMD_PLL_FIX
)
3374 usb_amd_quirk_pll_disable();
3376 xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
++;
3378 giveback_first_trb(xhci
, slot_id
, ep_index
, urb
->stream_id
,
3379 start_cycle
, start_trb
);
3382 /* Clean up a partially enqueued isoc transfer. */
3384 for (i
--; i
>= 0; i
--)
3385 list_del_init(&urb_priv
->td
[i
]->td_list
);
3387 /* Use the first TD as a temporary variable to turn the TDs we've queued
3388 * into No-ops with a software-owned cycle bit. That way the hardware
3389 * won't accidentally start executing bogus TDs when we partially
3390 * overwrite them. td->first_trb and td->start_seg are already set.
3392 urb_priv
->td
[0]->last_trb
= ep_ring
->enqueue
;
3393 /* Every TRB except the first & last will have its cycle bit flipped. */
3394 td_to_noop(xhci
, ep_ring
, urb_priv
->td
[0], true);
3396 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3397 ep_ring
->enqueue
= urb_priv
->td
[0]->first_trb
;
3398 ep_ring
->enq_seg
= urb_priv
->td
[0]->start_seg
;
3399 ep_ring
->cycle_state
= start_cycle
;
3400 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb
->dev
->bus
), urb
);
3405 * Check transfer ring to guarantee there is enough room for the urb.
3406 * Update ISO URB start_frame and interval.
3407 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3408 * update the urb->start_frame by now.
3409 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3411 int xhci_queue_isoc_tx_prepare(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
3412 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
3414 struct xhci_virt_device
*xdev
;
3415 struct xhci_ring
*ep_ring
;
3416 struct xhci_ep_ctx
*ep_ctx
;
3420 int num_tds
, num_trbs
, i
;
3423 xdev
= xhci
->devs
[slot_id
];
3424 ep_ring
= xdev
->eps
[ep_index
].ring
;
3425 ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
3428 num_tds
= urb
->number_of_packets
;
3429 for (i
= 0; i
< num_tds
; i
++)
3430 num_trbs
+= count_isoc_trbs_needed(xhci
, urb
, i
);
3432 /* Check the ring to guarantee there is enough room for the whole urb.
3433 * Do not insert any td of the urb to the ring if the check failed.
3435 ret
= prepare_ring(xhci
, ep_ring
, le32_to_cpu(ep_ctx
->ep_info
) & EP_STATE_MASK
,
3436 num_trbs
, mem_flags
);
3440 start_frame
= xhci_readl(xhci
, &xhci
->run_regs
->microframe_index
);
3441 start_frame
&= 0x3fff;
3443 urb
->start_frame
= start_frame
;
3444 if (urb
->dev
->speed
== USB_SPEED_LOW
||
3445 urb
->dev
->speed
== USB_SPEED_FULL
)
3446 urb
->start_frame
>>= 3;
3448 xhci_interval
= EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx
->ep_info
));
3449 ep_interval
= urb
->interval
;
3450 /* Convert to microframes */
3451 if (urb
->dev
->speed
== USB_SPEED_LOW
||
3452 urb
->dev
->speed
== USB_SPEED_FULL
)
3454 /* FIXME change this to a warning and a suggestion to use the new API
3455 * to set the polling interval (once the API is added).
3457 if (xhci_interval
!= ep_interval
) {
3458 if (printk_ratelimit())
3459 dev_dbg(&urb
->dev
->dev
, "Driver uses different interval"
3460 " (%d microframe%s) than xHCI "
3461 "(%d microframe%s)\n",
3463 ep_interval
== 1 ? "" : "s",
3465 xhci_interval
== 1 ? "" : "s");
3466 urb
->interval
= xhci_interval
;
3467 /* Convert back to frames for LS/FS devices */
3468 if (urb
->dev
->speed
== USB_SPEED_LOW
||
3469 urb
->dev
->speed
== USB_SPEED_FULL
)
3472 return xhci_queue_isoc_tx(xhci
, GFP_ATOMIC
, urb
, slot_id
, ep_index
);
3475 /**** Command Ring Operations ****/
3477 /* Generic function for queueing a command TRB on the command ring.
3478 * Check to make sure there's room on the command ring for one command TRB.
3479 * Also check that there's room reserved for commands that must not fail.
3480 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3481 * then only check for the number of reserved spots.
3482 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3483 * because the command event handler may want to resubmit a failed command.
3485 static int queue_command(struct xhci_hcd
*xhci
, u32 field1
, u32 field2
,
3486 u32 field3
, u32 field4
, bool command_must_succeed
)
3488 int reserved_trbs
= xhci
->cmd_ring_reserved_trbs
;
3491 if (!command_must_succeed
)
3494 ret
= prepare_ring(xhci
, xhci
->cmd_ring
, EP_STATE_RUNNING
,
3495 reserved_trbs
, GFP_ATOMIC
);
3497 xhci_err(xhci
, "ERR: No room for command on command ring\n");
3498 if (command_must_succeed
)
3499 xhci_err(xhci
, "ERR: Reserved TRB counting for "
3500 "unfailable commands failed.\n");
3503 queue_trb(xhci
, xhci
->cmd_ring
, false, false, field1
, field2
, field3
,
3504 field4
| xhci
->cmd_ring
->cycle_state
);
3508 /* Queue a slot enable or disable request on the command ring */
3509 int xhci_queue_slot_control(struct xhci_hcd
*xhci
, u32 trb_type
, u32 slot_id
)
3511 return queue_command(xhci
, 0, 0, 0,
3512 TRB_TYPE(trb_type
) | SLOT_ID_FOR_TRB(slot_id
), false);
3515 /* Queue an address device command TRB */
3516 int xhci_queue_address_device(struct xhci_hcd
*xhci
, dma_addr_t in_ctx_ptr
,
3519 return queue_command(xhci
, lower_32_bits(in_ctx_ptr
),
3520 upper_32_bits(in_ctx_ptr
), 0,
3521 TRB_TYPE(TRB_ADDR_DEV
) | SLOT_ID_FOR_TRB(slot_id
),
3525 int xhci_queue_vendor_command(struct xhci_hcd
*xhci
,
3526 u32 field1
, u32 field2
, u32 field3
, u32 field4
)
3528 return queue_command(xhci
, field1
, field2
, field3
, field4
, false);
3531 /* Queue a reset device command TRB */
3532 int xhci_queue_reset_device(struct xhci_hcd
*xhci
, u32 slot_id
)
3534 return queue_command(xhci
, 0, 0, 0,
3535 TRB_TYPE(TRB_RESET_DEV
) | SLOT_ID_FOR_TRB(slot_id
),
3539 /* Queue a configure endpoint command TRB */
3540 int xhci_queue_configure_endpoint(struct xhci_hcd
*xhci
, dma_addr_t in_ctx_ptr
,
3541 u32 slot_id
, bool command_must_succeed
)
3543 return queue_command(xhci
, lower_32_bits(in_ctx_ptr
),
3544 upper_32_bits(in_ctx_ptr
), 0,
3545 TRB_TYPE(TRB_CONFIG_EP
) | SLOT_ID_FOR_TRB(slot_id
),
3546 command_must_succeed
);
3549 /* Queue an evaluate context command TRB */
3550 int xhci_queue_evaluate_context(struct xhci_hcd
*xhci
, dma_addr_t in_ctx_ptr
,
3553 return queue_command(xhci
, lower_32_bits(in_ctx_ptr
),
3554 upper_32_bits(in_ctx_ptr
), 0,
3555 TRB_TYPE(TRB_EVAL_CONTEXT
) | SLOT_ID_FOR_TRB(slot_id
),
3560 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3561 * activity on an endpoint that is about to be suspended.
3563 int xhci_queue_stop_endpoint(struct xhci_hcd
*xhci
, int slot_id
,
3564 unsigned int ep_index
, int suspend
)
3566 u32 trb_slot_id
= SLOT_ID_FOR_TRB(slot_id
);
3567 u32 trb_ep_index
= EP_ID_FOR_TRB(ep_index
);
3568 u32 type
= TRB_TYPE(TRB_STOP_RING
);
3569 u32 trb_suspend
= SUSPEND_PORT_FOR_TRB(suspend
);
3571 return queue_command(xhci
, 0, 0, 0,
3572 trb_slot_id
| trb_ep_index
| type
| trb_suspend
, false);
3575 /* Set Transfer Ring Dequeue Pointer command.
3576 * This should not be used for endpoints that have streams enabled.
3578 static int queue_set_tr_deq(struct xhci_hcd
*xhci
, int slot_id
,
3579 unsigned int ep_index
, unsigned int stream_id
,
3580 struct xhci_segment
*deq_seg
,
3581 union xhci_trb
*deq_ptr
, u32 cycle_state
)
3584 u32 trb_slot_id
= SLOT_ID_FOR_TRB(slot_id
);
3585 u32 trb_ep_index
= EP_ID_FOR_TRB(ep_index
);
3586 u32 trb_stream_id
= STREAM_ID_FOR_TRB(stream_id
);
3587 u32 type
= TRB_TYPE(TRB_SET_DEQ
);
3588 struct xhci_virt_ep
*ep
;
3590 addr
= xhci_trb_virt_to_dma(deq_seg
, deq_ptr
);
3592 xhci_warn(xhci
, "WARN Cannot submit Set TR Deq Ptr\n");
3593 xhci_warn(xhci
, "WARN deq seg = %p, deq pt = %p\n",
3597 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
3598 if ((ep
->ep_state
& SET_DEQ_PENDING
)) {
3599 xhci_warn(xhci
, "WARN Cannot submit Set TR Deq Ptr\n");
3600 xhci_warn(xhci
, "A Set TR Deq Ptr command is pending.\n");
3603 ep
->queued_deq_seg
= deq_seg
;
3604 ep
->queued_deq_ptr
= deq_ptr
;
3605 return queue_command(xhci
, lower_32_bits(addr
) | cycle_state
,
3606 upper_32_bits(addr
), trb_stream_id
,
3607 trb_slot_id
| trb_ep_index
| type
, false);
3610 int xhci_queue_reset_ep(struct xhci_hcd
*xhci
, int slot_id
,
3611 unsigned int ep_index
)
3613 u32 trb_slot_id
= SLOT_ID_FOR_TRB(slot_id
);
3614 u32 trb_ep_index
= EP_ID_FOR_TRB(ep_index
);
3615 u32 type
= TRB_TYPE(TRB_RESET_EP
);
3617 return queue_command(xhci
, 0, 0, 0, trb_slot_id
| trb_ep_index
| type
,