2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
7 #include <asm/cacheflush.h>
11 #include <asm/page_types.h>
12 #include <asm/sections.h>
13 #include <asm/setup.h>
14 #include <asm/system.h>
15 #include <asm/tlbflush.h>
17 #include <asm/proto.h>
19 unsigned long __initdata pgt_buf_start
;
20 unsigned long __meminitdata pgt_buf_end
;
21 unsigned long __meminitdata pgt_buf_top
;
26 #ifdef CONFIG_DIRECT_GBPAGES
31 static void __init
find_early_table_space(unsigned long end
, int use_pse
,
34 unsigned long puds
, pmds
, ptes
, tables
, start
= 0, good_end
= end
;
37 puds
= (end
+ PUD_SIZE
- 1) >> PUD_SHIFT
;
38 tables
= roundup(puds
* sizeof(pud_t
), PAGE_SIZE
);
43 extra
= end
- ((end
>>PUD_SHIFT
) << PUD_SHIFT
);
44 pmds
= (extra
+ PMD_SIZE
- 1) >> PMD_SHIFT
;
46 pmds
= (end
+ PMD_SIZE
- 1) >> PMD_SHIFT
;
48 tables
+= roundup(pmds
* sizeof(pmd_t
), PAGE_SIZE
);
53 extra
= end
- ((end
>>PMD_SHIFT
) << PMD_SHIFT
);
57 ptes
= (extra
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
59 ptes
= (end
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
61 tables
+= roundup(ptes
* sizeof(pte_t
), PAGE_SIZE
);
65 tables
+= roundup(__end_of_fixed_addresses
* sizeof(pte_t
), PAGE_SIZE
);
67 good_end
= max_pfn_mapped
<< PAGE_SHIFT
;
69 base
= memblock_find_in_range(start
, good_end
, tables
, PAGE_SIZE
);
70 if (base
== MEMBLOCK_ERROR
)
71 panic("Cannot find space for the kernel page tables");
73 pgt_buf_start
= base
>> PAGE_SHIFT
;
74 pgt_buf_end
= pgt_buf_start
;
75 pgt_buf_top
= pgt_buf_start
+ (tables
>> PAGE_SHIFT
);
77 printk(KERN_DEBUG
"kernel direct mapping tables up to %lx @ %lx-%lx\n",
78 end
, pgt_buf_start
<< PAGE_SHIFT
, pgt_buf_top
<< PAGE_SHIFT
);
81 void __init
native_pagetable_reserve(u64 start
, u64 end
)
83 memblock_x86_reserve_range(start
, end
, "PGTABLE");
89 unsigned page_size_mask
;
94 #else /* CONFIG_X86_64 */
98 static int __meminit
save_mr(struct map_range
*mr
, int nr_range
,
99 unsigned long start_pfn
, unsigned long end_pfn
,
100 unsigned long page_size_mask
)
102 if (start_pfn
< end_pfn
) {
103 if (nr_range
>= NR_RANGE_MR
)
104 panic("run out of range for init_memory_mapping\n");
105 mr
[nr_range
].start
= start_pfn
<<PAGE_SHIFT
;
106 mr
[nr_range
].end
= end_pfn
<<PAGE_SHIFT
;
107 mr
[nr_range
].page_size_mask
= page_size_mask
;
115 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
116 * This runs before bootmem is initialized and gets pages directly from
117 * the physical memory. To access them they are temporarily mapped.
119 unsigned long __init_refok
init_memory_mapping(unsigned long start
,
122 unsigned long page_size_mask
= 0;
123 unsigned long start_pfn
, end_pfn
;
124 unsigned long ret
= 0;
127 struct map_range mr
[NR_RANGE_MR
];
129 int use_pse
, use_gbpages
;
131 printk(KERN_INFO
"init_memory_mapping: %016lx-%016lx\n", start
, end
);
133 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KMEMCHECK)
135 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
136 * This will simplify cpa(), which otherwise needs to support splitting
137 * large pages into small in interrupt context, etc.
139 use_pse
= use_gbpages
= 0;
141 use_pse
= cpu_has_pse
;
142 use_gbpages
= direct_gbpages
;
145 /* Enable PSE if available */
147 set_in_cr4(X86_CR4_PSE
);
149 /* Enable PGE if available */
151 set_in_cr4(X86_CR4_PGE
);
152 __supported_pte_mask
|= _PAGE_GLOBAL
;
156 page_size_mask
|= 1 << PG_LEVEL_1G
;
158 page_size_mask
|= 1 << PG_LEVEL_2M
;
160 memset(mr
, 0, sizeof(mr
));
163 /* head if not big page alignment ? */
164 start_pfn
= start
>> PAGE_SHIFT
;
165 pos
= start_pfn
<< PAGE_SHIFT
;
168 * Don't use a large page for the first 2/4MB of memory
169 * because there are often fixed size MTRRs in there
170 * and overlapping MTRRs into large pages can cause
174 end_pfn
= 1<<(PMD_SHIFT
- PAGE_SHIFT
);
176 end_pfn
= ((pos
+ (PMD_SIZE
- 1))>>PMD_SHIFT
)
177 << (PMD_SHIFT
- PAGE_SHIFT
);
178 #else /* CONFIG_X86_64 */
179 end_pfn
= ((pos
+ (PMD_SIZE
- 1)) >> PMD_SHIFT
)
180 << (PMD_SHIFT
- PAGE_SHIFT
);
182 if (end_pfn
> (end
>> PAGE_SHIFT
))
183 end_pfn
= end
>> PAGE_SHIFT
;
184 if (start_pfn
< end_pfn
) {
185 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
, 0);
186 pos
= end_pfn
<< PAGE_SHIFT
;
189 /* big page (2M) range */
190 start_pfn
= ((pos
+ (PMD_SIZE
- 1))>>PMD_SHIFT
)
191 << (PMD_SHIFT
- PAGE_SHIFT
);
193 end_pfn
= (end
>>PMD_SHIFT
) << (PMD_SHIFT
- PAGE_SHIFT
);
194 #else /* CONFIG_X86_64 */
195 end_pfn
= ((pos
+ (PUD_SIZE
- 1))>>PUD_SHIFT
)
196 << (PUD_SHIFT
- PAGE_SHIFT
);
197 if (end_pfn
> ((end
>>PMD_SHIFT
)<<(PMD_SHIFT
- PAGE_SHIFT
)))
198 end_pfn
= ((end
>>PMD_SHIFT
)<<(PMD_SHIFT
- PAGE_SHIFT
));
201 if (start_pfn
< end_pfn
) {
202 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
,
203 page_size_mask
& (1<<PG_LEVEL_2M
));
204 pos
= end_pfn
<< PAGE_SHIFT
;
208 /* big page (1G) range */
209 start_pfn
= ((pos
+ (PUD_SIZE
- 1))>>PUD_SHIFT
)
210 << (PUD_SHIFT
- PAGE_SHIFT
);
211 end_pfn
= (end
>> PUD_SHIFT
) << (PUD_SHIFT
- PAGE_SHIFT
);
212 if (start_pfn
< end_pfn
) {
213 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
,
215 ((1<<PG_LEVEL_2M
)|(1<<PG_LEVEL_1G
)));
216 pos
= end_pfn
<< PAGE_SHIFT
;
219 /* tail is not big page (1G) alignment */
220 start_pfn
= ((pos
+ (PMD_SIZE
- 1))>>PMD_SHIFT
)
221 << (PMD_SHIFT
- PAGE_SHIFT
);
222 end_pfn
= (end
>> PMD_SHIFT
) << (PMD_SHIFT
- PAGE_SHIFT
);
223 if (start_pfn
< end_pfn
) {
224 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
,
225 page_size_mask
& (1<<PG_LEVEL_2M
));
226 pos
= end_pfn
<< PAGE_SHIFT
;
230 /* tail is not big page (2M) alignment */
231 start_pfn
= pos
>>PAGE_SHIFT
;
232 end_pfn
= end
>>PAGE_SHIFT
;
233 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
, 0);
235 /* try to merge same page size and continuous */
236 for (i
= 0; nr_range
> 1 && i
< nr_range
- 1; i
++) {
237 unsigned long old_start
;
238 if (mr
[i
].end
!= mr
[i
+1].start
||
239 mr
[i
].page_size_mask
!= mr
[i
+1].page_size_mask
)
242 old_start
= mr
[i
].start
;
243 memmove(&mr
[i
], &mr
[i
+1],
244 (nr_range
- 1 - i
) * sizeof(struct map_range
));
245 mr
[i
--].start
= old_start
;
249 for (i
= 0; i
< nr_range
; i
++)
250 printk(KERN_DEBUG
" %010lx - %010lx page %s\n",
251 mr
[i
].start
, mr
[i
].end
,
252 (mr
[i
].page_size_mask
& (1<<PG_LEVEL_1G
))?"1G":(
253 (mr
[i
].page_size_mask
& (1<<PG_LEVEL_2M
))?"2M":"4k"));
256 * Find space for the kernel direct mapping tables.
258 * Later we should allocate these tables in the local node of the
259 * memory mapped. Unfortunately this is done currently before the
260 * nodes are discovered.
263 find_early_table_space(end
, use_pse
, use_gbpages
);
265 for (i
= 0; i
< nr_range
; i
++)
266 ret
= kernel_physical_mapping_init(mr
[i
].start
, mr
[i
].end
,
267 mr
[i
].page_size_mask
);
270 early_ioremap_page_table_range_init();
272 load_cr3(swapper_pg_dir
);
278 * Reserve the kernel pagetable pages we used (pgt_buf_start -
279 * pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top)
280 * so that they can be reused for other purposes.
282 * On native it just means calling memblock_x86_reserve_range, on Xen it
283 * also means marking RW the pagetable pages that we allocated before
284 * but that haven't been used.
286 * In fact on xen we mark RO the whole range pgt_buf_start -
287 * pgt_buf_top, because we have to make sure that when
288 * init_memory_mapping reaches the pagetable pages area, it maps
289 * RO all the pagetable pages, including the ones that are beyond
290 * pgt_buf_end at that time.
292 if (!after_bootmem
&& pgt_buf_end
> pgt_buf_start
)
293 x86_init
.mapping
.pagetable_reserve(PFN_PHYS(pgt_buf_start
),
294 PFN_PHYS(pgt_buf_end
));
297 early_memtest(start
, end
);
299 return ret
>> PAGE_SHIFT
;
304 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
305 * is valid. The argument is a physical page number.
308 * On x86, access has to be given to the first megabyte of ram because that area
309 * contains bios code and data regions used by X and dosemu and similar apps.
310 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
311 * mmio resources as well as potential bios/acpi data regions.
313 int devmem_is_allowed(unsigned long pagenr
)
317 if (iomem_is_exclusive(pagenr
<< PAGE_SHIFT
))
319 if (!page_is_ram(pagenr
))
324 void free_init_pages(char *what
, unsigned long begin
, unsigned long end
)
327 unsigned long begin_aligned
, end_aligned
;
329 /* Make sure boundaries are page aligned */
330 begin_aligned
= PAGE_ALIGN(begin
);
331 end_aligned
= end
& PAGE_MASK
;
333 if (WARN_ON(begin_aligned
!= begin
|| end_aligned
!= end
)) {
334 begin
= begin_aligned
;
344 * If debugging page accesses then do not free this memory but
345 * mark them not present - any buggy init-section access will
346 * create a kernel page fault:
348 #ifdef CONFIG_DEBUG_PAGEALLOC
349 printk(KERN_INFO
"debug: unmapping init memory %08lx..%08lx\n",
351 set_memory_np(begin
, (end
- begin
) >> PAGE_SHIFT
);
354 * We just marked the kernel text read only above, now that
355 * we are going to free part of that, we need to make that
356 * writeable and non-executable first.
358 set_memory_nx(begin
, (end
- begin
) >> PAGE_SHIFT
);
359 set_memory_rw(begin
, (end
- begin
) >> PAGE_SHIFT
);
361 printk(KERN_INFO
"Freeing %s: %luk freed\n", what
, (end
- begin
) >> 10);
363 for (; addr
< end
; addr
+= PAGE_SIZE
) {
364 ClearPageReserved(virt_to_page(addr
));
365 init_page_count(virt_to_page(addr
));
366 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
373 void free_initmem(void)
375 free_init_pages("unused kernel memory",
376 (unsigned long)(&__init_begin
),
377 (unsigned long)(&__init_end
));
380 #ifdef CONFIG_BLK_DEV_INITRD
381 void free_initrd_mem(unsigned long start
, unsigned long end
)
384 * end could be not aligned, and We can not align that,
385 * decompresser could be confused by aligned initrd_end
386 * We already reserve the end partial page before in
387 * - i386_start_kernel()
388 * - x86_64_start_kernel()
389 * - relocate_initrd()
390 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
392 free_init_pages("initrd memory", start
, PAGE_ALIGN(end
));