Input: adp5589-keys - add support for the ADP5585 derivatives
[linux-btrfs-devel.git] / drivers / mmc / card / block.c
blob1ff5486213fbeb2682b2cad1b96d423a1fb235fa
1 /*
2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
18 * 28 May 2002
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
38 #include <linux/mmc/ioctl.h>
39 #include <linux/mmc/card.h>
40 #include <linux/mmc/host.h>
41 #include <linux/mmc/mmc.h>
42 #include <linux/mmc/sd.h>
44 #include <asm/system.h>
45 #include <asm/uaccess.h>
47 #include "queue.h"
49 MODULE_ALIAS("mmc:block");
50 #ifdef MODULE_PARAM_PREFIX
51 #undef MODULE_PARAM_PREFIX
52 #endif
53 #define MODULE_PARAM_PREFIX "mmcblk."
55 #define INAND_CMD38_ARG_EXT_CSD 113
56 #define INAND_CMD38_ARG_ERASE 0x00
57 #define INAND_CMD38_ARG_TRIM 0x01
58 #define INAND_CMD38_ARG_SECERASE 0x80
59 #define INAND_CMD38_ARG_SECTRIM1 0x81
60 #define INAND_CMD38_ARG_SECTRIM2 0x88
62 static DEFINE_MUTEX(block_mutex);
65 * The defaults come from config options but can be overriden by module
66 * or bootarg options.
68 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
71 * We've only got one major, so number of mmcblk devices is
72 * limited to 256 / number of minors per device.
74 static int max_devices;
76 /* 256 minors, so at most 256 separate devices */
77 static DECLARE_BITMAP(dev_use, 256);
78 static DECLARE_BITMAP(name_use, 256);
81 * There is one mmc_blk_data per slot.
83 struct mmc_blk_data {
84 spinlock_t lock;
85 struct gendisk *disk;
86 struct mmc_queue queue;
87 struct list_head part;
89 unsigned int flags;
90 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
91 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
93 unsigned int usage;
94 unsigned int read_only;
95 unsigned int part_type;
96 unsigned int name_idx;
99 * Only set in main mmc_blk_data associated
100 * with mmc_card with mmc_set_drvdata, and keeps
101 * track of the current selected device partition.
103 unsigned int part_curr;
104 struct device_attribute force_ro;
107 static DEFINE_MUTEX(open_lock);
109 enum mmc_blk_status {
110 MMC_BLK_SUCCESS = 0,
111 MMC_BLK_PARTIAL,
112 MMC_BLK_RETRY,
113 MMC_BLK_RETRY_SINGLE,
114 MMC_BLK_DATA_ERR,
115 MMC_BLK_CMD_ERR,
116 MMC_BLK_ABORT,
119 module_param(perdev_minors, int, 0444);
120 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
122 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
124 struct mmc_blk_data *md;
126 mutex_lock(&open_lock);
127 md = disk->private_data;
128 if (md && md->usage == 0)
129 md = NULL;
130 if (md)
131 md->usage++;
132 mutex_unlock(&open_lock);
134 return md;
137 static inline int mmc_get_devidx(struct gendisk *disk)
139 int devmaj = MAJOR(disk_devt(disk));
140 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
142 if (!devmaj)
143 devidx = disk->first_minor / perdev_minors;
144 return devidx;
147 static void mmc_blk_put(struct mmc_blk_data *md)
149 mutex_lock(&open_lock);
150 md->usage--;
151 if (md->usage == 0) {
152 int devidx = mmc_get_devidx(md->disk);
153 blk_cleanup_queue(md->queue.queue);
155 __clear_bit(devidx, dev_use);
157 put_disk(md->disk);
158 kfree(md);
160 mutex_unlock(&open_lock);
163 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
164 char *buf)
166 int ret;
167 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
169 ret = snprintf(buf, PAGE_SIZE, "%d",
170 get_disk_ro(dev_to_disk(dev)) ^
171 md->read_only);
172 mmc_blk_put(md);
173 return ret;
176 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
177 const char *buf, size_t count)
179 int ret;
180 char *end;
181 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
182 unsigned long set = simple_strtoul(buf, &end, 0);
183 if (end == buf) {
184 ret = -EINVAL;
185 goto out;
188 set_disk_ro(dev_to_disk(dev), set || md->read_only);
189 ret = count;
190 out:
191 mmc_blk_put(md);
192 return ret;
195 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
197 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
198 int ret = -ENXIO;
200 mutex_lock(&block_mutex);
201 if (md) {
202 if (md->usage == 2)
203 check_disk_change(bdev);
204 ret = 0;
206 if ((mode & FMODE_WRITE) && md->read_only) {
207 mmc_blk_put(md);
208 ret = -EROFS;
211 mutex_unlock(&block_mutex);
213 return ret;
216 static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
218 struct mmc_blk_data *md = disk->private_data;
220 mutex_lock(&block_mutex);
221 mmc_blk_put(md);
222 mutex_unlock(&block_mutex);
223 return 0;
226 static int
227 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
229 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
230 geo->heads = 4;
231 geo->sectors = 16;
232 return 0;
235 struct mmc_blk_ioc_data {
236 struct mmc_ioc_cmd ic;
237 unsigned char *buf;
238 u64 buf_bytes;
241 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
242 struct mmc_ioc_cmd __user *user)
244 struct mmc_blk_ioc_data *idata;
245 int err;
247 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
248 if (!idata) {
249 err = -ENOMEM;
250 goto out;
253 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
254 err = -EFAULT;
255 goto idata_err;
258 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
259 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
260 err = -EOVERFLOW;
261 goto idata_err;
264 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
265 if (!idata->buf) {
266 err = -ENOMEM;
267 goto idata_err;
270 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
271 idata->ic.data_ptr, idata->buf_bytes)) {
272 err = -EFAULT;
273 goto copy_err;
276 return idata;
278 copy_err:
279 kfree(idata->buf);
280 idata_err:
281 kfree(idata);
282 out:
283 return ERR_PTR(err);
286 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
287 struct mmc_ioc_cmd __user *ic_ptr)
289 struct mmc_blk_ioc_data *idata;
290 struct mmc_blk_data *md;
291 struct mmc_card *card;
292 struct mmc_command cmd = {0};
293 struct mmc_data data = {0};
294 struct mmc_request mrq = {0};
295 struct scatterlist sg;
296 int err;
299 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
300 * whole block device, not on a partition. This prevents overspray
301 * between sibling partitions.
303 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
304 return -EPERM;
306 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
307 if (IS_ERR(idata))
308 return PTR_ERR(idata);
310 cmd.opcode = idata->ic.opcode;
311 cmd.arg = idata->ic.arg;
312 cmd.flags = idata->ic.flags;
314 data.sg = &sg;
315 data.sg_len = 1;
316 data.blksz = idata->ic.blksz;
317 data.blocks = idata->ic.blocks;
319 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
321 if (idata->ic.write_flag)
322 data.flags = MMC_DATA_WRITE;
323 else
324 data.flags = MMC_DATA_READ;
326 mrq.cmd = &cmd;
327 mrq.data = &data;
329 md = mmc_blk_get(bdev->bd_disk);
330 if (!md) {
331 err = -EINVAL;
332 goto cmd_done;
335 card = md->queue.card;
336 if (IS_ERR(card)) {
337 err = PTR_ERR(card);
338 goto cmd_done;
341 mmc_claim_host(card->host);
343 if (idata->ic.is_acmd) {
344 err = mmc_app_cmd(card->host, card);
345 if (err)
346 goto cmd_rel_host;
349 /* data.flags must already be set before doing this. */
350 mmc_set_data_timeout(&data, card);
351 /* Allow overriding the timeout_ns for empirical tuning. */
352 if (idata->ic.data_timeout_ns)
353 data.timeout_ns = idata->ic.data_timeout_ns;
355 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
357 * Pretend this is a data transfer and rely on the host driver
358 * to compute timeout. When all host drivers support
359 * cmd.cmd_timeout for R1B, this can be changed to:
361 * mrq.data = NULL;
362 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
364 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
367 mmc_wait_for_req(card->host, &mrq);
369 if (cmd.error) {
370 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
371 __func__, cmd.error);
372 err = cmd.error;
373 goto cmd_rel_host;
375 if (data.error) {
376 dev_err(mmc_dev(card->host), "%s: data error %d\n",
377 __func__, data.error);
378 err = data.error;
379 goto cmd_rel_host;
383 * According to the SD specs, some commands require a delay after
384 * issuing the command.
386 if (idata->ic.postsleep_min_us)
387 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
389 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
390 err = -EFAULT;
391 goto cmd_rel_host;
394 if (!idata->ic.write_flag) {
395 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
396 idata->buf, idata->buf_bytes)) {
397 err = -EFAULT;
398 goto cmd_rel_host;
402 cmd_rel_host:
403 mmc_release_host(card->host);
405 cmd_done:
406 mmc_blk_put(md);
407 kfree(idata->buf);
408 kfree(idata);
409 return err;
412 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
413 unsigned int cmd, unsigned long arg)
415 int ret = -EINVAL;
416 if (cmd == MMC_IOC_CMD)
417 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
418 return ret;
421 #ifdef CONFIG_COMPAT
422 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
423 unsigned int cmd, unsigned long arg)
425 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
427 #endif
429 static const struct block_device_operations mmc_bdops = {
430 .open = mmc_blk_open,
431 .release = mmc_blk_release,
432 .getgeo = mmc_blk_getgeo,
433 .owner = THIS_MODULE,
434 .ioctl = mmc_blk_ioctl,
435 #ifdef CONFIG_COMPAT
436 .compat_ioctl = mmc_blk_compat_ioctl,
437 #endif
440 static inline int mmc_blk_part_switch(struct mmc_card *card,
441 struct mmc_blk_data *md)
443 int ret;
444 struct mmc_blk_data *main_md = mmc_get_drvdata(card);
445 if (main_md->part_curr == md->part_type)
446 return 0;
448 if (mmc_card_mmc(card)) {
449 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
450 card->ext_csd.part_config |= md->part_type;
452 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
453 EXT_CSD_PART_CONFIG, card->ext_csd.part_config,
454 card->ext_csd.part_time);
455 if (ret)
456 return ret;
459 main_md->part_curr = md->part_type;
460 return 0;
463 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
465 int err;
466 u32 result;
467 __be32 *blocks;
469 struct mmc_request mrq = {0};
470 struct mmc_command cmd = {0};
471 struct mmc_data data = {0};
472 unsigned int timeout_us;
474 struct scatterlist sg;
476 cmd.opcode = MMC_APP_CMD;
477 cmd.arg = card->rca << 16;
478 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
480 err = mmc_wait_for_cmd(card->host, &cmd, 0);
481 if (err)
482 return (u32)-1;
483 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
484 return (u32)-1;
486 memset(&cmd, 0, sizeof(struct mmc_command));
488 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
489 cmd.arg = 0;
490 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
492 data.timeout_ns = card->csd.tacc_ns * 100;
493 data.timeout_clks = card->csd.tacc_clks * 100;
495 timeout_us = data.timeout_ns / 1000;
496 timeout_us += data.timeout_clks * 1000 /
497 (card->host->ios.clock / 1000);
499 if (timeout_us > 100000) {
500 data.timeout_ns = 100000000;
501 data.timeout_clks = 0;
504 data.blksz = 4;
505 data.blocks = 1;
506 data.flags = MMC_DATA_READ;
507 data.sg = &sg;
508 data.sg_len = 1;
510 mrq.cmd = &cmd;
511 mrq.data = &data;
513 blocks = kmalloc(4, GFP_KERNEL);
514 if (!blocks)
515 return (u32)-1;
517 sg_init_one(&sg, blocks, 4);
519 mmc_wait_for_req(card->host, &mrq);
521 result = ntohl(*blocks);
522 kfree(blocks);
524 if (cmd.error || data.error)
525 result = (u32)-1;
527 return result;
530 static int send_stop(struct mmc_card *card, u32 *status)
532 struct mmc_command cmd = {0};
533 int err;
535 cmd.opcode = MMC_STOP_TRANSMISSION;
536 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
537 err = mmc_wait_for_cmd(card->host, &cmd, 5);
538 if (err == 0)
539 *status = cmd.resp[0];
540 return err;
543 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
545 struct mmc_command cmd = {0};
546 int err;
548 cmd.opcode = MMC_SEND_STATUS;
549 if (!mmc_host_is_spi(card->host))
550 cmd.arg = card->rca << 16;
551 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
552 err = mmc_wait_for_cmd(card->host, &cmd, retries);
553 if (err == 0)
554 *status = cmd.resp[0];
555 return err;
558 #define ERR_RETRY 2
559 #define ERR_ABORT 1
560 #define ERR_CONTINUE 0
562 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
563 bool status_valid, u32 status)
565 switch (error) {
566 case -EILSEQ:
567 /* response crc error, retry the r/w cmd */
568 pr_err("%s: %s sending %s command, card status %#x\n",
569 req->rq_disk->disk_name, "response CRC error",
570 name, status);
571 return ERR_RETRY;
573 case -ETIMEDOUT:
574 pr_err("%s: %s sending %s command, card status %#x\n",
575 req->rq_disk->disk_name, "timed out", name, status);
577 /* If the status cmd initially failed, retry the r/w cmd */
578 if (!status_valid)
579 return ERR_RETRY;
582 * If it was a r/w cmd crc error, or illegal command
583 * (eg, issued in wrong state) then retry - we should
584 * have corrected the state problem above.
586 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
587 return ERR_RETRY;
589 /* Otherwise abort the command */
590 return ERR_ABORT;
592 default:
593 /* We don't understand the error code the driver gave us */
594 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
595 req->rq_disk->disk_name, error, status);
596 return ERR_ABORT;
601 * Initial r/w and stop cmd error recovery.
602 * We don't know whether the card received the r/w cmd or not, so try to
603 * restore things back to a sane state. Essentially, we do this as follows:
604 * - Obtain card status. If the first attempt to obtain card status fails,
605 * the status word will reflect the failed status cmd, not the failed
606 * r/w cmd. If we fail to obtain card status, it suggests we can no
607 * longer communicate with the card.
608 * - Check the card state. If the card received the cmd but there was a
609 * transient problem with the response, it might still be in a data transfer
610 * mode. Try to send it a stop command. If this fails, we can't recover.
611 * - If the r/w cmd failed due to a response CRC error, it was probably
612 * transient, so retry the cmd.
613 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
614 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
615 * illegal cmd, retry.
616 * Otherwise we don't understand what happened, so abort.
618 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
619 struct mmc_blk_request *brq)
621 bool prev_cmd_status_valid = true;
622 u32 status, stop_status = 0;
623 int err, retry;
626 * Try to get card status which indicates both the card state
627 * and why there was no response. If the first attempt fails,
628 * we can't be sure the returned status is for the r/w command.
630 for (retry = 2; retry >= 0; retry--) {
631 err = get_card_status(card, &status, 0);
632 if (!err)
633 break;
635 prev_cmd_status_valid = false;
636 pr_err("%s: error %d sending status command, %sing\n",
637 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
640 /* We couldn't get a response from the card. Give up. */
641 if (err)
642 return ERR_ABORT;
645 * Check the current card state. If it is in some data transfer
646 * mode, tell it to stop (and hopefully transition back to TRAN.)
648 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
649 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
650 err = send_stop(card, &stop_status);
651 if (err)
652 pr_err("%s: error %d sending stop command\n",
653 req->rq_disk->disk_name, err);
656 * If the stop cmd also timed out, the card is probably
657 * not present, so abort. Other errors are bad news too.
659 if (err)
660 return ERR_ABORT;
663 /* Check for set block count errors */
664 if (brq->sbc.error)
665 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
666 prev_cmd_status_valid, status);
668 /* Check for r/w command errors */
669 if (brq->cmd.error)
670 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
671 prev_cmd_status_valid, status);
673 /* Now for stop errors. These aren't fatal to the transfer. */
674 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
675 req->rq_disk->disk_name, brq->stop.error,
676 brq->cmd.resp[0], status);
679 * Subsitute in our own stop status as this will give the error
680 * state which happened during the execution of the r/w command.
682 if (stop_status) {
683 brq->stop.resp[0] = stop_status;
684 brq->stop.error = 0;
686 return ERR_CONTINUE;
689 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
691 struct mmc_blk_data *md = mq->data;
692 struct mmc_card *card = md->queue.card;
693 unsigned int from, nr, arg;
694 int err = 0;
696 if (!mmc_can_erase(card)) {
697 err = -EOPNOTSUPP;
698 goto out;
701 from = blk_rq_pos(req);
702 nr = blk_rq_sectors(req);
704 if (mmc_can_trim(card))
705 arg = MMC_TRIM_ARG;
706 else
707 arg = MMC_ERASE_ARG;
709 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
710 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
711 INAND_CMD38_ARG_EXT_CSD,
712 arg == MMC_TRIM_ARG ?
713 INAND_CMD38_ARG_TRIM :
714 INAND_CMD38_ARG_ERASE,
716 if (err)
717 goto out;
719 err = mmc_erase(card, from, nr, arg);
720 out:
721 spin_lock_irq(&md->lock);
722 __blk_end_request(req, err, blk_rq_bytes(req));
723 spin_unlock_irq(&md->lock);
725 return err ? 0 : 1;
728 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
729 struct request *req)
731 struct mmc_blk_data *md = mq->data;
732 struct mmc_card *card = md->queue.card;
733 unsigned int from, nr, arg;
734 int err = 0;
736 if (!mmc_can_secure_erase_trim(card)) {
737 err = -EOPNOTSUPP;
738 goto out;
741 from = blk_rq_pos(req);
742 nr = blk_rq_sectors(req);
744 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
745 arg = MMC_SECURE_TRIM1_ARG;
746 else
747 arg = MMC_SECURE_ERASE_ARG;
749 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
750 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
751 INAND_CMD38_ARG_EXT_CSD,
752 arg == MMC_SECURE_TRIM1_ARG ?
753 INAND_CMD38_ARG_SECTRIM1 :
754 INAND_CMD38_ARG_SECERASE,
756 if (err)
757 goto out;
759 err = mmc_erase(card, from, nr, arg);
760 if (!err && arg == MMC_SECURE_TRIM1_ARG) {
761 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
762 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
763 INAND_CMD38_ARG_EXT_CSD,
764 INAND_CMD38_ARG_SECTRIM2,
766 if (err)
767 goto out;
769 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
771 out:
772 spin_lock_irq(&md->lock);
773 __blk_end_request(req, err, blk_rq_bytes(req));
774 spin_unlock_irq(&md->lock);
776 return err ? 0 : 1;
779 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
781 struct mmc_blk_data *md = mq->data;
784 * No-op, only service this because we need REQ_FUA for reliable
785 * writes.
787 spin_lock_irq(&md->lock);
788 __blk_end_request_all(req, 0);
789 spin_unlock_irq(&md->lock);
791 return 1;
795 * Reformat current write as a reliable write, supporting
796 * both legacy and the enhanced reliable write MMC cards.
797 * In each transfer we'll handle only as much as a single
798 * reliable write can handle, thus finish the request in
799 * partial completions.
801 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
802 struct mmc_card *card,
803 struct request *req)
805 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
806 /* Legacy mode imposes restrictions on transfers. */
807 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
808 brq->data.blocks = 1;
810 if (brq->data.blocks > card->ext_csd.rel_sectors)
811 brq->data.blocks = card->ext_csd.rel_sectors;
812 else if (brq->data.blocks < card->ext_csd.rel_sectors)
813 brq->data.blocks = 1;
817 #define CMD_ERRORS \
818 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
819 R1_ADDRESS_ERROR | /* Misaligned address */ \
820 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
821 R1_WP_VIOLATION | /* Tried to write to protected block */ \
822 R1_CC_ERROR | /* Card controller error */ \
823 R1_ERROR) /* General/unknown error */
825 static int mmc_blk_err_check(struct mmc_card *card,
826 struct mmc_async_req *areq)
828 enum mmc_blk_status ret = MMC_BLK_SUCCESS;
829 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
830 mmc_active);
831 struct mmc_blk_request *brq = &mq_mrq->brq;
832 struct request *req = mq_mrq->req;
835 * sbc.error indicates a problem with the set block count
836 * command. No data will have been transferred.
838 * cmd.error indicates a problem with the r/w command. No
839 * data will have been transferred.
841 * stop.error indicates a problem with the stop command. Data
842 * may have been transferred, or may still be transferring.
844 if (brq->sbc.error || brq->cmd.error || brq->stop.error) {
845 switch (mmc_blk_cmd_recovery(card, req, brq)) {
846 case ERR_RETRY:
847 return MMC_BLK_RETRY;
848 case ERR_ABORT:
849 return MMC_BLK_ABORT;
850 case ERR_CONTINUE:
851 break;
856 * Check for errors relating to the execution of the
857 * initial command - such as address errors. No data
858 * has been transferred.
860 if (brq->cmd.resp[0] & CMD_ERRORS) {
861 pr_err("%s: r/w command failed, status = %#x\n",
862 req->rq_disk->disk_name, brq->cmd.resp[0]);
863 return MMC_BLK_ABORT;
867 * Everything else is either success, or a data error of some
868 * kind. If it was a write, we may have transitioned to
869 * program mode, which we have to wait for it to complete.
871 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
872 u32 status;
873 do {
874 int err = get_card_status(card, &status, 5);
875 if (err) {
876 printk(KERN_ERR "%s: error %d requesting status\n",
877 req->rq_disk->disk_name, err);
878 return MMC_BLK_CMD_ERR;
881 * Some cards mishandle the status bits,
882 * so make sure to check both the busy
883 * indication and the card state.
885 } while (!(status & R1_READY_FOR_DATA) ||
886 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
889 if (brq->data.error) {
890 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
891 req->rq_disk->disk_name, brq->data.error,
892 (unsigned)blk_rq_pos(req),
893 (unsigned)blk_rq_sectors(req),
894 brq->cmd.resp[0], brq->stop.resp[0]);
896 if (rq_data_dir(req) == READ) {
897 if (brq->data.blocks > 1) {
898 /* Redo read one sector at a time */
899 pr_warning("%s: retrying using single block read\n",
900 req->rq_disk->disk_name);
901 return MMC_BLK_RETRY_SINGLE;
903 return MMC_BLK_DATA_ERR;
904 } else {
905 return MMC_BLK_CMD_ERR;
909 if (ret == MMC_BLK_SUCCESS &&
910 blk_rq_bytes(req) != brq->data.bytes_xfered)
911 ret = MMC_BLK_PARTIAL;
913 return ret;
916 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
917 struct mmc_card *card,
918 int disable_multi,
919 struct mmc_queue *mq)
921 u32 readcmd, writecmd;
922 struct mmc_blk_request *brq = &mqrq->brq;
923 struct request *req = mqrq->req;
924 struct mmc_blk_data *md = mq->data;
927 * Reliable writes are used to implement Forced Unit Access and
928 * REQ_META accesses, and are supported only on MMCs.
930 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
931 (req->cmd_flags & REQ_META)) &&
932 (rq_data_dir(req) == WRITE) &&
933 (md->flags & MMC_BLK_REL_WR);
935 memset(brq, 0, sizeof(struct mmc_blk_request));
936 brq->mrq.cmd = &brq->cmd;
937 brq->mrq.data = &brq->data;
939 brq->cmd.arg = blk_rq_pos(req);
940 if (!mmc_card_blockaddr(card))
941 brq->cmd.arg <<= 9;
942 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
943 brq->data.blksz = 512;
944 brq->stop.opcode = MMC_STOP_TRANSMISSION;
945 brq->stop.arg = 0;
946 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
947 brq->data.blocks = blk_rq_sectors(req);
950 * The block layer doesn't support all sector count
951 * restrictions, so we need to be prepared for too big
952 * requests.
954 if (brq->data.blocks > card->host->max_blk_count)
955 brq->data.blocks = card->host->max_blk_count;
958 * After a read error, we redo the request one sector at a time
959 * in order to accurately determine which sectors can be read
960 * successfully.
962 if (disable_multi && brq->data.blocks > 1)
963 brq->data.blocks = 1;
965 if (brq->data.blocks > 1 || do_rel_wr) {
966 /* SPI multiblock writes terminate using a special
967 * token, not a STOP_TRANSMISSION request.
969 if (!mmc_host_is_spi(card->host) ||
970 rq_data_dir(req) == READ)
971 brq->mrq.stop = &brq->stop;
972 readcmd = MMC_READ_MULTIPLE_BLOCK;
973 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
974 } else {
975 brq->mrq.stop = NULL;
976 readcmd = MMC_READ_SINGLE_BLOCK;
977 writecmd = MMC_WRITE_BLOCK;
979 if (rq_data_dir(req) == READ) {
980 brq->cmd.opcode = readcmd;
981 brq->data.flags |= MMC_DATA_READ;
982 } else {
983 brq->cmd.opcode = writecmd;
984 brq->data.flags |= MMC_DATA_WRITE;
987 if (do_rel_wr)
988 mmc_apply_rel_rw(brq, card, req);
991 * Pre-defined multi-block transfers are preferable to
992 * open ended-ones (and necessary for reliable writes).
993 * However, it is not sufficient to just send CMD23,
994 * and avoid the final CMD12, as on an error condition
995 * CMD12 (stop) needs to be sent anyway. This, coupled
996 * with Auto-CMD23 enhancements provided by some
997 * hosts, means that the complexity of dealing
998 * with this is best left to the host. If CMD23 is
999 * supported by card and host, we'll fill sbc in and let
1000 * the host deal with handling it correctly. This means
1001 * that for hosts that don't expose MMC_CAP_CMD23, no
1002 * change of behavior will be observed.
1004 * N.B: Some MMC cards experience perf degradation.
1005 * We'll avoid using CMD23-bounded multiblock writes for
1006 * these, while retaining features like reliable writes.
1009 if ((md->flags & MMC_BLK_CMD23) &&
1010 mmc_op_multi(brq->cmd.opcode) &&
1011 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23))) {
1012 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1013 brq->sbc.arg = brq->data.blocks |
1014 (do_rel_wr ? (1 << 31) : 0);
1015 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1016 brq->mrq.sbc = &brq->sbc;
1019 mmc_set_data_timeout(&brq->data, card);
1021 brq->data.sg = mqrq->sg;
1022 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1025 * Adjust the sg list so it is the same size as the
1026 * request.
1028 if (brq->data.blocks != blk_rq_sectors(req)) {
1029 int i, data_size = brq->data.blocks << 9;
1030 struct scatterlist *sg;
1032 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1033 data_size -= sg->length;
1034 if (data_size <= 0) {
1035 sg->length += data_size;
1036 i++;
1037 break;
1040 brq->data.sg_len = i;
1043 mqrq->mmc_active.mrq = &brq->mrq;
1044 mqrq->mmc_active.err_check = mmc_blk_err_check;
1046 mmc_queue_bounce_pre(mqrq);
1049 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1051 struct mmc_blk_data *md = mq->data;
1052 struct mmc_card *card = md->queue.card;
1053 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1054 int ret = 1, disable_multi = 0, retry = 0;
1055 enum mmc_blk_status status;
1056 struct mmc_queue_req *mq_rq;
1057 struct request *req;
1058 struct mmc_async_req *areq;
1060 if (!rqc && !mq->mqrq_prev->req)
1061 return 0;
1063 do {
1064 if (rqc) {
1065 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1066 areq = &mq->mqrq_cur->mmc_active;
1067 } else
1068 areq = NULL;
1069 areq = mmc_start_req(card->host, areq, (int *) &status);
1070 if (!areq)
1071 return 0;
1073 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1074 brq = &mq_rq->brq;
1075 req = mq_rq->req;
1076 mmc_queue_bounce_post(mq_rq);
1078 switch (status) {
1079 case MMC_BLK_SUCCESS:
1080 case MMC_BLK_PARTIAL:
1082 * A block was successfully transferred.
1084 spin_lock_irq(&md->lock);
1085 ret = __blk_end_request(req, 0,
1086 brq->data.bytes_xfered);
1087 spin_unlock_irq(&md->lock);
1088 if (status == MMC_BLK_SUCCESS && ret) {
1090 * The blk_end_request has returned non zero
1091 * even though all data is transfered and no
1092 * erros returned by host.
1093 * If this happen it's a bug.
1095 printk(KERN_ERR "%s BUG rq_tot %d d_xfer %d\n",
1096 __func__, blk_rq_bytes(req),
1097 brq->data.bytes_xfered);
1098 rqc = NULL;
1099 goto cmd_abort;
1101 break;
1102 case MMC_BLK_CMD_ERR:
1103 goto cmd_err;
1104 case MMC_BLK_RETRY_SINGLE:
1105 disable_multi = 1;
1106 break;
1107 case MMC_BLK_RETRY:
1108 if (retry++ < 5)
1109 break;
1110 case MMC_BLK_ABORT:
1111 goto cmd_abort;
1112 case MMC_BLK_DATA_ERR:
1114 * After an error, we redo I/O one sector at a
1115 * time, so we only reach here after trying to
1116 * read a single sector.
1118 spin_lock_irq(&md->lock);
1119 ret = __blk_end_request(req, -EIO,
1120 brq->data.blksz);
1121 spin_unlock_irq(&md->lock);
1122 if (!ret)
1123 goto start_new_req;
1124 break;
1127 if (ret) {
1129 * In case of a none complete request
1130 * prepare it again and resend.
1132 mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq);
1133 mmc_start_req(card->host, &mq_rq->mmc_active, NULL);
1135 } while (ret);
1137 return 1;
1139 cmd_err:
1141 * If this is an SD card and we're writing, we can first
1142 * mark the known good sectors as ok.
1144 * If the card is not SD, we can still ok written sectors
1145 * as reported by the controller (which might be less than
1146 * the real number of written sectors, but never more).
1148 if (mmc_card_sd(card)) {
1149 u32 blocks;
1151 blocks = mmc_sd_num_wr_blocks(card);
1152 if (blocks != (u32)-1) {
1153 spin_lock_irq(&md->lock);
1154 ret = __blk_end_request(req, 0, blocks << 9);
1155 spin_unlock_irq(&md->lock);
1157 } else {
1158 spin_lock_irq(&md->lock);
1159 ret = __blk_end_request(req, 0, brq->data.bytes_xfered);
1160 spin_unlock_irq(&md->lock);
1163 cmd_abort:
1164 spin_lock_irq(&md->lock);
1165 while (ret)
1166 ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
1167 spin_unlock_irq(&md->lock);
1169 start_new_req:
1170 if (rqc) {
1171 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1172 mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL);
1175 return 0;
1178 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1180 int ret;
1181 struct mmc_blk_data *md = mq->data;
1182 struct mmc_card *card = md->queue.card;
1184 if (req && !mq->mqrq_prev->req)
1185 /* claim host only for the first request */
1186 mmc_claim_host(card->host);
1188 ret = mmc_blk_part_switch(card, md);
1189 if (ret) {
1190 ret = 0;
1191 goto out;
1194 if (req && req->cmd_flags & REQ_DISCARD) {
1195 /* complete ongoing async transfer before issuing discard */
1196 if (card->host->areq)
1197 mmc_blk_issue_rw_rq(mq, NULL);
1198 if (req->cmd_flags & REQ_SECURE)
1199 ret = mmc_blk_issue_secdiscard_rq(mq, req);
1200 else
1201 ret = mmc_blk_issue_discard_rq(mq, req);
1202 } else if (req && req->cmd_flags & REQ_FLUSH) {
1203 /* complete ongoing async transfer before issuing flush */
1204 if (card->host->areq)
1205 mmc_blk_issue_rw_rq(mq, NULL);
1206 ret = mmc_blk_issue_flush(mq, req);
1207 } else {
1208 ret = mmc_blk_issue_rw_rq(mq, req);
1211 out:
1212 if (!req)
1213 /* release host only when there are no more requests */
1214 mmc_release_host(card->host);
1215 return ret;
1218 static inline int mmc_blk_readonly(struct mmc_card *card)
1220 return mmc_card_readonly(card) ||
1221 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1224 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1225 struct device *parent,
1226 sector_t size,
1227 bool default_ro,
1228 const char *subname)
1230 struct mmc_blk_data *md;
1231 int devidx, ret;
1233 devidx = find_first_zero_bit(dev_use, max_devices);
1234 if (devidx >= max_devices)
1235 return ERR_PTR(-ENOSPC);
1236 __set_bit(devidx, dev_use);
1238 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1239 if (!md) {
1240 ret = -ENOMEM;
1241 goto out;
1245 * !subname implies we are creating main mmc_blk_data that will be
1246 * associated with mmc_card with mmc_set_drvdata. Due to device
1247 * partitions, devidx will not coincide with a per-physical card
1248 * index anymore so we keep track of a name index.
1250 if (!subname) {
1251 md->name_idx = find_first_zero_bit(name_use, max_devices);
1252 __set_bit(md->name_idx, name_use);
1254 else
1255 md->name_idx = ((struct mmc_blk_data *)
1256 dev_to_disk(parent)->private_data)->name_idx;
1259 * Set the read-only status based on the supported commands
1260 * and the write protect switch.
1262 md->read_only = mmc_blk_readonly(card);
1264 md->disk = alloc_disk(perdev_minors);
1265 if (md->disk == NULL) {
1266 ret = -ENOMEM;
1267 goto err_kfree;
1270 spin_lock_init(&md->lock);
1271 INIT_LIST_HEAD(&md->part);
1272 md->usage = 1;
1274 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1275 if (ret)
1276 goto err_putdisk;
1278 md->queue.issue_fn = mmc_blk_issue_rq;
1279 md->queue.data = md;
1281 md->disk->major = MMC_BLOCK_MAJOR;
1282 md->disk->first_minor = devidx * perdev_minors;
1283 md->disk->fops = &mmc_bdops;
1284 md->disk->private_data = md;
1285 md->disk->queue = md->queue.queue;
1286 md->disk->driverfs_dev = parent;
1287 set_disk_ro(md->disk, md->read_only || default_ro);
1290 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1292 * - be set for removable media with permanent block devices
1293 * - be unset for removable block devices with permanent media
1295 * Since MMC block devices clearly fall under the second
1296 * case, we do not set GENHD_FL_REMOVABLE. Userspace
1297 * should use the block device creation/destruction hotplug
1298 * messages to tell when the card is present.
1301 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1302 "mmcblk%d%s", md->name_idx, subname ? subname : "");
1304 blk_queue_logical_block_size(md->queue.queue, 512);
1305 set_capacity(md->disk, size);
1307 if (mmc_host_cmd23(card->host)) {
1308 if (mmc_card_mmc(card) ||
1309 (mmc_card_sd(card) &&
1310 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1311 md->flags |= MMC_BLK_CMD23;
1314 if (mmc_card_mmc(card) &&
1315 md->flags & MMC_BLK_CMD23 &&
1316 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1317 card->ext_csd.rel_sectors)) {
1318 md->flags |= MMC_BLK_REL_WR;
1319 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
1322 return md;
1324 err_putdisk:
1325 put_disk(md->disk);
1326 err_kfree:
1327 kfree(md);
1328 out:
1329 return ERR_PTR(ret);
1332 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1334 sector_t size;
1335 struct mmc_blk_data *md;
1337 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1339 * The EXT_CSD sector count is in number or 512 byte
1340 * sectors.
1342 size = card->ext_csd.sectors;
1343 } else {
1345 * The CSD capacity field is in units of read_blkbits.
1346 * set_capacity takes units of 512 bytes.
1348 size = card->csd.capacity << (card->csd.read_blkbits - 9);
1351 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL);
1352 return md;
1355 static int mmc_blk_alloc_part(struct mmc_card *card,
1356 struct mmc_blk_data *md,
1357 unsigned int part_type,
1358 sector_t size,
1359 bool default_ro,
1360 const char *subname)
1362 char cap_str[10];
1363 struct mmc_blk_data *part_md;
1365 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1366 subname);
1367 if (IS_ERR(part_md))
1368 return PTR_ERR(part_md);
1369 part_md->part_type = part_type;
1370 list_add(&part_md->part, &md->part);
1372 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
1373 cap_str, sizeof(cap_str));
1374 printk(KERN_INFO "%s: %s %s partition %u %s\n",
1375 part_md->disk->disk_name, mmc_card_id(card),
1376 mmc_card_name(card), part_md->part_type, cap_str);
1377 return 0;
1380 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1382 int ret = 0;
1384 if (!mmc_card_mmc(card))
1385 return 0;
1387 if (card->ext_csd.boot_size) {
1388 ret = mmc_blk_alloc_part(card, md, EXT_CSD_PART_CONFIG_ACC_BOOT0,
1389 card->ext_csd.boot_size >> 9,
1390 true,
1391 "boot0");
1392 if (ret)
1393 return ret;
1394 ret = mmc_blk_alloc_part(card, md, EXT_CSD_PART_CONFIG_ACC_BOOT1,
1395 card->ext_csd.boot_size >> 9,
1396 true,
1397 "boot1");
1398 if (ret)
1399 return ret;
1402 return ret;
1405 static int
1406 mmc_blk_set_blksize(struct mmc_blk_data *md, struct mmc_card *card)
1408 int err;
1410 mmc_claim_host(card->host);
1411 err = mmc_set_blocklen(card, 512);
1412 mmc_release_host(card->host);
1414 if (err) {
1415 printk(KERN_ERR "%s: unable to set block size to 512: %d\n",
1416 md->disk->disk_name, err);
1417 return -EINVAL;
1420 return 0;
1423 static void mmc_blk_remove_req(struct mmc_blk_data *md)
1425 if (md) {
1426 if (md->disk->flags & GENHD_FL_UP) {
1427 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1429 /* Stop new requests from getting into the queue */
1430 del_gendisk(md->disk);
1433 /* Then flush out any already in there */
1434 mmc_cleanup_queue(&md->queue);
1435 mmc_blk_put(md);
1439 static void mmc_blk_remove_parts(struct mmc_card *card,
1440 struct mmc_blk_data *md)
1442 struct list_head *pos, *q;
1443 struct mmc_blk_data *part_md;
1445 __clear_bit(md->name_idx, name_use);
1446 list_for_each_safe(pos, q, &md->part) {
1447 part_md = list_entry(pos, struct mmc_blk_data, part);
1448 list_del(pos);
1449 mmc_blk_remove_req(part_md);
1453 static int mmc_add_disk(struct mmc_blk_data *md)
1455 int ret;
1457 add_disk(md->disk);
1458 md->force_ro.show = force_ro_show;
1459 md->force_ro.store = force_ro_store;
1460 sysfs_attr_init(&md->force_ro.attr);
1461 md->force_ro.attr.name = "force_ro";
1462 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
1463 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
1464 if (ret)
1465 del_gendisk(md->disk);
1467 return ret;
1470 static const struct mmc_fixup blk_fixups[] =
1472 MMC_FIXUP("SEM02G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1473 MMC_FIXUP("SEM04G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1474 MMC_FIXUP("SEM08G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1475 MMC_FIXUP("SEM16G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1476 MMC_FIXUP("SEM32G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1479 * Some MMC cards experience performance degradation with CMD23
1480 * instead of CMD12-bounded multiblock transfers. For now we'll
1481 * black list what's bad...
1482 * - Certain Toshiba cards.
1484 * N.B. This doesn't affect SD cards.
1486 MMC_FIXUP("MMC08G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1487 MMC_QUIRK_BLK_NO_CMD23),
1488 MMC_FIXUP("MMC16G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1489 MMC_QUIRK_BLK_NO_CMD23),
1490 MMC_FIXUP("MMC32G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1491 MMC_QUIRK_BLK_NO_CMD23),
1492 END_FIXUP
1495 static int mmc_blk_probe(struct mmc_card *card)
1497 struct mmc_blk_data *md, *part_md;
1498 int err;
1499 char cap_str[10];
1502 * Check that the card supports the command class(es) we need.
1504 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
1505 return -ENODEV;
1507 md = mmc_blk_alloc(card);
1508 if (IS_ERR(md))
1509 return PTR_ERR(md);
1511 err = mmc_blk_set_blksize(md, card);
1512 if (err)
1513 goto out;
1515 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
1516 cap_str, sizeof(cap_str));
1517 printk(KERN_INFO "%s: %s %s %s %s\n",
1518 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
1519 cap_str, md->read_only ? "(ro)" : "");
1521 if (mmc_blk_alloc_parts(card, md))
1522 goto out;
1524 mmc_set_drvdata(card, md);
1525 mmc_fixup_device(card, blk_fixups);
1527 if (mmc_add_disk(md))
1528 goto out;
1530 list_for_each_entry(part_md, &md->part, part) {
1531 if (mmc_add_disk(part_md))
1532 goto out;
1534 return 0;
1536 out:
1537 mmc_blk_remove_parts(card, md);
1538 mmc_blk_remove_req(md);
1539 return err;
1542 static void mmc_blk_remove(struct mmc_card *card)
1544 struct mmc_blk_data *md = mmc_get_drvdata(card);
1546 mmc_blk_remove_parts(card, md);
1547 mmc_claim_host(card->host);
1548 mmc_blk_part_switch(card, md);
1549 mmc_release_host(card->host);
1550 mmc_blk_remove_req(md);
1551 mmc_set_drvdata(card, NULL);
1554 #ifdef CONFIG_PM
1555 static int mmc_blk_suspend(struct mmc_card *card, pm_message_t state)
1557 struct mmc_blk_data *part_md;
1558 struct mmc_blk_data *md = mmc_get_drvdata(card);
1560 if (md) {
1561 mmc_queue_suspend(&md->queue);
1562 list_for_each_entry(part_md, &md->part, part) {
1563 mmc_queue_suspend(&part_md->queue);
1566 return 0;
1569 static int mmc_blk_resume(struct mmc_card *card)
1571 struct mmc_blk_data *part_md;
1572 struct mmc_blk_data *md = mmc_get_drvdata(card);
1574 if (md) {
1575 mmc_blk_set_blksize(md, card);
1578 * Resume involves the card going into idle state,
1579 * so current partition is always the main one.
1581 md->part_curr = md->part_type;
1582 mmc_queue_resume(&md->queue);
1583 list_for_each_entry(part_md, &md->part, part) {
1584 mmc_queue_resume(&part_md->queue);
1587 return 0;
1589 #else
1590 #define mmc_blk_suspend NULL
1591 #define mmc_blk_resume NULL
1592 #endif
1594 static struct mmc_driver mmc_driver = {
1595 .drv = {
1596 .name = "mmcblk",
1598 .probe = mmc_blk_probe,
1599 .remove = mmc_blk_remove,
1600 .suspend = mmc_blk_suspend,
1601 .resume = mmc_blk_resume,
1604 static int __init mmc_blk_init(void)
1606 int res;
1608 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
1609 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
1611 max_devices = 256 / perdev_minors;
1613 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
1614 if (res)
1615 goto out;
1617 res = mmc_register_driver(&mmc_driver);
1618 if (res)
1619 goto out2;
1621 return 0;
1622 out2:
1623 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1624 out:
1625 return res;
1628 static void __exit mmc_blk_exit(void)
1630 mmc_unregister_driver(&mmc_driver);
1631 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1634 module_init(mmc_blk_init);
1635 module_exit(mmc_blk_exit);
1637 MODULE_LICENSE("GPL");
1638 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");