Merge branches 'stable/bug.fixes-3.2' and 'stable/mmu.fixes' of git://git.kernel...
[linux-btrfs-devel.git] / arch / arm / mm / fault-armv.c
blob7cab791794218b6c49917bf0471152ea810f9e55
1 /*
2 * linux/arch/arm/mm/fault-armv.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2002 Russell King
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/bitops.h>
16 #include <linux/vmalloc.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/gfp.h>
21 #include <asm/bugs.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cachetype.h>
24 #include <asm/pgtable.h>
25 #include <asm/tlbflush.h>
27 #include "mm.h"
29 static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
31 #if __LINUX_ARM_ARCH__ < 6
33 * We take the easy way out of this problem - we make the
34 * PTE uncacheable. However, we leave the write buffer on.
36 * Note that the pte lock held when calling update_mmu_cache must also
37 * guard the pte (somewhere else in the same mm) that we modify here.
38 * Therefore those configurations which might call adjust_pte (those
39 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
41 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
42 unsigned long pfn, pte_t *ptep)
44 pte_t entry = *ptep;
45 int ret;
48 * If this page is present, it's actually being shared.
50 ret = pte_present(entry);
53 * If this page isn't present, or is already setup to
54 * fault (ie, is old), we can safely ignore any issues.
56 if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
57 flush_cache_page(vma, address, pfn);
58 outer_flush_range((pfn << PAGE_SHIFT),
59 (pfn << PAGE_SHIFT) + PAGE_SIZE);
60 pte_val(entry) &= ~L_PTE_MT_MASK;
61 pte_val(entry) |= shared_pte_mask;
62 set_pte_at(vma->vm_mm, address, ptep, entry);
63 flush_tlb_page(vma, address);
66 return ret;
69 #if USE_SPLIT_PTLOCKS
71 * If we are using split PTE locks, then we need to take the page
72 * lock here. Otherwise we are using shared mm->page_table_lock
73 * which is already locked, thus cannot take it.
75 static inline void do_pte_lock(spinlock_t *ptl)
78 * Use nested version here to indicate that we are already
79 * holding one similar spinlock.
81 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
84 static inline void do_pte_unlock(spinlock_t *ptl)
86 spin_unlock(ptl);
88 #else /* !USE_SPLIT_PTLOCKS */
89 static inline void do_pte_lock(spinlock_t *ptl) {}
90 static inline void do_pte_unlock(spinlock_t *ptl) {}
91 #endif /* USE_SPLIT_PTLOCKS */
93 static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
94 unsigned long pfn)
96 spinlock_t *ptl;
97 pgd_t *pgd;
98 pud_t *pud;
99 pmd_t *pmd;
100 pte_t *pte;
101 int ret;
103 pgd = pgd_offset(vma->vm_mm, address);
104 if (pgd_none_or_clear_bad(pgd))
105 return 0;
107 pud = pud_offset(pgd, address);
108 if (pud_none_or_clear_bad(pud))
109 return 0;
111 pmd = pmd_offset(pud, address);
112 if (pmd_none_or_clear_bad(pmd))
113 return 0;
116 * This is called while another page table is mapped, so we
117 * must use the nested version. This also means we need to
118 * open-code the spin-locking.
120 ptl = pte_lockptr(vma->vm_mm, pmd);
121 pte = pte_offset_map(pmd, address);
122 do_pte_lock(ptl);
124 ret = do_adjust_pte(vma, address, pfn, pte);
126 do_pte_unlock(ptl);
127 pte_unmap(pte);
129 return ret;
132 static void
133 make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
134 unsigned long addr, pte_t *ptep, unsigned long pfn)
136 struct mm_struct *mm = vma->vm_mm;
137 struct vm_area_struct *mpnt;
138 struct prio_tree_iter iter;
139 unsigned long offset;
140 pgoff_t pgoff;
141 int aliases = 0;
143 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
146 * If we have any shared mappings that are in the same mm
147 * space, then we need to handle them specially to maintain
148 * cache coherency.
150 flush_dcache_mmap_lock(mapping);
151 vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
153 * If this VMA is not in our MM, we can ignore it.
154 * Note that we intentionally mask out the VMA
155 * that we are fixing up.
157 if (mpnt->vm_mm != mm || mpnt == vma)
158 continue;
159 if (!(mpnt->vm_flags & VM_MAYSHARE))
160 continue;
161 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
162 aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
164 flush_dcache_mmap_unlock(mapping);
165 if (aliases)
166 do_adjust_pte(vma, addr, pfn, ptep);
170 * Take care of architecture specific things when placing a new PTE into
171 * a page table, or changing an existing PTE. Basically, there are two
172 * things that we need to take care of:
174 * 1. If PG_dcache_clean is not set for the page, we need to ensure
175 * that any cache entries for the kernels virtual memory
176 * range are written back to the page.
177 * 2. If we have multiple shared mappings of the same space in
178 * an object, we need to deal with the cache aliasing issues.
180 * Note that the pte lock will be held.
182 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
183 pte_t *ptep)
185 unsigned long pfn = pte_pfn(*ptep);
186 struct address_space *mapping;
187 struct page *page;
189 if (!pfn_valid(pfn))
190 return;
193 * The zero page is never written to, so never has any dirty
194 * cache lines, and therefore never needs to be flushed.
196 page = pfn_to_page(pfn);
197 if (page == ZERO_PAGE(0))
198 return;
200 mapping = page_mapping(page);
201 if (!test_and_set_bit(PG_dcache_clean, &page->flags))
202 __flush_dcache_page(mapping, page);
203 if (mapping) {
204 if (cache_is_vivt())
205 make_coherent(mapping, vma, addr, ptep, pfn);
206 else if (vma->vm_flags & VM_EXEC)
207 __flush_icache_all();
210 #endif /* __LINUX_ARM_ARCH__ < 6 */
213 * Check whether the write buffer has physical address aliasing
214 * issues. If it has, we need to avoid them for the case where
215 * we have several shared mappings of the same object in user
216 * space.
218 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
220 register unsigned long zero = 0, one = 1, val;
222 local_irq_disable();
223 mb();
224 *p1 = one;
225 mb();
226 *p2 = zero;
227 mb();
228 val = *p1;
229 mb();
230 local_irq_enable();
231 return val != zero;
234 void __init check_writebuffer_bugs(void)
236 struct page *page;
237 const char *reason;
238 unsigned long v = 1;
240 printk(KERN_INFO "CPU: Testing write buffer coherency: ");
242 page = alloc_page(GFP_KERNEL);
243 if (page) {
244 unsigned long *p1, *p2;
245 pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
246 L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
248 p1 = vmap(&page, 1, VM_IOREMAP, prot);
249 p2 = vmap(&page, 1, VM_IOREMAP, prot);
251 if (p1 && p2) {
252 v = check_writebuffer(p1, p2);
253 reason = "enabling work-around";
254 } else {
255 reason = "unable to map memory\n";
258 vunmap(p1);
259 vunmap(p2);
260 put_page(page);
261 } else {
262 reason = "unable to grab page\n";
265 if (v) {
266 printk("failed, %s\n", reason);
267 shared_pte_mask = L_PTE_MT_UNCACHED;
268 } else {
269 printk("ok\n");