2 * Xen time implementation.
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/math64.h>
16 #include <linux/gfp.h>
18 #include <asm/pvclock.h>
19 #include <asm/xen/hypervisor.h>
20 #include <asm/xen/hypercall.h>
22 #include <xen/events.h>
23 #include <xen/features.h>
24 #include <xen/interface/xen.h>
25 #include <xen/interface/vcpu.h>
29 /* Xen may fire a timer up to this many ns early */
30 #define TIMER_SLOP 100000
31 #define NS_PER_TICK (1000000000LL / HZ)
33 /* runstate info updated by Xen */
34 static DEFINE_PER_CPU(struct vcpu_runstate_info
, xen_runstate
);
36 /* snapshots of runstate info */
37 static DEFINE_PER_CPU(struct vcpu_runstate_info
, xen_runstate_snapshot
);
39 /* unused ns of stolen and blocked time */
40 static DEFINE_PER_CPU(u64
, xen_residual_stolen
);
41 static DEFINE_PER_CPU(u64
, xen_residual_blocked
);
43 /* return an consistent snapshot of 64-bit time/counter value */
44 static u64
get64(const u64
*p
)
48 if (BITS_PER_LONG
< 64) {
53 * Read high then low, and then make sure high is
54 * still the same; this will only loop if low wraps
55 * and carries into high.
56 * XXX some clean way to make this endian-proof?
63 } while (p32
[1] != h
);
65 ret
= (((u64
)h
) << 32) | l
;
75 static void get_runstate_snapshot(struct vcpu_runstate_info
*res
)
78 struct vcpu_runstate_info
*state
;
80 BUG_ON(preemptible());
82 state
= &__get_cpu_var(xen_runstate
);
85 * The runstate info is always updated by the hypervisor on
86 * the current CPU, so there's no need to use anything
87 * stronger than a compiler barrier when fetching it.
90 state_time
= get64(&state
->state_entry_time
);
94 } while (get64(&state
->state_entry_time
) != state_time
);
97 /* return true when a vcpu could run but has no real cpu to run on */
98 bool xen_vcpu_stolen(int vcpu
)
100 return per_cpu(xen_runstate
, vcpu
).state
== RUNSTATE_runnable
;
103 void xen_setup_runstate_info(int cpu
)
105 struct vcpu_register_runstate_memory_area area
;
107 area
.addr
.v
= &per_cpu(xen_runstate
, cpu
);
109 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area
,
114 static void do_stolen_accounting(void)
116 struct vcpu_runstate_info state
;
117 struct vcpu_runstate_info
*snap
;
118 s64 blocked
, runnable
, offline
, stolen
;
121 get_runstate_snapshot(&state
);
123 WARN_ON(state
.state
!= RUNSTATE_running
);
125 snap
= &__get_cpu_var(xen_runstate_snapshot
);
127 /* work out how much time the VCPU has not been runn*ing* */
128 blocked
= state
.time
[RUNSTATE_blocked
] - snap
->time
[RUNSTATE_blocked
];
129 runnable
= state
.time
[RUNSTATE_runnable
] - snap
->time
[RUNSTATE_runnable
];
130 offline
= state
.time
[RUNSTATE_offline
] - snap
->time
[RUNSTATE_offline
];
134 /* Add the appropriate number of ticks of stolen time,
135 including any left-overs from last time. */
136 stolen
= runnable
+ offline
+ __this_cpu_read(xen_residual_stolen
);
141 ticks
= iter_div_u64_rem(stolen
, NS_PER_TICK
, &stolen
);
142 __this_cpu_write(xen_residual_stolen
, stolen
);
143 account_steal_ticks(ticks
);
145 /* Add the appropriate number of ticks of blocked time,
146 including any left-overs from last time. */
147 blocked
+= __this_cpu_read(xen_residual_blocked
);
152 ticks
= iter_div_u64_rem(blocked
, NS_PER_TICK
, &blocked
);
153 __this_cpu_write(xen_residual_blocked
, blocked
);
154 account_idle_ticks(ticks
);
157 /* Get the TSC speed from Xen */
158 static unsigned long xen_tsc_khz(void)
160 struct pvclock_vcpu_time_info
*info
=
161 &HYPERVISOR_shared_info
->vcpu_info
[0].time
;
163 return pvclock_tsc_khz(info
);
166 cycle_t
xen_clocksource_read(void)
168 struct pvclock_vcpu_time_info
*src
;
171 preempt_disable_notrace();
172 src
= &__get_cpu_var(xen_vcpu
)->time
;
173 ret
= pvclock_clocksource_read(src
);
174 preempt_enable_notrace();
178 static cycle_t
xen_clocksource_get_cycles(struct clocksource
*cs
)
180 return xen_clocksource_read();
183 static void xen_read_wallclock(struct timespec
*ts
)
185 struct shared_info
*s
= HYPERVISOR_shared_info
;
186 struct pvclock_wall_clock
*wall_clock
= &(s
->wc
);
187 struct pvclock_vcpu_time_info
*vcpu_time
;
189 vcpu_time
= &get_cpu_var(xen_vcpu
)->time
;
190 pvclock_read_wallclock(wall_clock
, vcpu_time
, ts
);
191 put_cpu_var(xen_vcpu
);
194 static unsigned long xen_get_wallclock(void)
198 xen_read_wallclock(&ts
);
202 static int xen_set_wallclock(unsigned long now
)
204 /* do nothing for domU */
208 static struct clocksource xen_clocksource __read_mostly
= {
211 .read
= xen_clocksource_get_cycles
,
213 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
217 Xen clockevent implementation
219 Xen has two clockevent implementations:
221 The old timer_op one works with all released versions of Xen prior
222 to version 3.0.4. This version of the hypervisor provides a
223 single-shot timer with nanosecond resolution. However, sharing the
224 same event channel is a 100Hz tick which is delivered while the
225 vcpu is running. We don't care about or use this tick, but it will
226 cause the core time code to think the timer fired too soon, and
227 will end up resetting it each time. It could be filtered, but
228 doing so has complications when the ktime clocksource is not yet
229 the xen clocksource (ie, at boot time).
231 The new vcpu_op-based timer interface allows the tick timer period
232 to be changed or turned off. The tick timer is not useful as a
233 periodic timer because events are only delivered to running vcpus.
234 The one-shot timer can report when a timeout is in the past, so
235 set_next_event is capable of returning -ETIME when appropriate.
236 This interface is used when available.
241 Get a hypervisor absolute time. In theory we could maintain an
242 offset between the kernel's time and the hypervisor's time, and
243 apply that to a kernel's absolute timeout. Unfortunately the
244 hypervisor and kernel times can drift even if the kernel is using
245 the Xen clocksource, because ntp can warp the kernel's clocksource.
247 static s64
get_abs_timeout(unsigned long delta
)
249 return xen_clocksource_read() + delta
;
252 static void xen_timerop_set_mode(enum clock_event_mode mode
,
253 struct clock_event_device
*evt
)
256 case CLOCK_EVT_MODE_PERIODIC
:
261 case CLOCK_EVT_MODE_ONESHOT
:
262 case CLOCK_EVT_MODE_RESUME
:
265 case CLOCK_EVT_MODE_UNUSED
:
266 case CLOCK_EVT_MODE_SHUTDOWN
:
267 HYPERVISOR_set_timer_op(0); /* cancel timeout */
272 static int xen_timerop_set_next_event(unsigned long delta
,
273 struct clock_event_device
*evt
)
275 WARN_ON(evt
->mode
!= CLOCK_EVT_MODE_ONESHOT
);
277 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta
)) < 0)
280 /* We may have missed the deadline, but there's no real way of
281 knowing for sure. If the event was in the past, then we'll
282 get an immediate interrupt. */
287 static const struct clock_event_device xen_timerop_clockevent
= {
289 .features
= CLOCK_EVT_FEAT_ONESHOT
,
291 .max_delta_ns
= 0xffffffff,
292 .min_delta_ns
= TIMER_SLOP
,
298 .set_mode
= xen_timerop_set_mode
,
299 .set_next_event
= xen_timerop_set_next_event
,
304 static void xen_vcpuop_set_mode(enum clock_event_mode mode
,
305 struct clock_event_device
*evt
)
307 int cpu
= smp_processor_id();
310 case CLOCK_EVT_MODE_PERIODIC
:
311 WARN_ON(1); /* unsupported */
314 case CLOCK_EVT_MODE_ONESHOT
:
315 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer
, cpu
, NULL
))
319 case CLOCK_EVT_MODE_UNUSED
:
320 case CLOCK_EVT_MODE_SHUTDOWN
:
321 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer
, cpu
, NULL
) ||
322 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer
, cpu
, NULL
))
325 case CLOCK_EVT_MODE_RESUME
:
330 static int xen_vcpuop_set_next_event(unsigned long delta
,
331 struct clock_event_device
*evt
)
333 int cpu
= smp_processor_id();
334 struct vcpu_set_singleshot_timer single
;
337 WARN_ON(evt
->mode
!= CLOCK_EVT_MODE_ONESHOT
);
339 single
.timeout_abs_ns
= get_abs_timeout(delta
);
340 single
.flags
= VCPU_SSHOTTMR_future
;
342 ret
= HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer
, cpu
, &single
);
344 BUG_ON(ret
!= 0 && ret
!= -ETIME
);
349 static const struct clock_event_device xen_vcpuop_clockevent
= {
351 .features
= CLOCK_EVT_FEAT_ONESHOT
,
353 .max_delta_ns
= 0xffffffff,
354 .min_delta_ns
= TIMER_SLOP
,
360 .set_mode
= xen_vcpuop_set_mode
,
361 .set_next_event
= xen_vcpuop_set_next_event
,
364 static const struct clock_event_device
*xen_clockevent
=
365 &xen_timerop_clockevent
;
366 static DEFINE_PER_CPU(struct clock_event_device
, xen_clock_events
);
368 static irqreturn_t
xen_timer_interrupt(int irq
, void *dev_id
)
370 struct clock_event_device
*evt
= &__get_cpu_var(xen_clock_events
);
374 if (evt
->event_handler
) {
375 evt
->event_handler(evt
);
379 do_stolen_accounting();
384 void xen_setup_timer(int cpu
)
387 struct clock_event_device
*evt
;
390 printk(KERN_INFO
"installing Xen timer for CPU %d\n", cpu
);
392 name
= kasprintf(GFP_KERNEL
, "timer%d", cpu
);
394 name
= "<timer kasprintf failed>";
396 irq
= bind_virq_to_irqhandler(VIRQ_TIMER
, cpu
, xen_timer_interrupt
,
397 IRQF_DISABLED
|IRQF_PERCPU
|
398 IRQF_NOBALANCING
|IRQF_TIMER
|
402 evt
= &per_cpu(xen_clock_events
, cpu
);
403 memcpy(evt
, xen_clockevent
, sizeof(*evt
));
405 evt
->cpumask
= cpumask_of(cpu
);
409 void xen_teardown_timer(int cpu
)
411 struct clock_event_device
*evt
;
413 evt
= &per_cpu(xen_clock_events
, cpu
);
414 unbind_from_irqhandler(evt
->irq
, NULL
);
417 void xen_setup_cpu_clockevents(void)
419 BUG_ON(preemptible());
421 clockevents_register_device(&__get_cpu_var(xen_clock_events
));
424 void xen_timer_resume(void)
430 if (xen_clockevent
!= &xen_vcpuop_clockevent
)
433 for_each_online_cpu(cpu
) {
434 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer
, cpu
, NULL
))
439 static const struct pv_time_ops xen_time_ops __initconst
= {
440 .sched_clock
= xen_clocksource_read
,
443 static void __init
xen_time_init(void)
445 int cpu
= smp_processor_id();
448 clocksource_register_hz(&xen_clocksource
, NSEC_PER_SEC
);
450 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer
, cpu
, NULL
) == 0) {
451 /* Successfully turned off 100Hz tick, so we have the
452 vcpuop-based timer interface */
453 printk(KERN_DEBUG
"Xen: using vcpuop timer interface\n");
454 xen_clockevent
= &xen_vcpuop_clockevent
;
457 /* Set initial system time with full resolution */
458 xen_read_wallclock(&tp
);
459 do_settimeofday(&tp
);
461 setup_force_cpu_cap(X86_FEATURE_TSC
);
463 xen_setup_runstate_info(cpu
);
464 xen_setup_timer(cpu
);
465 xen_setup_cpu_clockevents();
468 void __init
xen_init_time_ops(void)
470 pv_time_ops
= xen_time_ops
;
472 x86_init
.timers
.timer_init
= xen_time_init
;
473 x86_init
.timers
.setup_percpu_clockev
= x86_init_noop
;
474 x86_cpuinit
.setup_percpu_clockev
= x86_init_noop
;
476 x86_platform
.calibrate_tsc
= xen_tsc_khz
;
477 x86_platform
.get_wallclock
= xen_get_wallclock
;
478 x86_platform
.set_wallclock
= xen_set_wallclock
;
481 #ifdef CONFIG_XEN_PVHVM
482 static void xen_hvm_setup_cpu_clockevents(void)
484 int cpu
= smp_processor_id();
485 xen_setup_runstate_info(cpu
);
486 xen_setup_timer(cpu
);
487 xen_setup_cpu_clockevents();
490 void __init
xen_hvm_init_time_ops(void)
492 /* vector callback is needed otherwise we cannot receive interrupts
493 * on cpu > 0 and at this point we don't know how many cpus are
495 if (!xen_have_vector_callback
)
497 if (!xen_feature(XENFEAT_hvm_safe_pvclock
)) {
498 printk(KERN_INFO
"Xen doesn't support pvclock on HVM,"
499 "disable pv timer\n");
503 pv_time_ops
= xen_time_ops
;
504 x86_init
.timers
.setup_percpu_clockev
= xen_time_init
;
505 x86_cpuinit
.setup_percpu_clockev
= xen_hvm_setup_cpu_clockevents
;
507 x86_platform
.calibrate_tsc
= xen_tsc_khz
;
508 x86_platform
.get_wallclock
= xen_get_wallclock
;
509 x86_platform
.set_wallclock
= xen_set_wallclock
;