MAINTAINERS: Update tegra maintainer information
[linux-btrfs-devel.git] / arch / unicore32 / mm / init.c
blob2d3e7112d2a3cbce8d778770e35754ac5a34e753
1 /*
2 * linux/arch/unicore32/mm/init.c
4 * Copyright (C) 2010 GUAN Xue-tao
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/highmem.h>
19 #include <linux/gfp.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22 #include <linux/dma-mapping.h>
24 #include <asm/sections.h>
25 #include <asm/setup.h>
26 #include <asm/sizes.h>
27 #include <asm/tlb.h>
28 #include <mach/map.h>
30 #include "mm.h"
32 static unsigned long phys_initrd_start __initdata = 0x01000000;
33 static unsigned long phys_initrd_size __initdata = SZ_8M;
35 static int __init early_initrd(char *p)
37 unsigned long start, size;
38 char *endp;
40 start = memparse(p, &endp);
41 if (*endp == ',') {
42 size = memparse(endp + 1, NULL);
44 phys_initrd_start = start;
45 phys_initrd_size = size;
47 return 0;
49 early_param("initrd", early_initrd);
52 * This keeps memory configuration data used by a couple memory
53 * initialization functions, as well as show_mem() for the skipping
54 * of holes in the memory map. It is populated by uc32_add_memory().
56 struct meminfo meminfo;
58 void show_mem(unsigned int filter)
60 int free = 0, total = 0, reserved = 0;
61 int shared = 0, cached = 0, slab = 0, i;
62 struct meminfo *mi = &meminfo;
64 printk(KERN_DEFAULT "Mem-info:\n");
65 show_free_areas(filter);
67 for_each_bank(i, mi) {
68 struct membank *bank = &mi->bank[i];
69 unsigned int pfn1, pfn2;
70 struct page *page, *end;
72 pfn1 = bank_pfn_start(bank);
73 pfn2 = bank_pfn_end(bank);
75 page = pfn_to_page(pfn1);
76 end = pfn_to_page(pfn2 - 1) + 1;
78 do {
79 total++;
80 if (PageReserved(page))
81 reserved++;
82 else if (PageSwapCache(page))
83 cached++;
84 else if (PageSlab(page))
85 slab++;
86 else if (!page_count(page))
87 free++;
88 else
89 shared += page_count(page) - 1;
90 page++;
91 } while (page < end);
94 printk(KERN_DEFAULT "%d pages of RAM\n", total);
95 printk(KERN_DEFAULT "%d free pages\n", free);
96 printk(KERN_DEFAULT "%d reserved pages\n", reserved);
97 printk(KERN_DEFAULT "%d slab pages\n", slab);
98 printk(KERN_DEFAULT "%d pages shared\n", shared);
99 printk(KERN_DEFAULT "%d pages swap cached\n", cached);
102 static void __init find_limits(unsigned long *min, unsigned long *max_low,
103 unsigned long *max_high)
105 struct meminfo *mi = &meminfo;
106 int i;
108 *min = -1UL;
109 *max_low = *max_high = 0;
111 for_each_bank(i, mi) {
112 struct membank *bank = &mi->bank[i];
113 unsigned long start, end;
115 start = bank_pfn_start(bank);
116 end = bank_pfn_end(bank);
118 if (*min > start)
119 *min = start;
120 if (*max_high < end)
121 *max_high = end;
122 if (bank->highmem)
123 continue;
124 if (*max_low < end)
125 *max_low = end;
129 static void __init uc32_bootmem_init(unsigned long start_pfn,
130 unsigned long end_pfn)
132 struct memblock_region *reg;
133 unsigned int boot_pages;
134 phys_addr_t bitmap;
135 pg_data_t *pgdat;
138 * Allocate the bootmem bitmap page. This must be in a region
139 * of memory which has already been mapped.
141 boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
142 bitmap = memblock_alloc_base(boot_pages << PAGE_SHIFT, L1_CACHE_BYTES,
143 __pfn_to_phys(end_pfn));
146 * Initialise the bootmem allocator, handing the
147 * memory banks over to bootmem.
149 node_set_online(0);
150 pgdat = NODE_DATA(0);
151 init_bootmem_node(pgdat, __phys_to_pfn(bitmap), start_pfn, end_pfn);
153 /* Free the lowmem regions from memblock into bootmem. */
154 for_each_memblock(memory, reg) {
155 unsigned long start = memblock_region_memory_base_pfn(reg);
156 unsigned long end = memblock_region_memory_end_pfn(reg);
158 if (end >= end_pfn)
159 end = end_pfn;
160 if (start >= end)
161 break;
163 free_bootmem(__pfn_to_phys(start), (end - start) << PAGE_SHIFT);
166 /* Reserve the lowmem memblock reserved regions in bootmem. */
167 for_each_memblock(reserved, reg) {
168 unsigned long start = memblock_region_reserved_base_pfn(reg);
169 unsigned long end = memblock_region_reserved_end_pfn(reg);
171 if (end >= end_pfn)
172 end = end_pfn;
173 if (start >= end)
174 break;
176 reserve_bootmem(__pfn_to_phys(start),
177 (end - start) << PAGE_SHIFT, BOOTMEM_DEFAULT);
181 static void __init uc32_bootmem_free(unsigned long min, unsigned long max_low,
182 unsigned long max_high)
184 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
185 struct memblock_region *reg;
188 * initialise the zones.
190 memset(zone_size, 0, sizeof(zone_size));
193 * The memory size has already been determined. If we need
194 * to do anything fancy with the allocation of this memory
195 * to the zones, now is the time to do it.
197 zone_size[0] = max_low - min;
200 * Calculate the size of the holes.
201 * holes = node_size - sum(bank_sizes)
203 memcpy(zhole_size, zone_size, sizeof(zhole_size));
204 for_each_memblock(memory, reg) {
205 unsigned long start = memblock_region_memory_base_pfn(reg);
206 unsigned long end = memblock_region_memory_end_pfn(reg);
208 if (start < max_low) {
209 unsigned long low_end = min(end, max_low);
210 zhole_size[0] -= low_end - start;
215 * Adjust the sizes according to any special requirements for
216 * this machine type.
218 arch_adjust_zones(zone_size, zhole_size);
220 free_area_init_node(0, zone_size, min, zhole_size);
223 int pfn_valid(unsigned long pfn)
225 return memblock_is_memory(pfn << PAGE_SHIFT);
227 EXPORT_SYMBOL(pfn_valid);
229 static void uc32_memory_present(void)
233 static int __init meminfo_cmp(const void *_a, const void *_b)
235 const struct membank *a = _a, *b = _b;
236 long cmp = bank_pfn_start(a) - bank_pfn_start(b);
237 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
240 void __init uc32_memblock_init(struct meminfo *mi)
242 int i;
244 sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]),
245 meminfo_cmp, NULL);
247 memblock_init();
248 for (i = 0; i < mi->nr_banks; i++)
249 memblock_add(mi->bank[i].start, mi->bank[i].size);
251 /* Register the kernel text, kernel data and initrd with memblock. */
252 memblock_reserve(__pa(_text), _end - _text);
254 #ifdef CONFIG_BLK_DEV_INITRD
255 if (phys_initrd_size) {
256 memblock_reserve(phys_initrd_start, phys_initrd_size);
258 /* Now convert initrd to virtual addresses */
259 initrd_start = __phys_to_virt(phys_initrd_start);
260 initrd_end = initrd_start + phys_initrd_size;
262 #endif
264 uc32_mm_memblock_reserve();
266 memblock_analyze();
267 memblock_dump_all();
270 void __init bootmem_init(void)
272 unsigned long min, max_low, max_high;
274 max_low = max_high = 0;
276 find_limits(&min, &max_low, &max_high);
278 uc32_bootmem_init(min, max_low);
280 #ifdef CONFIG_SWIOTLB
281 swiotlb_init(1);
282 #endif
284 * Sparsemem tries to allocate bootmem in memory_present(),
285 * so must be done after the fixed reservations
287 uc32_memory_present();
290 * sparse_init() needs the bootmem allocator up and running.
292 sparse_init();
295 * Now free the memory - free_area_init_node needs
296 * the sparse mem_map arrays initialized by sparse_init()
297 * for memmap_init_zone(), otherwise all PFNs are invalid.
299 uc32_bootmem_free(min, max_low, max_high);
301 high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1;
304 * This doesn't seem to be used by the Linux memory manager any
305 * more, but is used by ll_rw_block. If we can get rid of it, we
306 * also get rid of some of the stuff above as well.
308 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
309 * the system, not the maximum PFN.
311 max_low_pfn = max_low - PHYS_PFN_OFFSET;
312 max_pfn = max_high - PHYS_PFN_OFFSET;
315 static inline int free_area(unsigned long pfn, unsigned long end, char *s)
317 unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10);
319 for (; pfn < end; pfn++) {
320 struct page *page = pfn_to_page(pfn);
321 ClearPageReserved(page);
322 init_page_count(page);
323 __free_page(page);
324 pages++;
327 if (size && s)
328 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
330 return pages;
333 static inline void
334 free_memmap(unsigned long start_pfn, unsigned long end_pfn)
336 struct page *start_pg, *end_pg;
337 unsigned long pg, pgend;
340 * Convert start_pfn/end_pfn to a struct page pointer.
342 start_pg = pfn_to_page(start_pfn - 1) + 1;
343 end_pg = pfn_to_page(end_pfn);
346 * Convert to physical addresses, and
347 * round start upwards and end downwards.
349 pg = PAGE_ALIGN(__pa(start_pg));
350 pgend = __pa(end_pg) & PAGE_MASK;
353 * If there are free pages between these,
354 * free the section of the memmap array.
356 if (pg < pgend)
357 free_bootmem(pg, pgend - pg);
361 * The mem_map array can get very big. Free the unused area of the memory map.
363 static void __init free_unused_memmap(struct meminfo *mi)
365 unsigned long bank_start, prev_bank_end = 0;
366 unsigned int i;
369 * This relies on each bank being in address order.
370 * The banks are sorted previously in bootmem_init().
372 for_each_bank(i, mi) {
373 struct membank *bank = &mi->bank[i];
375 bank_start = bank_pfn_start(bank);
378 * If we had a previous bank, and there is a space
379 * between the current bank and the previous, free it.
381 if (prev_bank_end && prev_bank_end < bank_start)
382 free_memmap(prev_bank_end, bank_start);
385 * Align up here since the VM subsystem insists that the
386 * memmap entries are valid from the bank end aligned to
387 * MAX_ORDER_NR_PAGES.
389 prev_bank_end = ALIGN(bank_pfn_end(bank), MAX_ORDER_NR_PAGES);
394 * mem_init() marks the free areas in the mem_map and tells us how much
395 * memory is free. This is done after various parts of the system have
396 * claimed their memory after the kernel image.
398 void __init mem_init(void)
400 unsigned long reserved_pages, free_pages;
401 struct memblock_region *reg;
402 int i;
404 max_mapnr = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map;
406 /* this will put all unused low memory onto the freelists */
407 free_unused_memmap(&meminfo);
409 totalram_pages += free_all_bootmem();
411 reserved_pages = free_pages = 0;
413 for_each_bank(i, &meminfo) {
414 struct membank *bank = &meminfo.bank[i];
415 unsigned int pfn1, pfn2;
416 struct page *page, *end;
418 pfn1 = bank_pfn_start(bank);
419 pfn2 = bank_pfn_end(bank);
421 page = pfn_to_page(pfn1);
422 end = pfn_to_page(pfn2 - 1) + 1;
424 do {
425 if (PageReserved(page))
426 reserved_pages++;
427 else if (!page_count(page))
428 free_pages++;
429 page++;
430 } while (page < end);
434 * Since our memory may not be contiguous, calculate the
435 * real number of pages we have in this system
437 printk(KERN_INFO "Memory:");
438 num_physpages = 0;
439 for_each_memblock(memory, reg) {
440 unsigned long pages = memblock_region_memory_end_pfn(reg) -
441 memblock_region_memory_base_pfn(reg);
442 num_physpages += pages;
443 printk(" %ldMB", pages >> (20 - PAGE_SHIFT));
445 printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
447 printk(KERN_NOTICE "Memory: %luk/%luk available, %luk reserved, %luK highmem\n",
448 nr_free_pages() << (PAGE_SHIFT-10),
449 free_pages << (PAGE_SHIFT-10),
450 reserved_pages << (PAGE_SHIFT-10),
451 totalhigh_pages << (PAGE_SHIFT-10));
453 printk(KERN_NOTICE "Virtual kernel memory layout:\n"
454 " vector : 0x%08lx - 0x%08lx (%4ld kB)\n"
455 " vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n"
456 " lowmem : 0x%08lx - 0x%08lx (%4ld MB)\n"
457 " modules : 0x%08lx - 0x%08lx (%4ld MB)\n"
458 " .init : 0x%p" " - 0x%p" " (%4d kB)\n"
459 " .text : 0x%p" " - 0x%p" " (%4d kB)\n"
460 " .data : 0x%p" " - 0x%p" " (%4d kB)\n",
462 VECTORS_BASE, VECTORS_BASE + PAGE_SIZE,
463 DIV_ROUND_UP(PAGE_SIZE, SZ_1K),
464 VMALLOC_START, VMALLOC_END,
465 DIV_ROUND_UP((VMALLOC_END - VMALLOC_START), SZ_1M),
466 PAGE_OFFSET, (unsigned long)high_memory,
467 DIV_ROUND_UP(((unsigned long)high_memory - PAGE_OFFSET), SZ_1M),
468 MODULES_VADDR, MODULES_END,
469 DIV_ROUND_UP((MODULES_END - MODULES_VADDR), SZ_1M),
471 __init_begin, __init_end,
472 DIV_ROUND_UP((__init_end - __init_begin), SZ_1K),
473 _stext, _etext,
474 DIV_ROUND_UP((_etext - _stext), SZ_1K),
475 _sdata, _edata,
476 DIV_ROUND_UP((_edata - _sdata), SZ_1K));
478 BUILD_BUG_ON(TASK_SIZE > MODULES_VADDR);
479 BUG_ON(TASK_SIZE > MODULES_VADDR);
481 if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
483 * On a machine this small we won't get
484 * anywhere without overcommit, so turn
485 * it on by default.
487 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
491 void free_initmem(void)
493 totalram_pages += free_area(__phys_to_pfn(__pa(__init_begin)),
494 __phys_to_pfn(__pa(__init_end)),
495 "init");
498 #ifdef CONFIG_BLK_DEV_INITRD
500 static int keep_initrd;
502 void free_initrd_mem(unsigned long start, unsigned long end)
504 if (!keep_initrd)
505 totalram_pages += free_area(__phys_to_pfn(__pa(start)),
506 __phys_to_pfn(__pa(end)),
507 "initrd");
510 static int __init keepinitrd_setup(char *__unused)
512 keep_initrd = 1;
513 return 1;
516 __setup("keepinitrd", keepinitrd_setup);
517 #endif