2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include <linux/ratelimit.h>
44 #define PRINTK(x...) do { if (DEBUG) printk(x); } while (0)
47 * Number of guaranteed r1bios in case of extreme VM load:
49 #define NR_RAID1_BIOS 256
52 static void allow_barrier(conf_t
*conf
);
53 static void lower_barrier(conf_t
*conf
);
55 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
57 struct pool_info
*pi
= data
;
58 int size
= offsetof(r1bio_t
, bios
[pi
->raid_disks
]);
60 /* allocate a r1bio with room for raid_disks entries in the bios array */
61 return kzalloc(size
, gfp_flags
);
64 static void r1bio_pool_free(void *r1_bio
, void *data
)
69 #define RESYNC_BLOCK_SIZE (64*1024)
70 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
71 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
72 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
73 #define RESYNC_WINDOW (2048*1024)
75 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
77 struct pool_info
*pi
= data
;
83 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
88 * Allocate bios : 1 for reading, n-1 for writing
90 for (j
= pi
->raid_disks
; j
-- ; ) {
91 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
94 r1_bio
->bios
[j
] = bio
;
97 * Allocate RESYNC_PAGES data pages and attach them to
99 * If this is a user-requested check/repair, allocate
100 * RESYNC_PAGES for each bio.
102 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
107 bio
= r1_bio
->bios
[j
];
108 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
109 page
= alloc_page(gfp_flags
);
113 bio
->bi_io_vec
[i
].bv_page
= page
;
117 /* If not user-requests, copy the page pointers to all bios */
118 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
119 for (i
=0; i
<RESYNC_PAGES
; i
++)
120 for (j
=1; j
<pi
->raid_disks
; j
++)
121 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
122 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
125 r1_bio
->master_bio
= NULL
;
130 for (j
=0 ; j
< pi
->raid_disks
; j
++)
131 for (i
=0; i
< r1_bio
->bios
[j
]->bi_vcnt
; i
++)
132 put_page(r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
135 while ( ++j
< pi
->raid_disks
)
136 bio_put(r1_bio
->bios
[j
]);
137 r1bio_pool_free(r1_bio
, data
);
141 static void r1buf_pool_free(void *__r1_bio
, void *data
)
143 struct pool_info
*pi
= data
;
145 r1bio_t
*r1bio
= __r1_bio
;
147 for (i
= 0; i
< RESYNC_PAGES
; i
++)
148 for (j
= pi
->raid_disks
; j
-- ;) {
150 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
151 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
152 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
154 for (i
=0 ; i
< pi
->raid_disks
; i
++)
155 bio_put(r1bio
->bios
[i
]);
157 r1bio_pool_free(r1bio
, data
);
160 static void put_all_bios(conf_t
*conf
, r1bio_t
*r1_bio
)
164 for (i
= 0; i
< conf
->raid_disks
; i
++) {
165 struct bio
**bio
= r1_bio
->bios
+ i
;
166 if (!BIO_SPECIAL(*bio
))
172 static void free_r1bio(r1bio_t
*r1_bio
)
174 conf_t
*conf
= r1_bio
->mddev
->private;
176 put_all_bios(conf
, r1_bio
);
177 mempool_free(r1_bio
, conf
->r1bio_pool
);
180 static void put_buf(r1bio_t
*r1_bio
)
182 conf_t
*conf
= r1_bio
->mddev
->private;
185 for (i
=0; i
<conf
->raid_disks
; i
++) {
186 struct bio
*bio
= r1_bio
->bios
[i
];
188 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
191 mempool_free(r1_bio
, conf
->r1buf_pool
);
196 static void reschedule_retry(r1bio_t
*r1_bio
)
199 mddev_t
*mddev
= r1_bio
->mddev
;
200 conf_t
*conf
= mddev
->private;
202 spin_lock_irqsave(&conf
->device_lock
, flags
);
203 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
205 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
207 wake_up(&conf
->wait_barrier
);
208 md_wakeup_thread(mddev
->thread
);
212 * raid_end_bio_io() is called when we have finished servicing a mirrored
213 * operation and are ready to return a success/failure code to the buffer
216 static void call_bio_endio(r1bio_t
*r1_bio
)
218 struct bio
*bio
= r1_bio
->master_bio
;
220 conf_t
*conf
= r1_bio
->mddev
->private;
222 if (bio
->bi_phys_segments
) {
224 spin_lock_irqsave(&conf
->device_lock
, flags
);
225 bio
->bi_phys_segments
--;
226 done
= (bio
->bi_phys_segments
== 0);
227 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
231 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
232 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
236 * Wake up any possible resync thread that waits for the device
243 static void raid_end_bio_io(r1bio_t
*r1_bio
)
245 struct bio
*bio
= r1_bio
->master_bio
;
247 /* if nobody has done the final endio yet, do it now */
248 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
249 PRINTK(KERN_DEBUG
"raid1: sync end %s on sectors %llu-%llu\n",
250 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
251 (unsigned long long) bio
->bi_sector
,
252 (unsigned long long) bio
->bi_sector
+
253 (bio
->bi_size
>> 9) - 1);
255 call_bio_endio(r1_bio
);
261 * Update disk head position estimator based on IRQ completion info.
263 static inline void update_head_pos(int disk
, r1bio_t
*r1_bio
)
265 conf_t
*conf
= r1_bio
->mddev
->private;
267 conf
->mirrors
[disk
].head_position
=
268 r1_bio
->sector
+ (r1_bio
->sectors
);
271 static void raid1_end_read_request(struct bio
*bio
, int error
)
273 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
274 r1bio_t
*r1_bio
= bio
->bi_private
;
276 conf_t
*conf
= r1_bio
->mddev
->private;
278 mirror
= r1_bio
->read_disk
;
280 * this branch is our 'one mirror IO has finished' event handler:
282 update_head_pos(mirror
, r1_bio
);
285 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
287 /* If all other devices have failed, we want to return
288 * the error upwards rather than fail the last device.
289 * Here we redefine "uptodate" to mean "Don't want to retry"
292 spin_lock_irqsave(&conf
->device_lock
, flags
);
293 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
294 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
295 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
)))
297 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
301 raid_end_bio_io(r1_bio
);
306 char b
[BDEVNAME_SIZE
];
308 KERN_ERR
"md/raid1:%s: %s: "
309 "rescheduling sector %llu\n",
311 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,
313 (unsigned long long)r1_bio
->sector
);
314 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
315 reschedule_retry(r1_bio
);
318 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
321 static void close_write(r1bio_t
*r1_bio
)
323 /* it really is the end of this request */
324 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
325 /* free extra copy of the data pages */
326 int i
= r1_bio
->behind_page_count
;
328 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
329 kfree(r1_bio
->behind_bvecs
);
330 r1_bio
->behind_bvecs
= NULL
;
332 /* clear the bitmap if all writes complete successfully */
333 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
335 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
336 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
337 md_write_end(r1_bio
->mddev
);
340 static void r1_bio_write_done(r1bio_t
*r1_bio
)
342 if (!atomic_dec_and_test(&r1_bio
->remaining
))
345 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
346 reschedule_retry(r1_bio
);
349 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
350 reschedule_retry(r1_bio
);
352 raid_end_bio_io(r1_bio
);
356 static void raid1_end_write_request(struct bio
*bio
, int error
)
358 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
359 r1bio_t
*r1_bio
= bio
->bi_private
;
360 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
361 conf_t
*conf
= r1_bio
->mddev
->private;
362 struct bio
*to_put
= NULL
;
365 for (mirror
= 0; mirror
< conf
->raid_disks
; mirror
++)
366 if (r1_bio
->bios
[mirror
] == bio
)
370 * 'one mirror IO has finished' event handler:
373 set_bit(WriteErrorSeen
,
374 &conf
->mirrors
[mirror
].rdev
->flags
);
375 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
378 * Set R1BIO_Uptodate in our master bio, so that we
379 * will return a good error code for to the higher
380 * levels even if IO on some other mirrored buffer
383 * The 'master' represents the composite IO operation
384 * to user-side. So if something waits for IO, then it
385 * will wait for the 'master' bio.
390 r1_bio
->bios
[mirror
] = NULL
;
392 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
394 /* Maybe we can clear some bad blocks. */
395 if (is_badblock(conf
->mirrors
[mirror
].rdev
,
396 r1_bio
->sector
, r1_bio
->sectors
,
397 &first_bad
, &bad_sectors
)) {
398 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
399 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
403 update_head_pos(mirror
, r1_bio
);
406 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
407 atomic_dec(&r1_bio
->behind_remaining
);
410 * In behind mode, we ACK the master bio once the I/O
411 * has safely reached all non-writemostly
412 * disks. Setting the Returned bit ensures that this
413 * gets done only once -- we don't ever want to return
414 * -EIO here, instead we'll wait
416 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
417 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
418 /* Maybe we can return now */
419 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
420 struct bio
*mbio
= r1_bio
->master_bio
;
421 PRINTK(KERN_DEBUG
"raid1: behind end write sectors %llu-%llu\n",
422 (unsigned long long) mbio
->bi_sector
,
423 (unsigned long long) mbio
->bi_sector
+
424 (mbio
->bi_size
>> 9) - 1);
425 call_bio_endio(r1_bio
);
429 if (r1_bio
->bios
[mirror
] == NULL
)
430 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
,
434 * Let's see if all mirrored write operations have finished
437 r1_bio_write_done(r1_bio
);
445 * This routine returns the disk from which the requested read should
446 * be done. There is a per-array 'next expected sequential IO' sector
447 * number - if this matches on the next IO then we use the last disk.
448 * There is also a per-disk 'last know head position' sector that is
449 * maintained from IRQ contexts, both the normal and the resync IO
450 * completion handlers update this position correctly. If there is no
451 * perfect sequential match then we pick the disk whose head is closest.
453 * If there are 2 mirrors in the same 2 devices, performance degrades
454 * because position is mirror, not device based.
456 * The rdev for the device selected will have nr_pending incremented.
458 static int read_balance(conf_t
*conf
, r1bio_t
*r1_bio
, int *max_sectors
)
460 const sector_t this_sector
= r1_bio
->sector
;
462 int best_good_sectors
;
472 * Check if we can balance. We can balance on the whole
473 * device if no resync is going on, or below the resync window.
474 * We take the first readable disk when above the resync window.
477 sectors
= r1_bio
->sectors
;
479 best_dist
= MaxSector
;
480 best_good_sectors
= 0;
482 if (conf
->mddev
->recovery_cp
< MaxSector
&&
483 (this_sector
+ sectors
>= conf
->next_resync
)) {
488 start_disk
= conf
->last_used
;
491 for (i
= 0 ; i
< conf
->raid_disks
; i
++) {
496 int disk
= start_disk
+ i
;
497 if (disk
>= conf
->raid_disks
)
498 disk
-= conf
->raid_disks
;
500 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
501 if (r1_bio
->bios
[disk
] == IO_BLOCKED
503 || test_bit(Faulty
, &rdev
->flags
))
505 if (!test_bit(In_sync
, &rdev
->flags
) &&
506 rdev
->recovery_offset
< this_sector
+ sectors
)
508 if (test_bit(WriteMostly
, &rdev
->flags
)) {
509 /* Don't balance among write-mostly, just
510 * use the first as a last resort */
515 /* This is a reasonable device to use. It might
518 if (is_badblock(rdev
, this_sector
, sectors
,
519 &first_bad
, &bad_sectors
)) {
520 if (best_dist
< MaxSector
)
521 /* already have a better device */
523 if (first_bad
<= this_sector
) {
524 /* cannot read here. If this is the 'primary'
525 * device, then we must not read beyond
526 * bad_sectors from another device..
528 bad_sectors
-= (this_sector
- first_bad
);
529 if (choose_first
&& sectors
> bad_sectors
)
530 sectors
= bad_sectors
;
531 if (best_good_sectors
> sectors
)
532 best_good_sectors
= sectors
;
535 sector_t good_sectors
= first_bad
- this_sector
;
536 if (good_sectors
> best_good_sectors
) {
537 best_good_sectors
= good_sectors
;
545 best_good_sectors
= sectors
;
547 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
549 /* Don't change to another disk for sequential reads */
550 || conf
->next_seq_sect
== this_sector
552 /* If device is idle, use it */
553 || atomic_read(&rdev
->nr_pending
) == 0) {
557 if (dist
< best_dist
) {
563 if (best_disk
>= 0) {
564 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
567 atomic_inc(&rdev
->nr_pending
);
568 if (test_bit(Faulty
, &rdev
->flags
)) {
569 /* cannot risk returning a device that failed
570 * before we inc'ed nr_pending
572 rdev_dec_pending(rdev
, conf
->mddev
);
575 sectors
= best_good_sectors
;
576 conf
->next_seq_sect
= this_sector
+ sectors
;
577 conf
->last_used
= best_disk
;
580 *max_sectors
= sectors
;
585 int md_raid1_congested(mddev_t
*mddev
, int bits
)
587 conf_t
*conf
= mddev
->private;
591 for (i
= 0; i
< mddev
->raid_disks
; i
++) {
592 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
593 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
594 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
598 /* Note the '|| 1' - when read_balance prefers
599 * non-congested targets, it can be removed
601 if ((bits
& (1<<BDI_async_congested
)) || 1)
602 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
604 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
610 EXPORT_SYMBOL_GPL(md_raid1_congested
);
612 static int raid1_congested(void *data
, int bits
)
614 mddev_t
*mddev
= data
;
616 return mddev_congested(mddev
, bits
) ||
617 md_raid1_congested(mddev
, bits
);
620 static void flush_pending_writes(conf_t
*conf
)
622 /* Any writes that have been queued but are awaiting
623 * bitmap updates get flushed here.
625 spin_lock_irq(&conf
->device_lock
);
627 if (conf
->pending_bio_list
.head
) {
629 bio
= bio_list_get(&conf
->pending_bio_list
);
630 spin_unlock_irq(&conf
->device_lock
);
631 /* flush any pending bitmap writes to
632 * disk before proceeding w/ I/O */
633 bitmap_unplug(conf
->mddev
->bitmap
);
635 while (bio
) { /* submit pending writes */
636 struct bio
*next
= bio
->bi_next
;
638 generic_make_request(bio
);
642 spin_unlock_irq(&conf
->device_lock
);
646 * Sometimes we need to suspend IO while we do something else,
647 * either some resync/recovery, or reconfigure the array.
648 * To do this we raise a 'barrier'.
649 * The 'barrier' is a counter that can be raised multiple times
650 * to count how many activities are happening which preclude
652 * We can only raise the barrier if there is no pending IO.
653 * i.e. if nr_pending == 0.
654 * We choose only to raise the barrier if no-one is waiting for the
655 * barrier to go down. This means that as soon as an IO request
656 * is ready, no other operations which require a barrier will start
657 * until the IO request has had a chance.
659 * So: regular IO calls 'wait_barrier'. When that returns there
660 * is no backgroup IO happening, It must arrange to call
661 * allow_barrier when it has finished its IO.
662 * backgroup IO calls must call raise_barrier. Once that returns
663 * there is no normal IO happeing. It must arrange to call
664 * lower_barrier when the particular background IO completes.
666 #define RESYNC_DEPTH 32
668 static void raise_barrier(conf_t
*conf
)
670 spin_lock_irq(&conf
->resync_lock
);
672 /* Wait until no block IO is waiting */
673 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
674 conf
->resync_lock
, );
676 /* block any new IO from starting */
679 /* Now wait for all pending IO to complete */
680 wait_event_lock_irq(conf
->wait_barrier
,
681 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
682 conf
->resync_lock
, );
684 spin_unlock_irq(&conf
->resync_lock
);
687 static void lower_barrier(conf_t
*conf
)
690 BUG_ON(conf
->barrier
<= 0);
691 spin_lock_irqsave(&conf
->resync_lock
, flags
);
693 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
694 wake_up(&conf
->wait_barrier
);
697 static void wait_barrier(conf_t
*conf
)
699 spin_lock_irq(&conf
->resync_lock
);
702 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
708 spin_unlock_irq(&conf
->resync_lock
);
711 static void allow_barrier(conf_t
*conf
)
714 spin_lock_irqsave(&conf
->resync_lock
, flags
);
716 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
717 wake_up(&conf
->wait_barrier
);
720 static void freeze_array(conf_t
*conf
)
722 /* stop syncio and normal IO and wait for everything to
724 * We increment barrier and nr_waiting, and then
725 * wait until nr_pending match nr_queued+1
726 * This is called in the context of one normal IO request
727 * that has failed. Thus any sync request that might be pending
728 * will be blocked by nr_pending, and we need to wait for
729 * pending IO requests to complete or be queued for re-try.
730 * Thus the number queued (nr_queued) plus this request (1)
731 * must match the number of pending IOs (nr_pending) before
734 spin_lock_irq(&conf
->resync_lock
);
737 wait_event_lock_irq(conf
->wait_barrier
,
738 conf
->nr_pending
== conf
->nr_queued
+1,
740 flush_pending_writes(conf
));
741 spin_unlock_irq(&conf
->resync_lock
);
743 static void unfreeze_array(conf_t
*conf
)
745 /* reverse the effect of the freeze */
746 spin_lock_irq(&conf
->resync_lock
);
749 wake_up(&conf
->wait_barrier
);
750 spin_unlock_irq(&conf
->resync_lock
);
754 /* duplicate the data pages for behind I/O
756 static void alloc_behind_pages(struct bio
*bio
, r1bio_t
*r1_bio
)
759 struct bio_vec
*bvec
;
760 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
762 if (unlikely(!bvecs
))
765 bio_for_each_segment(bvec
, bio
, i
) {
767 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
768 if (unlikely(!bvecs
[i
].bv_page
))
770 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
771 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
772 kunmap(bvecs
[i
].bv_page
);
773 kunmap(bvec
->bv_page
);
775 r1_bio
->behind_bvecs
= bvecs
;
776 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
777 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
781 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
782 if (bvecs
[i
].bv_page
)
783 put_page(bvecs
[i
].bv_page
);
785 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio
->bi_size
);
788 static int make_request(mddev_t
*mddev
, struct bio
* bio
)
790 conf_t
*conf
= mddev
->private;
791 mirror_info_t
*mirror
;
793 struct bio
*read_bio
;
795 struct bitmap
*bitmap
;
797 const int rw
= bio_data_dir(bio
);
798 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
799 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
800 mdk_rdev_t
*blocked_rdev
;
807 * Register the new request and wait if the reconstruction
808 * thread has put up a bar for new requests.
809 * Continue immediately if no resync is active currently.
812 md_write_start(mddev
, bio
); /* wait on superblock update early */
814 if (bio_data_dir(bio
) == WRITE
&&
815 bio
->bi_sector
+ bio
->bi_size
/512 > mddev
->suspend_lo
&&
816 bio
->bi_sector
< mddev
->suspend_hi
) {
817 /* As the suspend_* range is controlled by
818 * userspace, we want an interruptible
823 flush_signals(current
);
824 prepare_to_wait(&conf
->wait_barrier
,
825 &w
, TASK_INTERRUPTIBLE
);
826 if (bio
->bi_sector
+ bio
->bi_size
/512 <= mddev
->suspend_lo
||
827 bio
->bi_sector
>= mddev
->suspend_hi
)
831 finish_wait(&conf
->wait_barrier
, &w
);
836 bitmap
= mddev
->bitmap
;
839 * make_request() can abort the operation when READA is being
840 * used and no empty request is available.
843 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
845 r1_bio
->master_bio
= bio
;
846 r1_bio
->sectors
= bio
->bi_size
>> 9;
848 r1_bio
->mddev
= mddev
;
849 r1_bio
->sector
= bio
->bi_sector
;
851 /* We might need to issue multiple reads to different
852 * devices if there are bad blocks around, so we keep
853 * track of the number of reads in bio->bi_phys_segments.
854 * If this is 0, there is only one r1_bio and no locking
855 * will be needed when requests complete. If it is
856 * non-zero, then it is the number of not-completed requests.
858 bio
->bi_phys_segments
= 0;
859 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
863 * read balancing logic:
868 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
871 /* couldn't find anywhere to read from */
872 raid_end_bio_io(r1_bio
);
875 mirror
= conf
->mirrors
+ rdisk
;
877 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
879 /* Reading from a write-mostly device must
880 * take care not to over-take any writes
883 wait_event(bitmap
->behind_wait
,
884 atomic_read(&bitmap
->behind_writes
) == 0);
886 r1_bio
->read_disk
= rdisk
;
888 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
889 md_trim_bio(read_bio
, r1_bio
->sector
- bio
->bi_sector
,
892 r1_bio
->bios
[rdisk
] = read_bio
;
894 read_bio
->bi_sector
= r1_bio
->sector
+ mirror
->rdev
->data_offset
;
895 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
896 read_bio
->bi_end_io
= raid1_end_read_request
;
897 read_bio
->bi_rw
= READ
| do_sync
;
898 read_bio
->bi_private
= r1_bio
;
900 if (max_sectors
< r1_bio
->sectors
) {
901 /* could not read all from this device, so we will
902 * need another r1_bio.
905 sectors_handled
= (r1_bio
->sector
+ max_sectors
907 r1_bio
->sectors
= max_sectors
;
908 spin_lock_irq(&conf
->device_lock
);
909 if (bio
->bi_phys_segments
== 0)
910 bio
->bi_phys_segments
= 2;
912 bio
->bi_phys_segments
++;
913 spin_unlock_irq(&conf
->device_lock
);
914 /* Cannot call generic_make_request directly
915 * as that will be queued in __make_request
916 * and subsequent mempool_alloc might block waiting
917 * for it. So hand bio over to raid1d.
919 reschedule_retry(r1_bio
);
921 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
923 r1_bio
->master_bio
= bio
;
924 r1_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
926 r1_bio
->mddev
= mddev
;
927 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
930 generic_make_request(read_bio
);
937 /* first select target devices under rcu_lock and
938 * inc refcount on their rdev. Record them by setting
940 * If there are known/acknowledged bad blocks on any device on
941 * which we have seen a write error, we want to avoid writing those
943 * This potentially requires several writes to write around
944 * the bad blocks. Each set of writes gets it's own r1bio
945 * with a set of bios attached.
947 plugged
= mddev_check_plugged(mddev
);
949 disks
= conf
->raid_disks
;
953 max_sectors
= r1_bio
->sectors
;
954 for (i
= 0; i
< disks
; i
++) {
955 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
956 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
957 atomic_inc(&rdev
->nr_pending
);
961 r1_bio
->bios
[i
] = NULL
;
962 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
963 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
967 atomic_inc(&rdev
->nr_pending
);
968 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
973 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
975 &first_bad
, &bad_sectors
);
977 /* mustn't write here until the bad block is
979 set_bit(BlockedBadBlocks
, &rdev
->flags
);
983 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
984 /* Cannot write here at all */
985 bad_sectors
-= (r1_bio
->sector
- first_bad
);
986 if (bad_sectors
< max_sectors
)
987 /* mustn't write more than bad_sectors
988 * to other devices yet
990 max_sectors
= bad_sectors
;
991 rdev_dec_pending(rdev
, mddev
);
992 /* We don't set R1BIO_Degraded as that
993 * only applies if the disk is
994 * missing, so it might be re-added,
995 * and we want to know to recover this
997 * In this case the device is here,
998 * and the fact that this chunk is not
999 * in-sync is recorded in the bad
1005 int good_sectors
= first_bad
- r1_bio
->sector
;
1006 if (good_sectors
< max_sectors
)
1007 max_sectors
= good_sectors
;
1010 r1_bio
->bios
[i
] = bio
;
1014 if (unlikely(blocked_rdev
)) {
1015 /* Wait for this device to become unblocked */
1018 for (j
= 0; j
< i
; j
++)
1019 if (r1_bio
->bios
[j
])
1020 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1022 allow_barrier(conf
);
1023 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1028 if (max_sectors
< r1_bio
->sectors
) {
1029 /* We are splitting this write into multiple parts, so
1030 * we need to prepare for allocating another r1_bio.
1032 r1_bio
->sectors
= max_sectors
;
1033 spin_lock_irq(&conf
->device_lock
);
1034 if (bio
->bi_phys_segments
== 0)
1035 bio
->bi_phys_segments
= 2;
1037 bio
->bi_phys_segments
++;
1038 spin_unlock_irq(&conf
->device_lock
);
1040 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1042 atomic_set(&r1_bio
->remaining
, 1);
1043 atomic_set(&r1_bio
->behind_remaining
, 0);
1046 for (i
= 0; i
< disks
; i
++) {
1048 if (!r1_bio
->bios
[i
])
1051 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1052 md_trim_bio(mbio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
1056 * Not if there are too many, or cannot
1057 * allocate memory, or a reader on WriteMostly
1058 * is waiting for behind writes to flush */
1060 (atomic_read(&bitmap
->behind_writes
)
1061 < mddev
->bitmap_info
.max_write_behind
) &&
1062 !waitqueue_active(&bitmap
->behind_wait
))
1063 alloc_behind_pages(mbio
, r1_bio
);
1065 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1067 test_bit(R1BIO_BehindIO
,
1071 if (r1_bio
->behind_bvecs
) {
1072 struct bio_vec
*bvec
;
1075 /* Yes, I really want the '__' version so that
1076 * we clear any unused pointer in the io_vec, rather
1077 * than leave them unchanged. This is important
1078 * because when we come to free the pages, we won't
1079 * know the original bi_idx, so we just free
1082 __bio_for_each_segment(bvec
, mbio
, j
, 0)
1083 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1084 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1085 atomic_inc(&r1_bio
->behind_remaining
);
1088 r1_bio
->bios
[i
] = mbio
;
1090 mbio
->bi_sector
= (r1_bio
->sector
+
1091 conf
->mirrors
[i
].rdev
->data_offset
);
1092 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1093 mbio
->bi_end_io
= raid1_end_write_request
;
1094 mbio
->bi_rw
= WRITE
| do_flush_fua
| do_sync
;
1095 mbio
->bi_private
= r1_bio
;
1097 atomic_inc(&r1_bio
->remaining
);
1098 spin_lock_irqsave(&conf
->device_lock
, flags
);
1099 bio_list_add(&conf
->pending_bio_list
, mbio
);
1100 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1102 /* Mustn't call r1_bio_write_done before this next test,
1103 * as it could result in the bio being freed.
1105 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1106 r1_bio_write_done(r1_bio
);
1107 /* We need another r1_bio. It has already been counted
1108 * in bio->bi_phys_segments
1110 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1111 r1_bio
->master_bio
= bio
;
1112 r1_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1114 r1_bio
->mddev
= mddev
;
1115 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1119 r1_bio_write_done(r1_bio
);
1121 /* In case raid1d snuck in to freeze_array */
1122 wake_up(&conf
->wait_barrier
);
1124 if (do_sync
|| !bitmap
|| !plugged
)
1125 md_wakeup_thread(mddev
->thread
);
1130 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
1132 conf_t
*conf
= mddev
->private;
1135 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1136 conf
->raid_disks
- mddev
->degraded
);
1138 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1139 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1140 seq_printf(seq
, "%s",
1141 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1144 seq_printf(seq
, "]");
1148 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1150 char b
[BDEVNAME_SIZE
];
1151 conf_t
*conf
= mddev
->private;
1154 * If it is not operational, then we have already marked it as dead
1155 * else if it is the last working disks, ignore the error, let the
1156 * next level up know.
1157 * else mark the drive as failed
1159 if (test_bit(In_sync
, &rdev
->flags
)
1160 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1162 * Don't fail the drive, act as though we were just a
1163 * normal single drive.
1164 * However don't try a recovery from this drive as
1165 * it is very likely to fail.
1167 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1170 set_bit(Blocked
, &rdev
->flags
);
1171 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1172 unsigned long flags
;
1173 spin_lock_irqsave(&conf
->device_lock
, flags
);
1175 set_bit(Faulty
, &rdev
->flags
);
1176 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1178 * if recovery is running, make sure it aborts.
1180 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1182 set_bit(Faulty
, &rdev
->flags
);
1183 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1185 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1186 "md/raid1:%s: Operation continuing on %d devices.\n",
1187 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1188 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1191 static void print_conf(conf_t
*conf
)
1195 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1197 printk(KERN_DEBUG
"(!conf)\n");
1200 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1204 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1205 char b
[BDEVNAME_SIZE
];
1206 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1208 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1209 i
, !test_bit(In_sync
, &rdev
->flags
),
1210 !test_bit(Faulty
, &rdev
->flags
),
1211 bdevname(rdev
->bdev
,b
));
1216 static void close_sync(conf_t
*conf
)
1219 allow_barrier(conf
);
1221 mempool_destroy(conf
->r1buf_pool
);
1222 conf
->r1buf_pool
= NULL
;
1225 static int raid1_spare_active(mddev_t
*mddev
)
1228 conf_t
*conf
= mddev
->private;
1230 unsigned long flags
;
1233 * Find all failed disks within the RAID1 configuration
1234 * and mark them readable.
1235 * Called under mddev lock, so rcu protection not needed.
1237 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1238 mdk_rdev_t
*rdev
= conf
->mirrors
[i
].rdev
;
1240 && !test_bit(Faulty
, &rdev
->flags
)
1241 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1243 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1246 spin_lock_irqsave(&conf
->device_lock
, flags
);
1247 mddev
->degraded
-= count
;
1248 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1255 static int raid1_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1257 conf_t
*conf
= mddev
->private;
1262 int last
= mddev
->raid_disks
- 1;
1264 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1267 if (rdev
->raid_disk
>= 0)
1268 first
= last
= rdev
->raid_disk
;
1270 for (mirror
= first
; mirror
<= last
; mirror
++)
1271 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1273 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1274 rdev
->data_offset
<< 9);
1275 /* as we don't honour merge_bvec_fn, we must
1276 * never risk violating it, so limit
1277 * ->max_segments to one lying with a single
1278 * page, as a one page request is never in
1281 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1282 blk_queue_max_segments(mddev
->queue
, 1);
1283 blk_queue_segment_boundary(mddev
->queue
,
1284 PAGE_CACHE_SIZE
- 1);
1287 p
->head_position
= 0;
1288 rdev
->raid_disk
= mirror
;
1290 /* As all devices are equivalent, we don't need a full recovery
1291 * if this was recently any drive of the array
1293 if (rdev
->saved_raid_disk
< 0)
1295 rcu_assign_pointer(p
->rdev
, rdev
);
1298 md_integrity_add_rdev(rdev
, mddev
);
1303 static int raid1_remove_disk(mddev_t
*mddev
, int number
)
1305 conf_t
*conf
= mddev
->private;
1308 mirror_info_t
*p
= conf
->mirrors
+ number
;
1313 if (test_bit(In_sync
, &rdev
->flags
) ||
1314 atomic_read(&rdev
->nr_pending
)) {
1318 /* Only remove non-faulty devices if recovery
1321 if (!test_bit(Faulty
, &rdev
->flags
) &&
1322 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1323 mddev
->degraded
< conf
->raid_disks
) {
1329 if (atomic_read(&rdev
->nr_pending
)) {
1330 /* lost the race, try later */
1335 err
= md_integrity_register(mddev
);
1344 static void end_sync_read(struct bio
*bio
, int error
)
1346 r1bio_t
*r1_bio
= bio
->bi_private
;
1349 for (i
=r1_bio
->mddev
->raid_disks
; i
--; )
1350 if (r1_bio
->bios
[i
] == bio
)
1353 update_head_pos(i
, r1_bio
);
1355 * we have read a block, now it needs to be re-written,
1356 * or re-read if the read failed.
1357 * We don't do much here, just schedule handling by raid1d
1359 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1360 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1362 if (atomic_dec_and_test(&r1_bio
->remaining
))
1363 reschedule_retry(r1_bio
);
1366 static void end_sync_write(struct bio
*bio
, int error
)
1368 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1369 r1bio_t
*r1_bio
= bio
->bi_private
;
1370 mddev_t
*mddev
= r1_bio
->mddev
;
1371 conf_t
*conf
= mddev
->private;
1377 for (i
= 0; i
< conf
->raid_disks
; i
++)
1378 if (r1_bio
->bios
[i
] == bio
) {
1383 sector_t sync_blocks
= 0;
1384 sector_t s
= r1_bio
->sector
;
1385 long sectors_to_go
= r1_bio
->sectors
;
1386 /* make sure these bits doesn't get cleared. */
1388 bitmap_end_sync(mddev
->bitmap
, s
,
1391 sectors_to_go
-= sync_blocks
;
1392 } while (sectors_to_go
> 0);
1393 set_bit(WriteErrorSeen
,
1394 &conf
->mirrors
[mirror
].rdev
->flags
);
1395 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1396 } else if (is_badblock(conf
->mirrors
[mirror
].rdev
,
1399 &first_bad
, &bad_sectors
) &&
1400 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1403 &first_bad
, &bad_sectors
)
1405 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1407 update_head_pos(mirror
, r1_bio
);
1409 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1410 int s
= r1_bio
->sectors
;
1411 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1412 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1413 reschedule_retry(r1_bio
);
1416 md_done_sync(mddev
, s
, uptodate
);
1421 static int r1_sync_page_io(mdk_rdev_t
*rdev
, sector_t sector
,
1422 int sectors
, struct page
*page
, int rw
)
1424 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1428 set_bit(WriteErrorSeen
, &rdev
->flags
);
1429 /* need to record an error - either for the block or the device */
1430 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1431 md_error(rdev
->mddev
, rdev
);
1435 static int fix_sync_read_error(r1bio_t
*r1_bio
)
1437 /* Try some synchronous reads of other devices to get
1438 * good data, much like with normal read errors. Only
1439 * read into the pages we already have so we don't
1440 * need to re-issue the read request.
1441 * We don't need to freeze the array, because being in an
1442 * active sync request, there is no normal IO, and
1443 * no overlapping syncs.
1444 * We don't need to check is_badblock() again as we
1445 * made sure that anything with a bad block in range
1446 * will have bi_end_io clear.
1448 mddev_t
*mddev
= r1_bio
->mddev
;
1449 conf_t
*conf
= mddev
->private;
1450 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1451 sector_t sect
= r1_bio
->sector
;
1452 int sectors
= r1_bio
->sectors
;
1457 int d
= r1_bio
->read_disk
;
1462 if (s
> (PAGE_SIZE
>>9))
1465 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1466 /* No rcu protection needed here devices
1467 * can only be removed when no resync is
1468 * active, and resync is currently active
1470 rdev
= conf
->mirrors
[d
].rdev
;
1471 if (sync_page_io(rdev
, sect
, s
<<9,
1472 bio
->bi_io_vec
[idx
].bv_page
,
1479 if (d
== conf
->raid_disks
)
1481 } while (!success
&& d
!= r1_bio
->read_disk
);
1484 char b
[BDEVNAME_SIZE
];
1486 /* Cannot read from anywhere, this block is lost.
1487 * Record a bad block on each device. If that doesn't
1488 * work just disable and interrupt the recovery.
1489 * Don't fail devices as that won't really help.
1491 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1492 " for block %llu\n",
1494 bdevname(bio
->bi_bdev
, b
),
1495 (unsigned long long)r1_bio
->sector
);
1496 for (d
= 0; d
< conf
->raid_disks
; d
++) {
1497 rdev
= conf
->mirrors
[d
].rdev
;
1498 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1500 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1504 mddev
->recovery_disabled
= 1;
1505 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1506 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1518 /* write it back and re-read */
1519 while (d
!= r1_bio
->read_disk
) {
1521 d
= conf
->raid_disks
;
1523 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1525 rdev
= conf
->mirrors
[d
].rdev
;
1526 if (r1_sync_page_io(rdev
, sect
, s
,
1527 bio
->bi_io_vec
[idx
].bv_page
,
1529 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1530 rdev_dec_pending(rdev
, mddev
);
1534 while (d
!= r1_bio
->read_disk
) {
1536 d
= conf
->raid_disks
;
1538 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1540 rdev
= conf
->mirrors
[d
].rdev
;
1541 if (r1_sync_page_io(rdev
, sect
, s
,
1542 bio
->bi_io_vec
[idx
].bv_page
,
1544 atomic_add(s
, &rdev
->corrected_errors
);
1550 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1551 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1555 static int process_checks(r1bio_t
*r1_bio
)
1557 /* We have read all readable devices. If we haven't
1558 * got the block, then there is no hope left.
1559 * If we have, then we want to do a comparison
1560 * and skip the write if everything is the same.
1561 * If any blocks failed to read, then we need to
1562 * attempt an over-write
1564 mddev_t
*mddev
= r1_bio
->mddev
;
1565 conf_t
*conf
= mddev
->private;
1569 for (primary
= 0; primary
< conf
->raid_disks
; primary
++)
1570 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1571 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1572 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1573 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1576 r1_bio
->read_disk
= primary
;
1577 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1579 int vcnt
= r1_bio
->sectors
>> (PAGE_SHIFT
- 9);
1580 struct bio
*pbio
= r1_bio
->bios
[primary
];
1581 struct bio
*sbio
= r1_bio
->bios
[i
];
1584 if (r1_bio
->bios
[i
]->bi_end_io
!= end_sync_read
)
1587 if (test_bit(BIO_UPTODATE
, &sbio
->bi_flags
)) {
1588 for (j
= vcnt
; j
-- ; ) {
1590 p
= pbio
->bi_io_vec
[j
].bv_page
;
1591 s
= sbio
->bi_io_vec
[j
].bv_page
;
1592 if (memcmp(page_address(p
),
1600 mddev
->resync_mismatches
+= r1_bio
->sectors
;
1601 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
1602 && test_bit(BIO_UPTODATE
, &sbio
->bi_flags
))) {
1603 /* No need to write to this device. */
1604 sbio
->bi_end_io
= NULL
;
1605 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
1608 /* fixup the bio for reuse */
1609 sbio
->bi_vcnt
= vcnt
;
1610 sbio
->bi_size
= r1_bio
->sectors
<< 9;
1612 sbio
->bi_phys_segments
= 0;
1613 sbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1614 sbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1615 sbio
->bi_next
= NULL
;
1616 sbio
->bi_sector
= r1_bio
->sector
+
1617 conf
->mirrors
[i
].rdev
->data_offset
;
1618 sbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1619 size
= sbio
->bi_size
;
1620 for (j
= 0; j
< vcnt
; j
++) {
1622 bi
= &sbio
->bi_io_vec
[j
];
1624 if (size
> PAGE_SIZE
)
1625 bi
->bv_len
= PAGE_SIZE
;
1629 memcpy(page_address(bi
->bv_page
),
1630 page_address(pbio
->bi_io_vec
[j
].bv_page
),
1637 static void sync_request_write(mddev_t
*mddev
, r1bio_t
*r1_bio
)
1639 conf_t
*conf
= mddev
->private;
1641 int disks
= conf
->raid_disks
;
1642 struct bio
*bio
, *wbio
;
1644 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1646 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
1647 /* ouch - failed to read all of that. */
1648 if (!fix_sync_read_error(r1_bio
))
1651 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
1652 if (process_checks(r1_bio
) < 0)
1657 atomic_set(&r1_bio
->remaining
, 1);
1658 for (i
= 0; i
< disks
; i
++) {
1659 wbio
= r1_bio
->bios
[i
];
1660 if (wbio
->bi_end_io
== NULL
||
1661 (wbio
->bi_end_io
== end_sync_read
&&
1662 (i
== r1_bio
->read_disk
||
1663 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
1666 wbio
->bi_rw
= WRITE
;
1667 wbio
->bi_end_io
= end_sync_write
;
1668 atomic_inc(&r1_bio
->remaining
);
1669 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, wbio
->bi_size
>> 9);
1671 generic_make_request(wbio
);
1674 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1675 /* if we're here, all write(s) have completed, so clean up */
1676 md_done_sync(mddev
, r1_bio
->sectors
, 1);
1682 * This is a kernel thread which:
1684 * 1. Retries failed read operations on working mirrors.
1685 * 2. Updates the raid superblock when problems encounter.
1686 * 3. Performs writes following reads for array synchronising.
1689 static void fix_read_error(conf_t
*conf
, int read_disk
,
1690 sector_t sect
, int sectors
)
1692 mddev_t
*mddev
= conf
->mddev
;
1700 if (s
> (PAGE_SIZE
>>9))
1704 /* Note: no rcu protection needed here
1705 * as this is synchronous in the raid1d thread
1706 * which is the thread that might remove
1707 * a device. If raid1d ever becomes multi-threaded....
1712 rdev
= conf
->mirrors
[d
].rdev
;
1714 test_bit(In_sync
, &rdev
->flags
) &&
1715 is_badblock(rdev
, sect
, s
,
1716 &first_bad
, &bad_sectors
) == 0 &&
1717 sync_page_io(rdev
, sect
, s
<<9,
1718 conf
->tmppage
, READ
, false))
1722 if (d
== conf
->raid_disks
)
1725 } while (!success
&& d
!= read_disk
);
1728 /* Cannot read from anywhere - mark it bad */
1729 mdk_rdev_t
*rdev
= conf
->mirrors
[read_disk
].rdev
;
1730 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1731 md_error(mddev
, rdev
);
1734 /* write it back and re-read */
1736 while (d
!= read_disk
) {
1738 d
= conf
->raid_disks
;
1740 rdev
= conf
->mirrors
[d
].rdev
;
1742 test_bit(In_sync
, &rdev
->flags
))
1743 r1_sync_page_io(rdev
, sect
, s
,
1744 conf
->tmppage
, WRITE
);
1747 while (d
!= read_disk
) {
1748 char b
[BDEVNAME_SIZE
];
1750 d
= conf
->raid_disks
;
1752 rdev
= conf
->mirrors
[d
].rdev
;
1754 test_bit(In_sync
, &rdev
->flags
)) {
1755 if (r1_sync_page_io(rdev
, sect
, s
,
1756 conf
->tmppage
, READ
)) {
1757 atomic_add(s
, &rdev
->corrected_errors
);
1759 "md/raid1:%s: read error corrected "
1760 "(%d sectors at %llu on %s)\n",
1762 (unsigned long long)(sect
+
1764 bdevname(rdev
->bdev
, b
));
1773 static void bi_complete(struct bio
*bio
, int error
)
1775 complete((struct completion
*)bio
->bi_private
);
1778 static int submit_bio_wait(int rw
, struct bio
*bio
)
1780 struct completion event
;
1783 init_completion(&event
);
1784 bio
->bi_private
= &event
;
1785 bio
->bi_end_io
= bi_complete
;
1786 submit_bio(rw
, bio
);
1787 wait_for_completion(&event
);
1789 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1792 static int narrow_write_error(r1bio_t
*r1_bio
, int i
)
1794 mddev_t
*mddev
= r1_bio
->mddev
;
1795 conf_t
*conf
= mddev
->private;
1796 mdk_rdev_t
*rdev
= conf
->mirrors
[i
].rdev
;
1798 struct bio_vec
*vec
;
1800 /* bio has the data to be written to device 'i' where
1801 * we just recently had a write error.
1802 * We repeatedly clone the bio and trim down to one block,
1803 * then try the write. Where the write fails we record
1805 * It is conceivable that the bio doesn't exactly align with
1806 * blocks. We must handle this somehow.
1808 * We currently own a reference on the rdev.
1814 int sect_to_write
= r1_bio
->sectors
;
1817 if (rdev
->badblocks
.shift
< 0)
1820 block_sectors
= 1 << rdev
->badblocks
.shift
;
1821 sector
= r1_bio
->sector
;
1822 sectors
= ((sector
+ block_sectors
)
1823 & ~(sector_t
)(block_sectors
- 1))
1826 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
1827 vcnt
= r1_bio
->behind_page_count
;
1828 vec
= r1_bio
->behind_bvecs
;
1830 while (vec
[idx
].bv_page
== NULL
)
1833 vcnt
= r1_bio
->master_bio
->bi_vcnt
;
1834 vec
= r1_bio
->master_bio
->bi_io_vec
;
1835 idx
= r1_bio
->master_bio
->bi_idx
;
1837 while (sect_to_write
) {
1839 if (sectors
> sect_to_write
)
1840 sectors
= sect_to_write
;
1841 /* Write at 'sector' for 'sectors'*/
1843 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
1844 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
1845 wbio
->bi_sector
= r1_bio
->sector
;
1846 wbio
->bi_rw
= WRITE
;
1847 wbio
->bi_vcnt
= vcnt
;
1848 wbio
->bi_size
= r1_bio
->sectors
<< 9;
1851 md_trim_bio(wbio
, sector
- r1_bio
->sector
, sectors
);
1852 wbio
->bi_sector
+= rdev
->data_offset
;
1853 wbio
->bi_bdev
= rdev
->bdev
;
1854 if (submit_bio_wait(WRITE
, wbio
) == 0)
1856 ok
= rdev_set_badblocks(rdev
, sector
,
1861 sect_to_write
-= sectors
;
1863 sectors
= block_sectors
;
1868 static void handle_sync_write_finished(conf_t
*conf
, r1bio_t
*r1_bio
)
1871 int s
= r1_bio
->sectors
;
1872 for (m
= 0; m
< conf
->raid_disks
; m
++) {
1873 mdk_rdev_t
*rdev
= conf
->mirrors
[m
].rdev
;
1874 struct bio
*bio
= r1_bio
->bios
[m
];
1875 if (bio
->bi_end_io
== NULL
)
1877 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
1878 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
1879 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
);
1881 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
1882 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
1883 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
1884 md_error(conf
->mddev
, rdev
);
1888 md_done_sync(conf
->mddev
, s
, 1);
1891 static void handle_write_finished(conf_t
*conf
, r1bio_t
*r1_bio
)
1894 for (m
= 0; m
< conf
->raid_disks
; m
++)
1895 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
1896 mdk_rdev_t
*rdev
= conf
->mirrors
[m
].rdev
;
1897 rdev_clear_badblocks(rdev
,
1900 rdev_dec_pending(rdev
, conf
->mddev
);
1901 } else if (r1_bio
->bios
[m
] != NULL
) {
1902 /* This drive got a write error. We need to
1903 * narrow down and record precise write
1906 if (!narrow_write_error(r1_bio
, m
)) {
1907 md_error(conf
->mddev
,
1908 conf
->mirrors
[m
].rdev
);
1909 /* an I/O failed, we can't clear the bitmap */
1910 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1912 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
1915 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1916 close_write(r1_bio
);
1917 raid_end_bio_io(r1_bio
);
1920 static void handle_read_error(conf_t
*conf
, r1bio_t
*r1_bio
)
1924 mddev_t
*mddev
= conf
->mddev
;
1926 char b
[BDEVNAME_SIZE
];
1929 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
1930 /* we got a read error. Maybe the drive is bad. Maybe just
1931 * the block and we can fix it.
1932 * We freeze all other IO, and try reading the block from
1933 * other devices. When we find one, we re-write
1934 * and check it that fixes the read error.
1935 * This is all done synchronously while the array is
1938 if (mddev
->ro
== 0) {
1940 fix_read_error(conf
, r1_bio
->read_disk
,
1941 r1_bio
->sector
, r1_bio
->sectors
);
1942 unfreeze_array(conf
);
1944 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1946 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1947 bdevname(bio
->bi_bdev
, b
);
1949 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
1951 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
1952 " read error for block %llu\n",
1953 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
1954 raid_end_bio_io(r1_bio
);
1956 const unsigned long do_sync
1957 = r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
1959 r1_bio
->bios
[r1_bio
->read_disk
] =
1960 mddev
->ro
? IO_BLOCKED
: NULL
;
1963 r1_bio
->read_disk
= disk
;
1964 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
1965 md_trim_bio(bio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
1966 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
1967 rdev
= conf
->mirrors
[disk
].rdev
;
1968 printk_ratelimited(KERN_ERR
1969 "md/raid1:%s: redirecting sector %llu"
1970 " to other mirror: %s\n",
1972 (unsigned long long)r1_bio
->sector
,
1973 bdevname(rdev
->bdev
, b
));
1974 bio
->bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
1975 bio
->bi_bdev
= rdev
->bdev
;
1976 bio
->bi_end_io
= raid1_end_read_request
;
1977 bio
->bi_rw
= READ
| do_sync
;
1978 bio
->bi_private
= r1_bio
;
1979 if (max_sectors
< r1_bio
->sectors
) {
1980 /* Drat - have to split this up more */
1981 struct bio
*mbio
= r1_bio
->master_bio
;
1982 int sectors_handled
= (r1_bio
->sector
+ max_sectors
1984 r1_bio
->sectors
= max_sectors
;
1985 spin_lock_irq(&conf
->device_lock
);
1986 if (mbio
->bi_phys_segments
== 0)
1987 mbio
->bi_phys_segments
= 2;
1989 mbio
->bi_phys_segments
++;
1990 spin_unlock_irq(&conf
->device_lock
);
1991 generic_make_request(bio
);
1994 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1996 r1_bio
->master_bio
= mbio
;
1997 r1_bio
->sectors
= (mbio
->bi_size
>> 9)
2000 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2001 r1_bio
->mddev
= mddev
;
2002 r1_bio
->sector
= mbio
->bi_sector
+ sectors_handled
;
2006 generic_make_request(bio
);
2010 static void raid1d(mddev_t
*mddev
)
2013 unsigned long flags
;
2014 conf_t
*conf
= mddev
->private;
2015 struct list_head
*head
= &conf
->retry_list
;
2016 struct blk_plug plug
;
2018 md_check_recovery(mddev
);
2020 blk_start_plug(&plug
);
2023 if (atomic_read(&mddev
->plug_cnt
) == 0)
2024 flush_pending_writes(conf
);
2026 spin_lock_irqsave(&conf
->device_lock
, flags
);
2027 if (list_empty(head
)) {
2028 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2031 r1_bio
= list_entry(head
->prev
, r1bio_t
, retry_list
);
2032 list_del(head
->prev
);
2034 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2036 mddev
= r1_bio
->mddev
;
2037 conf
= mddev
->private;
2038 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2039 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2040 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2041 handle_sync_write_finished(conf
, r1_bio
);
2043 sync_request_write(mddev
, r1_bio
);
2044 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2045 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2046 handle_write_finished(conf
, r1_bio
);
2047 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2048 handle_read_error(conf
, r1_bio
);
2050 /* just a partial read to be scheduled from separate
2053 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2056 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2057 md_check_recovery(mddev
);
2059 blk_finish_plug(&plug
);
2063 static int init_resync(conf_t
*conf
)
2067 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2068 BUG_ON(conf
->r1buf_pool
);
2069 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2071 if (!conf
->r1buf_pool
)
2073 conf
->next_resync
= 0;
2078 * perform a "sync" on one "block"
2080 * We need to make sure that no normal I/O request - particularly write
2081 * requests - conflict with active sync requests.
2083 * This is achieved by tracking pending requests and a 'barrier' concept
2084 * that can be installed to exclude normal IO requests.
2087 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
2089 conf_t
*conf
= mddev
->private;
2092 sector_t max_sector
, nr_sectors
;
2096 int write_targets
= 0, read_targets
= 0;
2097 sector_t sync_blocks
;
2098 int still_degraded
= 0;
2099 int good_sectors
= RESYNC_SECTORS
;
2100 int min_bad
= 0; /* number of sectors that are bad in all devices */
2102 if (!conf
->r1buf_pool
)
2103 if (init_resync(conf
))
2106 max_sector
= mddev
->dev_sectors
;
2107 if (sector_nr
>= max_sector
) {
2108 /* If we aborted, we need to abort the
2109 * sync on the 'current' bitmap chunk (there will
2110 * only be one in raid1 resync.
2111 * We can find the current addess in mddev->curr_resync
2113 if (mddev
->curr_resync
< max_sector
) /* aborted */
2114 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2116 else /* completed sync */
2119 bitmap_close_sync(mddev
->bitmap
);
2124 if (mddev
->bitmap
== NULL
&&
2125 mddev
->recovery_cp
== MaxSector
&&
2126 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2127 conf
->fullsync
== 0) {
2129 return max_sector
- sector_nr
;
2131 /* before building a request, check if we can skip these blocks..
2132 * This call the bitmap_start_sync doesn't actually record anything
2134 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2135 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2136 /* We can skip this block, and probably several more */
2141 * If there is non-resync activity waiting for a turn,
2142 * and resync is going fast enough,
2143 * then let it though before starting on this new sync request.
2145 if (!go_faster
&& conf
->nr_waiting
)
2146 msleep_interruptible(1000);
2148 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2149 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2150 raise_barrier(conf
);
2152 conf
->next_resync
= sector_nr
;
2156 * If we get a correctably read error during resync or recovery,
2157 * we might want to read from a different device. So we
2158 * flag all drives that could conceivably be read from for READ,
2159 * and any others (which will be non-In_sync devices) for WRITE.
2160 * If a read fails, we try reading from something else for which READ
2164 r1_bio
->mddev
= mddev
;
2165 r1_bio
->sector
= sector_nr
;
2167 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2169 for (i
=0; i
< conf
->raid_disks
; i
++) {
2171 bio
= r1_bio
->bios
[i
];
2173 /* take from bio_init */
2174 bio
->bi_next
= NULL
;
2175 bio
->bi_flags
&= ~(BIO_POOL_MASK
-1);
2176 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
2177 bio
->bi_comp_cpu
= -1;
2181 bio
->bi_phys_segments
= 0;
2183 bio
->bi_end_io
= NULL
;
2184 bio
->bi_private
= NULL
;
2186 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2188 test_bit(Faulty
, &rdev
->flags
)) {
2190 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2192 bio
->bi_end_io
= end_sync_write
;
2195 /* may need to read from here */
2196 sector_t first_bad
= MaxSector
;
2199 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2200 &first_bad
, &bad_sectors
)) {
2201 if (first_bad
> sector_nr
)
2202 good_sectors
= first_bad
- sector_nr
;
2204 bad_sectors
-= (sector_nr
- first_bad
);
2206 min_bad
> bad_sectors
)
2207 min_bad
= bad_sectors
;
2210 if (sector_nr
< first_bad
) {
2211 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2219 bio
->bi_end_io
= end_sync_read
;
2223 if (bio
->bi_end_io
) {
2224 atomic_inc(&rdev
->nr_pending
);
2225 bio
->bi_sector
= sector_nr
+ rdev
->data_offset
;
2226 bio
->bi_bdev
= rdev
->bdev
;
2227 bio
->bi_private
= r1_bio
;
2233 r1_bio
->read_disk
= disk
;
2235 if (read_targets
== 0 && min_bad
> 0) {
2236 /* These sectors are bad on all InSync devices, so we
2237 * need to mark them bad on all write targets
2240 for (i
= 0 ; i
< conf
->raid_disks
; i
++)
2241 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2243 rcu_dereference(conf
->mirrors
[i
].rdev
);
2244 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2248 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2253 /* Cannot record the badblocks, so need to
2255 * If there are multiple read targets, could just
2256 * fail the really bad ones ???
2258 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2259 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2265 if (min_bad
> 0 && min_bad
< good_sectors
) {
2266 /* only resync enough to reach the next bad->good
2268 good_sectors
= min_bad
;
2271 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2272 /* extra read targets are also write targets */
2273 write_targets
+= read_targets
-1;
2275 if (write_targets
== 0 || read_targets
== 0) {
2276 /* There is nowhere to write, so all non-sync
2277 * drives must be failed - so we are finished
2279 sector_t rv
= max_sector
- sector_nr
;
2285 if (max_sector
> mddev
->resync_max
)
2286 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2287 if (max_sector
> sector_nr
+ good_sectors
)
2288 max_sector
= sector_nr
+ good_sectors
;
2293 int len
= PAGE_SIZE
;
2294 if (sector_nr
+ (len
>>9) > max_sector
)
2295 len
= (max_sector
- sector_nr
) << 9;
2298 if (sync_blocks
== 0) {
2299 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2300 &sync_blocks
, still_degraded
) &&
2302 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2304 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
2305 if ((len
>> 9) > sync_blocks
)
2306 len
= sync_blocks
<<9;
2309 for (i
=0 ; i
< conf
->raid_disks
; i
++) {
2310 bio
= r1_bio
->bios
[i
];
2311 if (bio
->bi_end_io
) {
2312 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2313 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2315 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2318 bio
= r1_bio
->bios
[i
];
2319 if (bio
->bi_end_io
==NULL
)
2321 /* remove last page from this bio */
2323 bio
->bi_size
-= len
;
2324 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2330 nr_sectors
+= len
>>9;
2331 sector_nr
+= len
>>9;
2332 sync_blocks
-= (len
>>9);
2333 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2335 r1_bio
->sectors
= nr_sectors
;
2337 /* For a user-requested sync, we read all readable devices and do a
2340 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2341 atomic_set(&r1_bio
->remaining
, read_targets
);
2342 for (i
=0; i
<conf
->raid_disks
; i
++) {
2343 bio
= r1_bio
->bios
[i
];
2344 if (bio
->bi_end_io
== end_sync_read
) {
2345 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2346 generic_make_request(bio
);
2350 atomic_set(&r1_bio
->remaining
, 1);
2351 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2352 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2353 generic_make_request(bio
);
2359 static sector_t
raid1_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
2364 return mddev
->dev_sectors
;
2367 static conf_t
*setup_conf(mddev_t
*mddev
)
2371 mirror_info_t
*disk
;
2375 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
2379 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
2384 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2388 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2389 if (!conf
->poolinfo
)
2391 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
;
2392 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2395 if (!conf
->r1bio_pool
)
2398 conf
->poolinfo
->mddev
= mddev
;
2400 spin_lock_init(&conf
->device_lock
);
2401 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2402 int disk_idx
= rdev
->raid_disk
;
2403 if (disk_idx
>= mddev
->raid_disks
2406 disk
= conf
->mirrors
+ disk_idx
;
2410 disk
->head_position
= 0;
2412 conf
->raid_disks
= mddev
->raid_disks
;
2413 conf
->mddev
= mddev
;
2414 INIT_LIST_HEAD(&conf
->retry_list
);
2416 spin_lock_init(&conf
->resync_lock
);
2417 init_waitqueue_head(&conf
->wait_barrier
);
2419 bio_list_init(&conf
->pending_bio_list
);
2421 conf
->last_used
= -1;
2422 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2424 disk
= conf
->mirrors
+ i
;
2427 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2428 disk
->head_position
= 0;
2431 } else if (conf
->last_used
< 0)
2433 * The first working device is used as a
2434 * starting point to read balancing.
2436 conf
->last_used
= i
;
2440 if (conf
->last_used
< 0) {
2441 printk(KERN_ERR
"md/raid1:%s: no operational mirrors\n",
2446 conf
->thread
= md_register_thread(raid1d
, mddev
, NULL
);
2447 if (!conf
->thread
) {
2449 "md/raid1:%s: couldn't allocate thread\n",
2458 if (conf
->r1bio_pool
)
2459 mempool_destroy(conf
->r1bio_pool
);
2460 kfree(conf
->mirrors
);
2461 safe_put_page(conf
->tmppage
);
2462 kfree(conf
->poolinfo
);
2465 return ERR_PTR(err
);
2468 static int run(mddev_t
*mddev
)
2474 if (mddev
->level
!= 1) {
2475 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2476 mdname(mddev
), mddev
->level
);
2479 if (mddev
->reshape_position
!= MaxSector
) {
2480 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2485 * copy the already verified devices into our private RAID1
2486 * bookkeeping area. [whatever we allocate in run(),
2487 * should be freed in stop()]
2489 if (mddev
->private == NULL
)
2490 conf
= setup_conf(mddev
);
2492 conf
= mddev
->private;
2495 return PTR_ERR(conf
);
2497 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2498 if (!mddev
->gendisk
)
2500 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2501 rdev
->data_offset
<< 9);
2502 /* as we don't honour merge_bvec_fn, we must never risk
2503 * violating it, so limit ->max_segments to 1 lying within
2504 * a single page, as a one page request is never in violation.
2506 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
2507 blk_queue_max_segments(mddev
->queue
, 1);
2508 blk_queue_segment_boundary(mddev
->queue
,
2509 PAGE_CACHE_SIZE
- 1);
2513 mddev
->degraded
= 0;
2514 for (i
=0; i
< conf
->raid_disks
; i
++)
2515 if (conf
->mirrors
[i
].rdev
== NULL
||
2516 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2517 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2520 if (conf
->raid_disks
- mddev
->degraded
== 1)
2521 mddev
->recovery_cp
= MaxSector
;
2523 if (mddev
->recovery_cp
!= MaxSector
)
2524 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2525 " -- starting background reconstruction\n",
2528 "md/raid1:%s: active with %d out of %d mirrors\n",
2529 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2533 * Ok, everything is just fine now
2535 mddev
->thread
= conf
->thread
;
2536 conf
->thread
= NULL
;
2537 mddev
->private = conf
;
2539 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2542 mddev
->queue
->backing_dev_info
.congested_fn
= raid1_congested
;
2543 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2545 return md_integrity_register(mddev
);
2548 static int stop(mddev_t
*mddev
)
2550 conf_t
*conf
= mddev
->private;
2551 struct bitmap
*bitmap
= mddev
->bitmap
;
2553 /* wait for behind writes to complete */
2554 if (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
2555 printk(KERN_INFO
"md/raid1:%s: behind writes in progress - waiting to stop.\n",
2557 /* need to kick something here to make sure I/O goes? */
2558 wait_event(bitmap
->behind_wait
,
2559 atomic_read(&bitmap
->behind_writes
) == 0);
2562 raise_barrier(conf
);
2563 lower_barrier(conf
);
2565 md_unregister_thread(&mddev
->thread
);
2566 if (conf
->r1bio_pool
)
2567 mempool_destroy(conf
->r1bio_pool
);
2568 kfree(conf
->mirrors
);
2569 kfree(conf
->poolinfo
);
2571 mddev
->private = NULL
;
2575 static int raid1_resize(mddev_t
*mddev
, sector_t sectors
)
2577 /* no resync is happening, and there is enough space
2578 * on all devices, so we can resize.
2579 * We need to make sure resync covers any new space.
2580 * If the array is shrinking we should possibly wait until
2581 * any io in the removed space completes, but it hardly seems
2584 md_set_array_sectors(mddev
, raid1_size(mddev
, sectors
, 0));
2585 if (mddev
->array_sectors
> raid1_size(mddev
, sectors
, 0))
2587 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
2588 revalidate_disk(mddev
->gendisk
);
2589 if (sectors
> mddev
->dev_sectors
&&
2590 mddev
->recovery_cp
> mddev
->dev_sectors
) {
2591 mddev
->recovery_cp
= mddev
->dev_sectors
;
2592 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2594 mddev
->dev_sectors
= sectors
;
2595 mddev
->resync_max_sectors
= sectors
;
2599 static int raid1_reshape(mddev_t
*mddev
)
2602 * 1/ resize the r1bio_pool
2603 * 2/ resize conf->mirrors
2605 * We allocate a new r1bio_pool if we can.
2606 * Then raise a device barrier and wait until all IO stops.
2607 * Then resize conf->mirrors and swap in the new r1bio pool.
2609 * At the same time, we "pack" the devices so that all the missing
2610 * devices have the higher raid_disk numbers.
2612 mempool_t
*newpool
, *oldpool
;
2613 struct pool_info
*newpoolinfo
;
2614 mirror_info_t
*newmirrors
;
2615 conf_t
*conf
= mddev
->private;
2616 int cnt
, raid_disks
;
2617 unsigned long flags
;
2620 /* Cannot change chunk_size, layout, or level */
2621 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
2622 mddev
->layout
!= mddev
->new_layout
||
2623 mddev
->level
!= mddev
->new_level
) {
2624 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
2625 mddev
->new_layout
= mddev
->layout
;
2626 mddev
->new_level
= mddev
->level
;
2630 err
= md_allow_write(mddev
);
2634 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
2636 if (raid_disks
< conf
->raid_disks
) {
2638 for (d
= 0; d
< conf
->raid_disks
; d
++)
2639 if (conf
->mirrors
[d
].rdev
)
2641 if (cnt
> raid_disks
)
2645 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
2648 newpoolinfo
->mddev
= mddev
;
2649 newpoolinfo
->raid_disks
= raid_disks
;
2651 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2652 r1bio_pool_free
, newpoolinfo
);
2657 newmirrors
= kzalloc(sizeof(struct mirror_info
) * raid_disks
, GFP_KERNEL
);
2660 mempool_destroy(newpool
);
2664 raise_barrier(conf
);
2666 /* ok, everything is stopped */
2667 oldpool
= conf
->r1bio_pool
;
2668 conf
->r1bio_pool
= newpool
;
2670 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
2671 mdk_rdev_t
*rdev
= conf
->mirrors
[d
].rdev
;
2672 if (rdev
&& rdev
->raid_disk
!= d2
) {
2673 sysfs_unlink_rdev(mddev
, rdev
);
2674 rdev
->raid_disk
= d2
;
2675 sysfs_unlink_rdev(mddev
, rdev
);
2676 if (sysfs_link_rdev(mddev
, rdev
))
2678 "md/raid1:%s: cannot register rd%d\n",
2679 mdname(mddev
), rdev
->raid_disk
);
2682 newmirrors
[d2
++].rdev
= rdev
;
2684 kfree(conf
->mirrors
);
2685 conf
->mirrors
= newmirrors
;
2686 kfree(conf
->poolinfo
);
2687 conf
->poolinfo
= newpoolinfo
;
2689 spin_lock_irqsave(&conf
->device_lock
, flags
);
2690 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
2691 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2692 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
2693 mddev
->delta_disks
= 0;
2695 conf
->last_used
= 0; /* just make sure it is in-range */
2696 lower_barrier(conf
);
2698 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2699 md_wakeup_thread(mddev
->thread
);
2701 mempool_destroy(oldpool
);
2705 static void raid1_quiesce(mddev_t
*mddev
, int state
)
2707 conf_t
*conf
= mddev
->private;
2710 case 2: /* wake for suspend */
2711 wake_up(&conf
->wait_barrier
);
2714 raise_barrier(conf
);
2717 lower_barrier(conf
);
2722 static void *raid1_takeover(mddev_t
*mddev
)
2724 /* raid1 can take over:
2725 * raid5 with 2 devices, any layout or chunk size
2727 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
2729 mddev
->new_level
= 1;
2730 mddev
->new_layout
= 0;
2731 mddev
->new_chunk_sectors
= 0;
2732 conf
= setup_conf(mddev
);
2737 return ERR_PTR(-EINVAL
);
2740 static struct mdk_personality raid1_personality
=
2744 .owner
= THIS_MODULE
,
2745 .make_request
= make_request
,
2749 .error_handler
= error
,
2750 .hot_add_disk
= raid1_add_disk
,
2751 .hot_remove_disk
= raid1_remove_disk
,
2752 .spare_active
= raid1_spare_active
,
2753 .sync_request
= sync_request
,
2754 .resize
= raid1_resize
,
2756 .check_reshape
= raid1_reshape
,
2757 .quiesce
= raid1_quiesce
,
2758 .takeover
= raid1_takeover
,
2761 static int __init
raid_init(void)
2763 return register_md_personality(&raid1_personality
);
2766 static void raid_exit(void)
2768 unregister_md_personality(&raid1_personality
);
2771 module_init(raid_init
);
2772 module_exit(raid_exit
);
2773 MODULE_LICENSE("GPL");
2774 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2775 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2776 MODULE_ALIAS("md-raid1");
2777 MODULE_ALIAS("md-level-1");