1 /* Freescale Enhanced Local Bus Controller NAND driver
3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
7 * Jack Lan <jack.lan@freescale.com>
8 * Roy Zang <tie-fei.zang@freescale.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
42 #include <asm/fsl_lbc.h>
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
48 /* mtd information per set */
52 struct nand_chip chip
;
53 struct fsl_lbc_ctrl
*ctrl
;
56 int bank
; /* Chip select bank number */
57 u8 __iomem
*vbase
; /* Chip select base virtual address */
58 int page_size
; /* NAND page size (0=512, 1=2048) */
59 unsigned int fmr
; /* FCM Flash Mode Register value */
62 /* Freescale eLBC FCM controller information */
64 struct fsl_elbc_fcm_ctrl
{
65 struct nand_hw_control controller
;
66 struct fsl_elbc_mtd
*chips
[MAX_BANKS
];
68 u8 __iomem
*addr
; /* Address of assigned FCM buffer */
69 unsigned int page
; /* Last page written to / read from */
70 unsigned int read_bytes
; /* Number of bytes read during command */
71 unsigned int column
; /* Saved column from SEQIN */
72 unsigned int index
; /* Pointer to next byte to 'read' */
73 unsigned int status
; /* status read from LTESR after last op */
74 unsigned int mdr
; /* UPM/FCM Data Register value */
75 unsigned int use_mdr
; /* Non zero if the MDR is to be set */
76 unsigned int oob
; /* Non zero if operating on OOB data */
77 unsigned int counter
; /* counter for the initializations */
78 char *oob_poi
; /* Place to write ECC after read back */
81 /* These map to the positions used by the FCM hardware ECC generator */
83 /* Small Page FLASH with FMR[ECCM] = 0 */
84 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0
= {
87 .oobfree
= { {0, 5}, {9, 7} },
90 /* Small Page FLASH with FMR[ECCM] = 1 */
91 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1
= {
94 .oobfree
= { {0, 5}, {6, 2}, {11, 5} },
97 /* Large Page FLASH with FMR[ECCM] = 0 */
98 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0
= {
100 .eccpos
= {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
101 .oobfree
= { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
104 /* Large Page FLASH with FMR[ECCM] = 1 */
105 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1
= {
107 .eccpos
= {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
108 .oobfree
= { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
112 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
113 * 1, so we have to adjust bad block pattern. This pattern should be used for
114 * x8 chips only. So far hardware does not support x16 chips anyway.
116 static u8 scan_ff_pattern
[] = { 0xff, };
118 static struct nand_bbt_descr largepage_memorybased
= {
122 .pattern
= scan_ff_pattern
,
126 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
127 * interfere with ECC positions, that's why we implement our own descriptors.
128 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
130 static u8 bbt_pattern
[] = {'B', 'b', 't', '0' };
131 static u8 mirror_pattern
[] = {'1', 't', 'b', 'B' };
133 static struct nand_bbt_descr bbt_main_descr
= {
134 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
|
135 NAND_BBT_2BIT
| NAND_BBT_VERSION
,
140 .pattern
= bbt_pattern
,
143 static struct nand_bbt_descr bbt_mirror_descr
= {
144 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
|
145 NAND_BBT_2BIT
| NAND_BBT_VERSION
,
150 .pattern
= mirror_pattern
,
153 /*=================================*/
156 * Set up the FCM hardware block and page address fields, and the fcm
157 * structure addr field to point to the correct FCM buffer in memory
159 static void set_addr(struct mtd_info
*mtd
, int column
, int page_addr
, int oob
)
161 struct nand_chip
*chip
= mtd
->priv
;
162 struct fsl_elbc_mtd
*priv
= chip
->priv
;
163 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
164 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
165 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= ctrl
->nand
;
168 elbc_fcm_ctrl
->page
= page_addr
;
171 page_addr
>> (chip
->phys_erase_shift
- chip
->page_shift
));
173 if (priv
->page_size
) {
175 ((page_addr
<< FPAR_LP_PI_SHIFT
) & FPAR_LP_PI
) |
176 (oob
? FPAR_LP_MS
: 0) | column
);
177 buf_num
= (page_addr
& 1) << 2;
180 ((page_addr
<< FPAR_SP_PI_SHIFT
) & FPAR_SP_PI
) |
181 (oob
? FPAR_SP_MS
: 0) | column
);
182 buf_num
= page_addr
& 7;
185 elbc_fcm_ctrl
->addr
= priv
->vbase
+ buf_num
* 1024;
186 elbc_fcm_ctrl
->index
= column
;
188 /* for OOB data point to the second half of the buffer */
190 elbc_fcm_ctrl
->index
+= priv
->page_size
? 2048 : 512;
192 dev_vdbg(priv
->dev
, "set_addr: bank=%d, "
193 "elbc_fcm_ctrl->addr=0x%p (0x%p), "
194 "index %x, pes %d ps %d\n",
195 buf_num
, elbc_fcm_ctrl
->addr
, priv
->vbase
,
196 elbc_fcm_ctrl
->index
,
197 chip
->phys_erase_shift
, chip
->page_shift
);
201 * execute FCM command and wait for it to complete
203 static int fsl_elbc_run_command(struct mtd_info
*mtd
)
205 struct nand_chip
*chip
= mtd
->priv
;
206 struct fsl_elbc_mtd
*priv
= chip
->priv
;
207 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
208 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= ctrl
->nand
;
209 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
211 /* Setup the FMR[OP] to execute without write protection */
212 out_be32(&lbc
->fmr
, priv
->fmr
| 3);
213 if (elbc_fcm_ctrl
->use_mdr
)
214 out_be32(&lbc
->mdr
, elbc_fcm_ctrl
->mdr
);
217 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
218 in_be32(&lbc
->fmr
), in_be32(&lbc
->fir
), in_be32(&lbc
->fcr
));
220 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
221 "fbcr=%08x bank=%d\n",
222 in_be32(&lbc
->fbar
), in_be32(&lbc
->fpar
),
223 in_be32(&lbc
->fbcr
), priv
->bank
);
225 ctrl
->irq_status
= 0;
226 /* execute special operation */
227 out_be32(&lbc
->lsor
, priv
->bank
);
229 /* wait for FCM complete flag or timeout */
230 wait_event_timeout(ctrl
->irq_wait
, ctrl
->irq_status
,
231 FCM_TIMEOUT_MSECS
* HZ
/1000);
232 elbc_fcm_ctrl
->status
= ctrl
->irq_status
;
233 /* store mdr value in case it was needed */
234 if (elbc_fcm_ctrl
->use_mdr
)
235 elbc_fcm_ctrl
->mdr
= in_be32(&lbc
->mdr
);
237 elbc_fcm_ctrl
->use_mdr
= 0;
239 if (elbc_fcm_ctrl
->status
!= LTESR_CC
) {
241 "command failed: fir %x fcr %x status %x mdr %x\n",
242 in_be32(&lbc
->fir
), in_be32(&lbc
->fcr
),
243 elbc_fcm_ctrl
->status
, elbc_fcm_ctrl
->mdr
);
250 static void fsl_elbc_do_read(struct nand_chip
*chip
, int oob
)
252 struct fsl_elbc_mtd
*priv
= chip
->priv
;
253 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
254 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
256 if (priv
->page_size
) {
258 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
259 (FIR_OP_CA
<< FIR_OP1_SHIFT
) |
260 (FIR_OP_PA
<< FIR_OP2_SHIFT
) |
261 (FIR_OP_CM1
<< FIR_OP3_SHIFT
) |
262 (FIR_OP_RBW
<< FIR_OP4_SHIFT
));
264 out_be32(&lbc
->fcr
, (NAND_CMD_READ0
<< FCR_CMD0_SHIFT
) |
265 (NAND_CMD_READSTART
<< FCR_CMD1_SHIFT
));
268 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
269 (FIR_OP_CA
<< FIR_OP1_SHIFT
) |
270 (FIR_OP_PA
<< FIR_OP2_SHIFT
) |
271 (FIR_OP_RBW
<< FIR_OP3_SHIFT
));
274 out_be32(&lbc
->fcr
, NAND_CMD_READOOB
<< FCR_CMD0_SHIFT
);
276 out_be32(&lbc
->fcr
, NAND_CMD_READ0
<< FCR_CMD0_SHIFT
);
280 /* cmdfunc send commands to the FCM */
281 static void fsl_elbc_cmdfunc(struct mtd_info
*mtd
, unsigned int command
,
282 int column
, int page_addr
)
284 struct nand_chip
*chip
= mtd
->priv
;
285 struct fsl_elbc_mtd
*priv
= chip
->priv
;
286 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
287 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= ctrl
->nand
;
288 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
290 elbc_fcm_ctrl
->use_mdr
= 0;
292 /* clear the read buffer */
293 elbc_fcm_ctrl
->read_bytes
= 0;
294 if (command
!= NAND_CMD_PAGEPROG
)
295 elbc_fcm_ctrl
->index
= 0;
298 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
305 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
306 " 0x%x, column: 0x%x.\n", page_addr
, column
);
309 out_be32(&lbc
->fbcr
, 0); /* read entire page to enable ECC */
310 set_addr(mtd
, 0, page_addr
, 0);
312 elbc_fcm_ctrl
->read_bytes
= mtd
->writesize
+ mtd
->oobsize
;
313 elbc_fcm_ctrl
->index
+= column
;
315 fsl_elbc_do_read(chip
, 0);
316 fsl_elbc_run_command(mtd
);
319 /* READOOB reads only the OOB because no ECC is performed. */
320 case NAND_CMD_READOOB
:
322 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
323 " 0x%x, column: 0x%x.\n", page_addr
, column
);
325 out_be32(&lbc
->fbcr
, mtd
->oobsize
- column
);
326 set_addr(mtd
, column
, page_addr
, 1);
328 elbc_fcm_ctrl
->read_bytes
= mtd
->writesize
+ mtd
->oobsize
;
330 fsl_elbc_do_read(chip
, 1);
331 fsl_elbc_run_command(mtd
);
334 /* READID must read all 5 possible bytes while CEB is active */
335 case NAND_CMD_READID
:
336 dev_vdbg(priv
->dev
, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
338 out_be32(&lbc
->fir
, (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
339 (FIR_OP_UA
<< FIR_OP1_SHIFT
) |
340 (FIR_OP_RBW
<< FIR_OP2_SHIFT
));
341 out_be32(&lbc
->fcr
, NAND_CMD_READID
<< FCR_CMD0_SHIFT
);
342 /* 5 bytes for manuf, device and exts */
343 out_be32(&lbc
->fbcr
, 5);
344 elbc_fcm_ctrl
->read_bytes
= 5;
345 elbc_fcm_ctrl
->use_mdr
= 1;
346 elbc_fcm_ctrl
->mdr
= 0;
348 set_addr(mtd
, 0, 0, 0);
349 fsl_elbc_run_command(mtd
);
352 /* ERASE1 stores the block and page address */
353 case NAND_CMD_ERASE1
:
355 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
356 "page_addr: 0x%x.\n", page_addr
);
357 set_addr(mtd
, 0, page_addr
, 0);
360 /* ERASE2 uses the block and page address from ERASE1 */
361 case NAND_CMD_ERASE2
:
362 dev_vdbg(priv
->dev
, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
365 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
366 (FIR_OP_PA
<< FIR_OP1_SHIFT
) |
367 (FIR_OP_CM2
<< FIR_OP2_SHIFT
) |
368 (FIR_OP_CW1
<< FIR_OP3_SHIFT
) |
369 (FIR_OP_RS
<< FIR_OP4_SHIFT
));
372 (NAND_CMD_ERASE1
<< FCR_CMD0_SHIFT
) |
373 (NAND_CMD_STATUS
<< FCR_CMD1_SHIFT
) |
374 (NAND_CMD_ERASE2
<< FCR_CMD2_SHIFT
));
376 out_be32(&lbc
->fbcr
, 0);
377 elbc_fcm_ctrl
->read_bytes
= 0;
378 elbc_fcm_ctrl
->use_mdr
= 1;
380 fsl_elbc_run_command(mtd
);
383 /* SEQIN sets up the addr buffer and all registers except the length */
384 case NAND_CMD_SEQIN
: {
387 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
388 "page_addr: 0x%x, column: 0x%x.\n",
391 elbc_fcm_ctrl
->column
= column
;
392 elbc_fcm_ctrl
->oob
= 0;
393 elbc_fcm_ctrl
->use_mdr
= 1;
395 fcr
= (NAND_CMD_STATUS
<< FCR_CMD1_SHIFT
) |
396 (NAND_CMD_SEQIN
<< FCR_CMD2_SHIFT
) |
397 (NAND_CMD_PAGEPROG
<< FCR_CMD3_SHIFT
);
399 if (priv
->page_size
) {
401 (FIR_OP_CM2
<< FIR_OP0_SHIFT
) |
402 (FIR_OP_CA
<< FIR_OP1_SHIFT
) |
403 (FIR_OP_PA
<< FIR_OP2_SHIFT
) |
404 (FIR_OP_WB
<< FIR_OP3_SHIFT
) |
405 (FIR_OP_CM3
<< FIR_OP4_SHIFT
) |
406 (FIR_OP_CW1
<< FIR_OP5_SHIFT
) |
407 (FIR_OP_RS
<< FIR_OP6_SHIFT
));
410 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
411 (FIR_OP_CM2
<< FIR_OP1_SHIFT
) |
412 (FIR_OP_CA
<< FIR_OP2_SHIFT
) |
413 (FIR_OP_PA
<< FIR_OP3_SHIFT
) |
414 (FIR_OP_WB
<< FIR_OP4_SHIFT
) |
415 (FIR_OP_CM3
<< FIR_OP5_SHIFT
) |
416 (FIR_OP_CW1
<< FIR_OP6_SHIFT
) |
417 (FIR_OP_RS
<< FIR_OP7_SHIFT
));
419 if (column
>= mtd
->writesize
) {
420 /* OOB area --> READOOB */
421 column
-= mtd
->writesize
;
422 fcr
|= NAND_CMD_READOOB
<< FCR_CMD0_SHIFT
;
423 elbc_fcm_ctrl
->oob
= 1;
425 WARN_ON(column
!= 0);
426 /* First 256 bytes --> READ0 */
427 fcr
|= NAND_CMD_READ0
<< FCR_CMD0_SHIFT
;
431 out_be32(&lbc
->fcr
, fcr
);
432 set_addr(mtd
, column
, page_addr
, elbc_fcm_ctrl
->oob
);
436 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
437 case NAND_CMD_PAGEPROG
: {
440 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
441 "writing %d bytes.\n", elbc_fcm_ctrl
->index
);
443 /* if the write did not start at 0 or is not a full page
444 * then set the exact length, otherwise use a full page
445 * write so the HW generates the ECC.
447 if (elbc_fcm_ctrl
->oob
|| elbc_fcm_ctrl
->column
!= 0 ||
448 elbc_fcm_ctrl
->index
!= mtd
->writesize
+ mtd
->oobsize
) {
449 out_be32(&lbc
->fbcr
, elbc_fcm_ctrl
->index
);
452 out_be32(&lbc
->fbcr
, 0);
456 fsl_elbc_run_command(mtd
);
458 /* Read back the page in order to fill in the ECC for the
459 * caller. Is this really needed?
461 if (full_page
&& elbc_fcm_ctrl
->oob_poi
) {
462 out_be32(&lbc
->fbcr
, 3);
463 set_addr(mtd
, 6, page_addr
, 1);
465 elbc_fcm_ctrl
->read_bytes
= mtd
->writesize
+ 9;
467 fsl_elbc_do_read(chip
, 1);
468 fsl_elbc_run_command(mtd
);
470 memcpy_fromio(elbc_fcm_ctrl
->oob_poi
+ 6,
471 &elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
], 3);
472 elbc_fcm_ctrl
->index
+= 3;
475 elbc_fcm_ctrl
->oob_poi
= NULL
;
479 /* CMD_STATUS must read the status byte while CEB is active */
480 /* Note - it does not wait for the ready line */
481 case NAND_CMD_STATUS
:
483 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
484 (FIR_OP_RBW
<< FIR_OP1_SHIFT
));
485 out_be32(&lbc
->fcr
, NAND_CMD_STATUS
<< FCR_CMD0_SHIFT
);
486 out_be32(&lbc
->fbcr
, 1);
487 set_addr(mtd
, 0, 0, 0);
488 elbc_fcm_ctrl
->read_bytes
= 1;
490 fsl_elbc_run_command(mtd
);
492 /* The chip always seems to report that it is
493 * write-protected, even when it is not.
495 setbits8(elbc_fcm_ctrl
->addr
, NAND_STATUS_WP
);
498 /* RESET without waiting for the ready line */
500 dev_dbg(priv
->dev
, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
501 out_be32(&lbc
->fir
, FIR_OP_CM0
<< FIR_OP0_SHIFT
);
502 out_be32(&lbc
->fcr
, NAND_CMD_RESET
<< FCR_CMD0_SHIFT
);
503 fsl_elbc_run_command(mtd
);
508 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
513 static void fsl_elbc_select_chip(struct mtd_info
*mtd
, int chip
)
515 /* The hardware does not seem to support multiple
521 * Write buf to the FCM Controller Data Buffer
523 static void fsl_elbc_write_buf(struct mtd_info
*mtd
, const u8
*buf
, int len
)
525 struct nand_chip
*chip
= mtd
->priv
;
526 struct fsl_elbc_mtd
*priv
= chip
->priv
;
527 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
528 unsigned int bufsize
= mtd
->writesize
+ mtd
->oobsize
;
531 dev_err(priv
->dev
, "write_buf of %d bytes", len
);
532 elbc_fcm_ctrl
->status
= 0;
536 if ((unsigned int)len
> bufsize
- elbc_fcm_ctrl
->index
) {
538 "write_buf beyond end of buffer "
539 "(%d requested, %u available)\n",
540 len
, bufsize
- elbc_fcm_ctrl
->index
);
541 len
= bufsize
- elbc_fcm_ctrl
->index
;
544 memcpy_toio(&elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
], buf
, len
);
546 * This is workaround for the weird elbc hangs during nand write,
547 * Scott Wood says: "...perhaps difference in how long it takes a
548 * write to make it through the localbus compared to a write to IMMR
549 * is causing problems, and sync isn't helping for some reason."
550 * Reading back the last byte helps though.
552 in_8(&elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
] + len
- 1);
554 elbc_fcm_ctrl
->index
+= len
;
558 * read a byte from either the FCM hardware buffer if it has any data left
559 * otherwise issue a command to read a single byte.
561 static u8
fsl_elbc_read_byte(struct mtd_info
*mtd
)
563 struct nand_chip
*chip
= mtd
->priv
;
564 struct fsl_elbc_mtd
*priv
= chip
->priv
;
565 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
567 /* If there are still bytes in the FCM, then use the next byte. */
568 if (elbc_fcm_ctrl
->index
< elbc_fcm_ctrl
->read_bytes
)
569 return in_8(&elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
++]);
571 dev_err(priv
->dev
, "read_byte beyond end of buffer\n");
576 * Read from the FCM Controller Data Buffer
578 static void fsl_elbc_read_buf(struct mtd_info
*mtd
, u8
*buf
, int len
)
580 struct nand_chip
*chip
= mtd
->priv
;
581 struct fsl_elbc_mtd
*priv
= chip
->priv
;
582 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
588 avail
= min((unsigned int)len
,
589 elbc_fcm_ctrl
->read_bytes
- elbc_fcm_ctrl
->index
);
590 memcpy_fromio(buf
, &elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
], avail
);
591 elbc_fcm_ctrl
->index
+= avail
;
595 "read_buf beyond end of buffer "
596 "(%d requested, %d available)\n",
601 * Verify buffer against the FCM Controller Data Buffer
603 static int fsl_elbc_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
605 struct nand_chip
*chip
= mtd
->priv
;
606 struct fsl_elbc_mtd
*priv
= chip
->priv
;
607 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
611 dev_err(priv
->dev
, "write_buf of %d bytes", len
);
615 if ((unsigned int)len
>
616 elbc_fcm_ctrl
->read_bytes
- elbc_fcm_ctrl
->index
) {
618 "verify_buf beyond end of buffer "
619 "(%d requested, %u available)\n",
620 len
, elbc_fcm_ctrl
->read_bytes
- elbc_fcm_ctrl
->index
);
622 elbc_fcm_ctrl
->index
= elbc_fcm_ctrl
->read_bytes
;
626 for (i
= 0; i
< len
; i
++)
627 if (in_8(&elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
+ i
])
631 elbc_fcm_ctrl
->index
+= len
;
632 return i
== len
&& elbc_fcm_ctrl
->status
== LTESR_CC
? 0 : -EIO
;
635 /* This function is called after Program and Erase Operations to
636 * check for success or failure.
638 static int fsl_elbc_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
640 struct fsl_elbc_mtd
*priv
= chip
->priv
;
641 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
643 if (elbc_fcm_ctrl
->status
!= LTESR_CC
)
644 return NAND_STATUS_FAIL
;
646 /* The chip always seems to report that it is
647 * write-protected, even when it is not.
649 return (elbc_fcm_ctrl
->mdr
& 0xff) | NAND_STATUS_WP
;
652 static int fsl_elbc_chip_init_tail(struct mtd_info
*mtd
)
654 struct nand_chip
*chip
= mtd
->priv
;
655 struct fsl_elbc_mtd
*priv
= chip
->priv
;
656 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
657 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
660 /* calculate FMR Address Length field */
662 if (chip
->pagemask
& 0xffff0000)
664 if (chip
->pagemask
& 0xff000000)
667 /* add to ECCM mode set in fsl_elbc_init */
668 priv
->fmr
|= (12 << FMR_CWTO_SHIFT
) | /* Timeout > 12 ms */
669 (al
<< FMR_AL_SHIFT
);
671 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->numchips = %d\n",
673 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->chipsize = %lld\n",
675 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->pagemask = %8x\n",
677 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->chip_delay = %d\n",
679 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->badblockpos = %d\n",
681 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->chip_shift = %d\n",
683 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->page_shift = %d\n",
685 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
686 chip
->phys_erase_shift
);
687 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecclayout = %p\n",
689 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.mode = %d\n",
691 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.steps = %d\n",
693 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.bytes = %d\n",
695 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.total = %d\n",
697 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.layout = %p\n",
699 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->flags = %08x\n", mtd
->flags
);
700 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->size = %lld\n", mtd
->size
);
701 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->erasesize = %d\n",
703 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->writesize = %d\n",
705 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->oobsize = %d\n",
708 /* adjust Option Register and ECC to match Flash page size */
709 if (mtd
->writesize
== 512) {
711 clrbits32(&lbc
->bank
[priv
->bank
].or, OR_FCM_PGS
);
712 } else if (mtd
->writesize
== 2048) {
714 setbits32(&lbc
->bank
[priv
->bank
].or, OR_FCM_PGS
);
715 /* adjust ecc setup if needed */
716 if ((in_be32(&lbc
->bank
[priv
->bank
].br
) & BR_DECC
) ==
718 chip
->ecc
.size
= 512;
719 chip
->ecc
.layout
= (priv
->fmr
& FMR_ECCM
) ?
720 &fsl_elbc_oob_lp_eccm1
:
721 &fsl_elbc_oob_lp_eccm0
;
722 chip
->badblock_pattern
= &largepage_memorybased
;
726 "fsl_elbc_init: page size %d is not supported\n",
734 static int fsl_elbc_read_page(struct mtd_info
*mtd
,
735 struct nand_chip
*chip
,
739 fsl_elbc_read_buf(mtd
, buf
, mtd
->writesize
);
740 fsl_elbc_read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
742 if (fsl_elbc_wait(mtd
, chip
) & NAND_STATUS_FAIL
)
743 mtd
->ecc_stats
.failed
++;
748 /* ECC will be calculated automatically, and errors will be detected in
751 static void fsl_elbc_write_page(struct mtd_info
*mtd
,
752 struct nand_chip
*chip
,
755 struct fsl_elbc_mtd
*priv
= chip
->priv
;
756 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
758 fsl_elbc_write_buf(mtd
, buf
, mtd
->writesize
);
759 fsl_elbc_write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
761 elbc_fcm_ctrl
->oob_poi
= chip
->oob_poi
;
764 static int fsl_elbc_chip_init(struct fsl_elbc_mtd
*priv
)
766 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
767 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
768 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= ctrl
->nand
;
769 struct nand_chip
*chip
= &priv
->chip
;
771 dev_dbg(priv
->dev
, "eLBC Set Information for bank %d\n", priv
->bank
);
773 /* Fill in fsl_elbc_mtd structure */
774 priv
->mtd
.priv
= chip
;
775 priv
->mtd
.owner
= THIS_MODULE
;
777 /* Set the ECCM according to the settings in bootloader.*/
778 priv
->fmr
= in_be32(&lbc
->fmr
) & FMR_ECCM
;
780 /* fill in nand_chip structure */
781 /* set up function call table */
782 chip
->read_byte
= fsl_elbc_read_byte
;
783 chip
->write_buf
= fsl_elbc_write_buf
;
784 chip
->read_buf
= fsl_elbc_read_buf
;
785 chip
->verify_buf
= fsl_elbc_verify_buf
;
786 chip
->select_chip
= fsl_elbc_select_chip
;
787 chip
->cmdfunc
= fsl_elbc_cmdfunc
;
788 chip
->waitfunc
= fsl_elbc_wait
;
790 chip
->bbt_td
= &bbt_main_descr
;
791 chip
->bbt_md
= &bbt_mirror_descr
;
793 /* set up nand options */
794 chip
->options
= NAND_NO_READRDY
| NAND_NO_AUTOINCR
|
797 chip
->controller
= &elbc_fcm_ctrl
->controller
;
800 chip
->ecc
.read_page
= fsl_elbc_read_page
;
801 chip
->ecc
.write_page
= fsl_elbc_write_page
;
803 /* If CS Base Register selects full hardware ECC then use it */
804 if ((in_be32(&lbc
->bank
[priv
->bank
].br
) & BR_DECC
) ==
806 chip
->ecc
.mode
= NAND_ECC_HW
;
807 /* put in small page settings and adjust later if needed */
808 chip
->ecc
.layout
= (priv
->fmr
& FMR_ECCM
) ?
809 &fsl_elbc_oob_sp_eccm1
: &fsl_elbc_oob_sp_eccm0
;
810 chip
->ecc
.size
= 512;
813 /* otherwise fall back to default software ECC */
814 chip
->ecc
.mode
= NAND_ECC_SOFT
;
820 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd
*priv
)
822 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
823 nand_release(&priv
->mtd
);
825 kfree(priv
->mtd
.name
);
828 iounmap(priv
->vbase
);
830 elbc_fcm_ctrl
->chips
[priv
->bank
] = NULL
;
832 kfree(elbc_fcm_ctrl
);
836 static DEFINE_MUTEX(fsl_elbc_nand_mutex
);
838 static int __devinit
fsl_elbc_nand_probe(struct platform_device
*pdev
)
840 struct fsl_lbc_regs __iomem
*lbc
;
841 struct fsl_elbc_mtd
*priv
;
843 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
;
844 static const char *part_probe_types
[]
845 = { "cmdlinepart", "RedBoot", NULL
};
846 struct mtd_partition
*parts
;
850 struct device_node
*node
= pdev
->dev
.of_node
;
852 if (!fsl_lbc_ctrl_dev
|| !fsl_lbc_ctrl_dev
->regs
)
854 lbc
= fsl_lbc_ctrl_dev
->regs
;
855 dev
= fsl_lbc_ctrl_dev
->dev
;
857 /* get, allocate and map the memory resource */
858 ret
= of_address_to_resource(node
, 0, &res
);
860 dev_err(dev
, "failed to get resource\n");
864 /* find which chip select it is connected to */
865 for (bank
= 0; bank
< MAX_BANKS
; bank
++)
866 if ((in_be32(&lbc
->bank
[bank
].br
) & BR_V
) &&
867 (in_be32(&lbc
->bank
[bank
].br
) & BR_MSEL
) == BR_MS_FCM
&&
868 (in_be32(&lbc
->bank
[bank
].br
) &
869 in_be32(&lbc
->bank
[bank
].or) & BR_BA
)
870 == fsl_lbc_addr(res
.start
))
873 if (bank
>= MAX_BANKS
) {
874 dev_err(dev
, "address did not match any chip selects\n");
878 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
882 mutex_lock(&fsl_elbc_nand_mutex
);
883 if (!fsl_lbc_ctrl_dev
->nand
) {
884 elbc_fcm_ctrl
= kzalloc(sizeof(*elbc_fcm_ctrl
), GFP_KERNEL
);
885 if (!elbc_fcm_ctrl
) {
886 dev_err(dev
, "failed to allocate memory\n");
887 mutex_unlock(&fsl_elbc_nand_mutex
);
891 elbc_fcm_ctrl
->counter
++;
893 spin_lock_init(&elbc_fcm_ctrl
->controller
.lock
);
894 init_waitqueue_head(&elbc_fcm_ctrl
->controller
.wq
);
895 fsl_lbc_ctrl_dev
->nand
= elbc_fcm_ctrl
;
897 elbc_fcm_ctrl
= fsl_lbc_ctrl_dev
->nand
;
899 mutex_unlock(&fsl_elbc_nand_mutex
);
901 elbc_fcm_ctrl
->chips
[bank
] = priv
;
903 priv
->ctrl
= fsl_lbc_ctrl_dev
;
906 priv
->vbase
= ioremap(res
.start
, resource_size(&res
));
908 dev_err(dev
, "failed to map chip region\n");
913 priv
->mtd
.name
= kasprintf(GFP_KERNEL
, "%x.flash", (unsigned)res
.start
);
914 if (!priv
->mtd
.name
) {
919 ret
= fsl_elbc_chip_init(priv
);
923 ret
= nand_scan_ident(&priv
->mtd
, 1, NULL
);
927 ret
= fsl_elbc_chip_init_tail(&priv
->mtd
);
931 ret
= nand_scan_tail(&priv
->mtd
);
935 /* First look for RedBoot table or partitions on the command
936 * line, these take precedence over device tree information */
937 ret
= parse_mtd_partitions(&priv
->mtd
, part_probe_types
, &parts
, 0);
942 ret
= of_mtd_parse_partitions(priv
->dev
, node
, &parts
);
947 mtd_device_register(&priv
->mtd
, parts
, ret
);
949 printk(KERN_INFO
"eLBC NAND device at 0x%llx, bank %d\n",
950 (unsigned long long)res
.start
, priv
->bank
);
954 fsl_elbc_chip_remove(priv
);
958 static int fsl_elbc_nand_remove(struct platform_device
*pdev
)
961 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= fsl_lbc_ctrl_dev
->nand
;
962 for (i
= 0; i
< MAX_BANKS
; i
++)
963 if (elbc_fcm_ctrl
->chips
[i
])
964 fsl_elbc_chip_remove(elbc_fcm_ctrl
->chips
[i
]);
966 mutex_lock(&fsl_elbc_nand_mutex
);
967 elbc_fcm_ctrl
->counter
--;
968 if (!elbc_fcm_ctrl
->counter
) {
969 fsl_lbc_ctrl_dev
->nand
= NULL
;
970 kfree(elbc_fcm_ctrl
);
972 mutex_unlock(&fsl_elbc_nand_mutex
);
978 static const struct of_device_id fsl_elbc_nand_match
[] = {
979 { .compatible
= "fsl,elbc-fcm-nand", },
983 static struct platform_driver fsl_elbc_nand_driver
= {
985 .name
= "fsl,elbc-fcm-nand",
986 .owner
= THIS_MODULE
,
987 .of_match_table
= fsl_elbc_nand_match
,
989 .probe
= fsl_elbc_nand_probe
,
990 .remove
= fsl_elbc_nand_remove
,
993 static int __init
fsl_elbc_nand_init(void)
995 return platform_driver_register(&fsl_elbc_nand_driver
);
998 static void __exit
fsl_elbc_nand_exit(void)
1000 platform_driver_unregister(&fsl_elbc_nand_driver
);
1003 module_init(fsl_elbc_nand_init
);
1004 module_exit(fsl_elbc_nand_exit
);
1006 MODULE_LICENSE("GPL");
1007 MODULE_AUTHOR("Freescale");
1008 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");