Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux-btrfs-devel.git] / fs / jffs2 / nodemgmt.c
blob694aa5b035057d5fa17ab8a475dfd41d0c9e681d
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/kernel.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/compiler.h>
15 #include <linux/sched.h> /* For cond_resched() */
16 #include "nodelist.h"
17 #include "debug.h"
19 /**
20 * jffs2_reserve_space - request physical space to write nodes to flash
21 * @c: superblock info
22 * @minsize: Minimum acceptable size of allocation
23 * @len: Returned value of allocation length
24 * @prio: Allocation type - ALLOC_{NORMAL,DELETION}
26 * Requests a block of physical space on the flash. Returns zero for success
27 * and puts 'len' into the appropriate place, or returns -ENOSPC or other
28 * error if appropriate. Doesn't return len since that's
30 * If it returns zero, jffs2_reserve_space() also downs the per-filesystem
31 * allocation semaphore, to prevent more than one allocation from being
32 * active at any time. The semaphore is later released by jffs2_commit_allocation()
34 * jffs2_reserve_space() may trigger garbage collection in order to make room
35 * for the requested allocation.
38 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
39 uint32_t *len, uint32_t sumsize);
41 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
42 uint32_t *len, int prio, uint32_t sumsize)
44 int ret = -EAGAIN;
45 int blocksneeded = c->resv_blocks_write;
46 /* align it */
47 minsize = PAD(minsize);
49 D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
50 mutex_lock(&c->alloc_sem);
52 D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
54 spin_lock(&c->erase_completion_lock);
56 /* this needs a little more thought (true <tglx> :)) */
57 while(ret == -EAGAIN) {
58 while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
59 uint32_t dirty, avail;
61 /* calculate real dirty size
62 * dirty_size contains blocks on erase_pending_list
63 * those blocks are counted in c->nr_erasing_blocks.
64 * If one block is actually erased, it is not longer counted as dirty_space
65 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
66 * with c->nr_erasing_blocks * c->sector_size again.
67 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
68 * This helps us to force gc and pick eventually a clean block to spread the load.
69 * We add unchecked_size here, as we hopefully will find some space to use.
70 * This will affect the sum only once, as gc first finishes checking
71 * of nodes.
73 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
74 if (dirty < c->nospc_dirty_size) {
75 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
76 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
77 break;
79 D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
80 dirty, c->unchecked_size, c->sector_size));
82 spin_unlock(&c->erase_completion_lock);
83 mutex_unlock(&c->alloc_sem);
84 return -ENOSPC;
87 /* Calc possibly available space. Possibly available means that we
88 * don't know, if unchecked size contains obsoleted nodes, which could give us some
89 * more usable space. This will affect the sum only once, as gc first finishes checking
90 * of nodes.
91 + Return -ENOSPC, if the maximum possibly available space is less or equal than
92 * blocksneeded * sector_size.
93 * This blocks endless gc looping on a filesystem, which is nearly full, even if
94 * the check above passes.
96 avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
97 if ( (avail / c->sector_size) <= blocksneeded) {
98 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
99 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
100 break;
103 D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
104 avail, blocksneeded * c->sector_size));
105 spin_unlock(&c->erase_completion_lock);
106 mutex_unlock(&c->alloc_sem);
107 return -ENOSPC;
110 mutex_unlock(&c->alloc_sem);
112 D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
113 c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
114 c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
115 spin_unlock(&c->erase_completion_lock);
117 ret = jffs2_garbage_collect_pass(c);
119 if (ret == -EAGAIN) {
120 spin_lock(&c->erase_completion_lock);
121 if (c->nr_erasing_blocks &&
122 list_empty(&c->erase_pending_list) &&
123 list_empty(&c->erase_complete_list)) {
124 DECLARE_WAITQUEUE(wait, current);
125 set_current_state(TASK_UNINTERRUPTIBLE);
126 add_wait_queue(&c->erase_wait, &wait);
127 D1(printk(KERN_DEBUG "%s waiting for erase to complete\n", __func__));
128 spin_unlock(&c->erase_completion_lock);
130 schedule();
131 } else
132 spin_unlock(&c->erase_completion_lock);
133 } else if (ret)
134 return ret;
136 cond_resched();
138 if (signal_pending(current))
139 return -EINTR;
141 mutex_lock(&c->alloc_sem);
142 spin_lock(&c->erase_completion_lock);
145 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
146 if (ret) {
147 D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
150 spin_unlock(&c->erase_completion_lock);
151 if (!ret)
152 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
153 if (ret)
154 mutex_unlock(&c->alloc_sem);
155 return ret;
158 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
159 uint32_t *len, uint32_t sumsize)
161 int ret = -EAGAIN;
162 minsize = PAD(minsize);
164 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
166 spin_lock(&c->erase_completion_lock);
167 while(ret == -EAGAIN) {
168 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
169 if (ret) {
170 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
173 spin_unlock(&c->erase_completion_lock);
174 if (!ret)
175 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
177 return ret;
181 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
183 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
186 if (c->nextblock == NULL) {
187 D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
188 jeb->offset));
189 return;
191 /* Check, if we have a dirty block now, or if it was dirty already */
192 if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
193 c->dirty_size += jeb->wasted_size;
194 c->wasted_size -= jeb->wasted_size;
195 jeb->dirty_size += jeb->wasted_size;
196 jeb->wasted_size = 0;
197 if (VERYDIRTY(c, jeb->dirty_size)) {
198 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
199 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
200 list_add_tail(&jeb->list, &c->very_dirty_list);
201 } else {
202 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
203 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
204 list_add_tail(&jeb->list, &c->dirty_list);
206 } else {
207 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
208 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
209 list_add_tail(&jeb->list, &c->clean_list);
211 c->nextblock = NULL;
215 /* Select a new jeb for nextblock */
217 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
219 struct list_head *next;
221 /* Take the next block off the 'free' list */
223 if (list_empty(&c->free_list)) {
225 if (!c->nr_erasing_blocks &&
226 !list_empty(&c->erasable_list)) {
227 struct jffs2_eraseblock *ejeb;
229 ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
230 list_move_tail(&ejeb->list, &c->erase_pending_list);
231 c->nr_erasing_blocks++;
232 jffs2_garbage_collect_trigger(c);
233 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
234 ejeb->offset));
237 if (!c->nr_erasing_blocks &&
238 !list_empty(&c->erasable_pending_wbuf_list)) {
239 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
240 /* c->nextblock is NULL, no update to c->nextblock allowed */
241 spin_unlock(&c->erase_completion_lock);
242 jffs2_flush_wbuf_pad(c);
243 spin_lock(&c->erase_completion_lock);
244 /* Have another go. It'll be on the erasable_list now */
245 return -EAGAIN;
248 if (!c->nr_erasing_blocks) {
249 /* Ouch. We're in GC, or we wouldn't have got here.
250 And there's no space left. At all. */
251 printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
252 c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
253 list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
254 return -ENOSPC;
257 spin_unlock(&c->erase_completion_lock);
258 /* Don't wait for it; just erase one right now */
259 jffs2_erase_pending_blocks(c, 1);
260 spin_lock(&c->erase_completion_lock);
262 /* An erase may have failed, decreasing the
263 amount of free space available. So we must
264 restart from the beginning */
265 return -EAGAIN;
268 next = c->free_list.next;
269 list_del(next);
270 c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
271 c->nr_free_blocks--;
273 jffs2_sum_reset_collected(c->summary); /* reset collected summary */
275 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
276 /* adjust write buffer offset, else we get a non contiguous write bug */
277 if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
278 c->wbuf_ofs = 0xffffffff;
279 #endif
281 D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
283 return 0;
286 /* Called with alloc sem _and_ erase_completion_lock */
287 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
288 uint32_t *len, uint32_t sumsize)
290 struct jffs2_eraseblock *jeb = c->nextblock;
291 uint32_t reserved_size; /* for summary information at the end of the jeb */
292 int ret;
294 restart:
295 reserved_size = 0;
297 if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
298 /* NOSUM_SIZE means not to generate summary */
300 if (jeb) {
301 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
302 dbg_summary("minsize=%d , jeb->free=%d ,"
303 "summary->size=%d , sumsize=%d\n",
304 minsize, jeb->free_size,
305 c->summary->sum_size, sumsize);
308 /* Is there enough space for writing out the current node, or we have to
309 write out summary information now, close this jeb and select new nextblock? */
310 if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
311 JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
313 /* Has summary been disabled for this jeb? */
314 if (jffs2_sum_is_disabled(c->summary)) {
315 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
316 goto restart;
319 /* Writing out the collected summary information */
320 dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
321 ret = jffs2_sum_write_sumnode(c);
323 if (ret)
324 return ret;
326 if (jffs2_sum_is_disabled(c->summary)) {
327 /* jffs2_write_sumnode() couldn't write out the summary information
328 diabling summary for this jeb and free the collected information
330 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
331 goto restart;
334 jffs2_close_nextblock(c, jeb);
335 jeb = NULL;
336 /* keep always valid value in reserved_size */
337 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
339 } else {
340 if (jeb && minsize > jeb->free_size) {
341 uint32_t waste;
343 /* Skip the end of this block and file it as having some dirty space */
344 /* If there's a pending write to it, flush now */
346 if (jffs2_wbuf_dirty(c)) {
347 spin_unlock(&c->erase_completion_lock);
348 D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
349 jffs2_flush_wbuf_pad(c);
350 spin_lock(&c->erase_completion_lock);
351 jeb = c->nextblock;
352 goto restart;
355 spin_unlock(&c->erase_completion_lock);
357 ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
358 if (ret)
359 return ret;
360 /* Just lock it again and continue. Nothing much can change because
361 we hold c->alloc_sem anyway. In fact, it's not entirely clear why
362 we hold c->erase_completion_lock in the majority of this function...
363 but that's a question for another (more caffeine-rich) day. */
364 spin_lock(&c->erase_completion_lock);
366 waste = jeb->free_size;
367 jffs2_link_node_ref(c, jeb,
368 (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
369 waste, NULL);
370 /* FIXME: that made it count as dirty. Convert to wasted */
371 jeb->dirty_size -= waste;
372 c->dirty_size -= waste;
373 jeb->wasted_size += waste;
374 c->wasted_size += waste;
376 jffs2_close_nextblock(c, jeb);
377 jeb = NULL;
381 if (!jeb) {
383 ret = jffs2_find_nextblock(c);
384 if (ret)
385 return ret;
387 jeb = c->nextblock;
389 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
390 printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
391 goto restart;
394 /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
395 enough space */
396 *len = jeb->free_size - reserved_size;
398 if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
399 !jeb->first_node->next_in_ino) {
400 /* Only node in it beforehand was a CLEANMARKER node (we think).
401 So mark it obsolete now that there's going to be another node
402 in the block. This will reduce used_size to zero but We've
403 already set c->nextblock so that jffs2_mark_node_obsolete()
404 won't try to refile it to the dirty_list.
406 spin_unlock(&c->erase_completion_lock);
407 jffs2_mark_node_obsolete(c, jeb->first_node);
408 spin_lock(&c->erase_completion_lock);
411 D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
412 *len, jeb->offset + (c->sector_size - jeb->free_size)));
413 return 0;
417 * jffs2_add_physical_node_ref - add a physical node reference to the list
418 * @c: superblock info
419 * @new: new node reference to add
420 * @len: length of this physical node
422 * Should only be used to report nodes for which space has been allocated
423 * by jffs2_reserve_space.
425 * Must be called with the alloc_sem held.
428 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
429 uint32_t ofs, uint32_t len,
430 struct jffs2_inode_cache *ic)
432 struct jffs2_eraseblock *jeb;
433 struct jffs2_raw_node_ref *new;
435 jeb = &c->blocks[ofs / c->sector_size];
437 D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
438 ofs & ~3, ofs & 3, len));
439 #if 1
440 /* Allow non-obsolete nodes only to be added at the end of c->nextblock,
441 if c->nextblock is set. Note that wbuf.c will file obsolete nodes
442 even after refiling c->nextblock */
443 if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
444 && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
445 printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
446 if (c->nextblock)
447 printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
448 else
449 printk(KERN_WARNING "No nextblock");
450 printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
451 return ERR_PTR(-EINVAL);
453 #endif
454 spin_lock(&c->erase_completion_lock);
456 new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
458 if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
459 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
460 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
461 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
462 if (jffs2_wbuf_dirty(c)) {
463 /* Flush the last write in the block if it's outstanding */
464 spin_unlock(&c->erase_completion_lock);
465 jffs2_flush_wbuf_pad(c);
466 spin_lock(&c->erase_completion_lock);
469 list_add_tail(&jeb->list, &c->clean_list);
470 c->nextblock = NULL;
472 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
473 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
475 spin_unlock(&c->erase_completion_lock);
477 return new;
481 void jffs2_complete_reservation(struct jffs2_sb_info *c)
483 D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
484 spin_lock(&c->erase_completion_lock);
485 jffs2_garbage_collect_trigger(c);
486 spin_unlock(&c->erase_completion_lock);
487 mutex_unlock(&c->alloc_sem);
490 static inline int on_list(struct list_head *obj, struct list_head *head)
492 struct list_head *this;
494 list_for_each(this, head) {
495 if (this == obj) {
496 D1(printk("%p is on list at %p\n", obj, head));
497 return 1;
501 return 0;
504 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
506 struct jffs2_eraseblock *jeb;
507 int blocknr;
508 struct jffs2_unknown_node n;
509 int ret, addedsize;
510 size_t retlen;
511 uint32_t freed_len;
513 if(unlikely(!ref)) {
514 printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
515 return;
517 if (ref_obsolete(ref)) {
518 D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
519 return;
521 blocknr = ref->flash_offset / c->sector_size;
522 if (blocknr >= c->nr_blocks) {
523 printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
524 BUG();
526 jeb = &c->blocks[blocknr];
528 if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
529 !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
530 /* Hm. This may confuse static lock analysis. If any of the above
531 three conditions is false, we're going to return from this
532 function without actually obliterating any nodes or freeing
533 any jffs2_raw_node_refs. So we don't need to stop erases from
534 happening, or protect against people holding an obsolete
535 jffs2_raw_node_ref without the erase_completion_lock. */
536 mutex_lock(&c->erase_free_sem);
539 spin_lock(&c->erase_completion_lock);
541 freed_len = ref_totlen(c, jeb, ref);
543 if (ref_flags(ref) == REF_UNCHECKED) {
544 D1(if (unlikely(jeb->unchecked_size < freed_len)) {
545 printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
546 freed_len, blocknr, ref->flash_offset, jeb->used_size);
547 BUG();
549 D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
550 jeb->unchecked_size -= freed_len;
551 c->unchecked_size -= freed_len;
552 } else {
553 D1(if (unlikely(jeb->used_size < freed_len)) {
554 printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
555 freed_len, blocknr, ref->flash_offset, jeb->used_size);
556 BUG();
558 D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
559 jeb->used_size -= freed_len;
560 c->used_size -= freed_len;
563 // Take care, that wasted size is taken into concern
564 if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
565 D1(printk("Dirtying\n"));
566 addedsize = freed_len;
567 jeb->dirty_size += freed_len;
568 c->dirty_size += freed_len;
570 /* Convert wasted space to dirty, if not a bad block */
571 if (jeb->wasted_size) {
572 if (on_list(&jeb->list, &c->bad_used_list)) {
573 D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
574 jeb->offset));
575 addedsize = 0; /* To fool the refiling code later */
576 } else {
577 D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
578 jeb->wasted_size, jeb->offset));
579 addedsize += jeb->wasted_size;
580 jeb->dirty_size += jeb->wasted_size;
581 c->dirty_size += jeb->wasted_size;
582 c->wasted_size -= jeb->wasted_size;
583 jeb->wasted_size = 0;
586 } else {
587 D1(printk("Wasting\n"));
588 addedsize = 0;
589 jeb->wasted_size += freed_len;
590 c->wasted_size += freed_len;
592 ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
594 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
595 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
597 if (c->flags & JFFS2_SB_FLAG_SCANNING) {
598 /* Flash scanning is in progress. Don't muck about with the block
599 lists because they're not ready yet, and don't actually
600 obliterate nodes that look obsolete. If they weren't
601 marked obsolete on the flash at the time they _became_
602 obsolete, there was probably a reason for that. */
603 spin_unlock(&c->erase_completion_lock);
604 /* We didn't lock the erase_free_sem */
605 return;
608 if (jeb == c->nextblock) {
609 D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
610 } else if (!jeb->used_size && !jeb->unchecked_size) {
611 if (jeb == c->gcblock) {
612 D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
613 c->gcblock = NULL;
614 } else {
615 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
616 list_del(&jeb->list);
618 if (jffs2_wbuf_dirty(c)) {
619 D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
620 list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
621 } else {
622 if (jiffies & 127) {
623 /* Most of the time, we just erase it immediately. Otherwise we
624 spend ages scanning it on mount, etc. */
625 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
626 list_add_tail(&jeb->list, &c->erase_pending_list);
627 c->nr_erasing_blocks++;
628 jffs2_garbage_collect_trigger(c);
629 } else {
630 /* Sometimes, however, we leave it elsewhere so it doesn't get
631 immediately reused, and we spread the load a bit. */
632 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
633 list_add_tail(&jeb->list, &c->erasable_list);
636 D1(printk(KERN_DEBUG "Done OK\n"));
637 } else if (jeb == c->gcblock) {
638 D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
639 } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
640 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
641 list_del(&jeb->list);
642 D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
643 list_add_tail(&jeb->list, &c->dirty_list);
644 } else if (VERYDIRTY(c, jeb->dirty_size) &&
645 !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
646 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
647 list_del(&jeb->list);
648 D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
649 list_add_tail(&jeb->list, &c->very_dirty_list);
650 } else {
651 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
652 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
655 spin_unlock(&c->erase_completion_lock);
657 if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
658 (c->flags & JFFS2_SB_FLAG_BUILDING)) {
659 /* We didn't lock the erase_free_sem */
660 return;
663 /* The erase_free_sem is locked, and has been since before we marked the node obsolete
664 and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
665 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
666 by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
668 D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
669 ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
670 if (ret) {
671 printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
672 goto out_erase_sem;
674 if (retlen != sizeof(n)) {
675 printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
676 goto out_erase_sem;
678 if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
679 printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
680 goto out_erase_sem;
682 if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
683 D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
684 goto out_erase_sem;
686 /* XXX FIXME: This is ugly now */
687 n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
688 ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
689 if (ret) {
690 printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
691 goto out_erase_sem;
693 if (retlen != sizeof(n)) {
694 printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
695 goto out_erase_sem;
698 /* Nodes which have been marked obsolete no longer need to be
699 associated with any inode. Remove them from the per-inode list.
701 Note we can't do this for NAND at the moment because we need
702 obsolete dirent nodes to stay on the lists, because of the
703 horridness in jffs2_garbage_collect_deletion_dirent(). Also
704 because we delete the inocache, and on NAND we need that to
705 stay around until all the nodes are actually erased, in order
706 to stop us from giving the same inode number to another newly
707 created inode. */
708 if (ref->next_in_ino) {
709 struct jffs2_inode_cache *ic;
710 struct jffs2_raw_node_ref **p;
712 spin_lock(&c->erase_completion_lock);
714 ic = jffs2_raw_ref_to_ic(ref);
715 for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
718 *p = ref->next_in_ino;
719 ref->next_in_ino = NULL;
721 switch (ic->class) {
722 #ifdef CONFIG_JFFS2_FS_XATTR
723 case RAWNODE_CLASS_XATTR_DATUM:
724 jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
725 break;
726 case RAWNODE_CLASS_XATTR_REF:
727 jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
728 break;
729 #endif
730 default:
731 if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
732 jffs2_del_ino_cache(c, ic);
733 break;
735 spin_unlock(&c->erase_completion_lock);
738 out_erase_sem:
739 mutex_unlock(&c->erase_free_sem);
742 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
744 int ret = 0;
745 uint32_t dirty;
746 int nr_very_dirty = 0;
747 struct jffs2_eraseblock *jeb;
749 if (!list_empty(&c->erase_complete_list) ||
750 !list_empty(&c->erase_pending_list))
751 return 1;
753 if (c->unchecked_size) {
754 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
755 c->unchecked_size, c->checked_ino));
756 return 1;
759 /* dirty_size contains blocks on erase_pending_list
760 * those blocks are counted in c->nr_erasing_blocks.
761 * If one block is actually erased, it is not longer counted as dirty_space
762 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
763 * with c->nr_erasing_blocks * c->sector_size again.
764 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
765 * This helps us to force gc and pick eventually a clean block to spread the load.
767 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
769 if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
770 (dirty > c->nospc_dirty_size))
771 ret = 1;
773 list_for_each_entry(jeb, &c->very_dirty_list, list) {
774 nr_very_dirty++;
775 if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
776 ret = 1;
777 /* In debug mode, actually go through and count them all */
778 D1(continue);
779 break;
783 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
784 c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no"));
786 return ret;