Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux-btrfs-devel.git] / drivers / video / imsttfb.c
blobefb2c10656b0a89aa88d23276d47926805bbb4b2
1 /*
2 * drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
4 * This file is derived from the powermac console "imstt" driver:
5 * Copyright (C) 1997 Sigurdur Asgeirsson
6 * With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu)
7 * Modified by Danilo Beuche 1998
8 * Some register values added by Damien Doligez, INRIA Rocquencourt
9 * Various cleanups by Paul Mundt (lethal@chaoticdreams.org)
11 * This file was written by Ryan Nielsen (ran@krazynet.com)
12 * Most of the frame buffer device stuff was copied from atyfb.c
14 * This file is subject to the terms and conditions of the GNU General Public
15 * License. See the file COPYING in the main directory of this archive for
16 * more details.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/fb.h>
28 #include <linux/init.h>
29 #include <linux/pci.h>
30 #include <asm/io.h>
31 #include <linux/uaccess.h>
33 #if defined(CONFIG_PPC)
34 #include <linux/nvram.h>
35 #include <asm/prom.h>
36 #include <asm/pci-bridge.h>
37 #include "macmodes.h"
38 #endif
40 #ifndef __powerpc__
41 #define eieio() /* Enforce In-order Execution of I/O */
42 #endif
44 /* TwinTurbo (Cosmo) registers */
45 enum {
46 S1SA = 0, /* 0x00 */
47 S2SA = 1, /* 0x04 */
48 SP = 2, /* 0x08 */
49 DSA = 3, /* 0x0C */
50 CNT = 4, /* 0x10 */
51 DP_OCTL = 5, /* 0x14 */
52 CLR = 6, /* 0x18 */
53 BI = 8, /* 0x20 */
54 MBC = 9, /* 0x24 */
55 BLTCTL = 10, /* 0x28 */
57 /* Scan Timing Generator Registers */
58 HES = 12, /* 0x30 */
59 HEB = 13, /* 0x34 */
60 HSB = 14, /* 0x38 */
61 HT = 15, /* 0x3C */
62 VES = 16, /* 0x40 */
63 VEB = 17, /* 0x44 */
64 VSB = 18, /* 0x48 */
65 VT = 19, /* 0x4C */
66 HCIV = 20, /* 0x50 */
67 VCIV = 21, /* 0x54 */
68 TCDR = 22, /* 0x58 */
69 VIL = 23, /* 0x5C */
70 STGCTL = 24, /* 0x60 */
72 /* Screen Refresh Generator Registers */
73 SSR = 25, /* 0x64 */
74 HRIR = 26, /* 0x68 */
75 SPR = 27, /* 0x6C */
76 CMR = 28, /* 0x70 */
77 SRGCTL = 29, /* 0x74 */
79 /* RAM Refresh Generator Registers */
80 RRCIV = 30, /* 0x78 */
81 RRSC = 31, /* 0x7C */
82 RRCR = 34, /* 0x88 */
84 /* System Registers */
85 GIOE = 32, /* 0x80 */
86 GIO = 33, /* 0x84 */
87 SCR = 35, /* 0x8C */
88 SSTATUS = 36, /* 0x90 */
89 PRC = 37, /* 0x94 */
91 #if 0
92 /* PCI Registers */
93 DVID = 0x00000000L,
94 SC = 0x00000004L,
95 CCR = 0x00000008L,
96 OG = 0x0000000CL,
97 BARM = 0x00000010L,
98 BARER = 0x00000030L,
99 #endif
102 /* IBM 624 RAMDAC Direct Registers */
103 enum {
104 PADDRW = 0x00,
105 PDATA = 0x04,
106 PPMASK = 0x08,
107 PADDRR = 0x0c,
108 PIDXLO = 0x10,
109 PIDXHI = 0x14,
110 PIDXDATA= 0x18,
111 PIDXCTL = 0x1c
114 /* IBM 624 RAMDAC Indirect Registers */
115 enum {
116 CLKCTL = 0x02, /* (0x01) Miscellaneous Clock Control */
117 SYNCCTL = 0x03, /* (0x00) Sync Control */
118 HSYNCPOS = 0x04, /* (0x00) Horizontal Sync Position */
119 PWRMNGMT = 0x05, /* (0x00) Power Management */
120 DACOP = 0x06, /* (0x02) DAC Operation */
121 PALETCTL = 0x07, /* (0x00) Palette Control */
122 SYSCLKCTL = 0x08, /* (0x01) System Clock Control */
123 PIXFMT = 0x0a, /* () Pixel Format [bpp >> 3 + 2] */
124 BPP8 = 0x0b, /* () 8 Bits/Pixel Control */
125 BPP16 = 0x0c, /* () 16 Bits/Pixel Control [bit 1=1 for 565] */
126 BPP24 = 0x0d, /* () 24 Bits/Pixel Control */
127 BPP32 = 0x0e, /* () 32 Bits/Pixel Control */
128 PIXCTL1 = 0x10, /* (0x05) Pixel PLL Control 1 */
129 PIXCTL2 = 0x11, /* (0x00) Pixel PLL Control 2 */
130 SYSCLKN = 0x15, /* () System Clock N (System PLL Reference Divider) */
131 SYSCLKM = 0x16, /* () System Clock M (System PLL VCO Divider) */
132 SYSCLKP = 0x17, /* () System Clock P */
133 SYSCLKC = 0x18, /* () System Clock C */
135 * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
136 * c is charge pump bias which depends on the VCO frequency
138 PIXM0 = 0x20, /* () Pixel M 0 */
139 PIXN0 = 0x21, /* () Pixel N 0 */
140 PIXP0 = 0x22, /* () Pixel P 0 */
141 PIXC0 = 0x23, /* () Pixel C 0 */
142 CURSCTL = 0x30, /* (0x00) Cursor Control */
143 CURSXLO = 0x31, /* () Cursor X position, low 8 bits */
144 CURSXHI = 0x32, /* () Cursor X position, high 8 bits */
145 CURSYLO = 0x33, /* () Cursor Y position, low 8 bits */
146 CURSYHI = 0x34, /* () Cursor Y position, high 8 bits */
147 CURSHOTX = 0x35, /* () Cursor Hot Spot X */
148 CURSHOTY = 0x36, /* () Cursor Hot Spot Y */
149 CURSACCTL = 0x37, /* () Advanced Cursor Control Enable */
150 CURSACATTR = 0x38, /* () Advanced Cursor Attribute */
151 CURS1R = 0x40, /* () Cursor 1 Red */
152 CURS1G = 0x41, /* () Cursor 1 Green */
153 CURS1B = 0x42, /* () Cursor 1 Blue */
154 CURS2R = 0x43, /* () Cursor 2 Red */
155 CURS2G = 0x44, /* () Cursor 2 Green */
156 CURS2B = 0x45, /* () Cursor 2 Blue */
157 CURS3R = 0x46, /* () Cursor 3 Red */
158 CURS3G = 0x47, /* () Cursor 3 Green */
159 CURS3B = 0x48, /* () Cursor 3 Blue */
160 BORDR = 0x60, /* () Border Color Red */
161 BORDG = 0x61, /* () Border Color Green */
162 BORDB = 0x62, /* () Border Color Blue */
163 MISCTL1 = 0x70, /* (0x00) Miscellaneous Control 1 */
164 MISCTL2 = 0x71, /* (0x00) Miscellaneous Control 2 */
165 MISCTL3 = 0x72, /* (0x00) Miscellaneous Control 3 */
166 KEYCTL = 0x78 /* (0x00) Key Control/DB Operation */
169 /* TI TVP 3030 RAMDAC Direct Registers */
170 enum {
171 TVPADDRW = 0x00, /* 0 Palette/Cursor RAM Write Address/Index */
172 TVPPDATA = 0x04, /* 1 Palette Data RAM Data */
173 TVPPMASK = 0x08, /* 2 Pixel Read-Mask */
174 TVPPADRR = 0x0c, /* 3 Palette/Cursor RAM Read Address */
175 TVPCADRW = 0x10, /* 4 Cursor/Overscan Color Write Address */
176 TVPCDATA = 0x14, /* 5 Cursor/Overscan Color Data */
177 /* 6 reserved */
178 TVPCADRR = 0x1c, /* 7 Cursor/Overscan Color Read Address */
179 /* 8 reserved */
180 TVPDCCTL = 0x24, /* 9 Direct Cursor Control */
181 TVPIDATA = 0x28, /* 10 Index Data */
182 TVPCRDAT = 0x2c, /* 11 Cursor RAM Data */
183 TVPCXPOL = 0x30, /* 12 Cursor-Position X LSB */
184 TVPCXPOH = 0x34, /* 13 Cursor-Position X MSB */
185 TVPCYPOL = 0x38, /* 14 Cursor-Position Y LSB */
186 TVPCYPOH = 0x3c, /* 15 Cursor-Position Y MSB */
189 /* TI TVP 3030 RAMDAC Indirect Registers */
190 enum {
191 TVPIRREV = 0x01, /* Silicon Revision [RO] */
192 TVPIRICC = 0x06, /* Indirect Cursor Control (0x00) */
193 TVPIRBRC = 0x07, /* Byte Router Control (0xe4) */
194 TVPIRLAC = 0x0f, /* Latch Control (0x06) */
195 TVPIRTCC = 0x18, /* True Color Control (0x80) */
196 TVPIRMXC = 0x19, /* Multiplex Control (0x98) */
197 TVPIRCLS = 0x1a, /* Clock Selection (0x07) */
198 TVPIRPPG = 0x1c, /* Palette Page (0x00) */
199 TVPIRGEC = 0x1d, /* General Control (0x00) */
200 TVPIRMIC = 0x1e, /* Miscellaneous Control (0x00) */
201 TVPIRPLA = 0x2c, /* PLL Address */
202 TVPIRPPD = 0x2d, /* Pixel Clock PLL Data */
203 TVPIRMPD = 0x2e, /* Memory Clock PLL Data */
204 TVPIRLPD = 0x2f, /* Loop Clock PLL Data */
205 TVPIRCKL = 0x30, /* Color-Key Overlay Low */
206 TVPIRCKH = 0x31, /* Color-Key Overlay High */
207 TVPIRCRL = 0x32, /* Color-Key Red Low */
208 TVPIRCRH = 0x33, /* Color-Key Red High */
209 TVPIRCGL = 0x34, /* Color-Key Green Low */
210 TVPIRCGH = 0x35, /* Color-Key Green High */
211 TVPIRCBL = 0x36, /* Color-Key Blue Low */
212 TVPIRCBH = 0x37, /* Color-Key Blue High */
213 TVPIRCKC = 0x38, /* Color-Key Control (0x00) */
214 TVPIRMLC = 0x39, /* MCLK/Loop Clock Control (0x18) */
215 TVPIRSEN = 0x3a, /* Sense Test (0x00) */
216 TVPIRTMD = 0x3b, /* Test Mode Data */
217 TVPIRRML = 0x3c, /* CRC Remainder LSB [RO] */
218 TVPIRRMM = 0x3d, /* CRC Remainder MSB [RO] */
219 TVPIRRMS = 0x3e, /* CRC Bit Select [WO] */
220 TVPIRDID = 0x3f, /* Device ID [RO] (0x30) */
221 TVPIRRES = 0xff /* Software Reset [WO] */
224 struct initvalues {
225 __u8 addr, value;
228 static struct initvalues ibm_initregs[] __devinitdata = {
229 { CLKCTL, 0x21 },
230 { SYNCCTL, 0x00 },
231 { HSYNCPOS, 0x00 },
232 { PWRMNGMT, 0x00 },
233 { DACOP, 0x02 },
234 { PALETCTL, 0x00 },
235 { SYSCLKCTL, 0x01 },
238 * Note that colors in X are correct only if all video data is
239 * passed through the palette in the DAC. That is, "indirect
240 * color" must be configured. This is the case for the IBM DAC
241 * used in the 2MB and 4MB cards, at least.
243 { BPP8, 0x00 },
244 { BPP16, 0x01 },
245 { BPP24, 0x00 },
246 { BPP32, 0x00 },
248 { PIXCTL1, 0x05 },
249 { PIXCTL2, 0x00 },
250 { SYSCLKN, 0x08 },
251 { SYSCLKM, 0x4f },
252 { SYSCLKP, 0x00 },
253 { SYSCLKC, 0x00 },
254 { CURSCTL, 0x00 },
255 { CURSACCTL, 0x01 },
256 { CURSACATTR, 0xa8 },
257 { CURS1R, 0xff },
258 { CURS1G, 0xff },
259 { CURS1B, 0xff },
260 { CURS2R, 0xff },
261 { CURS2G, 0xff },
262 { CURS2B, 0xff },
263 { CURS3R, 0xff },
264 { CURS3G, 0xff },
265 { CURS3B, 0xff },
266 { BORDR, 0xff },
267 { BORDG, 0xff },
268 { BORDB, 0xff },
269 { MISCTL1, 0x01 },
270 { MISCTL2, 0x45 },
271 { MISCTL3, 0x00 },
272 { KEYCTL, 0x00 }
275 static struct initvalues tvp_initregs[] __devinitdata = {
276 { TVPIRICC, 0x00 },
277 { TVPIRBRC, 0xe4 },
278 { TVPIRLAC, 0x06 },
279 { TVPIRTCC, 0x80 },
280 { TVPIRMXC, 0x4d },
281 { TVPIRCLS, 0x05 },
282 { TVPIRPPG, 0x00 },
283 { TVPIRGEC, 0x00 },
284 { TVPIRMIC, 0x08 },
285 { TVPIRCKL, 0xff },
286 { TVPIRCKH, 0xff },
287 { TVPIRCRL, 0xff },
288 { TVPIRCRH, 0xff },
289 { TVPIRCGL, 0xff },
290 { TVPIRCGH, 0xff },
291 { TVPIRCBL, 0xff },
292 { TVPIRCBH, 0xff },
293 { TVPIRCKC, 0x00 },
294 { TVPIRPLA, 0x00 },
295 { TVPIRPPD, 0xc0 },
296 { TVPIRPPD, 0xd5 },
297 { TVPIRPPD, 0xea },
298 { TVPIRPLA, 0x00 },
299 { TVPIRMPD, 0xb9 },
300 { TVPIRMPD, 0x3a },
301 { TVPIRMPD, 0xb1 },
302 { TVPIRPLA, 0x00 },
303 { TVPIRLPD, 0xc1 },
304 { TVPIRLPD, 0x3d },
305 { TVPIRLPD, 0xf3 },
308 struct imstt_regvals {
309 __u32 pitch;
310 __u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil;
311 __u8 pclk_m, pclk_n, pclk_p;
312 /* Values of the tvp which change depending on colormode x resolution */
313 __u8 mlc[3]; /* Memory Loop Config 0x39 */
314 __u8 lckl_p[3]; /* P value of LCKL PLL */
317 struct imstt_par {
318 struct imstt_regvals init;
319 __u32 __iomem *dc_regs;
320 unsigned long cmap_regs_phys;
321 __u8 *cmap_regs;
322 __u32 ramdac;
323 __u32 palette[16];
326 enum {
327 IBM = 0,
328 TVP = 1
331 #define USE_NV_MODES 1
332 #define INIT_BPP 8
333 #define INIT_XRES 640
334 #define INIT_YRES 480
336 static int inverse = 0;
337 static char fontname[40] __initdata = { 0 };
338 #if defined(CONFIG_PPC)
339 static signed char init_vmode __devinitdata = -1, init_cmode __devinitdata = -1;
340 #endif
342 static struct imstt_regvals tvp_reg_init_2 = {
343 512,
344 0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
345 0xec, 0x2a, 0xf3,
346 { 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
349 static struct imstt_regvals tvp_reg_init_6 = {
350 640,
351 0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
352 0xef, 0x2e, 0xb2,
353 { 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
356 static struct imstt_regvals tvp_reg_init_12 = {
357 800,
358 0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
359 0xf6, 0x2e, 0xf2,
360 { 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
363 static struct imstt_regvals tvp_reg_init_13 = {
364 832,
365 0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
366 0xfe, 0x3e, 0xf1,
367 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
370 static struct imstt_regvals tvp_reg_init_17 = {
371 1024,
372 0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
373 0xfc, 0x3a, 0xf1,
374 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
377 static struct imstt_regvals tvp_reg_init_18 = {
378 1152,
379 0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000,
380 0xfd, 0x3a, 0xf1,
381 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
384 static struct imstt_regvals tvp_reg_init_19 = {
385 1280,
386 0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
387 0xf7, 0x36, 0xf0,
388 { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
391 static struct imstt_regvals tvp_reg_init_20 = {
392 1280,
393 0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
394 0xf0, 0x2d, 0xf0,
395 { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
399 * PCI driver prototypes
401 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
402 static void imsttfb_remove(struct pci_dev *pdev);
405 * Register access
407 static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex)
409 #ifdef __powerpc__
410 return in_le32(base + regindex);
411 #else
412 return readl(base + regindex);
413 #endif
416 static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val)
418 #ifdef __powerpc__
419 out_le32(base + regindex, val);
420 #else
421 writel(val, base + regindex);
422 #endif
425 static __u32
426 getclkMHz(struct imstt_par *par)
428 __u32 clk_m, clk_n, clk_p;
430 clk_m = par->init.pclk_m;
431 clk_n = par->init.pclk_n;
432 clk_p = par->init.pclk_p;
434 return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
437 static void
438 setclkMHz(struct imstt_par *par, __u32 MHz)
440 __u32 clk_m, clk_n, x, stage, spilled;
442 clk_m = clk_n = 0;
443 stage = spilled = 0;
444 for (;;) {
445 switch (stage) {
446 case 0:
447 clk_m++;
448 break;
449 case 1:
450 clk_n++;
451 break;
453 x = 20 * (clk_m + 1) / (clk_n + 1);
454 if (x == MHz)
455 break;
456 if (x > MHz) {
457 spilled = 1;
458 stage = 1;
459 } else if (spilled && x < MHz) {
460 stage = 0;
464 par->init.pclk_m = clk_m;
465 par->init.pclk_n = clk_n;
466 par->init.pclk_p = 0;
469 static struct imstt_regvals *
470 compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres)
472 struct imstt_regvals *init = &par->init;
473 __u32 MHz, hes, heb, veb, htp, vtp;
475 switch (xres) {
476 case 640:
477 hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
478 MHz = 30 /* .25 */ ;
479 break;
480 case 832:
481 hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
482 MHz = 57 /* .27_ */ ;
483 break;
484 case 1024:
485 hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
486 MHz = 80;
487 break;
488 case 1152:
489 hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
490 MHz = 101 /* .6_ */ ;
491 break;
492 case 1280:
493 hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
494 MHz = yres == 960 ? 126 : 135;
495 break;
496 case 1600:
497 hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
498 MHz = 200;
499 break;
500 default:
501 return NULL;
504 setclkMHz(par, MHz);
506 init->hes = hes;
507 init->heb = heb;
508 init->hsb = init->heb + (xres >> 3);
509 init->ht = init->hsb + htp;
510 init->ves = 0x0003;
511 init->veb = veb;
512 init->vsb = init->veb + yres;
513 init->vt = init->vsb + vtp;
514 init->vil = init->vsb;
516 init->pitch = xres;
517 return init;
520 static struct imstt_regvals *
521 compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres)
523 struct imstt_regvals *init;
525 switch (xres) {
526 case 512:
527 init = &tvp_reg_init_2;
528 break;
529 case 640:
530 init = &tvp_reg_init_6;
531 break;
532 case 800:
533 init = &tvp_reg_init_12;
534 break;
535 case 832:
536 init = &tvp_reg_init_13;
537 break;
538 case 1024:
539 init = &tvp_reg_init_17;
540 break;
541 case 1152:
542 init = &tvp_reg_init_18;
543 break;
544 case 1280:
545 init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
546 break;
547 default:
548 return NULL;
550 par->init = *init;
551 return init;
554 static struct imstt_regvals *
555 compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres)
557 if (par->ramdac == IBM)
558 return compute_imstt_regvals_ibm(par, xres, yres);
559 else
560 return compute_imstt_regvals_tvp(par, xres, yres);
563 static void
564 set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp)
566 struct imstt_regvals *init = &par->init;
567 __u8 pformat = (bpp >> 3) + 2;
569 par->cmap_regs[PIDXHI] = 0; eieio();
570 par->cmap_regs[PIDXLO] = PIXM0; eieio();
571 par->cmap_regs[PIDXDATA] = init->pclk_m;eieio();
572 par->cmap_regs[PIDXLO] = PIXN0; eieio();
573 par->cmap_regs[PIDXDATA] = init->pclk_n;eieio();
574 par->cmap_regs[PIDXLO] = PIXP0; eieio();
575 par->cmap_regs[PIDXDATA] = init->pclk_p;eieio();
576 par->cmap_regs[PIDXLO] = PIXC0; eieio();
577 par->cmap_regs[PIDXDATA] = 0x02; eieio();
579 par->cmap_regs[PIDXLO] = PIXFMT; eieio();
580 par->cmap_regs[PIDXDATA] = pformat; eieio();
583 static void
584 set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp)
586 struct imstt_regvals *init = &par->init;
587 __u8 tcc, mxc, lckl_n, mic;
588 __u8 mlc, lckl_p;
590 switch (bpp) {
591 default:
592 case 8:
593 tcc = 0x80;
594 mxc = 0x4d;
595 lckl_n = 0xc1;
596 mlc = init->mlc[0];
597 lckl_p = init->lckl_p[0];
598 break;
599 case 16:
600 tcc = 0x44;
601 mxc = 0x55;
602 lckl_n = 0xe1;
603 mlc = init->mlc[1];
604 lckl_p = init->lckl_p[1];
605 break;
606 case 24:
607 tcc = 0x5e;
608 mxc = 0x5d;
609 lckl_n = 0xf1;
610 mlc = init->mlc[2];
611 lckl_p = init->lckl_p[2];
612 break;
613 case 32:
614 tcc = 0x46;
615 mxc = 0x5d;
616 lckl_n = 0xf1;
617 mlc = init->mlc[2];
618 lckl_p = init->lckl_p[2];
619 break;
621 mic = 0x08;
623 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
624 par->cmap_regs[TVPIDATA] = 0x00; eieio();
625 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
626 par->cmap_regs[TVPIDATA] = init->pclk_m; eieio();
627 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
628 par->cmap_regs[TVPIDATA] = init->pclk_n; eieio();
629 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
630 par->cmap_regs[TVPIDATA] = init->pclk_p; eieio();
632 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
633 par->cmap_regs[TVPIDATA] = tcc; eieio();
634 par->cmap_regs[TVPADDRW] = TVPIRMXC; eieio();
635 par->cmap_regs[TVPIDATA] = mxc; eieio();
636 par->cmap_regs[TVPADDRW] = TVPIRMIC; eieio();
637 par->cmap_regs[TVPIDATA] = mic; eieio();
639 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
640 par->cmap_regs[TVPIDATA] = 0x00; eieio();
641 par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
642 par->cmap_regs[TVPIDATA] = lckl_n; eieio();
644 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
645 par->cmap_regs[TVPIDATA] = 0x15; eieio();
646 par->cmap_regs[TVPADDRW] = TVPIRMLC; eieio();
647 par->cmap_regs[TVPIDATA] = mlc; eieio();
649 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
650 par->cmap_regs[TVPIDATA] = 0x2a; eieio();
651 par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
652 par->cmap_regs[TVPIDATA] = lckl_p; eieio();
655 static void
656 set_imstt_regvals (struct fb_info *info, u_int bpp)
658 struct imstt_par *par = info->par;
659 struct imstt_regvals *init = &par->init;
660 __u32 ctl, pitch, byteswap, scr;
662 if (par->ramdac == IBM)
663 set_imstt_regvals_ibm(par, bpp);
664 else
665 set_imstt_regvals_tvp(par, bpp);
668 * From what I (jsk) can gather poking around with MacsBug,
669 * bits 8 and 9 in the SCR register control endianness
670 * correction (byte swapping). These bits must be set according
671 * to the color depth as follows:
672 * Color depth Bit 9 Bit 8
673 * ========== ===== =====
674 * 8bpp 0 0
675 * 16bpp 0 1
676 * 32bpp 1 1
678 switch (bpp) {
679 default:
680 case 8:
681 ctl = 0x17b1;
682 pitch = init->pitch >> 2;
683 byteswap = 0x000;
684 break;
685 case 16:
686 ctl = 0x17b3;
687 pitch = init->pitch >> 1;
688 byteswap = 0x100;
689 break;
690 case 24:
691 ctl = 0x17b9;
692 pitch = init->pitch - (init->pitch >> 2);
693 byteswap = 0x200;
694 break;
695 case 32:
696 ctl = 0x17b5;
697 pitch = init->pitch;
698 byteswap = 0x300;
699 break;
701 if (par->ramdac == TVP)
702 ctl -= 0x30;
704 write_reg_le32(par->dc_regs, HES, init->hes);
705 write_reg_le32(par->dc_regs, HEB, init->heb);
706 write_reg_le32(par->dc_regs, HSB, init->hsb);
707 write_reg_le32(par->dc_regs, HT, init->ht);
708 write_reg_le32(par->dc_regs, VES, init->ves);
709 write_reg_le32(par->dc_regs, VEB, init->veb);
710 write_reg_le32(par->dc_regs, VSB, init->vsb);
711 write_reg_le32(par->dc_regs, VT, init->vt);
712 write_reg_le32(par->dc_regs, VIL, init->vil);
713 write_reg_le32(par->dc_regs, HCIV, 1);
714 write_reg_le32(par->dc_regs, VCIV, 1);
715 write_reg_le32(par->dc_regs, TCDR, 4);
716 write_reg_le32(par->dc_regs, RRCIV, 1);
717 write_reg_le32(par->dc_regs, RRSC, 0x980);
718 write_reg_le32(par->dc_regs, RRCR, 0x11);
720 if (par->ramdac == IBM) {
721 write_reg_le32(par->dc_regs, HRIR, 0x0100);
722 write_reg_le32(par->dc_regs, CMR, 0x00ff);
723 write_reg_le32(par->dc_regs, SRGCTL, 0x0073);
724 } else {
725 write_reg_le32(par->dc_regs, HRIR, 0x0200);
726 write_reg_le32(par->dc_regs, CMR, 0x01ff);
727 write_reg_le32(par->dc_regs, SRGCTL, 0x0003);
730 switch (info->fix.smem_len) {
731 case 0x200000:
732 scr = 0x059d | byteswap;
733 break;
734 /* case 0x400000:
735 case 0x800000: */
736 default:
737 pitch >>= 1;
738 scr = 0x150dd | byteswap;
739 break;
742 write_reg_le32(par->dc_regs, SCR, scr);
743 write_reg_le32(par->dc_regs, SPR, pitch);
744 write_reg_le32(par->dc_regs, STGCTL, ctl);
747 static inline void
748 set_offset (struct fb_var_screeninfo *var, struct fb_info *info)
750 struct imstt_par *par = info->par;
751 __u32 off = var->yoffset * (info->fix.line_length >> 3)
752 + ((var->xoffset * (var->bits_per_pixel >> 3)) >> 3);
753 write_reg_le32(par->dc_regs, SSR, off);
756 static inline void
757 set_555 (struct imstt_par *par)
759 if (par->ramdac == IBM) {
760 par->cmap_regs[PIDXHI] = 0; eieio();
761 par->cmap_regs[PIDXLO] = BPP16; eieio();
762 par->cmap_regs[PIDXDATA] = 0x01; eieio();
763 } else {
764 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
765 par->cmap_regs[TVPIDATA] = 0x44; eieio();
769 static inline void
770 set_565 (struct imstt_par *par)
772 if (par->ramdac == IBM) {
773 par->cmap_regs[PIDXHI] = 0; eieio();
774 par->cmap_regs[PIDXLO] = BPP16; eieio();
775 par->cmap_regs[PIDXDATA] = 0x03; eieio();
776 } else {
777 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
778 par->cmap_regs[TVPIDATA] = 0x45; eieio();
782 static int
783 imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
785 if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
786 && var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
787 || var->xres_virtual < var->xres || var->yres_virtual < var->yres
788 || var->nonstd
789 || (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
790 return -EINVAL;
792 if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len
793 || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len)
794 return -EINVAL;
796 switch (var->bits_per_pixel) {
797 case 8:
798 var->red.offset = 0;
799 var->red.length = 8;
800 var->green.offset = 0;
801 var->green.length = 8;
802 var->blue.offset = 0;
803 var->blue.length = 8;
804 var->transp.offset = 0;
805 var->transp.length = 0;
806 break;
807 case 16: /* RGB 555 or 565 */
808 if (var->green.length != 6)
809 var->red.offset = 10;
810 var->red.length = 5;
811 var->green.offset = 5;
812 if (var->green.length != 6)
813 var->green.length = 5;
814 var->blue.offset = 0;
815 var->blue.length = 5;
816 var->transp.offset = 0;
817 var->transp.length = 0;
818 break;
819 case 24: /* RGB 888 */
820 var->red.offset = 16;
821 var->red.length = 8;
822 var->green.offset = 8;
823 var->green.length = 8;
824 var->blue.offset = 0;
825 var->blue.length = 8;
826 var->transp.offset = 0;
827 var->transp.length = 0;
828 break;
829 case 32: /* RGBA 8888 */
830 var->red.offset = 16;
831 var->red.length = 8;
832 var->green.offset = 8;
833 var->green.length = 8;
834 var->blue.offset = 0;
835 var->blue.length = 8;
836 var->transp.offset = 24;
837 var->transp.length = 8;
838 break;
841 if (var->yres == var->yres_virtual) {
842 __u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2));
843 var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual;
844 if (var->yres_virtual < var->yres)
845 var->yres_virtual = var->yres;
848 var->red.msb_right = 0;
849 var->green.msb_right = 0;
850 var->blue.msb_right = 0;
851 var->transp.msb_right = 0;
852 var->height = -1;
853 var->width = -1;
854 var->vmode = FB_VMODE_NONINTERLACED;
855 var->left_margin = var->right_margin = 16;
856 var->upper_margin = var->lower_margin = 16;
857 var->hsync_len = var->vsync_len = 8;
858 return 0;
861 static int
862 imsttfb_set_par(struct fb_info *info)
864 struct imstt_par *par = info->par;
866 if (!compute_imstt_regvals(par, info->var.xres, info->var.yres))
867 return -EINVAL;
869 if (info->var.green.length == 6)
870 set_565(par);
871 else
872 set_555(par);
873 set_imstt_regvals(info, info->var.bits_per_pixel);
874 info->var.pixclock = 1000000 / getclkMHz(par);
875 return 0;
878 static int
879 imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
880 u_int transp, struct fb_info *info)
882 struct imstt_par *par = info->par;
883 u_int bpp = info->var.bits_per_pixel;
885 if (regno > 255)
886 return 1;
888 red >>= 8;
889 green >>= 8;
890 blue >>= 8;
892 /* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
893 if (0 && bpp == 16) /* screws up X */
894 par->cmap_regs[PADDRW] = regno << 3;
895 else
896 par->cmap_regs[PADDRW] = regno;
897 eieio();
899 par->cmap_regs[PDATA] = red; eieio();
900 par->cmap_regs[PDATA] = green; eieio();
901 par->cmap_regs[PDATA] = blue; eieio();
903 if (regno < 16)
904 switch (bpp) {
905 case 16:
906 par->palette[regno] =
907 (regno << (info->var.green.length ==
908 5 ? 10 : 11)) | (regno << 5) | regno;
909 break;
910 case 24:
911 par->palette[regno] =
912 (regno << 16) | (regno << 8) | regno;
913 break;
914 case 32: {
915 int i = (regno << 8) | regno;
916 par->palette[regno] = (i << 16) |i;
917 break;
920 return 0;
923 static int
924 imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
926 if (var->xoffset + info->var.xres > info->var.xres_virtual
927 || var->yoffset + info->var.yres > info->var.yres_virtual)
928 return -EINVAL;
930 info->var.xoffset = var->xoffset;
931 info->var.yoffset = var->yoffset;
932 set_offset(var, info);
933 return 0;
936 static int
937 imsttfb_blank(int blank, struct fb_info *info)
939 struct imstt_par *par = info->par;
940 __u32 ctrl;
942 ctrl = read_reg_le32(par->dc_regs, STGCTL);
943 if (blank > 0) {
944 switch (blank) {
945 case FB_BLANK_NORMAL:
946 case FB_BLANK_POWERDOWN:
947 ctrl &= ~0x00000380;
948 if (par->ramdac == IBM) {
949 par->cmap_regs[PIDXHI] = 0; eieio();
950 par->cmap_regs[PIDXLO] = MISCTL2; eieio();
951 par->cmap_regs[PIDXDATA] = 0x55; eieio();
952 par->cmap_regs[PIDXLO] = MISCTL1; eieio();
953 par->cmap_regs[PIDXDATA] = 0x11; eieio();
954 par->cmap_regs[PIDXLO] = SYNCCTL; eieio();
955 par->cmap_regs[PIDXDATA] = 0x0f; eieio();
956 par->cmap_regs[PIDXLO] = PWRMNGMT; eieio();
957 par->cmap_regs[PIDXDATA] = 0x1f; eieio();
958 par->cmap_regs[PIDXLO] = CLKCTL; eieio();
959 par->cmap_regs[PIDXDATA] = 0xc0;
961 break;
962 case FB_BLANK_VSYNC_SUSPEND:
963 ctrl &= ~0x00000020;
964 break;
965 case FB_BLANK_HSYNC_SUSPEND:
966 ctrl &= ~0x00000010;
967 break;
969 } else {
970 if (par->ramdac == IBM) {
971 ctrl |= 0x000017b0;
972 par->cmap_regs[PIDXHI] = 0; eieio();
973 par->cmap_regs[PIDXLO] = CLKCTL; eieio();
974 par->cmap_regs[PIDXDATA] = 0x01; eieio();
975 par->cmap_regs[PIDXLO] = PWRMNGMT; eieio();
976 par->cmap_regs[PIDXDATA] = 0x00; eieio();
977 par->cmap_regs[PIDXLO] = SYNCCTL; eieio();
978 par->cmap_regs[PIDXDATA] = 0x00; eieio();
979 par->cmap_regs[PIDXLO] = MISCTL1; eieio();
980 par->cmap_regs[PIDXDATA] = 0x01; eieio();
981 par->cmap_regs[PIDXLO] = MISCTL2; eieio();
982 par->cmap_regs[PIDXDATA] = 0x45; eieio();
983 } else
984 ctrl |= 0x00001780;
986 write_reg_le32(par->dc_regs, STGCTL, ctrl);
987 return 0;
990 static void
991 imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
993 struct imstt_par *par = info->par;
994 __u32 Bpp, line_pitch, bgc, dx, dy, width, height;
996 bgc = rect->color;
997 bgc |= (bgc << 8);
998 bgc |= (bgc << 16);
1000 Bpp = info->var.bits_per_pixel >> 3,
1001 line_pitch = info->fix.line_length;
1003 dy = rect->dy * line_pitch;
1004 dx = rect->dx * Bpp;
1005 height = rect->height;
1006 height--;
1007 width = rect->width * Bpp;
1008 width--;
1010 if (rect->rop == ROP_COPY) {
1011 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1012 write_reg_le32(par->dc_regs, DSA, dy + dx);
1013 write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1014 write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1015 write_reg_le32(par->dc_regs, BI, 0xffffffff);
1016 write_reg_le32(par->dc_regs, MBC, 0xffffffff);
1017 write_reg_le32(par->dc_regs, CLR, bgc);
1018 write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */
1019 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1020 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1021 } else {
1022 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1023 write_reg_le32(par->dc_regs, DSA, dy + dx);
1024 write_reg_le32(par->dc_regs, S1SA, dy + dx);
1025 write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1026 write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1027 write_reg_le32(par->dc_regs, SP, line_pitch);
1028 write_reg_le32(par->dc_regs, BLTCTL, 0x40005);
1029 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1030 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1034 static void
1035 imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
1037 struct imstt_par *par = info->par;
1038 __u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl;
1039 __u32 cnt, bltctl, sx, sy, dx, dy, height, width;
1041 Bpp = info->var.bits_per_pixel >> 3,
1043 sx = area->sx * Bpp;
1044 sy = area->sy;
1045 dx = area->dx * Bpp;
1046 dy = area->dy;
1047 height = area->height;
1048 height--;
1049 width = area->width * Bpp;
1050 width--;
1052 line_pitch = info->fix.line_length;
1053 bltctl = 0x05;
1054 sp = line_pitch << 16;
1055 cnt = height << 16;
1057 if (sy < dy) {
1058 sy += height;
1059 dy += height;
1060 sp |= -(line_pitch) & 0xffff;
1061 dp_octl = -(line_pitch) & 0xffff;
1062 } else {
1063 sp |= line_pitch;
1064 dp_octl = line_pitch;
1066 if (sx < dx) {
1067 sx += width;
1068 dx += width;
1069 bltctl |= 0x80;
1070 cnt |= -(width) & 0xffff;
1071 } else {
1072 cnt |= width;
1074 fb_offset_old = sy * line_pitch + sx;
1075 fb_offset_new = dy * line_pitch + dx;
1077 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1078 write_reg_le32(par->dc_regs, S1SA, fb_offset_old);
1079 write_reg_le32(par->dc_regs, SP, sp);
1080 write_reg_le32(par->dc_regs, DSA, fb_offset_new);
1081 write_reg_le32(par->dc_regs, CNT, cnt);
1082 write_reg_le32(par->dc_regs, DP_OCTL, dp_octl);
1083 write_reg_le32(par->dc_regs, BLTCTL, bltctl);
1084 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1085 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1088 #if 0
1089 static int
1090 imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc)
1092 u_int x, y;
1094 if (width > 32 || height > 32)
1095 return -EINVAL;
1097 if (par->ramdac == IBM) {
1098 par->cmap_regs[PIDXHI] = 1; eieio();
1099 for (x = 0; x < 0x100; x++) {
1100 par->cmap_regs[PIDXLO] = x; eieio();
1101 par->cmap_regs[PIDXDATA] = 0x00; eieio();
1103 par->cmap_regs[PIDXHI] = 1; eieio();
1104 for (y = 0; y < height; y++)
1105 for (x = 0; x < width >> 2; x++) {
1106 par->cmap_regs[PIDXLO] = x + y * 8; eieio();
1107 par->cmap_regs[PIDXDATA] = 0xff; eieio();
1109 par->cmap_regs[PIDXHI] = 0; eieio();
1110 par->cmap_regs[PIDXLO] = CURS1R; eieio();
1111 par->cmap_regs[PIDXDATA] = fgc; eieio();
1112 par->cmap_regs[PIDXLO] = CURS1G; eieio();
1113 par->cmap_regs[PIDXDATA] = fgc; eieio();
1114 par->cmap_regs[PIDXLO] = CURS1B; eieio();
1115 par->cmap_regs[PIDXDATA] = fgc; eieio();
1116 par->cmap_regs[PIDXLO] = CURS2R; eieio();
1117 par->cmap_regs[PIDXDATA] = fgc; eieio();
1118 par->cmap_regs[PIDXLO] = CURS2G; eieio();
1119 par->cmap_regs[PIDXDATA] = fgc; eieio();
1120 par->cmap_regs[PIDXLO] = CURS2B; eieio();
1121 par->cmap_regs[PIDXDATA] = fgc; eieio();
1122 par->cmap_regs[PIDXLO] = CURS3R; eieio();
1123 par->cmap_regs[PIDXDATA] = fgc; eieio();
1124 par->cmap_regs[PIDXLO] = CURS3G; eieio();
1125 par->cmap_regs[PIDXDATA] = fgc; eieio();
1126 par->cmap_regs[PIDXLO] = CURS3B; eieio();
1127 par->cmap_regs[PIDXDATA] = fgc; eieio();
1128 } else {
1129 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1130 par->cmap_regs[TVPIDATA] &= 0x03; eieio();
1131 par->cmap_regs[TVPADDRW] = 0; eieio();
1132 for (x = 0; x < 0x200; x++) {
1133 par->cmap_regs[TVPCRDAT] = 0x00; eieio();
1135 for (x = 0; x < 0x200; x++) {
1136 par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1138 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1139 par->cmap_regs[TVPIDATA] &= 0x03; eieio();
1140 for (y = 0; y < height; y++)
1141 for (x = 0; x < width >> 3; x++) {
1142 par->cmap_regs[TVPADDRW] = x + y * 8; eieio();
1143 par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1145 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1146 par->cmap_regs[TVPIDATA] |= 0x08; eieio();
1147 for (y = 0; y < height; y++)
1148 for (x = 0; x < width >> 3; x++) {
1149 par->cmap_regs[TVPADDRW] = x + y * 8; eieio();
1150 par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1152 par->cmap_regs[TVPCADRW] = 0x00; eieio();
1153 for (x = 0; x < 12; x++) {
1154 par->cmap_regs[TVPCDATA] = fgc;
1155 eieio();
1158 return 1;
1161 static void
1162 imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on)
1164 if (par->ramdac == IBM) {
1165 par->cmap_regs[PIDXHI] = 0; eieio();
1166 if (!on) {
1167 par->cmap_regs[PIDXLO] = CURSCTL; eieio();
1168 par->cmap_regs[PIDXDATA] = 0x00; eieio();
1169 } else {
1170 par->cmap_regs[PIDXLO] = CURSXHI; eieio();
1171 par->cmap_regs[PIDXDATA] = d->dx >> 8; eieio();
1172 par->cmap_regs[PIDXLO] = CURSXLO; eieio();
1173 par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio();
1174 par->cmap_regs[PIDXLO] = CURSYHI; eieio();
1175 par->cmap_regs[PIDXDATA] = d->dy >> 8; eieio();
1176 par->cmap_regs[PIDXLO] = CURSYLO; eieio();
1177 par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio();
1178 par->cmap_regs[PIDXLO] = CURSCTL; eieio();
1179 par->cmap_regs[PIDXDATA] = 0x02; eieio();
1181 } else {
1182 if (!on) {
1183 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1184 par->cmap_regs[TVPIDATA] = 0x00; eieio();
1185 } else {
1186 __u16 x = d->dx + 0x40, y = d->dy + 0x40;
1188 par->cmap_regs[TVPCXPOH] = x >> 8; eieio();
1189 par->cmap_regs[TVPCXPOL] = x & 0xff; eieio();
1190 par->cmap_regs[TVPCYPOH] = y >> 8; eieio();
1191 par->cmap_regs[TVPCYPOL] = y & 0xff; eieio();
1192 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1193 par->cmap_regs[TVPIDATA] = 0x02; eieio();
1198 static int
1199 imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1201 struct imstt_par *par = info->par;
1202 u32 flags = cursor->set, fg, bg, xx, yy;
1204 if (cursor->dest == NULL && cursor->rop == ROP_XOR)
1205 return 1;
1207 imstt_set_cursor(info, cursor, 0);
1209 if (flags & FB_CUR_SETPOS) {
1210 xx = cursor->image.dx - info->var.xoffset;
1211 yy = cursor->image.dy - info->var.yoffset;
1214 if (flags & FB_CUR_SETSIZE) {
1217 if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) {
1218 int fg_idx = cursor->image.fg_color;
1219 int width = (cursor->image.width+7)/8;
1220 u8 *dat = (u8 *) cursor->image.data;
1221 u8 *dst = (u8 *) cursor->dest;
1222 u8 *msk = (u8 *) cursor->mask;
1224 switch (cursor->rop) {
1225 case ROP_XOR:
1226 for (i = 0; i < cursor->image.height; i++) {
1227 for (j = 0; j < width; j++) {
1228 d_idx = i * MAX_CURS/8 + j;
1229 data[d_idx] = byte_rev[dat[s_idx] ^
1230 dst[s_idx]];
1231 mask[d_idx] = byte_rev[msk[s_idx]];
1232 s_idx++;
1235 break;
1236 case ROP_COPY:
1237 default:
1238 for (i = 0; i < cursor->image.height; i++) {
1239 for (j = 0; j < width; j++) {
1240 d_idx = i * MAX_CURS/8 + j;
1241 data[d_idx] = byte_rev[dat[s_idx]];
1242 mask[d_idx] = byte_rev[msk[s_idx]];
1243 s_idx++;
1246 break;
1249 fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
1250 ((info->cmap.green[fg_idx] & 0xf8) << 2) |
1251 ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
1253 imsttfb_load_cursor_image(par, xx, yy, fgc);
1255 if (cursor->enable)
1256 imstt_set_cursor(info, cursor, 1);
1257 return 0;
1259 #endif
1261 #define FBIMSTT_SETREG 0x545401
1262 #define FBIMSTT_GETREG 0x545402
1263 #define FBIMSTT_SETCMAPREG 0x545403
1264 #define FBIMSTT_GETCMAPREG 0x545404
1265 #define FBIMSTT_SETIDXREG 0x545405
1266 #define FBIMSTT_GETIDXREG 0x545406
1268 static int
1269 imsttfb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
1271 struct imstt_par *par = info->par;
1272 void __user *argp = (void __user *)arg;
1273 __u32 reg[2];
1274 __u8 idx[2];
1276 switch (cmd) {
1277 case FBIMSTT_SETREG:
1278 if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1279 return -EFAULT;
1280 write_reg_le32(par->dc_regs, reg[0], reg[1]);
1281 return 0;
1282 case FBIMSTT_GETREG:
1283 if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1284 return -EFAULT;
1285 reg[1] = read_reg_le32(par->dc_regs, reg[0]);
1286 if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1287 return -EFAULT;
1288 return 0;
1289 case FBIMSTT_SETCMAPREG:
1290 if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1291 return -EFAULT;
1292 write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]);
1293 return 0;
1294 case FBIMSTT_GETCMAPREG:
1295 if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1296 return -EFAULT;
1297 reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]);
1298 if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1299 return -EFAULT;
1300 return 0;
1301 case FBIMSTT_SETIDXREG:
1302 if (copy_from_user(idx, argp, 2))
1303 return -EFAULT;
1304 par->cmap_regs[PIDXHI] = 0; eieio();
1305 par->cmap_regs[PIDXLO] = idx[0]; eieio();
1306 par->cmap_regs[PIDXDATA] = idx[1]; eieio();
1307 return 0;
1308 case FBIMSTT_GETIDXREG:
1309 if (copy_from_user(idx, argp, 1))
1310 return -EFAULT;
1311 par->cmap_regs[PIDXHI] = 0; eieio();
1312 par->cmap_regs[PIDXLO] = idx[0]; eieio();
1313 idx[1] = par->cmap_regs[PIDXDATA];
1314 if (copy_to_user((void __user *)(arg + 1), &idx[1], 1))
1315 return -EFAULT;
1316 return 0;
1317 default:
1318 return -ENOIOCTLCMD;
1322 static struct pci_device_id imsttfb_pci_tbl[] = {
1323 { PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128,
1324 PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
1325 { PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D,
1326 PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
1327 { 0, }
1330 MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
1332 static struct pci_driver imsttfb_pci_driver = {
1333 .name = "imsttfb",
1334 .id_table = imsttfb_pci_tbl,
1335 .probe = imsttfb_probe,
1336 .remove = __devexit_p(imsttfb_remove),
1339 static struct fb_ops imsttfb_ops = {
1340 .owner = THIS_MODULE,
1341 .fb_check_var = imsttfb_check_var,
1342 .fb_set_par = imsttfb_set_par,
1343 .fb_setcolreg = imsttfb_setcolreg,
1344 .fb_pan_display = imsttfb_pan_display,
1345 .fb_blank = imsttfb_blank,
1346 .fb_fillrect = imsttfb_fillrect,
1347 .fb_copyarea = imsttfb_copyarea,
1348 .fb_imageblit = cfb_imageblit,
1349 .fb_ioctl = imsttfb_ioctl,
1352 static void __devinit
1353 init_imstt(struct fb_info *info)
1355 struct imstt_par *par = info->par;
1356 __u32 i, tmp, *ip, *end;
1358 tmp = read_reg_le32(par->dc_regs, PRC);
1359 if (par->ramdac == IBM)
1360 info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000;
1361 else
1362 info->fix.smem_len = 0x800000;
1364 ip = (__u32 *)info->screen_base;
1365 end = (__u32 *)(info->screen_base + info->fix.smem_len);
1366 while (ip < end)
1367 *ip++ = 0;
1369 /* initialize the card */
1370 tmp = read_reg_le32(par->dc_regs, STGCTL);
1371 write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1);
1372 write_reg_le32(par->dc_regs, SSR, 0);
1374 /* set default values for DAC registers */
1375 if (par->ramdac == IBM) {
1376 par->cmap_regs[PPMASK] = 0xff;
1377 eieio();
1378 par->cmap_regs[PIDXHI] = 0;
1379 eieio();
1380 for (i = 0; i < ARRAY_SIZE(ibm_initregs); i++) {
1381 par->cmap_regs[PIDXLO] = ibm_initregs[i].addr;
1382 eieio();
1383 par->cmap_regs[PIDXDATA] = ibm_initregs[i].value;
1384 eieio();
1386 } else {
1387 for (i = 0; i < ARRAY_SIZE(tvp_initregs); i++) {
1388 par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr;
1389 eieio();
1390 par->cmap_regs[TVPIDATA] = tvp_initregs[i].value;
1391 eieio();
1395 #if USE_NV_MODES && defined(CONFIG_PPC32)
1397 int vmode = init_vmode, cmode = init_cmode;
1399 if (vmode == -1) {
1400 vmode = nvram_read_byte(NV_VMODE);
1401 if (vmode <= 0 || vmode > VMODE_MAX)
1402 vmode = VMODE_640_480_67;
1404 if (cmode == -1) {
1405 cmode = nvram_read_byte(NV_CMODE);
1406 if (cmode < CMODE_8 || cmode > CMODE_32)
1407 cmode = CMODE_8;
1409 if (mac_vmode_to_var(vmode, cmode, &info->var)) {
1410 info->var.xres = info->var.xres_virtual = INIT_XRES;
1411 info->var.yres = info->var.yres_virtual = INIT_YRES;
1412 info->var.bits_per_pixel = INIT_BPP;
1415 #else
1416 info->var.xres = info->var.xres_virtual = INIT_XRES;
1417 info->var.yres = info->var.yres_virtual = INIT_YRES;
1418 info->var.bits_per_pixel = INIT_BPP;
1419 #endif
1421 if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len
1422 || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) {
1423 printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel);
1424 framebuffer_release(info);
1425 return;
1428 sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP");
1429 info->fix.mmio_len = 0x1000;
1430 info->fix.accel = FB_ACCEL_IMS_TWINTURBO;
1431 info->fix.type = FB_TYPE_PACKED_PIXELS;
1432 info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
1433 : FB_VISUAL_DIRECTCOLOR;
1434 info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3);
1435 info->fix.xpanstep = 8;
1436 info->fix.ypanstep = 1;
1437 info->fix.ywrapstep = 0;
1439 info->var.accel_flags = FB_ACCELF_TEXT;
1441 // if (par->ramdac == IBM)
1442 // imstt_cursor_init(info);
1443 if (info->var.green.length == 6)
1444 set_565(par);
1445 else
1446 set_555(par);
1447 set_imstt_regvals(info, info->var.bits_per_pixel);
1449 info->var.pixclock = 1000000 / getclkMHz(par);
1451 info->fbops = &imsttfb_ops;
1452 info->flags = FBINFO_DEFAULT |
1453 FBINFO_HWACCEL_COPYAREA |
1454 FBINFO_HWACCEL_FILLRECT |
1455 FBINFO_HWACCEL_YPAN;
1457 fb_alloc_cmap(&info->cmap, 0, 0);
1459 if (register_framebuffer(info) < 0) {
1460 framebuffer_release(info);
1461 return;
1464 tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8;
1465 printk("fb%u: %s frame buffer; %uMB vram; chip version %u\n",
1466 info->node, info->fix.id, info->fix.smem_len >> 20, tmp);
1469 static int __devinit
1470 imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1472 unsigned long addr, size;
1473 struct imstt_par *par;
1474 struct fb_info *info;
1475 #ifdef CONFIG_PPC_OF
1476 struct device_node *dp;
1478 dp = pci_device_to_OF_node(pdev);
1479 if(dp)
1480 printk(KERN_INFO "%s: OF name %s\n",__func__, dp->name);
1481 else
1482 printk(KERN_ERR "imsttfb: no OF node for pci device\n");
1483 #endif /* CONFIG_PPC_OF */
1485 info = framebuffer_alloc(sizeof(struct imstt_par), &pdev->dev);
1487 if (!info) {
1488 printk(KERN_ERR "imsttfb: Can't allocate memory\n");
1489 return -ENOMEM;
1492 par = info->par;
1494 addr = pci_resource_start (pdev, 0);
1495 size = pci_resource_len (pdev, 0);
1497 if (!request_mem_region(addr, size, "imsttfb")) {
1498 printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
1499 framebuffer_release(info);
1500 return -ENODEV;
1503 switch (pdev->device) {
1504 case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
1505 par->ramdac = IBM;
1506 #ifdef CONFIG_PPC_OF
1507 if (dp && ((strcmp(dp->name, "IMS,tt128mb8") == 0) ||
1508 (strcmp(dp->name, "IMS,tt128mb8A") == 0)))
1509 par->ramdac = TVP;
1510 #endif /* CONFIG_PPC_OF */
1511 break;
1512 case PCI_DEVICE_ID_IMS_TT3D: /* IMS,tt3d */
1513 par->ramdac = TVP;
1514 break;
1515 default:
1516 printk(KERN_INFO "imsttfb: Device 0x%x unknown, "
1517 "contact maintainer.\n", pdev->device);
1518 release_mem_region(addr, size);
1519 framebuffer_release(info);
1520 return -ENODEV;
1523 info->fix.smem_start = addr;
1524 info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ?
1525 0x400000 : 0x800000);
1526 info->fix.mmio_start = addr + 0x800000;
1527 par->dc_regs = ioremap(addr + 0x800000, 0x1000);
1528 par->cmap_regs_phys = addr + 0x840000;
1529 par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
1530 info->pseudo_palette = par->palette;
1531 init_imstt(info);
1533 pci_set_drvdata(pdev, info);
1534 return 0;
1537 static void __devexit
1538 imsttfb_remove(struct pci_dev *pdev)
1540 struct fb_info *info = pci_get_drvdata(pdev);
1541 struct imstt_par *par = info->par;
1542 int size = pci_resource_len(pdev, 0);
1544 unregister_framebuffer(info);
1545 iounmap(par->cmap_regs);
1546 iounmap(par->dc_regs);
1547 iounmap(info->screen_base);
1548 release_mem_region(info->fix.smem_start, size);
1549 framebuffer_release(info);
1552 #ifndef MODULE
1553 static int __init
1554 imsttfb_setup(char *options)
1556 char *this_opt;
1558 if (!options || !*options)
1559 return 0;
1561 while ((this_opt = strsep(&options, ",")) != NULL) {
1562 if (!strncmp(this_opt, "font:", 5)) {
1563 char *p;
1564 int i;
1566 p = this_opt + 5;
1567 for (i = 0; i < sizeof(fontname) - 1; i++)
1568 if (!*p || *p == ' ' || *p == ',')
1569 break;
1570 memcpy(fontname, this_opt + 5, i);
1571 fontname[i] = 0;
1572 } else if (!strncmp(this_opt, "inverse", 7)) {
1573 inverse = 1;
1574 fb_invert_cmaps();
1576 #if defined(CONFIG_PPC)
1577 else if (!strncmp(this_opt, "vmode:", 6)) {
1578 int vmode = simple_strtoul(this_opt+6, NULL, 0);
1579 if (vmode > 0 && vmode <= VMODE_MAX)
1580 init_vmode = vmode;
1581 } else if (!strncmp(this_opt, "cmode:", 6)) {
1582 int cmode = simple_strtoul(this_opt+6, NULL, 0);
1583 switch (cmode) {
1584 case CMODE_8:
1585 case 8:
1586 init_cmode = CMODE_8;
1587 break;
1588 case CMODE_16:
1589 case 15:
1590 case 16:
1591 init_cmode = CMODE_16;
1592 break;
1593 case CMODE_32:
1594 case 24:
1595 case 32:
1596 init_cmode = CMODE_32;
1597 break;
1600 #endif
1602 return 0;
1605 #endif /* MODULE */
1607 static int __init imsttfb_init(void)
1609 #ifndef MODULE
1610 char *option = NULL;
1612 if (fb_get_options("imsttfb", &option))
1613 return -ENODEV;
1615 imsttfb_setup(option);
1616 #endif
1617 return pci_register_driver(&imsttfb_pci_driver);
1620 static void __exit imsttfb_exit(void)
1622 pci_unregister_driver(&imsttfb_pci_driver);
1625 MODULE_LICENSE("GPL");
1627 module_init(imsttfb_init);
1628 module_exit(imsttfb_exit);