Merge branch 'next' into for-linus
[linux-btrfs-devel.git] / block / blk.h
blob20b900a377c9d8ba85ab8ba45f10c4deb64652f4
1 #ifndef BLK_INTERNAL_H
2 #define BLK_INTERNAL_H
4 /* Amount of time in which a process may batch requests */
5 #define BLK_BATCH_TIME (HZ/50UL)
7 /* Number of requests a "batching" process may submit */
8 #define BLK_BATCH_REQ 32
10 extern struct kmem_cache *blk_requestq_cachep;
11 extern struct kobj_type blk_queue_ktype;
13 void init_request_from_bio(struct request *req, struct bio *bio);
14 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
15 struct bio *bio);
16 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
17 struct bio *bio);
18 void blk_dequeue_request(struct request *rq);
19 void __blk_queue_free_tags(struct request_queue *q);
20 bool __blk_end_bidi_request(struct request *rq, int error,
21 unsigned int nr_bytes, unsigned int bidi_bytes);
23 void blk_rq_timed_out_timer(unsigned long data);
24 void blk_delete_timer(struct request *);
25 void blk_add_timer(struct request *);
26 void __generic_unplug_device(struct request_queue *);
29 * Internal atomic flags for request handling
31 enum rq_atomic_flags {
32 REQ_ATOM_COMPLETE = 0,
36 * EH timer and IO completion will both attempt to 'grab' the request, make
37 * sure that only one of them succeeds
39 static inline int blk_mark_rq_complete(struct request *rq)
41 return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
44 static inline void blk_clear_rq_complete(struct request *rq)
46 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
50 * Internal elevator interface
52 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
54 void blk_insert_flush(struct request *rq);
55 void blk_abort_flushes(struct request_queue *q);
57 static inline struct request *__elv_next_request(struct request_queue *q)
59 struct request *rq;
61 while (1) {
62 if (!list_empty(&q->queue_head)) {
63 rq = list_entry_rq(q->queue_head.next);
64 return rq;
68 * Flush request is running and flush request isn't queueable
69 * in the drive, we can hold the queue till flush request is
70 * finished. Even we don't do this, driver can't dispatch next
71 * requests and will requeue them. And this can improve
72 * throughput too. For example, we have request flush1, write1,
73 * flush 2. flush1 is dispatched, then queue is hold, write1
74 * isn't inserted to queue. After flush1 is finished, flush2
75 * will be dispatched. Since disk cache is already clean,
76 * flush2 will be finished very soon, so looks like flush2 is
77 * folded to flush1.
78 * Since the queue is hold, a flag is set to indicate the queue
79 * should be restarted later. Please see flush_end_io() for
80 * details.
82 if (q->flush_pending_idx != q->flush_running_idx &&
83 !queue_flush_queueable(q)) {
84 q->flush_queue_delayed = 1;
85 return NULL;
87 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags) ||
88 !q->elevator->ops->elevator_dispatch_fn(q, 0))
89 return NULL;
93 static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
95 struct elevator_queue *e = q->elevator;
97 if (e->ops->elevator_activate_req_fn)
98 e->ops->elevator_activate_req_fn(q, rq);
101 static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
103 struct elevator_queue *e = q->elevator;
105 if (e->ops->elevator_deactivate_req_fn)
106 e->ops->elevator_deactivate_req_fn(q, rq);
109 #ifdef CONFIG_FAIL_IO_TIMEOUT
110 int blk_should_fake_timeout(struct request_queue *);
111 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
112 ssize_t part_timeout_store(struct device *, struct device_attribute *,
113 const char *, size_t);
114 #else
115 static inline int blk_should_fake_timeout(struct request_queue *q)
117 return 0;
119 #endif
121 struct io_context *current_io_context(gfp_t gfp_flags, int node);
123 int ll_back_merge_fn(struct request_queue *q, struct request *req,
124 struct bio *bio);
125 int ll_front_merge_fn(struct request_queue *q, struct request *req,
126 struct bio *bio);
127 int attempt_back_merge(struct request_queue *q, struct request *rq);
128 int attempt_front_merge(struct request_queue *q, struct request *rq);
129 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
130 struct request *next);
131 void blk_recalc_rq_segments(struct request *rq);
132 void blk_rq_set_mixed_merge(struct request *rq);
134 void blk_queue_congestion_threshold(struct request_queue *q);
136 int blk_dev_init(void);
138 void elv_quiesce_start(struct request_queue *q);
139 void elv_quiesce_end(struct request_queue *q);
143 * Return the threshold (number of used requests) at which the queue is
144 * considered to be congested. It include a little hysteresis to keep the
145 * context switch rate down.
147 static inline int queue_congestion_on_threshold(struct request_queue *q)
149 return q->nr_congestion_on;
153 * The threshold at which a queue is considered to be uncongested
155 static inline int queue_congestion_off_threshold(struct request_queue *q)
157 return q->nr_congestion_off;
160 static inline int blk_cpu_to_group(int cpu)
162 int group = NR_CPUS;
163 #ifdef CONFIG_SCHED_MC
164 const struct cpumask *mask = cpu_coregroup_mask(cpu);
165 group = cpumask_first(mask);
166 #elif defined(CONFIG_SCHED_SMT)
167 group = cpumask_first(topology_thread_cpumask(cpu));
168 #else
169 return cpu;
170 #endif
171 if (likely(group < NR_CPUS))
172 return group;
173 return cpu;
177 * Contribute to IO statistics IFF:
179 * a) it's attached to a gendisk, and
180 * b) the queue had IO stats enabled when this request was started, and
181 * c) it's a file system request or a discard request
183 static inline int blk_do_io_stat(struct request *rq)
185 return rq->rq_disk &&
186 (rq->cmd_flags & REQ_IO_STAT) &&
187 (rq->cmd_type == REQ_TYPE_FS ||
188 (rq->cmd_flags & REQ_DISCARD));
191 #endif