x86: Fix compilation bug in kprobes' twobyte_is_boostable
[linux-btrfs-devel.git] / arch / arm / include / asm / spinlock.h
blob65fa3c88095c3c7b324a5027610133dc1f825d4b
1 #ifndef __ASM_SPINLOCK_H
2 #define __ASM_SPINLOCK_H
4 #if __LINUX_ARM_ARCH__ < 6
5 #error SMP not supported on pre-ARMv6 CPUs
6 #endif
8 #include <asm/processor.h>
11 * sev and wfe are ARMv6K extensions. Uniprocessor ARMv6 may not have the K
12 * extensions, so when running on UP, we have to patch these instructions away.
14 #define ALT_SMP(smp, up) \
15 "9998: " smp "\n" \
16 " .pushsection \".alt.smp.init\", \"a\"\n" \
17 " .long 9998b\n" \
18 " " up "\n" \
19 " .popsection\n"
21 #ifdef CONFIG_THUMB2_KERNEL
22 #define SEV ALT_SMP("sev.w", "nop.w")
24 * For Thumb-2, special care is needed to ensure that the conditional WFE
25 * instruction really does assemble to exactly 4 bytes (as required by
26 * the SMP_ON_UP fixup code). By itself "wfene" might cause the
27 * assembler to insert a extra (16-bit) IT instruction, depending on the
28 * presence or absence of neighbouring conditional instructions.
30 * To avoid this unpredictableness, an approprite IT is inserted explicitly:
31 * the assembler won't change IT instructions which are explicitly present
32 * in the input.
34 #define WFE(cond) ALT_SMP( \
35 "it " cond "\n\t" \
36 "wfe" cond ".n", \
38 "nop.w" \
40 #else
41 #define SEV ALT_SMP("sev", "nop")
42 #define WFE(cond) ALT_SMP("wfe" cond, "nop")
43 #endif
45 static inline void dsb_sev(void)
47 #if __LINUX_ARM_ARCH__ >= 7
48 __asm__ __volatile__ (
49 "dsb\n"
50 SEV
52 #else
53 __asm__ __volatile__ (
54 "mcr p15, 0, %0, c7, c10, 4\n"
55 SEV
56 : : "r" (0)
58 #endif
62 * ARMv6 Spin-locking.
64 * We exclusively read the old value. If it is zero, we may have
65 * won the lock, so we try exclusively storing it. A memory barrier
66 * is required after we get a lock, and before we release it, because
67 * V6 CPUs are assumed to have weakly ordered memory.
69 * Unlocked value: 0
70 * Locked value: 1
73 #define arch_spin_is_locked(x) ((x)->lock != 0)
74 #define arch_spin_unlock_wait(lock) \
75 do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
77 #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
79 static inline void arch_spin_lock(arch_spinlock_t *lock)
81 unsigned long tmp;
83 __asm__ __volatile__(
84 "1: ldrex %0, [%1]\n"
85 " teq %0, #0\n"
86 WFE("ne")
87 " strexeq %0, %2, [%1]\n"
88 " teqeq %0, #0\n"
89 " bne 1b"
90 : "=&r" (tmp)
91 : "r" (&lock->lock), "r" (1)
92 : "cc");
94 smp_mb();
97 static inline int arch_spin_trylock(arch_spinlock_t *lock)
99 unsigned long tmp;
101 __asm__ __volatile__(
102 " ldrex %0, [%1]\n"
103 " teq %0, #0\n"
104 " strexeq %0, %2, [%1]"
105 : "=&r" (tmp)
106 : "r" (&lock->lock), "r" (1)
107 : "cc");
109 if (tmp == 0) {
110 smp_mb();
111 return 1;
112 } else {
113 return 0;
117 static inline void arch_spin_unlock(arch_spinlock_t *lock)
119 smp_mb();
121 __asm__ __volatile__(
122 " str %1, [%0]\n"
124 : "r" (&lock->lock), "r" (0)
125 : "cc");
127 dsb_sev();
131 * RWLOCKS
134 * Write locks are easy - we just set bit 31. When unlocking, we can
135 * just write zero since the lock is exclusively held.
138 static inline void arch_write_lock(arch_rwlock_t *rw)
140 unsigned long tmp;
142 __asm__ __volatile__(
143 "1: ldrex %0, [%1]\n"
144 " teq %0, #0\n"
145 WFE("ne")
146 " strexeq %0, %2, [%1]\n"
147 " teq %0, #0\n"
148 " bne 1b"
149 : "=&r" (tmp)
150 : "r" (&rw->lock), "r" (0x80000000)
151 : "cc");
153 smp_mb();
156 static inline int arch_write_trylock(arch_rwlock_t *rw)
158 unsigned long tmp;
160 __asm__ __volatile__(
161 "1: ldrex %0, [%1]\n"
162 " teq %0, #0\n"
163 " strexeq %0, %2, [%1]"
164 : "=&r" (tmp)
165 : "r" (&rw->lock), "r" (0x80000000)
166 : "cc");
168 if (tmp == 0) {
169 smp_mb();
170 return 1;
171 } else {
172 return 0;
176 static inline void arch_write_unlock(arch_rwlock_t *rw)
178 smp_mb();
180 __asm__ __volatile__(
181 "str %1, [%0]\n"
183 : "r" (&rw->lock), "r" (0)
184 : "cc");
186 dsb_sev();
189 /* write_can_lock - would write_trylock() succeed? */
190 #define arch_write_can_lock(x) ((x)->lock == 0)
193 * Read locks are a bit more hairy:
194 * - Exclusively load the lock value.
195 * - Increment it.
196 * - Store new lock value if positive, and we still own this location.
197 * If the value is negative, we've already failed.
198 * - If we failed to store the value, we want a negative result.
199 * - If we failed, try again.
200 * Unlocking is similarly hairy. We may have multiple read locks
201 * currently active. However, we know we won't have any write
202 * locks.
204 static inline void arch_read_lock(arch_rwlock_t *rw)
206 unsigned long tmp, tmp2;
208 __asm__ __volatile__(
209 "1: ldrex %0, [%2]\n"
210 " adds %0, %0, #1\n"
211 " strexpl %1, %0, [%2]\n"
212 WFE("mi")
213 " rsbpls %0, %1, #0\n"
214 " bmi 1b"
215 : "=&r" (tmp), "=&r" (tmp2)
216 : "r" (&rw->lock)
217 : "cc");
219 smp_mb();
222 static inline void arch_read_unlock(arch_rwlock_t *rw)
224 unsigned long tmp, tmp2;
226 smp_mb();
228 __asm__ __volatile__(
229 "1: ldrex %0, [%2]\n"
230 " sub %0, %0, #1\n"
231 " strex %1, %0, [%2]\n"
232 " teq %1, #0\n"
233 " bne 1b"
234 : "=&r" (tmp), "=&r" (tmp2)
235 : "r" (&rw->lock)
236 : "cc");
238 if (tmp == 0)
239 dsb_sev();
242 static inline int arch_read_trylock(arch_rwlock_t *rw)
244 unsigned long tmp, tmp2 = 1;
246 __asm__ __volatile__(
247 "1: ldrex %0, [%2]\n"
248 " adds %0, %0, #1\n"
249 " strexpl %1, %0, [%2]\n"
250 : "=&r" (tmp), "+r" (tmp2)
251 : "r" (&rw->lock)
252 : "cc");
254 smp_mb();
255 return tmp2 == 0;
258 /* read_can_lock - would read_trylock() succeed? */
259 #define arch_read_can_lock(x) ((x)->lock < 0x80000000)
261 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
262 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
264 #define arch_spin_relax(lock) cpu_relax()
265 #define arch_read_relax(lock) cpu_relax()
266 #define arch_write_relax(lock) cpu_relax()
268 #endif /* __ASM_SPINLOCK_H */