Merge branch 'next' into for-linus
[linux-btrfs-devel.git] / fs / btrfs / extent_io.c
blobd418164a35f134842ed3af4cfd5f43666b37c89d
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
21 static struct kmem_cache *extent_state_cache;
22 static struct kmem_cache *extent_buffer_cache;
24 static LIST_HEAD(buffers);
25 static LIST_HEAD(states);
27 #define LEAK_DEBUG 0
28 #if LEAK_DEBUG
29 static DEFINE_SPINLOCK(leak_lock);
30 #endif
32 #define BUFFER_LRU_MAX 64
34 struct tree_entry {
35 u64 start;
36 u64 end;
37 struct rb_node rb_node;
40 struct extent_page_data {
41 struct bio *bio;
42 struct extent_io_tree *tree;
43 get_extent_t *get_extent;
45 /* tells writepage not to lock the state bits for this range
46 * it still does the unlocking
48 unsigned int extent_locked:1;
50 /* tells the submit_bio code to use a WRITE_SYNC */
51 unsigned int sync_io:1;
54 int __init extent_io_init(void)
56 extent_state_cache = kmem_cache_create("extent_state",
57 sizeof(struct extent_state), 0,
58 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
59 if (!extent_state_cache)
60 return -ENOMEM;
62 extent_buffer_cache = kmem_cache_create("extent_buffers",
63 sizeof(struct extent_buffer), 0,
64 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
65 if (!extent_buffer_cache)
66 goto free_state_cache;
67 return 0;
69 free_state_cache:
70 kmem_cache_destroy(extent_state_cache);
71 return -ENOMEM;
74 void extent_io_exit(void)
76 struct extent_state *state;
77 struct extent_buffer *eb;
79 while (!list_empty(&states)) {
80 state = list_entry(states.next, struct extent_state, leak_list);
81 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
82 "state %lu in tree %p refs %d\n",
83 (unsigned long long)state->start,
84 (unsigned long long)state->end,
85 state->state, state->tree, atomic_read(&state->refs));
86 list_del(&state->leak_list);
87 kmem_cache_free(extent_state_cache, state);
91 while (!list_empty(&buffers)) {
92 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
93 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
94 "refs %d\n", (unsigned long long)eb->start,
95 eb->len, atomic_read(&eb->refs));
96 list_del(&eb->leak_list);
97 kmem_cache_free(extent_buffer_cache, eb);
99 if (extent_state_cache)
100 kmem_cache_destroy(extent_state_cache);
101 if (extent_buffer_cache)
102 kmem_cache_destroy(extent_buffer_cache);
105 void extent_io_tree_init(struct extent_io_tree *tree,
106 struct address_space *mapping)
108 tree->state = RB_ROOT;
109 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
110 tree->ops = NULL;
111 tree->dirty_bytes = 0;
112 spin_lock_init(&tree->lock);
113 spin_lock_init(&tree->buffer_lock);
114 tree->mapping = mapping;
117 static struct extent_state *alloc_extent_state(gfp_t mask)
119 struct extent_state *state;
120 #if LEAK_DEBUG
121 unsigned long flags;
122 #endif
124 state = kmem_cache_alloc(extent_state_cache, mask);
125 if (!state)
126 return state;
127 state->state = 0;
128 state->private = 0;
129 state->tree = NULL;
130 #if LEAK_DEBUG
131 spin_lock_irqsave(&leak_lock, flags);
132 list_add(&state->leak_list, &states);
133 spin_unlock_irqrestore(&leak_lock, flags);
134 #endif
135 atomic_set(&state->refs, 1);
136 init_waitqueue_head(&state->wq);
137 return state;
140 void free_extent_state(struct extent_state *state)
142 if (!state)
143 return;
144 if (atomic_dec_and_test(&state->refs)) {
145 #if LEAK_DEBUG
146 unsigned long flags;
147 #endif
148 WARN_ON(state->tree);
149 #if LEAK_DEBUG
150 spin_lock_irqsave(&leak_lock, flags);
151 list_del(&state->leak_list);
152 spin_unlock_irqrestore(&leak_lock, flags);
153 #endif
154 kmem_cache_free(extent_state_cache, state);
158 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
159 struct rb_node *node)
161 struct rb_node **p = &root->rb_node;
162 struct rb_node *parent = NULL;
163 struct tree_entry *entry;
165 while (*p) {
166 parent = *p;
167 entry = rb_entry(parent, struct tree_entry, rb_node);
169 if (offset < entry->start)
170 p = &(*p)->rb_left;
171 else if (offset > entry->end)
172 p = &(*p)->rb_right;
173 else
174 return parent;
177 entry = rb_entry(node, struct tree_entry, rb_node);
178 rb_link_node(node, parent, p);
179 rb_insert_color(node, root);
180 return NULL;
183 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
184 struct rb_node **prev_ret,
185 struct rb_node **next_ret)
187 struct rb_root *root = &tree->state;
188 struct rb_node *n = root->rb_node;
189 struct rb_node *prev = NULL;
190 struct rb_node *orig_prev = NULL;
191 struct tree_entry *entry;
192 struct tree_entry *prev_entry = NULL;
194 while (n) {
195 entry = rb_entry(n, struct tree_entry, rb_node);
196 prev = n;
197 prev_entry = entry;
199 if (offset < entry->start)
200 n = n->rb_left;
201 else if (offset > entry->end)
202 n = n->rb_right;
203 else
204 return n;
207 if (prev_ret) {
208 orig_prev = prev;
209 while (prev && offset > prev_entry->end) {
210 prev = rb_next(prev);
211 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
213 *prev_ret = prev;
214 prev = orig_prev;
217 if (next_ret) {
218 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
219 while (prev && offset < prev_entry->start) {
220 prev = rb_prev(prev);
221 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
223 *next_ret = prev;
225 return NULL;
228 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
229 u64 offset)
231 struct rb_node *prev = NULL;
232 struct rb_node *ret;
234 ret = __etree_search(tree, offset, &prev, NULL);
235 if (!ret)
236 return prev;
237 return ret;
240 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
241 struct extent_state *other)
243 if (tree->ops && tree->ops->merge_extent_hook)
244 tree->ops->merge_extent_hook(tree->mapping->host, new,
245 other);
249 * utility function to look for merge candidates inside a given range.
250 * Any extents with matching state are merged together into a single
251 * extent in the tree. Extents with EXTENT_IO in their state field
252 * are not merged because the end_io handlers need to be able to do
253 * operations on them without sleeping (or doing allocations/splits).
255 * This should be called with the tree lock held.
257 static void merge_state(struct extent_io_tree *tree,
258 struct extent_state *state)
260 struct extent_state *other;
261 struct rb_node *other_node;
263 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
264 return;
266 other_node = rb_prev(&state->rb_node);
267 if (other_node) {
268 other = rb_entry(other_node, struct extent_state, rb_node);
269 if (other->end == state->start - 1 &&
270 other->state == state->state) {
271 merge_cb(tree, state, other);
272 state->start = other->start;
273 other->tree = NULL;
274 rb_erase(&other->rb_node, &tree->state);
275 free_extent_state(other);
278 other_node = rb_next(&state->rb_node);
279 if (other_node) {
280 other = rb_entry(other_node, struct extent_state, rb_node);
281 if (other->start == state->end + 1 &&
282 other->state == state->state) {
283 merge_cb(tree, state, other);
284 state->end = other->end;
285 other->tree = NULL;
286 rb_erase(&other->rb_node, &tree->state);
287 free_extent_state(other);
292 static void set_state_cb(struct extent_io_tree *tree,
293 struct extent_state *state, int *bits)
295 if (tree->ops && tree->ops->set_bit_hook)
296 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
299 static void clear_state_cb(struct extent_io_tree *tree,
300 struct extent_state *state, int *bits)
302 if (tree->ops && tree->ops->clear_bit_hook)
303 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
306 static void set_state_bits(struct extent_io_tree *tree,
307 struct extent_state *state, int *bits);
310 * insert an extent_state struct into the tree. 'bits' are set on the
311 * struct before it is inserted.
313 * This may return -EEXIST if the extent is already there, in which case the
314 * state struct is freed.
316 * The tree lock is not taken internally. This is a utility function and
317 * probably isn't what you want to call (see set/clear_extent_bit).
319 static int insert_state(struct extent_io_tree *tree,
320 struct extent_state *state, u64 start, u64 end,
321 int *bits)
323 struct rb_node *node;
325 if (end < start) {
326 printk(KERN_ERR "btrfs end < start %llu %llu\n",
327 (unsigned long long)end,
328 (unsigned long long)start);
329 WARN_ON(1);
331 state->start = start;
332 state->end = end;
334 set_state_bits(tree, state, bits);
336 node = tree_insert(&tree->state, end, &state->rb_node);
337 if (node) {
338 struct extent_state *found;
339 found = rb_entry(node, struct extent_state, rb_node);
340 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
341 "%llu %llu\n", (unsigned long long)found->start,
342 (unsigned long long)found->end,
343 (unsigned long long)start, (unsigned long long)end);
344 return -EEXIST;
346 state->tree = tree;
347 merge_state(tree, state);
348 return 0;
351 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
352 u64 split)
354 if (tree->ops && tree->ops->split_extent_hook)
355 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
359 * split a given extent state struct in two, inserting the preallocated
360 * struct 'prealloc' as the newly created second half. 'split' indicates an
361 * offset inside 'orig' where it should be split.
363 * Before calling,
364 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
365 * are two extent state structs in the tree:
366 * prealloc: [orig->start, split - 1]
367 * orig: [ split, orig->end ]
369 * The tree locks are not taken by this function. They need to be held
370 * by the caller.
372 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
373 struct extent_state *prealloc, u64 split)
375 struct rb_node *node;
377 split_cb(tree, orig, split);
379 prealloc->start = orig->start;
380 prealloc->end = split - 1;
381 prealloc->state = orig->state;
382 orig->start = split;
384 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
385 if (node) {
386 free_extent_state(prealloc);
387 return -EEXIST;
389 prealloc->tree = tree;
390 return 0;
394 * utility function to clear some bits in an extent state struct.
395 * it will optionally wake up any one waiting on this state (wake == 1), or
396 * forcibly remove the state from the tree (delete == 1).
398 * If no bits are set on the state struct after clearing things, the
399 * struct is freed and removed from the tree
401 static int clear_state_bit(struct extent_io_tree *tree,
402 struct extent_state *state,
403 int *bits, int wake)
405 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
406 int ret = state->state & bits_to_clear;
408 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
409 u64 range = state->end - state->start + 1;
410 WARN_ON(range > tree->dirty_bytes);
411 tree->dirty_bytes -= range;
413 clear_state_cb(tree, state, bits);
414 state->state &= ~bits_to_clear;
415 if (wake)
416 wake_up(&state->wq);
417 if (state->state == 0) {
418 if (state->tree) {
419 rb_erase(&state->rb_node, &tree->state);
420 state->tree = NULL;
421 free_extent_state(state);
422 } else {
423 WARN_ON(1);
425 } else {
426 merge_state(tree, state);
428 return ret;
431 static struct extent_state *
432 alloc_extent_state_atomic(struct extent_state *prealloc)
434 if (!prealloc)
435 prealloc = alloc_extent_state(GFP_ATOMIC);
437 return prealloc;
441 * clear some bits on a range in the tree. This may require splitting
442 * or inserting elements in the tree, so the gfp mask is used to
443 * indicate which allocations or sleeping are allowed.
445 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
446 * the given range from the tree regardless of state (ie for truncate).
448 * the range [start, end] is inclusive.
450 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
451 * bits were already set, or zero if none of the bits were already set.
453 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
454 int bits, int wake, int delete,
455 struct extent_state **cached_state,
456 gfp_t mask)
458 struct extent_state *state;
459 struct extent_state *cached;
460 struct extent_state *prealloc = NULL;
461 struct rb_node *next_node;
462 struct rb_node *node;
463 u64 last_end;
464 int err;
465 int set = 0;
466 int clear = 0;
468 if (delete)
469 bits |= ~EXTENT_CTLBITS;
470 bits |= EXTENT_FIRST_DELALLOC;
472 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
473 clear = 1;
474 again:
475 if (!prealloc && (mask & __GFP_WAIT)) {
476 prealloc = alloc_extent_state(mask);
477 if (!prealloc)
478 return -ENOMEM;
481 spin_lock(&tree->lock);
482 if (cached_state) {
483 cached = *cached_state;
485 if (clear) {
486 *cached_state = NULL;
487 cached_state = NULL;
490 if (cached && cached->tree && cached->start <= start &&
491 cached->end > start) {
492 if (clear)
493 atomic_dec(&cached->refs);
494 state = cached;
495 goto hit_next;
497 if (clear)
498 free_extent_state(cached);
501 * this search will find the extents that end after
502 * our range starts
504 node = tree_search(tree, start);
505 if (!node)
506 goto out;
507 state = rb_entry(node, struct extent_state, rb_node);
508 hit_next:
509 if (state->start > end)
510 goto out;
511 WARN_ON(state->end < start);
512 last_end = state->end;
515 * | ---- desired range ---- |
516 * | state | or
517 * | ------------- state -------------- |
519 * We need to split the extent we found, and may flip
520 * bits on second half.
522 * If the extent we found extends past our range, we
523 * just split and search again. It'll get split again
524 * the next time though.
526 * If the extent we found is inside our range, we clear
527 * the desired bit on it.
530 if (state->start < start) {
531 prealloc = alloc_extent_state_atomic(prealloc);
532 BUG_ON(!prealloc);
533 err = split_state(tree, state, prealloc, start);
534 BUG_ON(err == -EEXIST);
535 prealloc = NULL;
536 if (err)
537 goto out;
538 if (state->end <= end) {
539 set |= clear_state_bit(tree, state, &bits, wake);
540 if (last_end == (u64)-1)
541 goto out;
542 start = last_end + 1;
544 goto search_again;
547 * | ---- desired range ---- |
548 * | state |
549 * We need to split the extent, and clear the bit
550 * on the first half
552 if (state->start <= end && state->end > end) {
553 prealloc = alloc_extent_state_atomic(prealloc);
554 BUG_ON(!prealloc);
555 err = split_state(tree, state, prealloc, end + 1);
556 BUG_ON(err == -EEXIST);
557 if (wake)
558 wake_up(&state->wq);
560 set |= clear_state_bit(tree, prealloc, &bits, wake);
562 prealloc = NULL;
563 goto out;
566 if (state->end < end && prealloc && !need_resched())
567 next_node = rb_next(&state->rb_node);
568 else
569 next_node = NULL;
571 set |= clear_state_bit(tree, state, &bits, wake);
572 if (last_end == (u64)-1)
573 goto out;
574 start = last_end + 1;
575 if (start <= end && next_node) {
576 state = rb_entry(next_node, struct extent_state,
577 rb_node);
578 if (state->start == start)
579 goto hit_next;
581 goto search_again;
583 out:
584 spin_unlock(&tree->lock);
585 if (prealloc)
586 free_extent_state(prealloc);
588 return set;
590 search_again:
591 if (start > end)
592 goto out;
593 spin_unlock(&tree->lock);
594 if (mask & __GFP_WAIT)
595 cond_resched();
596 goto again;
599 static int wait_on_state(struct extent_io_tree *tree,
600 struct extent_state *state)
601 __releases(tree->lock)
602 __acquires(tree->lock)
604 DEFINE_WAIT(wait);
605 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
606 spin_unlock(&tree->lock);
607 schedule();
608 spin_lock(&tree->lock);
609 finish_wait(&state->wq, &wait);
610 return 0;
614 * waits for one or more bits to clear on a range in the state tree.
615 * The range [start, end] is inclusive.
616 * The tree lock is taken by this function
618 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
620 struct extent_state *state;
621 struct rb_node *node;
623 spin_lock(&tree->lock);
624 again:
625 while (1) {
627 * this search will find all the extents that end after
628 * our range starts
630 node = tree_search(tree, start);
631 if (!node)
632 break;
634 state = rb_entry(node, struct extent_state, rb_node);
636 if (state->start > end)
637 goto out;
639 if (state->state & bits) {
640 start = state->start;
641 atomic_inc(&state->refs);
642 wait_on_state(tree, state);
643 free_extent_state(state);
644 goto again;
646 start = state->end + 1;
648 if (start > end)
649 break;
651 cond_resched_lock(&tree->lock);
653 out:
654 spin_unlock(&tree->lock);
655 return 0;
658 static void set_state_bits(struct extent_io_tree *tree,
659 struct extent_state *state,
660 int *bits)
662 int bits_to_set = *bits & ~EXTENT_CTLBITS;
664 set_state_cb(tree, state, bits);
665 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
666 u64 range = state->end - state->start + 1;
667 tree->dirty_bytes += range;
669 state->state |= bits_to_set;
672 static void cache_state(struct extent_state *state,
673 struct extent_state **cached_ptr)
675 if (cached_ptr && !(*cached_ptr)) {
676 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
677 *cached_ptr = state;
678 atomic_inc(&state->refs);
683 static void uncache_state(struct extent_state **cached_ptr)
685 if (cached_ptr && (*cached_ptr)) {
686 struct extent_state *state = *cached_ptr;
687 *cached_ptr = NULL;
688 free_extent_state(state);
693 * set some bits on a range in the tree. This may require allocations or
694 * sleeping, so the gfp mask is used to indicate what is allowed.
696 * If any of the exclusive bits are set, this will fail with -EEXIST if some
697 * part of the range already has the desired bits set. The start of the
698 * existing range is returned in failed_start in this case.
700 * [start, end] is inclusive This takes the tree lock.
703 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
704 int bits, int exclusive_bits, u64 *failed_start,
705 struct extent_state **cached_state, gfp_t mask)
707 struct extent_state *state;
708 struct extent_state *prealloc = NULL;
709 struct rb_node *node;
710 int err = 0;
711 u64 last_start;
712 u64 last_end;
714 bits |= EXTENT_FIRST_DELALLOC;
715 again:
716 if (!prealloc && (mask & __GFP_WAIT)) {
717 prealloc = alloc_extent_state(mask);
718 BUG_ON(!prealloc);
721 spin_lock(&tree->lock);
722 if (cached_state && *cached_state) {
723 state = *cached_state;
724 if (state->start <= start && state->end > start &&
725 state->tree) {
726 node = &state->rb_node;
727 goto hit_next;
731 * this search will find all the extents that end after
732 * our range starts.
734 node = tree_search(tree, start);
735 if (!node) {
736 prealloc = alloc_extent_state_atomic(prealloc);
737 BUG_ON(!prealloc);
738 err = insert_state(tree, prealloc, start, end, &bits);
739 prealloc = NULL;
740 BUG_ON(err == -EEXIST);
741 goto out;
743 state = rb_entry(node, struct extent_state, rb_node);
744 hit_next:
745 last_start = state->start;
746 last_end = state->end;
749 * | ---- desired range ---- |
750 * | state |
752 * Just lock what we found and keep going
754 if (state->start == start && state->end <= end) {
755 struct rb_node *next_node;
756 if (state->state & exclusive_bits) {
757 *failed_start = state->start;
758 err = -EEXIST;
759 goto out;
762 set_state_bits(tree, state, &bits);
764 cache_state(state, cached_state);
765 merge_state(tree, state);
766 if (last_end == (u64)-1)
767 goto out;
769 start = last_end + 1;
770 next_node = rb_next(&state->rb_node);
771 if (next_node && start < end && prealloc && !need_resched()) {
772 state = rb_entry(next_node, struct extent_state,
773 rb_node);
774 if (state->start == start)
775 goto hit_next;
777 goto search_again;
781 * | ---- desired range ---- |
782 * | state |
783 * or
784 * | ------------- state -------------- |
786 * We need to split the extent we found, and may flip bits on
787 * second half.
789 * If the extent we found extends past our
790 * range, we just split and search again. It'll get split
791 * again the next time though.
793 * If the extent we found is inside our range, we set the
794 * desired bit on it.
796 if (state->start < start) {
797 if (state->state & exclusive_bits) {
798 *failed_start = start;
799 err = -EEXIST;
800 goto out;
803 prealloc = alloc_extent_state_atomic(prealloc);
804 BUG_ON(!prealloc);
805 err = split_state(tree, state, prealloc, start);
806 BUG_ON(err == -EEXIST);
807 prealloc = NULL;
808 if (err)
809 goto out;
810 if (state->end <= end) {
811 set_state_bits(tree, state, &bits);
812 cache_state(state, cached_state);
813 merge_state(tree, state);
814 if (last_end == (u64)-1)
815 goto out;
816 start = last_end + 1;
818 goto search_again;
821 * | ---- desired range ---- |
822 * | state | or | state |
824 * There's a hole, we need to insert something in it and
825 * ignore the extent we found.
827 if (state->start > start) {
828 u64 this_end;
829 if (end < last_start)
830 this_end = end;
831 else
832 this_end = last_start - 1;
834 prealloc = alloc_extent_state_atomic(prealloc);
835 BUG_ON(!prealloc);
838 * Avoid to free 'prealloc' if it can be merged with
839 * the later extent.
841 err = insert_state(tree, prealloc, start, this_end,
842 &bits);
843 BUG_ON(err == -EEXIST);
844 if (err) {
845 free_extent_state(prealloc);
846 prealloc = NULL;
847 goto out;
849 cache_state(prealloc, cached_state);
850 prealloc = NULL;
851 start = this_end + 1;
852 goto search_again;
855 * | ---- desired range ---- |
856 * | state |
857 * We need to split the extent, and set the bit
858 * on the first half
860 if (state->start <= end && state->end > end) {
861 if (state->state & exclusive_bits) {
862 *failed_start = start;
863 err = -EEXIST;
864 goto out;
867 prealloc = alloc_extent_state_atomic(prealloc);
868 BUG_ON(!prealloc);
869 err = split_state(tree, state, prealloc, end + 1);
870 BUG_ON(err == -EEXIST);
872 set_state_bits(tree, prealloc, &bits);
873 cache_state(prealloc, cached_state);
874 merge_state(tree, prealloc);
875 prealloc = NULL;
876 goto out;
879 goto search_again;
881 out:
882 spin_unlock(&tree->lock);
883 if (prealloc)
884 free_extent_state(prealloc);
886 return err;
888 search_again:
889 if (start > end)
890 goto out;
891 spin_unlock(&tree->lock);
892 if (mask & __GFP_WAIT)
893 cond_resched();
894 goto again;
897 /* wrappers around set/clear extent bit */
898 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
899 gfp_t mask)
901 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
902 NULL, mask);
905 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
906 int bits, gfp_t mask)
908 return set_extent_bit(tree, start, end, bits, 0, NULL,
909 NULL, mask);
912 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
913 int bits, gfp_t mask)
915 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
918 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
919 struct extent_state **cached_state, gfp_t mask)
921 return set_extent_bit(tree, start, end,
922 EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
923 0, NULL, cached_state, mask);
926 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
927 gfp_t mask)
929 return clear_extent_bit(tree, start, end,
930 EXTENT_DIRTY | EXTENT_DELALLOC |
931 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
934 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
935 gfp_t mask)
937 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
938 NULL, mask);
941 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
942 struct extent_state **cached_state, gfp_t mask)
944 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
945 NULL, cached_state, mask);
948 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
949 u64 end, struct extent_state **cached_state,
950 gfp_t mask)
952 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
953 cached_state, mask);
957 * either insert or lock state struct between start and end use mask to tell
958 * us if waiting is desired.
960 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
961 int bits, struct extent_state **cached_state, gfp_t mask)
963 int err;
964 u64 failed_start;
965 while (1) {
966 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
967 EXTENT_LOCKED, &failed_start,
968 cached_state, mask);
969 if (err == -EEXIST && (mask & __GFP_WAIT)) {
970 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
971 start = failed_start;
972 } else {
973 break;
975 WARN_ON(start > end);
977 return err;
980 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
982 return lock_extent_bits(tree, start, end, 0, NULL, mask);
985 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
986 gfp_t mask)
988 int err;
989 u64 failed_start;
991 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
992 &failed_start, NULL, mask);
993 if (err == -EEXIST) {
994 if (failed_start > start)
995 clear_extent_bit(tree, start, failed_start - 1,
996 EXTENT_LOCKED, 1, 0, NULL, mask);
997 return 0;
999 return 1;
1002 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1003 struct extent_state **cached, gfp_t mask)
1005 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1006 mask);
1009 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1011 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1012 mask);
1016 * helper function to set both pages and extents in the tree writeback
1018 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1020 unsigned long index = start >> PAGE_CACHE_SHIFT;
1021 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1022 struct page *page;
1024 while (index <= end_index) {
1025 page = find_get_page(tree->mapping, index);
1026 BUG_ON(!page);
1027 set_page_writeback(page);
1028 page_cache_release(page);
1029 index++;
1031 return 0;
1034 /* find the first state struct with 'bits' set after 'start', and
1035 * return it. tree->lock must be held. NULL will returned if
1036 * nothing was found after 'start'
1038 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1039 u64 start, int bits)
1041 struct rb_node *node;
1042 struct extent_state *state;
1045 * this search will find all the extents that end after
1046 * our range starts.
1048 node = tree_search(tree, start);
1049 if (!node)
1050 goto out;
1052 while (1) {
1053 state = rb_entry(node, struct extent_state, rb_node);
1054 if (state->end >= start && (state->state & bits))
1055 return state;
1057 node = rb_next(node);
1058 if (!node)
1059 break;
1061 out:
1062 return NULL;
1066 * find the first offset in the io tree with 'bits' set. zero is
1067 * returned if we find something, and *start_ret and *end_ret are
1068 * set to reflect the state struct that was found.
1070 * If nothing was found, 1 is returned, < 0 on error
1072 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1073 u64 *start_ret, u64 *end_ret, int bits)
1075 struct extent_state *state;
1076 int ret = 1;
1078 spin_lock(&tree->lock);
1079 state = find_first_extent_bit_state(tree, start, bits);
1080 if (state) {
1081 *start_ret = state->start;
1082 *end_ret = state->end;
1083 ret = 0;
1085 spin_unlock(&tree->lock);
1086 return ret;
1090 * find a contiguous range of bytes in the file marked as delalloc, not
1091 * more than 'max_bytes'. start and end are used to return the range,
1093 * 1 is returned if we find something, 0 if nothing was in the tree
1095 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1096 u64 *start, u64 *end, u64 max_bytes,
1097 struct extent_state **cached_state)
1099 struct rb_node *node;
1100 struct extent_state *state;
1101 u64 cur_start = *start;
1102 u64 found = 0;
1103 u64 total_bytes = 0;
1105 spin_lock(&tree->lock);
1108 * this search will find all the extents that end after
1109 * our range starts.
1111 node = tree_search(tree, cur_start);
1112 if (!node) {
1113 if (!found)
1114 *end = (u64)-1;
1115 goto out;
1118 while (1) {
1119 state = rb_entry(node, struct extent_state, rb_node);
1120 if (found && (state->start != cur_start ||
1121 (state->state & EXTENT_BOUNDARY))) {
1122 goto out;
1124 if (!(state->state & EXTENT_DELALLOC)) {
1125 if (!found)
1126 *end = state->end;
1127 goto out;
1129 if (!found) {
1130 *start = state->start;
1131 *cached_state = state;
1132 atomic_inc(&state->refs);
1134 found++;
1135 *end = state->end;
1136 cur_start = state->end + 1;
1137 node = rb_next(node);
1138 if (!node)
1139 break;
1140 total_bytes += state->end - state->start + 1;
1141 if (total_bytes >= max_bytes)
1142 break;
1144 out:
1145 spin_unlock(&tree->lock);
1146 return found;
1149 static noinline int __unlock_for_delalloc(struct inode *inode,
1150 struct page *locked_page,
1151 u64 start, u64 end)
1153 int ret;
1154 struct page *pages[16];
1155 unsigned long index = start >> PAGE_CACHE_SHIFT;
1156 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1157 unsigned long nr_pages = end_index - index + 1;
1158 int i;
1160 if (index == locked_page->index && end_index == index)
1161 return 0;
1163 while (nr_pages > 0) {
1164 ret = find_get_pages_contig(inode->i_mapping, index,
1165 min_t(unsigned long, nr_pages,
1166 ARRAY_SIZE(pages)), pages);
1167 for (i = 0; i < ret; i++) {
1168 if (pages[i] != locked_page)
1169 unlock_page(pages[i]);
1170 page_cache_release(pages[i]);
1172 nr_pages -= ret;
1173 index += ret;
1174 cond_resched();
1176 return 0;
1179 static noinline int lock_delalloc_pages(struct inode *inode,
1180 struct page *locked_page,
1181 u64 delalloc_start,
1182 u64 delalloc_end)
1184 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1185 unsigned long start_index = index;
1186 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1187 unsigned long pages_locked = 0;
1188 struct page *pages[16];
1189 unsigned long nrpages;
1190 int ret;
1191 int i;
1193 /* the caller is responsible for locking the start index */
1194 if (index == locked_page->index && index == end_index)
1195 return 0;
1197 /* skip the page at the start index */
1198 nrpages = end_index - index + 1;
1199 while (nrpages > 0) {
1200 ret = find_get_pages_contig(inode->i_mapping, index,
1201 min_t(unsigned long,
1202 nrpages, ARRAY_SIZE(pages)), pages);
1203 if (ret == 0) {
1204 ret = -EAGAIN;
1205 goto done;
1207 /* now we have an array of pages, lock them all */
1208 for (i = 0; i < ret; i++) {
1210 * the caller is taking responsibility for
1211 * locked_page
1213 if (pages[i] != locked_page) {
1214 lock_page(pages[i]);
1215 if (!PageDirty(pages[i]) ||
1216 pages[i]->mapping != inode->i_mapping) {
1217 ret = -EAGAIN;
1218 unlock_page(pages[i]);
1219 page_cache_release(pages[i]);
1220 goto done;
1223 page_cache_release(pages[i]);
1224 pages_locked++;
1226 nrpages -= ret;
1227 index += ret;
1228 cond_resched();
1230 ret = 0;
1231 done:
1232 if (ret && pages_locked) {
1233 __unlock_for_delalloc(inode, locked_page,
1234 delalloc_start,
1235 ((u64)(start_index + pages_locked - 1)) <<
1236 PAGE_CACHE_SHIFT);
1238 return ret;
1242 * find a contiguous range of bytes in the file marked as delalloc, not
1243 * more than 'max_bytes'. start and end are used to return the range,
1245 * 1 is returned if we find something, 0 if nothing was in the tree
1247 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1248 struct extent_io_tree *tree,
1249 struct page *locked_page,
1250 u64 *start, u64 *end,
1251 u64 max_bytes)
1253 u64 delalloc_start;
1254 u64 delalloc_end;
1255 u64 found;
1256 struct extent_state *cached_state = NULL;
1257 int ret;
1258 int loops = 0;
1260 again:
1261 /* step one, find a bunch of delalloc bytes starting at start */
1262 delalloc_start = *start;
1263 delalloc_end = 0;
1264 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1265 max_bytes, &cached_state);
1266 if (!found || delalloc_end <= *start) {
1267 *start = delalloc_start;
1268 *end = delalloc_end;
1269 free_extent_state(cached_state);
1270 return found;
1274 * start comes from the offset of locked_page. We have to lock
1275 * pages in order, so we can't process delalloc bytes before
1276 * locked_page
1278 if (delalloc_start < *start)
1279 delalloc_start = *start;
1282 * make sure to limit the number of pages we try to lock down
1283 * if we're looping.
1285 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1286 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1288 /* step two, lock all the pages after the page that has start */
1289 ret = lock_delalloc_pages(inode, locked_page,
1290 delalloc_start, delalloc_end);
1291 if (ret == -EAGAIN) {
1292 /* some of the pages are gone, lets avoid looping by
1293 * shortening the size of the delalloc range we're searching
1295 free_extent_state(cached_state);
1296 if (!loops) {
1297 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1298 max_bytes = PAGE_CACHE_SIZE - offset;
1299 loops = 1;
1300 goto again;
1301 } else {
1302 found = 0;
1303 goto out_failed;
1306 BUG_ON(ret);
1308 /* step three, lock the state bits for the whole range */
1309 lock_extent_bits(tree, delalloc_start, delalloc_end,
1310 0, &cached_state, GFP_NOFS);
1312 /* then test to make sure it is all still delalloc */
1313 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1314 EXTENT_DELALLOC, 1, cached_state);
1315 if (!ret) {
1316 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1317 &cached_state, GFP_NOFS);
1318 __unlock_for_delalloc(inode, locked_page,
1319 delalloc_start, delalloc_end);
1320 cond_resched();
1321 goto again;
1323 free_extent_state(cached_state);
1324 *start = delalloc_start;
1325 *end = delalloc_end;
1326 out_failed:
1327 return found;
1330 int extent_clear_unlock_delalloc(struct inode *inode,
1331 struct extent_io_tree *tree,
1332 u64 start, u64 end, struct page *locked_page,
1333 unsigned long op)
1335 int ret;
1336 struct page *pages[16];
1337 unsigned long index = start >> PAGE_CACHE_SHIFT;
1338 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1339 unsigned long nr_pages = end_index - index + 1;
1340 int i;
1341 int clear_bits = 0;
1343 if (op & EXTENT_CLEAR_UNLOCK)
1344 clear_bits |= EXTENT_LOCKED;
1345 if (op & EXTENT_CLEAR_DIRTY)
1346 clear_bits |= EXTENT_DIRTY;
1348 if (op & EXTENT_CLEAR_DELALLOC)
1349 clear_bits |= EXTENT_DELALLOC;
1351 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1352 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1353 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1354 EXTENT_SET_PRIVATE2)))
1355 return 0;
1357 while (nr_pages > 0) {
1358 ret = find_get_pages_contig(inode->i_mapping, index,
1359 min_t(unsigned long,
1360 nr_pages, ARRAY_SIZE(pages)), pages);
1361 for (i = 0; i < ret; i++) {
1363 if (op & EXTENT_SET_PRIVATE2)
1364 SetPagePrivate2(pages[i]);
1366 if (pages[i] == locked_page) {
1367 page_cache_release(pages[i]);
1368 continue;
1370 if (op & EXTENT_CLEAR_DIRTY)
1371 clear_page_dirty_for_io(pages[i]);
1372 if (op & EXTENT_SET_WRITEBACK)
1373 set_page_writeback(pages[i]);
1374 if (op & EXTENT_END_WRITEBACK)
1375 end_page_writeback(pages[i]);
1376 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1377 unlock_page(pages[i]);
1378 page_cache_release(pages[i]);
1380 nr_pages -= ret;
1381 index += ret;
1382 cond_resched();
1384 return 0;
1388 * count the number of bytes in the tree that have a given bit(s)
1389 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1390 * cached. The total number found is returned.
1392 u64 count_range_bits(struct extent_io_tree *tree,
1393 u64 *start, u64 search_end, u64 max_bytes,
1394 unsigned long bits, int contig)
1396 struct rb_node *node;
1397 struct extent_state *state;
1398 u64 cur_start = *start;
1399 u64 total_bytes = 0;
1400 u64 last = 0;
1401 int found = 0;
1403 if (search_end <= cur_start) {
1404 WARN_ON(1);
1405 return 0;
1408 spin_lock(&tree->lock);
1409 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1410 total_bytes = tree->dirty_bytes;
1411 goto out;
1414 * this search will find all the extents that end after
1415 * our range starts.
1417 node = tree_search(tree, cur_start);
1418 if (!node)
1419 goto out;
1421 while (1) {
1422 state = rb_entry(node, struct extent_state, rb_node);
1423 if (state->start > search_end)
1424 break;
1425 if (contig && found && state->start > last + 1)
1426 break;
1427 if (state->end >= cur_start && (state->state & bits) == bits) {
1428 total_bytes += min(search_end, state->end) + 1 -
1429 max(cur_start, state->start);
1430 if (total_bytes >= max_bytes)
1431 break;
1432 if (!found) {
1433 *start = max(cur_start, state->start);
1434 found = 1;
1436 last = state->end;
1437 } else if (contig && found) {
1438 break;
1440 node = rb_next(node);
1441 if (!node)
1442 break;
1444 out:
1445 spin_unlock(&tree->lock);
1446 return total_bytes;
1450 * set the private field for a given byte offset in the tree. If there isn't
1451 * an extent_state there already, this does nothing.
1453 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1455 struct rb_node *node;
1456 struct extent_state *state;
1457 int ret = 0;
1459 spin_lock(&tree->lock);
1461 * this search will find all the extents that end after
1462 * our range starts.
1464 node = tree_search(tree, start);
1465 if (!node) {
1466 ret = -ENOENT;
1467 goto out;
1469 state = rb_entry(node, struct extent_state, rb_node);
1470 if (state->start != start) {
1471 ret = -ENOENT;
1472 goto out;
1474 state->private = private;
1475 out:
1476 spin_unlock(&tree->lock);
1477 return ret;
1480 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1482 struct rb_node *node;
1483 struct extent_state *state;
1484 int ret = 0;
1486 spin_lock(&tree->lock);
1488 * this search will find all the extents that end after
1489 * our range starts.
1491 node = tree_search(tree, start);
1492 if (!node) {
1493 ret = -ENOENT;
1494 goto out;
1496 state = rb_entry(node, struct extent_state, rb_node);
1497 if (state->start != start) {
1498 ret = -ENOENT;
1499 goto out;
1501 *private = state->private;
1502 out:
1503 spin_unlock(&tree->lock);
1504 return ret;
1508 * searches a range in the state tree for a given mask.
1509 * If 'filled' == 1, this returns 1 only if every extent in the tree
1510 * has the bits set. Otherwise, 1 is returned if any bit in the
1511 * range is found set.
1513 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1514 int bits, int filled, struct extent_state *cached)
1516 struct extent_state *state = NULL;
1517 struct rb_node *node;
1518 int bitset = 0;
1520 spin_lock(&tree->lock);
1521 if (cached && cached->tree && cached->start <= start &&
1522 cached->end > start)
1523 node = &cached->rb_node;
1524 else
1525 node = tree_search(tree, start);
1526 while (node && start <= end) {
1527 state = rb_entry(node, struct extent_state, rb_node);
1529 if (filled && state->start > start) {
1530 bitset = 0;
1531 break;
1534 if (state->start > end)
1535 break;
1537 if (state->state & bits) {
1538 bitset = 1;
1539 if (!filled)
1540 break;
1541 } else if (filled) {
1542 bitset = 0;
1543 break;
1546 if (state->end == (u64)-1)
1547 break;
1549 start = state->end + 1;
1550 if (start > end)
1551 break;
1552 node = rb_next(node);
1553 if (!node) {
1554 if (filled)
1555 bitset = 0;
1556 break;
1559 spin_unlock(&tree->lock);
1560 return bitset;
1564 * helper function to set a given page up to date if all the
1565 * extents in the tree for that page are up to date
1567 static int check_page_uptodate(struct extent_io_tree *tree,
1568 struct page *page)
1570 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1571 u64 end = start + PAGE_CACHE_SIZE - 1;
1572 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1573 SetPageUptodate(page);
1574 return 0;
1578 * helper function to unlock a page if all the extents in the tree
1579 * for that page are unlocked
1581 static int check_page_locked(struct extent_io_tree *tree,
1582 struct page *page)
1584 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1585 u64 end = start + PAGE_CACHE_SIZE - 1;
1586 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1587 unlock_page(page);
1588 return 0;
1592 * helper function to end page writeback if all the extents
1593 * in the tree for that page are done with writeback
1595 static int check_page_writeback(struct extent_io_tree *tree,
1596 struct page *page)
1598 end_page_writeback(page);
1599 return 0;
1602 /* lots and lots of room for performance fixes in the end_bio funcs */
1605 * after a writepage IO is done, we need to:
1606 * clear the uptodate bits on error
1607 * clear the writeback bits in the extent tree for this IO
1608 * end_page_writeback if the page has no more pending IO
1610 * Scheduling is not allowed, so the extent state tree is expected
1611 * to have one and only one object corresponding to this IO.
1613 static void end_bio_extent_writepage(struct bio *bio, int err)
1615 int uptodate = err == 0;
1616 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1617 struct extent_io_tree *tree;
1618 u64 start;
1619 u64 end;
1620 int whole_page;
1621 int ret;
1623 do {
1624 struct page *page = bvec->bv_page;
1625 tree = &BTRFS_I(page->mapping->host)->io_tree;
1627 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1628 bvec->bv_offset;
1629 end = start + bvec->bv_len - 1;
1631 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1632 whole_page = 1;
1633 else
1634 whole_page = 0;
1636 if (--bvec >= bio->bi_io_vec)
1637 prefetchw(&bvec->bv_page->flags);
1638 if (tree->ops && tree->ops->writepage_end_io_hook) {
1639 ret = tree->ops->writepage_end_io_hook(page, start,
1640 end, NULL, uptodate);
1641 if (ret)
1642 uptodate = 0;
1645 if (!uptodate && tree->ops &&
1646 tree->ops->writepage_io_failed_hook) {
1647 ret = tree->ops->writepage_io_failed_hook(bio, page,
1648 start, end, NULL);
1649 if (ret == 0) {
1650 uptodate = (err == 0);
1651 continue;
1655 if (!uptodate) {
1656 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1657 ClearPageUptodate(page);
1658 SetPageError(page);
1661 if (whole_page)
1662 end_page_writeback(page);
1663 else
1664 check_page_writeback(tree, page);
1665 } while (bvec >= bio->bi_io_vec);
1667 bio_put(bio);
1671 * after a readpage IO is done, we need to:
1672 * clear the uptodate bits on error
1673 * set the uptodate bits if things worked
1674 * set the page up to date if all extents in the tree are uptodate
1675 * clear the lock bit in the extent tree
1676 * unlock the page if there are no other extents locked for it
1678 * Scheduling is not allowed, so the extent state tree is expected
1679 * to have one and only one object corresponding to this IO.
1681 static void end_bio_extent_readpage(struct bio *bio, int err)
1683 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1684 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1685 struct bio_vec *bvec = bio->bi_io_vec;
1686 struct extent_io_tree *tree;
1687 u64 start;
1688 u64 end;
1689 int whole_page;
1690 int ret;
1692 if (err)
1693 uptodate = 0;
1695 do {
1696 struct page *page = bvec->bv_page;
1697 struct extent_state *cached = NULL;
1698 struct extent_state *state;
1700 tree = &BTRFS_I(page->mapping->host)->io_tree;
1702 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1703 bvec->bv_offset;
1704 end = start + bvec->bv_len - 1;
1706 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1707 whole_page = 1;
1708 else
1709 whole_page = 0;
1711 if (++bvec <= bvec_end)
1712 prefetchw(&bvec->bv_page->flags);
1714 spin_lock(&tree->lock);
1715 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
1716 if (state && state->start == start) {
1718 * take a reference on the state, unlock will drop
1719 * the ref
1721 cache_state(state, &cached);
1723 spin_unlock(&tree->lock);
1725 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1726 ret = tree->ops->readpage_end_io_hook(page, start, end,
1727 state);
1728 if (ret)
1729 uptodate = 0;
1731 if (!uptodate && tree->ops &&
1732 tree->ops->readpage_io_failed_hook) {
1733 ret = tree->ops->readpage_io_failed_hook(bio, page,
1734 start, end, NULL);
1735 if (ret == 0) {
1736 uptodate =
1737 test_bit(BIO_UPTODATE, &bio->bi_flags);
1738 if (err)
1739 uptodate = 0;
1740 uncache_state(&cached);
1741 continue;
1745 if (uptodate) {
1746 set_extent_uptodate(tree, start, end, &cached,
1747 GFP_ATOMIC);
1749 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
1751 if (whole_page) {
1752 if (uptodate) {
1753 SetPageUptodate(page);
1754 } else {
1755 ClearPageUptodate(page);
1756 SetPageError(page);
1758 unlock_page(page);
1759 } else {
1760 if (uptodate) {
1761 check_page_uptodate(tree, page);
1762 } else {
1763 ClearPageUptodate(page);
1764 SetPageError(page);
1766 check_page_locked(tree, page);
1768 } while (bvec <= bvec_end);
1770 bio_put(bio);
1773 struct bio *
1774 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1775 gfp_t gfp_flags)
1777 struct bio *bio;
1779 bio = bio_alloc(gfp_flags, nr_vecs);
1781 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1782 while (!bio && (nr_vecs /= 2))
1783 bio = bio_alloc(gfp_flags, nr_vecs);
1786 if (bio) {
1787 bio->bi_size = 0;
1788 bio->bi_bdev = bdev;
1789 bio->bi_sector = first_sector;
1791 return bio;
1794 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1795 unsigned long bio_flags)
1797 int ret = 0;
1798 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1799 struct page *page = bvec->bv_page;
1800 struct extent_io_tree *tree = bio->bi_private;
1801 u64 start;
1803 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1805 bio->bi_private = NULL;
1807 bio_get(bio);
1809 if (tree->ops && tree->ops->submit_bio_hook)
1810 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1811 mirror_num, bio_flags, start);
1812 else
1813 submit_bio(rw, bio);
1814 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1815 ret = -EOPNOTSUPP;
1816 bio_put(bio);
1817 return ret;
1820 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1821 struct page *page, sector_t sector,
1822 size_t size, unsigned long offset,
1823 struct block_device *bdev,
1824 struct bio **bio_ret,
1825 unsigned long max_pages,
1826 bio_end_io_t end_io_func,
1827 int mirror_num,
1828 unsigned long prev_bio_flags,
1829 unsigned long bio_flags)
1831 int ret = 0;
1832 struct bio *bio;
1833 int nr;
1834 int contig = 0;
1835 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1836 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1837 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1839 if (bio_ret && *bio_ret) {
1840 bio = *bio_ret;
1841 if (old_compressed)
1842 contig = bio->bi_sector == sector;
1843 else
1844 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1845 sector;
1847 if (prev_bio_flags != bio_flags || !contig ||
1848 (tree->ops && tree->ops->merge_bio_hook &&
1849 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1850 bio_flags)) ||
1851 bio_add_page(bio, page, page_size, offset) < page_size) {
1852 ret = submit_one_bio(rw, bio, mirror_num,
1853 prev_bio_flags);
1854 bio = NULL;
1855 } else {
1856 return 0;
1859 if (this_compressed)
1860 nr = BIO_MAX_PAGES;
1861 else
1862 nr = bio_get_nr_vecs(bdev);
1864 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1865 if (!bio)
1866 return -ENOMEM;
1868 bio_add_page(bio, page, page_size, offset);
1869 bio->bi_end_io = end_io_func;
1870 bio->bi_private = tree;
1872 if (bio_ret)
1873 *bio_ret = bio;
1874 else
1875 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1877 return ret;
1880 void set_page_extent_mapped(struct page *page)
1882 if (!PagePrivate(page)) {
1883 SetPagePrivate(page);
1884 page_cache_get(page);
1885 set_page_private(page, EXTENT_PAGE_PRIVATE);
1889 static void set_page_extent_head(struct page *page, unsigned long len)
1891 WARN_ON(!PagePrivate(page));
1892 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1896 * basic readpage implementation. Locked extent state structs are inserted
1897 * into the tree that are removed when the IO is done (by the end_io
1898 * handlers)
1900 static int __extent_read_full_page(struct extent_io_tree *tree,
1901 struct page *page,
1902 get_extent_t *get_extent,
1903 struct bio **bio, int mirror_num,
1904 unsigned long *bio_flags)
1906 struct inode *inode = page->mapping->host;
1907 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1908 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1909 u64 end;
1910 u64 cur = start;
1911 u64 extent_offset;
1912 u64 last_byte = i_size_read(inode);
1913 u64 block_start;
1914 u64 cur_end;
1915 sector_t sector;
1916 struct extent_map *em;
1917 struct block_device *bdev;
1918 struct btrfs_ordered_extent *ordered;
1919 int ret;
1920 int nr = 0;
1921 size_t pg_offset = 0;
1922 size_t iosize;
1923 size_t disk_io_size;
1924 size_t blocksize = inode->i_sb->s_blocksize;
1925 unsigned long this_bio_flag = 0;
1927 set_page_extent_mapped(page);
1929 if (!PageUptodate(page)) {
1930 if (cleancache_get_page(page) == 0) {
1931 BUG_ON(blocksize != PAGE_SIZE);
1932 goto out;
1936 end = page_end;
1937 while (1) {
1938 lock_extent(tree, start, end, GFP_NOFS);
1939 ordered = btrfs_lookup_ordered_extent(inode, start);
1940 if (!ordered)
1941 break;
1942 unlock_extent(tree, start, end, GFP_NOFS);
1943 btrfs_start_ordered_extent(inode, ordered, 1);
1944 btrfs_put_ordered_extent(ordered);
1947 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1948 char *userpage;
1949 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1951 if (zero_offset) {
1952 iosize = PAGE_CACHE_SIZE - zero_offset;
1953 userpage = kmap_atomic(page, KM_USER0);
1954 memset(userpage + zero_offset, 0, iosize);
1955 flush_dcache_page(page);
1956 kunmap_atomic(userpage, KM_USER0);
1959 while (cur <= end) {
1960 if (cur >= last_byte) {
1961 char *userpage;
1962 struct extent_state *cached = NULL;
1964 iosize = PAGE_CACHE_SIZE - pg_offset;
1965 userpage = kmap_atomic(page, KM_USER0);
1966 memset(userpage + pg_offset, 0, iosize);
1967 flush_dcache_page(page);
1968 kunmap_atomic(userpage, KM_USER0);
1969 set_extent_uptodate(tree, cur, cur + iosize - 1,
1970 &cached, GFP_NOFS);
1971 unlock_extent_cached(tree, cur, cur + iosize - 1,
1972 &cached, GFP_NOFS);
1973 break;
1975 em = get_extent(inode, page, pg_offset, cur,
1976 end - cur + 1, 0);
1977 if (IS_ERR_OR_NULL(em)) {
1978 SetPageError(page);
1979 unlock_extent(tree, cur, end, GFP_NOFS);
1980 break;
1982 extent_offset = cur - em->start;
1983 BUG_ON(extent_map_end(em) <= cur);
1984 BUG_ON(end < cur);
1986 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1987 this_bio_flag = EXTENT_BIO_COMPRESSED;
1988 extent_set_compress_type(&this_bio_flag,
1989 em->compress_type);
1992 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1993 cur_end = min(extent_map_end(em) - 1, end);
1994 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1995 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
1996 disk_io_size = em->block_len;
1997 sector = em->block_start >> 9;
1998 } else {
1999 sector = (em->block_start + extent_offset) >> 9;
2000 disk_io_size = iosize;
2002 bdev = em->bdev;
2003 block_start = em->block_start;
2004 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2005 block_start = EXTENT_MAP_HOLE;
2006 free_extent_map(em);
2007 em = NULL;
2009 /* we've found a hole, just zero and go on */
2010 if (block_start == EXTENT_MAP_HOLE) {
2011 char *userpage;
2012 struct extent_state *cached = NULL;
2014 userpage = kmap_atomic(page, KM_USER0);
2015 memset(userpage + pg_offset, 0, iosize);
2016 flush_dcache_page(page);
2017 kunmap_atomic(userpage, KM_USER0);
2019 set_extent_uptodate(tree, cur, cur + iosize - 1,
2020 &cached, GFP_NOFS);
2021 unlock_extent_cached(tree, cur, cur + iosize - 1,
2022 &cached, GFP_NOFS);
2023 cur = cur + iosize;
2024 pg_offset += iosize;
2025 continue;
2027 /* the get_extent function already copied into the page */
2028 if (test_range_bit(tree, cur, cur_end,
2029 EXTENT_UPTODATE, 1, NULL)) {
2030 check_page_uptodate(tree, page);
2031 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2032 cur = cur + iosize;
2033 pg_offset += iosize;
2034 continue;
2036 /* we have an inline extent but it didn't get marked up
2037 * to date. Error out
2039 if (block_start == EXTENT_MAP_INLINE) {
2040 SetPageError(page);
2041 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2042 cur = cur + iosize;
2043 pg_offset += iosize;
2044 continue;
2047 ret = 0;
2048 if (tree->ops && tree->ops->readpage_io_hook) {
2049 ret = tree->ops->readpage_io_hook(page, cur,
2050 cur + iosize - 1);
2052 if (!ret) {
2053 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2054 pnr -= page->index;
2055 ret = submit_extent_page(READ, tree, page,
2056 sector, disk_io_size, pg_offset,
2057 bdev, bio, pnr,
2058 end_bio_extent_readpage, mirror_num,
2059 *bio_flags,
2060 this_bio_flag);
2061 nr++;
2062 *bio_flags = this_bio_flag;
2064 if (ret)
2065 SetPageError(page);
2066 cur = cur + iosize;
2067 pg_offset += iosize;
2069 out:
2070 if (!nr) {
2071 if (!PageError(page))
2072 SetPageUptodate(page);
2073 unlock_page(page);
2075 return 0;
2078 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2079 get_extent_t *get_extent)
2081 struct bio *bio = NULL;
2082 unsigned long bio_flags = 0;
2083 int ret;
2085 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2086 &bio_flags);
2087 if (bio)
2088 ret = submit_one_bio(READ, bio, 0, bio_flags);
2089 return ret;
2092 static noinline void update_nr_written(struct page *page,
2093 struct writeback_control *wbc,
2094 unsigned long nr_written)
2096 wbc->nr_to_write -= nr_written;
2097 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2098 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2099 page->mapping->writeback_index = page->index + nr_written;
2103 * the writepage semantics are similar to regular writepage. extent
2104 * records are inserted to lock ranges in the tree, and as dirty areas
2105 * are found, they are marked writeback. Then the lock bits are removed
2106 * and the end_io handler clears the writeback ranges
2108 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2109 void *data)
2111 struct inode *inode = page->mapping->host;
2112 struct extent_page_data *epd = data;
2113 struct extent_io_tree *tree = epd->tree;
2114 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2115 u64 delalloc_start;
2116 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2117 u64 end;
2118 u64 cur = start;
2119 u64 extent_offset;
2120 u64 last_byte = i_size_read(inode);
2121 u64 block_start;
2122 u64 iosize;
2123 sector_t sector;
2124 struct extent_state *cached_state = NULL;
2125 struct extent_map *em;
2126 struct block_device *bdev;
2127 int ret;
2128 int nr = 0;
2129 size_t pg_offset = 0;
2130 size_t blocksize;
2131 loff_t i_size = i_size_read(inode);
2132 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2133 u64 nr_delalloc;
2134 u64 delalloc_end;
2135 int page_started;
2136 int compressed;
2137 int write_flags;
2138 unsigned long nr_written = 0;
2140 if (wbc->sync_mode == WB_SYNC_ALL)
2141 write_flags = WRITE_SYNC;
2142 else
2143 write_flags = WRITE;
2145 trace___extent_writepage(page, inode, wbc);
2147 WARN_ON(!PageLocked(page));
2148 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2149 if (page->index > end_index ||
2150 (page->index == end_index && !pg_offset)) {
2151 page->mapping->a_ops->invalidatepage(page, 0);
2152 unlock_page(page);
2153 return 0;
2156 if (page->index == end_index) {
2157 char *userpage;
2159 userpage = kmap_atomic(page, KM_USER0);
2160 memset(userpage + pg_offset, 0,
2161 PAGE_CACHE_SIZE - pg_offset);
2162 kunmap_atomic(userpage, KM_USER0);
2163 flush_dcache_page(page);
2165 pg_offset = 0;
2167 set_page_extent_mapped(page);
2169 delalloc_start = start;
2170 delalloc_end = 0;
2171 page_started = 0;
2172 if (!epd->extent_locked) {
2173 u64 delalloc_to_write = 0;
2175 * make sure the wbc mapping index is at least updated
2176 * to this page.
2178 update_nr_written(page, wbc, 0);
2180 while (delalloc_end < page_end) {
2181 nr_delalloc = find_lock_delalloc_range(inode, tree,
2182 page,
2183 &delalloc_start,
2184 &delalloc_end,
2185 128 * 1024 * 1024);
2186 if (nr_delalloc == 0) {
2187 delalloc_start = delalloc_end + 1;
2188 continue;
2190 tree->ops->fill_delalloc(inode, page, delalloc_start,
2191 delalloc_end, &page_started,
2192 &nr_written);
2194 * delalloc_end is already one less than the total
2195 * length, so we don't subtract one from
2196 * PAGE_CACHE_SIZE
2198 delalloc_to_write += (delalloc_end - delalloc_start +
2199 PAGE_CACHE_SIZE) >>
2200 PAGE_CACHE_SHIFT;
2201 delalloc_start = delalloc_end + 1;
2203 if (wbc->nr_to_write < delalloc_to_write) {
2204 int thresh = 8192;
2206 if (delalloc_to_write < thresh * 2)
2207 thresh = delalloc_to_write;
2208 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2209 thresh);
2212 /* did the fill delalloc function already unlock and start
2213 * the IO?
2215 if (page_started) {
2216 ret = 0;
2218 * we've unlocked the page, so we can't update
2219 * the mapping's writeback index, just update
2220 * nr_to_write.
2222 wbc->nr_to_write -= nr_written;
2223 goto done_unlocked;
2226 if (tree->ops && tree->ops->writepage_start_hook) {
2227 ret = tree->ops->writepage_start_hook(page, start,
2228 page_end);
2229 if (ret == -EAGAIN) {
2230 redirty_page_for_writepage(wbc, page);
2231 update_nr_written(page, wbc, nr_written);
2232 unlock_page(page);
2233 ret = 0;
2234 goto done_unlocked;
2239 * we don't want to touch the inode after unlocking the page,
2240 * so we update the mapping writeback index now
2242 update_nr_written(page, wbc, nr_written + 1);
2244 end = page_end;
2245 if (last_byte <= start) {
2246 if (tree->ops && tree->ops->writepage_end_io_hook)
2247 tree->ops->writepage_end_io_hook(page, start,
2248 page_end, NULL, 1);
2249 goto done;
2252 blocksize = inode->i_sb->s_blocksize;
2254 while (cur <= end) {
2255 if (cur >= last_byte) {
2256 if (tree->ops && tree->ops->writepage_end_io_hook)
2257 tree->ops->writepage_end_io_hook(page, cur,
2258 page_end, NULL, 1);
2259 break;
2261 em = epd->get_extent(inode, page, pg_offset, cur,
2262 end - cur + 1, 1);
2263 if (IS_ERR_OR_NULL(em)) {
2264 SetPageError(page);
2265 break;
2268 extent_offset = cur - em->start;
2269 BUG_ON(extent_map_end(em) <= cur);
2270 BUG_ON(end < cur);
2271 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2272 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2273 sector = (em->block_start + extent_offset) >> 9;
2274 bdev = em->bdev;
2275 block_start = em->block_start;
2276 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2277 free_extent_map(em);
2278 em = NULL;
2281 * compressed and inline extents are written through other
2282 * paths in the FS
2284 if (compressed || block_start == EXTENT_MAP_HOLE ||
2285 block_start == EXTENT_MAP_INLINE) {
2287 * end_io notification does not happen here for
2288 * compressed extents
2290 if (!compressed && tree->ops &&
2291 tree->ops->writepage_end_io_hook)
2292 tree->ops->writepage_end_io_hook(page, cur,
2293 cur + iosize - 1,
2294 NULL, 1);
2295 else if (compressed) {
2296 /* we don't want to end_page_writeback on
2297 * a compressed extent. this happens
2298 * elsewhere
2300 nr++;
2303 cur += iosize;
2304 pg_offset += iosize;
2305 continue;
2307 /* leave this out until we have a page_mkwrite call */
2308 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2309 EXTENT_DIRTY, 0, NULL)) {
2310 cur = cur + iosize;
2311 pg_offset += iosize;
2312 continue;
2315 if (tree->ops && tree->ops->writepage_io_hook) {
2316 ret = tree->ops->writepage_io_hook(page, cur,
2317 cur + iosize - 1);
2318 } else {
2319 ret = 0;
2321 if (ret) {
2322 SetPageError(page);
2323 } else {
2324 unsigned long max_nr = end_index + 1;
2326 set_range_writeback(tree, cur, cur + iosize - 1);
2327 if (!PageWriteback(page)) {
2328 printk(KERN_ERR "btrfs warning page %lu not "
2329 "writeback, cur %llu end %llu\n",
2330 page->index, (unsigned long long)cur,
2331 (unsigned long long)end);
2334 ret = submit_extent_page(write_flags, tree, page,
2335 sector, iosize, pg_offset,
2336 bdev, &epd->bio, max_nr,
2337 end_bio_extent_writepage,
2338 0, 0, 0);
2339 if (ret)
2340 SetPageError(page);
2342 cur = cur + iosize;
2343 pg_offset += iosize;
2344 nr++;
2346 done:
2347 if (nr == 0) {
2348 /* make sure the mapping tag for page dirty gets cleared */
2349 set_page_writeback(page);
2350 end_page_writeback(page);
2352 unlock_page(page);
2354 done_unlocked:
2356 /* drop our reference on any cached states */
2357 free_extent_state(cached_state);
2358 return 0;
2362 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2363 * @mapping: address space structure to write
2364 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2365 * @writepage: function called for each page
2366 * @data: data passed to writepage function
2368 * If a page is already under I/O, write_cache_pages() skips it, even
2369 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2370 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2371 * and msync() need to guarantee that all the data which was dirty at the time
2372 * the call was made get new I/O started against them. If wbc->sync_mode is
2373 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2374 * existing IO to complete.
2376 static int extent_write_cache_pages(struct extent_io_tree *tree,
2377 struct address_space *mapping,
2378 struct writeback_control *wbc,
2379 writepage_t writepage, void *data,
2380 void (*flush_fn)(void *))
2382 int ret = 0;
2383 int done = 0;
2384 int nr_to_write_done = 0;
2385 struct pagevec pvec;
2386 int nr_pages;
2387 pgoff_t index;
2388 pgoff_t end; /* Inclusive */
2389 int scanned = 0;
2390 int tag;
2392 pagevec_init(&pvec, 0);
2393 if (wbc->range_cyclic) {
2394 index = mapping->writeback_index; /* Start from prev offset */
2395 end = -1;
2396 } else {
2397 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2398 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2399 scanned = 1;
2401 if (wbc->sync_mode == WB_SYNC_ALL)
2402 tag = PAGECACHE_TAG_TOWRITE;
2403 else
2404 tag = PAGECACHE_TAG_DIRTY;
2405 retry:
2406 if (wbc->sync_mode == WB_SYNC_ALL)
2407 tag_pages_for_writeback(mapping, index, end);
2408 while (!done && !nr_to_write_done && (index <= end) &&
2409 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2410 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2411 unsigned i;
2413 scanned = 1;
2414 for (i = 0; i < nr_pages; i++) {
2415 struct page *page = pvec.pages[i];
2418 * At this point we hold neither mapping->tree_lock nor
2419 * lock on the page itself: the page may be truncated or
2420 * invalidated (changing page->mapping to NULL), or even
2421 * swizzled back from swapper_space to tmpfs file
2422 * mapping
2424 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2425 tree->ops->write_cache_pages_lock_hook(page);
2426 else
2427 lock_page(page);
2429 if (unlikely(page->mapping != mapping)) {
2430 unlock_page(page);
2431 continue;
2434 if (!wbc->range_cyclic && page->index > end) {
2435 done = 1;
2436 unlock_page(page);
2437 continue;
2440 if (wbc->sync_mode != WB_SYNC_NONE) {
2441 if (PageWriteback(page))
2442 flush_fn(data);
2443 wait_on_page_writeback(page);
2446 if (PageWriteback(page) ||
2447 !clear_page_dirty_for_io(page)) {
2448 unlock_page(page);
2449 continue;
2452 ret = (*writepage)(page, wbc, data);
2454 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2455 unlock_page(page);
2456 ret = 0;
2458 if (ret)
2459 done = 1;
2462 * the filesystem may choose to bump up nr_to_write.
2463 * We have to make sure to honor the new nr_to_write
2464 * at any time
2466 nr_to_write_done = wbc->nr_to_write <= 0;
2468 pagevec_release(&pvec);
2469 cond_resched();
2471 if (!scanned && !done) {
2473 * We hit the last page and there is more work to be done: wrap
2474 * back to the start of the file
2476 scanned = 1;
2477 index = 0;
2478 goto retry;
2480 return ret;
2483 static void flush_epd_write_bio(struct extent_page_data *epd)
2485 if (epd->bio) {
2486 if (epd->sync_io)
2487 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2488 else
2489 submit_one_bio(WRITE, epd->bio, 0, 0);
2490 epd->bio = NULL;
2494 static noinline void flush_write_bio(void *data)
2496 struct extent_page_data *epd = data;
2497 flush_epd_write_bio(epd);
2500 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2501 get_extent_t *get_extent,
2502 struct writeback_control *wbc)
2504 int ret;
2505 struct extent_page_data epd = {
2506 .bio = NULL,
2507 .tree = tree,
2508 .get_extent = get_extent,
2509 .extent_locked = 0,
2510 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2513 ret = __extent_writepage(page, wbc, &epd);
2515 flush_epd_write_bio(&epd);
2516 return ret;
2519 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2520 u64 start, u64 end, get_extent_t *get_extent,
2521 int mode)
2523 int ret = 0;
2524 struct address_space *mapping = inode->i_mapping;
2525 struct page *page;
2526 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2527 PAGE_CACHE_SHIFT;
2529 struct extent_page_data epd = {
2530 .bio = NULL,
2531 .tree = tree,
2532 .get_extent = get_extent,
2533 .extent_locked = 1,
2534 .sync_io = mode == WB_SYNC_ALL,
2536 struct writeback_control wbc_writepages = {
2537 .sync_mode = mode,
2538 .nr_to_write = nr_pages * 2,
2539 .range_start = start,
2540 .range_end = end + 1,
2543 while (start <= end) {
2544 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2545 if (clear_page_dirty_for_io(page))
2546 ret = __extent_writepage(page, &wbc_writepages, &epd);
2547 else {
2548 if (tree->ops && tree->ops->writepage_end_io_hook)
2549 tree->ops->writepage_end_io_hook(page, start,
2550 start + PAGE_CACHE_SIZE - 1,
2551 NULL, 1);
2552 unlock_page(page);
2554 page_cache_release(page);
2555 start += PAGE_CACHE_SIZE;
2558 flush_epd_write_bio(&epd);
2559 return ret;
2562 int extent_writepages(struct extent_io_tree *tree,
2563 struct address_space *mapping,
2564 get_extent_t *get_extent,
2565 struct writeback_control *wbc)
2567 int ret = 0;
2568 struct extent_page_data epd = {
2569 .bio = NULL,
2570 .tree = tree,
2571 .get_extent = get_extent,
2572 .extent_locked = 0,
2573 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2576 ret = extent_write_cache_pages(tree, mapping, wbc,
2577 __extent_writepage, &epd,
2578 flush_write_bio);
2579 flush_epd_write_bio(&epd);
2580 return ret;
2583 int extent_readpages(struct extent_io_tree *tree,
2584 struct address_space *mapping,
2585 struct list_head *pages, unsigned nr_pages,
2586 get_extent_t get_extent)
2588 struct bio *bio = NULL;
2589 unsigned page_idx;
2590 unsigned long bio_flags = 0;
2592 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2593 struct page *page = list_entry(pages->prev, struct page, lru);
2595 prefetchw(&page->flags);
2596 list_del(&page->lru);
2597 if (!add_to_page_cache_lru(page, mapping,
2598 page->index, GFP_NOFS)) {
2599 __extent_read_full_page(tree, page, get_extent,
2600 &bio, 0, &bio_flags);
2602 page_cache_release(page);
2604 BUG_ON(!list_empty(pages));
2605 if (bio)
2606 submit_one_bio(READ, bio, 0, bio_flags);
2607 return 0;
2611 * basic invalidatepage code, this waits on any locked or writeback
2612 * ranges corresponding to the page, and then deletes any extent state
2613 * records from the tree
2615 int extent_invalidatepage(struct extent_io_tree *tree,
2616 struct page *page, unsigned long offset)
2618 struct extent_state *cached_state = NULL;
2619 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2620 u64 end = start + PAGE_CACHE_SIZE - 1;
2621 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2623 start += (offset + blocksize - 1) & ~(blocksize - 1);
2624 if (start > end)
2625 return 0;
2627 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2628 wait_on_page_writeback(page);
2629 clear_extent_bit(tree, start, end,
2630 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2631 EXTENT_DO_ACCOUNTING,
2632 1, 1, &cached_state, GFP_NOFS);
2633 return 0;
2637 * a helper for releasepage, this tests for areas of the page that
2638 * are locked or under IO and drops the related state bits if it is safe
2639 * to drop the page.
2641 int try_release_extent_state(struct extent_map_tree *map,
2642 struct extent_io_tree *tree, struct page *page,
2643 gfp_t mask)
2645 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2646 u64 end = start + PAGE_CACHE_SIZE - 1;
2647 int ret = 1;
2649 if (test_range_bit(tree, start, end,
2650 EXTENT_IOBITS, 0, NULL))
2651 ret = 0;
2652 else {
2653 if ((mask & GFP_NOFS) == GFP_NOFS)
2654 mask = GFP_NOFS;
2656 * at this point we can safely clear everything except the
2657 * locked bit and the nodatasum bit
2659 ret = clear_extent_bit(tree, start, end,
2660 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2661 0, 0, NULL, mask);
2663 /* if clear_extent_bit failed for enomem reasons,
2664 * we can't allow the release to continue.
2666 if (ret < 0)
2667 ret = 0;
2668 else
2669 ret = 1;
2671 return ret;
2675 * a helper for releasepage. As long as there are no locked extents
2676 * in the range corresponding to the page, both state records and extent
2677 * map records are removed
2679 int try_release_extent_mapping(struct extent_map_tree *map,
2680 struct extent_io_tree *tree, struct page *page,
2681 gfp_t mask)
2683 struct extent_map *em;
2684 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2685 u64 end = start + PAGE_CACHE_SIZE - 1;
2687 if ((mask & __GFP_WAIT) &&
2688 page->mapping->host->i_size > 16 * 1024 * 1024) {
2689 u64 len;
2690 while (start <= end) {
2691 len = end - start + 1;
2692 write_lock(&map->lock);
2693 em = lookup_extent_mapping(map, start, len);
2694 if (IS_ERR_OR_NULL(em)) {
2695 write_unlock(&map->lock);
2696 break;
2698 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2699 em->start != start) {
2700 write_unlock(&map->lock);
2701 free_extent_map(em);
2702 break;
2704 if (!test_range_bit(tree, em->start,
2705 extent_map_end(em) - 1,
2706 EXTENT_LOCKED | EXTENT_WRITEBACK,
2707 0, NULL)) {
2708 remove_extent_mapping(map, em);
2709 /* once for the rb tree */
2710 free_extent_map(em);
2712 start = extent_map_end(em);
2713 write_unlock(&map->lock);
2715 /* once for us */
2716 free_extent_map(em);
2719 return try_release_extent_state(map, tree, page, mask);
2723 * helper function for fiemap, which doesn't want to see any holes.
2724 * This maps until we find something past 'last'
2726 static struct extent_map *get_extent_skip_holes(struct inode *inode,
2727 u64 offset,
2728 u64 last,
2729 get_extent_t *get_extent)
2731 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
2732 struct extent_map *em;
2733 u64 len;
2735 if (offset >= last)
2736 return NULL;
2738 while(1) {
2739 len = last - offset;
2740 if (len == 0)
2741 break;
2742 len = (len + sectorsize - 1) & ~(sectorsize - 1);
2743 em = get_extent(inode, NULL, 0, offset, len, 0);
2744 if (IS_ERR_OR_NULL(em))
2745 return em;
2747 /* if this isn't a hole return it */
2748 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
2749 em->block_start != EXTENT_MAP_HOLE) {
2750 return em;
2753 /* this is a hole, advance to the next extent */
2754 offset = extent_map_end(em);
2755 free_extent_map(em);
2756 if (offset >= last)
2757 break;
2759 return NULL;
2762 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2763 __u64 start, __u64 len, get_extent_t *get_extent)
2765 int ret = 0;
2766 u64 off = start;
2767 u64 max = start + len;
2768 u32 flags = 0;
2769 u32 found_type;
2770 u64 last;
2771 u64 last_for_get_extent = 0;
2772 u64 disko = 0;
2773 u64 isize = i_size_read(inode);
2774 struct btrfs_key found_key;
2775 struct extent_map *em = NULL;
2776 struct extent_state *cached_state = NULL;
2777 struct btrfs_path *path;
2778 struct btrfs_file_extent_item *item;
2779 int end = 0;
2780 u64 em_start = 0;
2781 u64 em_len = 0;
2782 u64 em_end = 0;
2783 unsigned long emflags;
2785 if (len == 0)
2786 return -EINVAL;
2788 path = btrfs_alloc_path();
2789 if (!path)
2790 return -ENOMEM;
2791 path->leave_spinning = 1;
2794 * lookup the last file extent. We're not using i_size here
2795 * because there might be preallocation past i_size
2797 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
2798 path, btrfs_ino(inode), -1, 0);
2799 if (ret < 0) {
2800 btrfs_free_path(path);
2801 return ret;
2803 WARN_ON(!ret);
2804 path->slots[0]--;
2805 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2806 struct btrfs_file_extent_item);
2807 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
2808 found_type = btrfs_key_type(&found_key);
2810 /* No extents, but there might be delalloc bits */
2811 if (found_key.objectid != btrfs_ino(inode) ||
2812 found_type != BTRFS_EXTENT_DATA_KEY) {
2813 /* have to trust i_size as the end */
2814 last = (u64)-1;
2815 last_for_get_extent = isize;
2816 } else {
2818 * remember the start of the last extent. There are a
2819 * bunch of different factors that go into the length of the
2820 * extent, so its much less complex to remember where it started
2822 last = found_key.offset;
2823 last_for_get_extent = last + 1;
2825 btrfs_free_path(path);
2828 * we might have some extents allocated but more delalloc past those
2829 * extents. so, we trust isize unless the start of the last extent is
2830 * beyond isize
2832 if (last < isize) {
2833 last = (u64)-1;
2834 last_for_get_extent = isize;
2837 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
2838 &cached_state, GFP_NOFS);
2840 em = get_extent_skip_holes(inode, off, last_for_get_extent,
2841 get_extent);
2842 if (!em)
2843 goto out;
2844 if (IS_ERR(em)) {
2845 ret = PTR_ERR(em);
2846 goto out;
2849 while (!end) {
2850 u64 offset_in_extent;
2852 /* break if the extent we found is outside the range */
2853 if (em->start >= max || extent_map_end(em) < off)
2854 break;
2857 * get_extent may return an extent that starts before our
2858 * requested range. We have to make sure the ranges
2859 * we return to fiemap always move forward and don't
2860 * overlap, so adjust the offsets here
2862 em_start = max(em->start, off);
2865 * record the offset from the start of the extent
2866 * for adjusting the disk offset below
2868 offset_in_extent = em_start - em->start;
2869 em_end = extent_map_end(em);
2870 em_len = em_end - em_start;
2871 emflags = em->flags;
2872 disko = 0;
2873 flags = 0;
2876 * bump off for our next call to get_extent
2878 off = extent_map_end(em);
2879 if (off >= max)
2880 end = 1;
2882 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2883 end = 1;
2884 flags |= FIEMAP_EXTENT_LAST;
2885 } else if (em->block_start == EXTENT_MAP_INLINE) {
2886 flags |= (FIEMAP_EXTENT_DATA_INLINE |
2887 FIEMAP_EXTENT_NOT_ALIGNED);
2888 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
2889 flags |= (FIEMAP_EXTENT_DELALLOC |
2890 FIEMAP_EXTENT_UNKNOWN);
2891 } else {
2892 disko = em->block_start + offset_in_extent;
2894 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2895 flags |= FIEMAP_EXTENT_ENCODED;
2897 free_extent_map(em);
2898 em = NULL;
2899 if ((em_start >= last) || em_len == (u64)-1 ||
2900 (last == (u64)-1 && isize <= em_end)) {
2901 flags |= FIEMAP_EXTENT_LAST;
2902 end = 1;
2905 /* now scan forward to see if this is really the last extent. */
2906 em = get_extent_skip_holes(inode, off, last_for_get_extent,
2907 get_extent);
2908 if (IS_ERR(em)) {
2909 ret = PTR_ERR(em);
2910 goto out;
2912 if (!em) {
2913 flags |= FIEMAP_EXTENT_LAST;
2914 end = 1;
2916 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
2917 em_len, flags);
2918 if (ret)
2919 goto out_free;
2921 out_free:
2922 free_extent_map(em);
2923 out:
2924 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
2925 &cached_state, GFP_NOFS);
2926 return ret;
2929 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2930 unsigned long i)
2932 struct page *p;
2933 struct address_space *mapping;
2935 if (i == 0)
2936 return eb->first_page;
2937 i += eb->start >> PAGE_CACHE_SHIFT;
2938 mapping = eb->first_page->mapping;
2939 if (!mapping)
2940 return NULL;
2943 * extent_buffer_page is only called after pinning the page
2944 * by increasing the reference count. So we know the page must
2945 * be in the radix tree.
2947 rcu_read_lock();
2948 p = radix_tree_lookup(&mapping->page_tree, i);
2949 rcu_read_unlock();
2951 return p;
2954 static inline unsigned long num_extent_pages(u64 start, u64 len)
2956 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2957 (start >> PAGE_CACHE_SHIFT);
2960 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2961 u64 start,
2962 unsigned long len,
2963 gfp_t mask)
2965 struct extent_buffer *eb = NULL;
2966 #if LEAK_DEBUG
2967 unsigned long flags;
2968 #endif
2970 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2971 if (eb == NULL)
2972 return NULL;
2973 eb->start = start;
2974 eb->len = len;
2975 rwlock_init(&eb->lock);
2976 atomic_set(&eb->write_locks, 0);
2977 atomic_set(&eb->read_locks, 0);
2978 atomic_set(&eb->blocking_readers, 0);
2979 atomic_set(&eb->blocking_writers, 0);
2980 atomic_set(&eb->spinning_readers, 0);
2981 atomic_set(&eb->spinning_writers, 0);
2982 init_waitqueue_head(&eb->write_lock_wq);
2983 init_waitqueue_head(&eb->read_lock_wq);
2985 #if LEAK_DEBUG
2986 spin_lock_irqsave(&leak_lock, flags);
2987 list_add(&eb->leak_list, &buffers);
2988 spin_unlock_irqrestore(&leak_lock, flags);
2989 #endif
2990 atomic_set(&eb->refs, 1);
2992 return eb;
2995 static void __free_extent_buffer(struct extent_buffer *eb)
2997 #if LEAK_DEBUG
2998 unsigned long flags;
2999 spin_lock_irqsave(&leak_lock, flags);
3000 list_del(&eb->leak_list);
3001 spin_unlock_irqrestore(&leak_lock, flags);
3002 #endif
3003 kmem_cache_free(extent_buffer_cache, eb);
3007 * Helper for releasing extent buffer page.
3009 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3010 unsigned long start_idx)
3012 unsigned long index;
3013 struct page *page;
3015 if (!eb->first_page)
3016 return;
3018 index = num_extent_pages(eb->start, eb->len);
3019 if (start_idx >= index)
3020 return;
3022 do {
3023 index--;
3024 page = extent_buffer_page(eb, index);
3025 if (page)
3026 page_cache_release(page);
3027 } while (index != start_idx);
3031 * Helper for releasing the extent buffer.
3033 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3035 btrfs_release_extent_buffer_page(eb, 0);
3036 __free_extent_buffer(eb);
3039 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3040 u64 start, unsigned long len,
3041 struct page *page0)
3043 unsigned long num_pages = num_extent_pages(start, len);
3044 unsigned long i;
3045 unsigned long index = start >> PAGE_CACHE_SHIFT;
3046 struct extent_buffer *eb;
3047 struct extent_buffer *exists = NULL;
3048 struct page *p;
3049 struct address_space *mapping = tree->mapping;
3050 int uptodate = 1;
3051 int ret;
3053 rcu_read_lock();
3054 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3055 if (eb && atomic_inc_not_zero(&eb->refs)) {
3056 rcu_read_unlock();
3057 mark_page_accessed(eb->first_page);
3058 return eb;
3060 rcu_read_unlock();
3062 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3063 if (!eb)
3064 return NULL;
3066 if (page0) {
3067 eb->first_page = page0;
3068 i = 1;
3069 index++;
3070 page_cache_get(page0);
3071 mark_page_accessed(page0);
3072 set_page_extent_mapped(page0);
3073 set_page_extent_head(page0, len);
3074 uptodate = PageUptodate(page0);
3075 } else {
3076 i = 0;
3078 for (; i < num_pages; i++, index++) {
3079 p = find_or_create_page(mapping, index, GFP_NOFS);
3080 if (!p) {
3081 WARN_ON(1);
3082 goto free_eb;
3084 set_page_extent_mapped(p);
3085 mark_page_accessed(p);
3086 if (i == 0) {
3087 eb->first_page = p;
3088 set_page_extent_head(p, len);
3089 } else {
3090 set_page_private(p, EXTENT_PAGE_PRIVATE);
3092 if (!PageUptodate(p))
3093 uptodate = 0;
3096 * see below about how we avoid a nasty race with release page
3097 * and why we unlock later
3099 if (i != 0)
3100 unlock_page(p);
3102 if (uptodate)
3103 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3105 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3106 if (ret)
3107 goto free_eb;
3109 spin_lock(&tree->buffer_lock);
3110 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3111 if (ret == -EEXIST) {
3112 exists = radix_tree_lookup(&tree->buffer,
3113 start >> PAGE_CACHE_SHIFT);
3114 /* add one reference for the caller */
3115 atomic_inc(&exists->refs);
3116 spin_unlock(&tree->buffer_lock);
3117 radix_tree_preload_end();
3118 goto free_eb;
3120 /* add one reference for the tree */
3121 atomic_inc(&eb->refs);
3122 spin_unlock(&tree->buffer_lock);
3123 radix_tree_preload_end();
3126 * there is a race where release page may have
3127 * tried to find this extent buffer in the radix
3128 * but failed. It will tell the VM it is safe to
3129 * reclaim the, and it will clear the page private bit.
3130 * We must make sure to set the page private bit properly
3131 * after the extent buffer is in the radix tree so
3132 * it doesn't get lost
3134 set_page_extent_mapped(eb->first_page);
3135 set_page_extent_head(eb->first_page, eb->len);
3136 if (!page0)
3137 unlock_page(eb->first_page);
3138 return eb;
3140 free_eb:
3141 if (eb->first_page && !page0)
3142 unlock_page(eb->first_page);
3144 if (!atomic_dec_and_test(&eb->refs))
3145 return exists;
3146 btrfs_release_extent_buffer(eb);
3147 return exists;
3150 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3151 u64 start, unsigned long len)
3153 struct extent_buffer *eb;
3155 rcu_read_lock();
3156 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3157 if (eb && atomic_inc_not_zero(&eb->refs)) {
3158 rcu_read_unlock();
3159 mark_page_accessed(eb->first_page);
3160 return eb;
3162 rcu_read_unlock();
3164 return NULL;
3167 void free_extent_buffer(struct extent_buffer *eb)
3169 if (!eb)
3170 return;
3172 if (!atomic_dec_and_test(&eb->refs))
3173 return;
3175 WARN_ON(1);
3178 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3179 struct extent_buffer *eb)
3181 unsigned long i;
3182 unsigned long num_pages;
3183 struct page *page;
3185 num_pages = num_extent_pages(eb->start, eb->len);
3187 for (i = 0; i < num_pages; i++) {
3188 page = extent_buffer_page(eb, i);
3189 if (!PageDirty(page))
3190 continue;
3192 lock_page(page);
3193 WARN_ON(!PagePrivate(page));
3195 set_page_extent_mapped(page);
3196 if (i == 0)
3197 set_page_extent_head(page, eb->len);
3199 clear_page_dirty_for_io(page);
3200 spin_lock_irq(&page->mapping->tree_lock);
3201 if (!PageDirty(page)) {
3202 radix_tree_tag_clear(&page->mapping->page_tree,
3203 page_index(page),
3204 PAGECACHE_TAG_DIRTY);
3206 spin_unlock_irq(&page->mapping->tree_lock);
3207 unlock_page(page);
3209 return 0;
3212 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3213 struct extent_buffer *eb)
3215 unsigned long i;
3216 unsigned long num_pages;
3217 int was_dirty = 0;
3219 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3220 num_pages = num_extent_pages(eb->start, eb->len);
3221 for (i = 0; i < num_pages; i++)
3222 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3223 return was_dirty;
3226 static int __eb_straddles_pages(u64 start, u64 len)
3228 if (len < PAGE_CACHE_SIZE)
3229 return 1;
3230 if (start & (PAGE_CACHE_SIZE - 1))
3231 return 1;
3232 if ((start + len) & (PAGE_CACHE_SIZE - 1))
3233 return 1;
3234 return 0;
3237 static int eb_straddles_pages(struct extent_buffer *eb)
3239 return __eb_straddles_pages(eb->start, eb->len);
3242 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3243 struct extent_buffer *eb,
3244 struct extent_state **cached_state)
3246 unsigned long i;
3247 struct page *page;
3248 unsigned long num_pages;
3250 num_pages = num_extent_pages(eb->start, eb->len);
3251 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3253 if (eb_straddles_pages(eb)) {
3254 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3255 cached_state, GFP_NOFS);
3257 for (i = 0; i < num_pages; i++) {
3258 page = extent_buffer_page(eb, i);
3259 if (page)
3260 ClearPageUptodate(page);
3262 return 0;
3265 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3266 struct extent_buffer *eb)
3268 unsigned long i;
3269 struct page *page;
3270 unsigned long num_pages;
3272 num_pages = num_extent_pages(eb->start, eb->len);
3274 if (eb_straddles_pages(eb)) {
3275 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3276 NULL, GFP_NOFS);
3278 for (i = 0; i < num_pages; i++) {
3279 page = extent_buffer_page(eb, i);
3280 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3281 ((i == num_pages - 1) &&
3282 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3283 check_page_uptodate(tree, page);
3284 continue;
3286 SetPageUptodate(page);
3288 return 0;
3291 int extent_range_uptodate(struct extent_io_tree *tree,
3292 u64 start, u64 end)
3294 struct page *page;
3295 int ret;
3296 int pg_uptodate = 1;
3297 int uptodate;
3298 unsigned long index;
3300 if (__eb_straddles_pages(start, end - start + 1)) {
3301 ret = test_range_bit(tree, start, end,
3302 EXTENT_UPTODATE, 1, NULL);
3303 if (ret)
3304 return 1;
3306 while (start <= end) {
3307 index = start >> PAGE_CACHE_SHIFT;
3308 page = find_get_page(tree->mapping, index);
3309 uptodate = PageUptodate(page);
3310 page_cache_release(page);
3311 if (!uptodate) {
3312 pg_uptodate = 0;
3313 break;
3315 start += PAGE_CACHE_SIZE;
3317 return pg_uptodate;
3320 int extent_buffer_uptodate(struct extent_io_tree *tree,
3321 struct extent_buffer *eb,
3322 struct extent_state *cached_state)
3324 int ret = 0;
3325 unsigned long num_pages;
3326 unsigned long i;
3327 struct page *page;
3328 int pg_uptodate = 1;
3330 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3331 return 1;
3333 if (eb_straddles_pages(eb)) {
3334 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3335 EXTENT_UPTODATE, 1, cached_state);
3336 if (ret)
3337 return ret;
3340 num_pages = num_extent_pages(eb->start, eb->len);
3341 for (i = 0; i < num_pages; i++) {
3342 page = extent_buffer_page(eb, i);
3343 if (!PageUptodate(page)) {
3344 pg_uptodate = 0;
3345 break;
3348 return pg_uptodate;
3351 int read_extent_buffer_pages(struct extent_io_tree *tree,
3352 struct extent_buffer *eb,
3353 u64 start, int wait,
3354 get_extent_t *get_extent, int mirror_num)
3356 unsigned long i;
3357 unsigned long start_i;
3358 struct page *page;
3359 int err;
3360 int ret = 0;
3361 int locked_pages = 0;
3362 int all_uptodate = 1;
3363 int inc_all_pages = 0;
3364 unsigned long num_pages;
3365 struct bio *bio = NULL;
3366 unsigned long bio_flags = 0;
3368 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3369 return 0;
3371 if (eb_straddles_pages(eb)) {
3372 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3373 EXTENT_UPTODATE, 1, NULL)) {
3374 return 0;
3378 if (start) {
3379 WARN_ON(start < eb->start);
3380 start_i = (start >> PAGE_CACHE_SHIFT) -
3381 (eb->start >> PAGE_CACHE_SHIFT);
3382 } else {
3383 start_i = 0;
3386 num_pages = num_extent_pages(eb->start, eb->len);
3387 for (i = start_i; i < num_pages; i++) {
3388 page = extent_buffer_page(eb, i);
3389 if (!wait) {
3390 if (!trylock_page(page))
3391 goto unlock_exit;
3392 } else {
3393 lock_page(page);
3395 locked_pages++;
3396 if (!PageUptodate(page))
3397 all_uptodate = 0;
3399 if (all_uptodate) {
3400 if (start_i == 0)
3401 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3402 goto unlock_exit;
3405 for (i = start_i; i < num_pages; i++) {
3406 page = extent_buffer_page(eb, i);
3408 WARN_ON(!PagePrivate(page));
3410 set_page_extent_mapped(page);
3411 if (i == 0)
3412 set_page_extent_head(page, eb->len);
3414 if (inc_all_pages)
3415 page_cache_get(page);
3416 if (!PageUptodate(page)) {
3417 if (start_i == 0)
3418 inc_all_pages = 1;
3419 ClearPageError(page);
3420 err = __extent_read_full_page(tree, page,
3421 get_extent, &bio,
3422 mirror_num, &bio_flags);
3423 if (err)
3424 ret = err;
3425 } else {
3426 unlock_page(page);
3430 if (bio)
3431 submit_one_bio(READ, bio, mirror_num, bio_flags);
3433 if (ret || !wait)
3434 return ret;
3436 for (i = start_i; i < num_pages; i++) {
3437 page = extent_buffer_page(eb, i);
3438 wait_on_page_locked(page);
3439 if (!PageUptodate(page))
3440 ret = -EIO;
3443 if (!ret)
3444 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3445 return ret;
3447 unlock_exit:
3448 i = start_i;
3449 while (locked_pages > 0) {
3450 page = extent_buffer_page(eb, i);
3451 i++;
3452 unlock_page(page);
3453 locked_pages--;
3455 return ret;
3458 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3459 unsigned long start,
3460 unsigned long len)
3462 size_t cur;
3463 size_t offset;
3464 struct page *page;
3465 char *kaddr;
3466 char *dst = (char *)dstv;
3467 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3468 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3470 WARN_ON(start > eb->len);
3471 WARN_ON(start + len > eb->start + eb->len);
3473 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3475 while (len > 0) {
3476 page = extent_buffer_page(eb, i);
3478 cur = min(len, (PAGE_CACHE_SIZE - offset));
3479 kaddr = page_address(page);
3480 memcpy(dst, kaddr + offset, cur);
3482 dst += cur;
3483 len -= cur;
3484 offset = 0;
3485 i++;
3489 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3490 unsigned long min_len, char **map,
3491 unsigned long *map_start,
3492 unsigned long *map_len)
3494 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3495 char *kaddr;
3496 struct page *p;
3497 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3498 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3499 unsigned long end_i = (start_offset + start + min_len - 1) >>
3500 PAGE_CACHE_SHIFT;
3502 if (i != end_i)
3503 return -EINVAL;
3505 if (i == 0) {
3506 offset = start_offset;
3507 *map_start = 0;
3508 } else {
3509 offset = 0;
3510 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3513 if (start + min_len > eb->len) {
3514 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3515 "wanted %lu %lu\n", (unsigned long long)eb->start,
3516 eb->len, start, min_len);
3517 WARN_ON(1);
3518 return -EINVAL;
3521 p = extent_buffer_page(eb, i);
3522 kaddr = page_address(p);
3523 *map = kaddr + offset;
3524 *map_len = PAGE_CACHE_SIZE - offset;
3525 return 0;
3528 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3529 unsigned long start,
3530 unsigned long len)
3532 size_t cur;
3533 size_t offset;
3534 struct page *page;
3535 char *kaddr;
3536 char *ptr = (char *)ptrv;
3537 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3538 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3539 int ret = 0;
3541 WARN_ON(start > eb->len);
3542 WARN_ON(start + len > eb->start + eb->len);
3544 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3546 while (len > 0) {
3547 page = extent_buffer_page(eb, i);
3549 cur = min(len, (PAGE_CACHE_SIZE - offset));
3551 kaddr = page_address(page);
3552 ret = memcmp(ptr, kaddr + offset, cur);
3553 if (ret)
3554 break;
3556 ptr += cur;
3557 len -= cur;
3558 offset = 0;
3559 i++;
3561 return ret;
3564 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3565 unsigned long start, unsigned long len)
3567 size_t cur;
3568 size_t offset;
3569 struct page *page;
3570 char *kaddr;
3571 char *src = (char *)srcv;
3572 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3573 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3575 WARN_ON(start > eb->len);
3576 WARN_ON(start + len > eb->start + eb->len);
3578 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3580 while (len > 0) {
3581 page = extent_buffer_page(eb, i);
3582 WARN_ON(!PageUptodate(page));
3584 cur = min(len, PAGE_CACHE_SIZE - offset);
3585 kaddr = page_address(page);
3586 memcpy(kaddr + offset, src, cur);
3588 src += cur;
3589 len -= cur;
3590 offset = 0;
3591 i++;
3595 void memset_extent_buffer(struct extent_buffer *eb, char c,
3596 unsigned long start, unsigned long len)
3598 size_t cur;
3599 size_t offset;
3600 struct page *page;
3601 char *kaddr;
3602 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3603 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3605 WARN_ON(start > eb->len);
3606 WARN_ON(start + len > eb->start + eb->len);
3608 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3610 while (len > 0) {
3611 page = extent_buffer_page(eb, i);
3612 WARN_ON(!PageUptodate(page));
3614 cur = min(len, PAGE_CACHE_SIZE - offset);
3615 kaddr = page_address(page);
3616 memset(kaddr + offset, c, cur);
3618 len -= cur;
3619 offset = 0;
3620 i++;
3624 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3625 unsigned long dst_offset, unsigned long src_offset,
3626 unsigned long len)
3628 u64 dst_len = dst->len;
3629 size_t cur;
3630 size_t offset;
3631 struct page *page;
3632 char *kaddr;
3633 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3634 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3636 WARN_ON(src->len != dst_len);
3638 offset = (start_offset + dst_offset) &
3639 ((unsigned long)PAGE_CACHE_SIZE - 1);
3641 while (len > 0) {
3642 page = extent_buffer_page(dst, i);
3643 WARN_ON(!PageUptodate(page));
3645 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3647 kaddr = page_address(page);
3648 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3650 src_offset += cur;
3651 len -= cur;
3652 offset = 0;
3653 i++;
3657 static void move_pages(struct page *dst_page, struct page *src_page,
3658 unsigned long dst_off, unsigned long src_off,
3659 unsigned long len)
3661 char *dst_kaddr = page_address(dst_page);
3662 if (dst_page == src_page) {
3663 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3664 } else {
3665 char *src_kaddr = page_address(src_page);
3666 char *p = dst_kaddr + dst_off + len;
3667 char *s = src_kaddr + src_off + len;
3669 while (len--)
3670 *--p = *--s;
3674 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
3676 unsigned long distance = (src > dst) ? src - dst : dst - src;
3677 return distance < len;
3680 static void copy_pages(struct page *dst_page, struct page *src_page,
3681 unsigned long dst_off, unsigned long src_off,
3682 unsigned long len)
3684 char *dst_kaddr = page_address(dst_page);
3685 char *src_kaddr;
3687 if (dst_page != src_page) {
3688 src_kaddr = page_address(src_page);
3689 } else {
3690 src_kaddr = dst_kaddr;
3691 BUG_ON(areas_overlap(src_off, dst_off, len));
3694 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3697 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3698 unsigned long src_offset, unsigned long len)
3700 size_t cur;
3701 size_t dst_off_in_page;
3702 size_t src_off_in_page;
3703 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3704 unsigned long dst_i;
3705 unsigned long src_i;
3707 if (src_offset + len > dst->len) {
3708 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3709 "len %lu dst len %lu\n", src_offset, len, dst->len);
3710 BUG_ON(1);
3712 if (dst_offset + len > dst->len) {
3713 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3714 "len %lu dst len %lu\n", dst_offset, len, dst->len);
3715 BUG_ON(1);
3718 while (len > 0) {
3719 dst_off_in_page = (start_offset + dst_offset) &
3720 ((unsigned long)PAGE_CACHE_SIZE - 1);
3721 src_off_in_page = (start_offset + src_offset) &
3722 ((unsigned long)PAGE_CACHE_SIZE - 1);
3724 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3725 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3727 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3728 src_off_in_page));
3729 cur = min_t(unsigned long, cur,
3730 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3732 copy_pages(extent_buffer_page(dst, dst_i),
3733 extent_buffer_page(dst, src_i),
3734 dst_off_in_page, src_off_in_page, cur);
3736 src_offset += cur;
3737 dst_offset += cur;
3738 len -= cur;
3742 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3743 unsigned long src_offset, unsigned long len)
3745 size_t cur;
3746 size_t dst_off_in_page;
3747 size_t src_off_in_page;
3748 unsigned long dst_end = dst_offset + len - 1;
3749 unsigned long src_end = src_offset + len - 1;
3750 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3751 unsigned long dst_i;
3752 unsigned long src_i;
3754 if (src_offset + len > dst->len) {
3755 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3756 "len %lu len %lu\n", src_offset, len, dst->len);
3757 BUG_ON(1);
3759 if (dst_offset + len > dst->len) {
3760 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3761 "len %lu len %lu\n", dst_offset, len, dst->len);
3762 BUG_ON(1);
3764 if (!areas_overlap(src_offset, dst_offset, len)) {
3765 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3766 return;
3768 while (len > 0) {
3769 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3770 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3772 dst_off_in_page = (start_offset + dst_end) &
3773 ((unsigned long)PAGE_CACHE_SIZE - 1);
3774 src_off_in_page = (start_offset + src_end) &
3775 ((unsigned long)PAGE_CACHE_SIZE - 1);
3777 cur = min_t(unsigned long, len, src_off_in_page + 1);
3778 cur = min(cur, dst_off_in_page + 1);
3779 move_pages(extent_buffer_page(dst, dst_i),
3780 extent_buffer_page(dst, src_i),
3781 dst_off_in_page - cur + 1,
3782 src_off_in_page - cur + 1, cur);
3784 dst_end -= cur;
3785 src_end -= cur;
3786 len -= cur;
3790 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3792 struct extent_buffer *eb =
3793 container_of(head, struct extent_buffer, rcu_head);
3795 btrfs_release_extent_buffer(eb);
3798 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3800 u64 start = page_offset(page);
3801 struct extent_buffer *eb;
3802 int ret = 1;
3804 spin_lock(&tree->buffer_lock);
3805 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3806 if (!eb) {
3807 spin_unlock(&tree->buffer_lock);
3808 return ret;
3811 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3812 ret = 0;
3813 goto out;
3817 * set @eb->refs to 0 if it is already 1, and then release the @eb.
3818 * Or go back.
3820 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
3821 ret = 0;
3822 goto out;
3825 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3826 out:
3827 spin_unlock(&tree->buffer_lock);
3829 /* at this point we can safely release the extent buffer */
3830 if (atomic_read(&eb->refs) == 0)
3831 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3832 return ret;