Input: wacom - fix touch parsing on newer Bamboos
[linux-btrfs-devel.git] / drivers / mtd / ubi / eba.c
blob4be671815014ee3b054f2ba8f704781dfbc1f032
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Author: Artem Bityutskiy (Битюцкий Артём)
22 * The UBI Eraseblock Association (EBA) sub-system.
24 * This sub-system is responsible for I/O to/from logical eraseblock.
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
30 * The EBA sub-system implements per-logical eraseblock locking. Before
31 * accessing a logical eraseblock it is locked for reading or writing. The
32 * per-logical eraseblock locking is implemented by means of the lock tree. The
33 * lock tree is an RB-tree which refers all the currently locked logical
34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35 * They are indexed by (@vol_id, @lnum) pairs.
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
52 /**
53 * next_sqnum - get next sequence number.
54 * @ubi: UBI device description object
56 * This function returns next sequence number to use, which is just the current
57 * global sequence counter value. It also increases the global sequence
58 * counter.
60 static unsigned long long next_sqnum(struct ubi_device *ubi)
62 unsigned long long sqnum;
64 spin_lock(&ubi->ltree_lock);
65 sqnum = ubi->global_sqnum++;
66 spin_unlock(&ubi->ltree_lock);
68 return sqnum;
71 /**
72 * ubi_get_compat - get compatibility flags of a volume.
73 * @ubi: UBI device description object
74 * @vol_id: volume ID
76 * This function returns compatibility flags for an internal volume. User
77 * volumes have no compatibility flags, so %0 is returned.
79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
81 if (vol_id == UBI_LAYOUT_VOLUME_ID)
82 return UBI_LAYOUT_VOLUME_COMPAT;
83 return 0;
86 /**
87 * ltree_lookup - look up the lock tree.
88 * @ubi: UBI device description object
89 * @vol_id: volume ID
90 * @lnum: logical eraseblock number
92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93 * object if the logical eraseblock is locked and %NULL if it is not.
94 * @ubi->ltree_lock has to be locked.
96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 int lnum)
99 struct rb_node *p;
101 p = ubi->ltree.rb_node;
102 while (p) {
103 struct ubi_ltree_entry *le;
105 le = rb_entry(p, struct ubi_ltree_entry, rb);
107 if (vol_id < le->vol_id)
108 p = p->rb_left;
109 else if (vol_id > le->vol_id)
110 p = p->rb_right;
111 else {
112 if (lnum < le->lnum)
113 p = p->rb_left;
114 else if (lnum > le->lnum)
115 p = p->rb_right;
116 else
117 return le;
121 return NULL;
125 * ltree_add_entry - add new entry to the lock tree.
126 * @ubi: UBI device description object
127 * @vol_id: volume ID
128 * @lnum: logical eraseblock number
130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131 * lock tree. If such entry is already there, its usage counter is increased.
132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133 * failed.
135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 int vol_id, int lnum)
138 struct ubi_ltree_entry *le, *le1, *le_free;
140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
141 if (!le)
142 return ERR_PTR(-ENOMEM);
144 le->users = 0;
145 init_rwsem(&le->mutex);
146 le->vol_id = vol_id;
147 le->lnum = lnum;
149 spin_lock(&ubi->ltree_lock);
150 le1 = ltree_lookup(ubi, vol_id, lnum);
152 if (le1) {
154 * This logical eraseblock is already locked. The newly
155 * allocated lock entry is not needed.
157 le_free = le;
158 le = le1;
159 } else {
160 struct rb_node **p, *parent = NULL;
163 * No lock entry, add the newly allocated one to the
164 * @ubi->ltree RB-tree.
166 le_free = NULL;
168 p = &ubi->ltree.rb_node;
169 while (*p) {
170 parent = *p;
171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
173 if (vol_id < le1->vol_id)
174 p = &(*p)->rb_left;
175 else if (vol_id > le1->vol_id)
176 p = &(*p)->rb_right;
177 else {
178 ubi_assert(lnum != le1->lnum);
179 if (lnum < le1->lnum)
180 p = &(*p)->rb_left;
181 else
182 p = &(*p)->rb_right;
186 rb_link_node(&le->rb, parent, p);
187 rb_insert_color(&le->rb, &ubi->ltree);
189 le->users += 1;
190 spin_unlock(&ubi->ltree_lock);
192 kfree(le_free);
193 return le;
197 * leb_read_lock - lock logical eraseblock for reading.
198 * @ubi: UBI device description object
199 * @vol_id: volume ID
200 * @lnum: logical eraseblock number
202 * This function locks a logical eraseblock for reading. Returns zero in case
203 * of success and a negative error code in case of failure.
205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
207 struct ubi_ltree_entry *le;
209 le = ltree_add_entry(ubi, vol_id, lnum);
210 if (IS_ERR(le))
211 return PTR_ERR(le);
212 down_read(&le->mutex);
213 return 0;
217 * leb_read_unlock - unlock logical eraseblock.
218 * @ubi: UBI device description object
219 * @vol_id: volume ID
220 * @lnum: logical eraseblock number
222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
224 struct ubi_ltree_entry *le;
226 spin_lock(&ubi->ltree_lock);
227 le = ltree_lookup(ubi, vol_id, lnum);
228 le->users -= 1;
229 ubi_assert(le->users >= 0);
230 up_read(&le->mutex);
231 if (le->users == 0) {
232 rb_erase(&le->rb, &ubi->ltree);
233 kfree(le);
235 spin_unlock(&ubi->ltree_lock);
239 * leb_write_lock - lock logical eraseblock for writing.
240 * @ubi: UBI device description object
241 * @vol_id: volume ID
242 * @lnum: logical eraseblock number
244 * This function locks a logical eraseblock for writing. Returns zero in case
245 * of success and a negative error code in case of failure.
247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
249 struct ubi_ltree_entry *le;
251 le = ltree_add_entry(ubi, vol_id, lnum);
252 if (IS_ERR(le))
253 return PTR_ERR(le);
254 down_write(&le->mutex);
255 return 0;
259 * leb_write_lock - lock logical eraseblock for writing.
260 * @ubi: UBI device description object
261 * @vol_id: volume ID
262 * @lnum: logical eraseblock number
264 * This function locks a logical eraseblock for writing if there is no
265 * contention and does nothing if there is contention. Returns %0 in case of
266 * success, %1 in case of contention, and and a negative error code in case of
267 * failure.
269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
271 struct ubi_ltree_entry *le;
273 le = ltree_add_entry(ubi, vol_id, lnum);
274 if (IS_ERR(le))
275 return PTR_ERR(le);
276 if (down_write_trylock(&le->mutex))
277 return 0;
279 /* Contention, cancel */
280 spin_lock(&ubi->ltree_lock);
281 le->users -= 1;
282 ubi_assert(le->users >= 0);
283 if (le->users == 0) {
284 rb_erase(&le->rb, &ubi->ltree);
285 kfree(le);
287 spin_unlock(&ubi->ltree_lock);
289 return 1;
293 * leb_write_unlock - unlock logical eraseblock.
294 * @ubi: UBI device description object
295 * @vol_id: volume ID
296 * @lnum: logical eraseblock number
298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
300 struct ubi_ltree_entry *le;
302 spin_lock(&ubi->ltree_lock);
303 le = ltree_lookup(ubi, vol_id, lnum);
304 le->users -= 1;
305 ubi_assert(le->users >= 0);
306 up_write(&le->mutex);
307 if (le->users == 0) {
308 rb_erase(&le->rb, &ubi->ltree);
309 kfree(le);
311 spin_unlock(&ubi->ltree_lock);
315 * ubi_eba_unmap_leb - un-map logical eraseblock.
316 * @ubi: UBI device description object
317 * @vol: volume description object
318 * @lnum: logical eraseblock number
320 * This function un-maps logical eraseblock @lnum and schedules corresponding
321 * physical eraseblock for erasure. Returns zero in case of success and a
322 * negative error code in case of failure.
324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 int lnum)
327 int err, pnum, vol_id = vol->vol_id;
329 if (ubi->ro_mode)
330 return -EROFS;
332 err = leb_write_lock(ubi, vol_id, lnum);
333 if (err)
334 return err;
336 pnum = vol->eba_tbl[lnum];
337 if (pnum < 0)
338 /* This logical eraseblock is already unmapped */
339 goto out_unlock;
341 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
343 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
344 err = ubi_wl_put_peb(ubi, pnum, 0);
346 out_unlock:
347 leb_write_unlock(ubi, vol_id, lnum);
348 return err;
352 * ubi_eba_read_leb - read data.
353 * @ubi: UBI device description object
354 * @vol: volume description object
355 * @lnum: logical eraseblock number
356 * @buf: buffer to store the read data
357 * @offset: offset from where to read
358 * @len: how many bytes to read
359 * @check: data CRC check flag
361 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
362 * bytes. The @check flag only makes sense for static volumes and forces
363 * eraseblock data CRC checking.
365 * In case of success this function returns zero. In case of a static volume,
366 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
367 * returned for any volume type if an ECC error was detected by the MTD device
368 * driver. Other negative error cored may be returned in case of other errors.
370 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
371 void *buf, int offset, int len, int check)
373 int err, pnum, scrub = 0, vol_id = vol->vol_id;
374 struct ubi_vid_hdr *vid_hdr;
375 uint32_t uninitialized_var(crc);
377 err = leb_read_lock(ubi, vol_id, lnum);
378 if (err)
379 return err;
381 pnum = vol->eba_tbl[lnum];
382 if (pnum < 0) {
384 * The logical eraseblock is not mapped, fill the whole buffer
385 * with 0xFF bytes. The exception is static volumes for which
386 * it is an error to read unmapped logical eraseblocks.
388 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
389 len, offset, vol_id, lnum);
390 leb_read_unlock(ubi, vol_id, lnum);
391 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
392 memset(buf, 0xFF, len);
393 return 0;
396 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
397 len, offset, vol_id, lnum, pnum);
399 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
400 check = 0;
402 retry:
403 if (check) {
404 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
405 if (!vid_hdr) {
406 err = -ENOMEM;
407 goto out_unlock;
410 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
411 if (err && err != UBI_IO_BITFLIPS) {
412 if (err > 0) {
414 * The header is either absent or corrupted.
415 * The former case means there is a bug -
416 * switch to read-only mode just in case.
417 * The latter case means a real corruption - we
418 * may try to recover data. FIXME: but this is
419 * not implemented.
421 if (err == UBI_IO_BAD_HDR_EBADMSG ||
422 err == UBI_IO_BAD_HDR) {
423 ubi_warn("corrupted VID header at PEB "
424 "%d, LEB %d:%d", pnum, vol_id,
425 lnum);
426 err = -EBADMSG;
427 } else
428 ubi_ro_mode(ubi);
430 goto out_free;
431 } else if (err == UBI_IO_BITFLIPS)
432 scrub = 1;
434 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
435 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
437 crc = be32_to_cpu(vid_hdr->data_crc);
438 ubi_free_vid_hdr(ubi, vid_hdr);
441 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
442 if (err) {
443 if (err == UBI_IO_BITFLIPS) {
444 scrub = 1;
445 err = 0;
446 } else if (err == -EBADMSG) {
447 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
448 goto out_unlock;
449 scrub = 1;
450 if (!check) {
451 ubi_msg("force data checking");
452 check = 1;
453 goto retry;
455 } else
456 goto out_unlock;
459 if (check) {
460 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
461 if (crc1 != crc) {
462 ubi_warn("CRC error: calculated %#08x, must be %#08x",
463 crc1, crc);
464 err = -EBADMSG;
465 goto out_unlock;
469 if (scrub)
470 err = ubi_wl_scrub_peb(ubi, pnum);
472 leb_read_unlock(ubi, vol_id, lnum);
473 return err;
475 out_free:
476 ubi_free_vid_hdr(ubi, vid_hdr);
477 out_unlock:
478 leb_read_unlock(ubi, vol_id, lnum);
479 return err;
483 * recover_peb - recover from write failure.
484 * @ubi: UBI device description object
485 * @pnum: the physical eraseblock to recover
486 * @vol_id: volume ID
487 * @lnum: logical eraseblock number
488 * @buf: data which was not written because of the write failure
489 * @offset: offset of the failed write
490 * @len: how many bytes should have been written
492 * This function is called in case of a write failure and moves all good data
493 * from the potentially bad physical eraseblock to a good physical eraseblock.
494 * This function also writes the data which was not written due to the failure.
495 * Returns new physical eraseblock number in case of success, and a negative
496 * error code in case of failure.
498 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
499 const void *buf, int offset, int len)
501 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
502 struct ubi_volume *vol = ubi->volumes[idx];
503 struct ubi_vid_hdr *vid_hdr;
505 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
506 if (!vid_hdr)
507 return -ENOMEM;
509 retry:
510 new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
511 if (new_pnum < 0) {
512 ubi_free_vid_hdr(ubi, vid_hdr);
513 return new_pnum;
516 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
518 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
519 if (err && err != UBI_IO_BITFLIPS) {
520 if (err > 0)
521 err = -EIO;
522 goto out_put;
525 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
526 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
527 if (err)
528 goto write_error;
530 data_size = offset + len;
531 mutex_lock(&ubi->buf_mutex);
532 memset(ubi->peb_buf1 + offset, 0xFF, len);
534 /* Read everything before the area where the write failure happened */
535 if (offset > 0) {
536 err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
537 if (err && err != UBI_IO_BITFLIPS)
538 goto out_unlock;
541 memcpy(ubi->peb_buf1 + offset, buf, len);
543 err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
544 if (err) {
545 mutex_unlock(&ubi->buf_mutex);
546 goto write_error;
549 mutex_unlock(&ubi->buf_mutex);
550 ubi_free_vid_hdr(ubi, vid_hdr);
552 vol->eba_tbl[lnum] = new_pnum;
553 ubi_wl_put_peb(ubi, pnum, 1);
555 ubi_msg("data was successfully recovered");
556 return 0;
558 out_unlock:
559 mutex_unlock(&ubi->buf_mutex);
560 out_put:
561 ubi_wl_put_peb(ubi, new_pnum, 1);
562 ubi_free_vid_hdr(ubi, vid_hdr);
563 return err;
565 write_error:
567 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
568 * get another one.
570 ubi_warn("failed to write to PEB %d", new_pnum);
571 ubi_wl_put_peb(ubi, new_pnum, 1);
572 if (++tries > UBI_IO_RETRIES) {
573 ubi_free_vid_hdr(ubi, vid_hdr);
574 return err;
576 ubi_msg("try again");
577 goto retry;
581 * ubi_eba_write_leb - write data to dynamic volume.
582 * @ubi: UBI device description object
583 * @vol: volume description object
584 * @lnum: logical eraseblock number
585 * @buf: the data to write
586 * @offset: offset within the logical eraseblock where to write
587 * @len: how many bytes to write
588 * @dtype: data type
590 * This function writes data to logical eraseblock @lnum of a dynamic volume
591 * @vol. Returns zero in case of success and a negative error code in case
592 * of failure. In case of error, it is possible that something was still
593 * written to the flash media, but may be some garbage.
595 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
596 const void *buf, int offset, int len, int dtype)
598 int err, pnum, tries = 0, vol_id = vol->vol_id;
599 struct ubi_vid_hdr *vid_hdr;
601 if (ubi->ro_mode)
602 return -EROFS;
604 err = leb_write_lock(ubi, vol_id, lnum);
605 if (err)
606 return err;
608 pnum = vol->eba_tbl[lnum];
609 if (pnum >= 0) {
610 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
611 len, offset, vol_id, lnum, pnum);
613 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
614 if (err) {
615 ubi_warn("failed to write data to PEB %d", pnum);
616 if (err == -EIO && ubi->bad_allowed)
617 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
618 offset, len);
619 if (err)
620 ubi_ro_mode(ubi);
622 leb_write_unlock(ubi, vol_id, lnum);
623 return err;
627 * The logical eraseblock is not mapped. We have to get a free physical
628 * eraseblock and write the volume identifier header there first.
630 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
631 if (!vid_hdr) {
632 leb_write_unlock(ubi, vol_id, lnum);
633 return -ENOMEM;
636 vid_hdr->vol_type = UBI_VID_DYNAMIC;
637 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
638 vid_hdr->vol_id = cpu_to_be32(vol_id);
639 vid_hdr->lnum = cpu_to_be32(lnum);
640 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
641 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
643 retry:
644 pnum = ubi_wl_get_peb(ubi, dtype);
645 if (pnum < 0) {
646 ubi_free_vid_hdr(ubi, vid_hdr);
647 leb_write_unlock(ubi, vol_id, lnum);
648 return pnum;
651 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
652 len, offset, vol_id, lnum, pnum);
654 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
655 if (err) {
656 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
657 vol_id, lnum, pnum);
658 goto write_error;
661 if (len) {
662 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
663 if (err) {
664 ubi_warn("failed to write %d bytes at offset %d of "
665 "LEB %d:%d, PEB %d", len, offset, vol_id,
666 lnum, pnum);
667 goto write_error;
671 vol->eba_tbl[lnum] = pnum;
673 leb_write_unlock(ubi, vol_id, lnum);
674 ubi_free_vid_hdr(ubi, vid_hdr);
675 return 0;
677 write_error:
678 if (err != -EIO || !ubi->bad_allowed) {
679 ubi_ro_mode(ubi);
680 leb_write_unlock(ubi, vol_id, lnum);
681 ubi_free_vid_hdr(ubi, vid_hdr);
682 return err;
686 * Fortunately, this is the first write operation to this physical
687 * eraseblock, so just put it and request a new one. We assume that if
688 * this physical eraseblock went bad, the erase code will handle that.
690 err = ubi_wl_put_peb(ubi, pnum, 1);
691 if (err || ++tries > UBI_IO_RETRIES) {
692 ubi_ro_mode(ubi);
693 leb_write_unlock(ubi, vol_id, lnum);
694 ubi_free_vid_hdr(ubi, vid_hdr);
695 return err;
698 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
699 ubi_msg("try another PEB");
700 goto retry;
704 * ubi_eba_write_leb_st - write data to static volume.
705 * @ubi: UBI device description object
706 * @vol: volume description object
707 * @lnum: logical eraseblock number
708 * @buf: data to write
709 * @len: how many bytes to write
710 * @dtype: data type
711 * @used_ebs: how many logical eraseblocks will this volume contain
713 * This function writes data to logical eraseblock @lnum of static volume
714 * @vol. The @used_ebs argument should contain total number of logical
715 * eraseblock in this static volume.
717 * When writing to the last logical eraseblock, the @len argument doesn't have
718 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
719 * to the real data size, although the @buf buffer has to contain the
720 * alignment. In all other cases, @len has to be aligned.
722 * It is prohibited to write more than once to logical eraseblocks of static
723 * volumes. This function returns zero in case of success and a negative error
724 * code in case of failure.
726 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
727 int lnum, const void *buf, int len, int dtype,
728 int used_ebs)
730 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
731 struct ubi_vid_hdr *vid_hdr;
732 uint32_t crc;
734 if (ubi->ro_mode)
735 return -EROFS;
737 if (lnum == used_ebs - 1)
738 /* If this is the last LEB @len may be unaligned */
739 len = ALIGN(data_size, ubi->min_io_size);
740 else
741 ubi_assert(!(len & (ubi->min_io_size - 1)));
743 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
744 if (!vid_hdr)
745 return -ENOMEM;
747 err = leb_write_lock(ubi, vol_id, lnum);
748 if (err) {
749 ubi_free_vid_hdr(ubi, vid_hdr);
750 return err;
753 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
754 vid_hdr->vol_id = cpu_to_be32(vol_id);
755 vid_hdr->lnum = cpu_to_be32(lnum);
756 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
757 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
759 crc = crc32(UBI_CRC32_INIT, buf, data_size);
760 vid_hdr->vol_type = UBI_VID_STATIC;
761 vid_hdr->data_size = cpu_to_be32(data_size);
762 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
763 vid_hdr->data_crc = cpu_to_be32(crc);
765 retry:
766 pnum = ubi_wl_get_peb(ubi, dtype);
767 if (pnum < 0) {
768 ubi_free_vid_hdr(ubi, vid_hdr);
769 leb_write_unlock(ubi, vol_id, lnum);
770 return pnum;
773 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
774 len, vol_id, lnum, pnum, used_ebs);
776 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
777 if (err) {
778 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
779 vol_id, lnum, pnum);
780 goto write_error;
783 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
784 if (err) {
785 ubi_warn("failed to write %d bytes of data to PEB %d",
786 len, pnum);
787 goto write_error;
790 ubi_assert(vol->eba_tbl[lnum] < 0);
791 vol->eba_tbl[lnum] = pnum;
793 leb_write_unlock(ubi, vol_id, lnum);
794 ubi_free_vid_hdr(ubi, vid_hdr);
795 return 0;
797 write_error:
798 if (err != -EIO || !ubi->bad_allowed) {
800 * This flash device does not admit of bad eraseblocks or
801 * something nasty and unexpected happened. Switch to read-only
802 * mode just in case.
804 ubi_ro_mode(ubi);
805 leb_write_unlock(ubi, vol_id, lnum);
806 ubi_free_vid_hdr(ubi, vid_hdr);
807 return err;
810 err = ubi_wl_put_peb(ubi, pnum, 1);
811 if (err || ++tries > UBI_IO_RETRIES) {
812 ubi_ro_mode(ubi);
813 leb_write_unlock(ubi, vol_id, lnum);
814 ubi_free_vid_hdr(ubi, vid_hdr);
815 return err;
818 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
819 ubi_msg("try another PEB");
820 goto retry;
824 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
825 * @ubi: UBI device description object
826 * @vol: volume description object
827 * @lnum: logical eraseblock number
828 * @buf: data to write
829 * @len: how many bytes to write
830 * @dtype: data type
832 * This function changes the contents of a logical eraseblock atomically. @buf
833 * has to contain new logical eraseblock data, and @len - the length of the
834 * data, which has to be aligned. This function guarantees that in case of an
835 * unclean reboot the old contents is preserved. Returns zero in case of
836 * success and a negative error code in case of failure.
838 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
839 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
841 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
842 int lnum, const void *buf, int len, int dtype)
844 int err, pnum, tries = 0, vol_id = vol->vol_id;
845 struct ubi_vid_hdr *vid_hdr;
846 uint32_t crc;
848 if (ubi->ro_mode)
849 return -EROFS;
851 if (len == 0) {
853 * Special case when data length is zero. In this case the LEB
854 * has to be unmapped and mapped somewhere else.
856 err = ubi_eba_unmap_leb(ubi, vol, lnum);
857 if (err)
858 return err;
859 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
862 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
863 if (!vid_hdr)
864 return -ENOMEM;
866 mutex_lock(&ubi->alc_mutex);
867 err = leb_write_lock(ubi, vol_id, lnum);
868 if (err)
869 goto out_mutex;
871 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
872 vid_hdr->vol_id = cpu_to_be32(vol_id);
873 vid_hdr->lnum = cpu_to_be32(lnum);
874 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
875 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
877 crc = crc32(UBI_CRC32_INIT, buf, len);
878 vid_hdr->vol_type = UBI_VID_DYNAMIC;
879 vid_hdr->data_size = cpu_to_be32(len);
880 vid_hdr->copy_flag = 1;
881 vid_hdr->data_crc = cpu_to_be32(crc);
883 retry:
884 pnum = ubi_wl_get_peb(ubi, dtype);
885 if (pnum < 0) {
886 err = pnum;
887 goto out_leb_unlock;
890 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
891 vol_id, lnum, vol->eba_tbl[lnum], pnum);
893 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
894 if (err) {
895 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
896 vol_id, lnum, pnum);
897 goto write_error;
900 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
901 if (err) {
902 ubi_warn("failed to write %d bytes of data to PEB %d",
903 len, pnum);
904 goto write_error;
907 if (vol->eba_tbl[lnum] >= 0) {
908 err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 0);
909 if (err)
910 goto out_leb_unlock;
913 vol->eba_tbl[lnum] = pnum;
915 out_leb_unlock:
916 leb_write_unlock(ubi, vol_id, lnum);
917 out_mutex:
918 mutex_unlock(&ubi->alc_mutex);
919 ubi_free_vid_hdr(ubi, vid_hdr);
920 return err;
922 write_error:
923 if (err != -EIO || !ubi->bad_allowed) {
925 * This flash device does not admit of bad eraseblocks or
926 * something nasty and unexpected happened. Switch to read-only
927 * mode just in case.
929 ubi_ro_mode(ubi);
930 goto out_leb_unlock;
933 err = ubi_wl_put_peb(ubi, pnum, 1);
934 if (err || ++tries > UBI_IO_RETRIES) {
935 ubi_ro_mode(ubi);
936 goto out_leb_unlock;
939 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
940 ubi_msg("try another PEB");
941 goto retry;
945 * is_error_sane - check whether a read error is sane.
946 * @err: code of the error happened during reading
948 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
949 * cannot read data from the target PEB (an error @err happened). If the error
950 * code is sane, then we treat this error as non-fatal. Otherwise the error is
951 * fatal and UBI will be switched to R/O mode later.
953 * The idea is that we try not to switch to R/O mode if the read error is
954 * something which suggests there was a real read problem. E.g., %-EIO. Or a
955 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
956 * mode, simply because we do not know what happened at the MTD level, and we
957 * cannot handle this. E.g., the underlying driver may have become crazy, and
958 * it is safer to switch to R/O mode to preserve the data.
960 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
961 * which we have just written.
963 static int is_error_sane(int err)
965 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
966 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
967 return 0;
968 return 1;
972 * ubi_eba_copy_leb - copy logical eraseblock.
973 * @ubi: UBI device description object
974 * @from: physical eraseblock number from where to copy
975 * @to: physical eraseblock number where to copy
976 * @vid_hdr: VID header of the @from physical eraseblock
978 * This function copies logical eraseblock from physical eraseblock @from to
979 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
980 * function. Returns:
981 * o %0 in case of success;
982 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_CANCEL_BITFLIPS, etc;
983 * o a negative error code in case of failure.
985 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
986 struct ubi_vid_hdr *vid_hdr)
988 int err, vol_id, lnum, data_size, aldata_size, idx;
989 struct ubi_volume *vol;
990 uint32_t crc;
992 vol_id = be32_to_cpu(vid_hdr->vol_id);
993 lnum = be32_to_cpu(vid_hdr->lnum);
995 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
997 if (vid_hdr->vol_type == UBI_VID_STATIC) {
998 data_size = be32_to_cpu(vid_hdr->data_size);
999 aldata_size = ALIGN(data_size, ubi->min_io_size);
1000 } else
1001 data_size = aldata_size =
1002 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1004 idx = vol_id2idx(ubi, vol_id);
1005 spin_lock(&ubi->volumes_lock);
1007 * Note, we may race with volume deletion, which means that the volume
1008 * this logical eraseblock belongs to might be being deleted. Since the
1009 * volume deletion un-maps all the volume's logical eraseblocks, it will
1010 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1012 vol = ubi->volumes[idx];
1013 spin_unlock(&ubi->volumes_lock);
1014 if (!vol) {
1015 /* No need to do further work, cancel */
1016 dbg_wl("volume %d is being removed, cancel", vol_id);
1017 return MOVE_CANCEL_RACE;
1021 * We do not want anybody to write to this logical eraseblock while we
1022 * are moving it, so lock it.
1024 * Note, we are using non-waiting locking here, because we cannot sleep
1025 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1026 * unmapping the LEB which is mapped to the PEB we are going to move
1027 * (@from). This task locks the LEB and goes sleep in the
1028 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1029 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1030 * LEB is already locked, we just do not move it and return
1031 * %MOVE_CANCEL_RACE, which means that UBI will re-try, but later.
1033 err = leb_write_trylock(ubi, vol_id, lnum);
1034 if (err) {
1035 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1036 return MOVE_CANCEL_RACE;
1040 * The LEB might have been put meanwhile, and the task which put it is
1041 * probably waiting on @ubi->move_mutex. No need to continue the work,
1042 * cancel it.
1044 if (vol->eba_tbl[lnum] != from) {
1045 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1046 "PEB %d, cancel", vol_id, lnum, from,
1047 vol->eba_tbl[lnum]);
1048 err = MOVE_CANCEL_RACE;
1049 goto out_unlock_leb;
1053 * OK, now the LEB is locked and we can safely start moving it. Since
1054 * this function utilizes the @ubi->peb_buf1 buffer which is shared
1055 * with some other functions - we lock the buffer by taking the
1056 * @ubi->buf_mutex.
1058 mutex_lock(&ubi->buf_mutex);
1059 dbg_wl("read %d bytes of data", aldata_size);
1060 err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
1061 if (err && err != UBI_IO_BITFLIPS) {
1062 ubi_warn("error %d while reading data from PEB %d",
1063 err, from);
1064 err = MOVE_SOURCE_RD_ERR;
1065 goto out_unlock_buf;
1069 * Now we have got to calculate how much data we have to copy. In
1070 * case of a static volume it is fairly easy - the VID header contains
1071 * the data size. In case of a dynamic volume it is more difficult - we
1072 * have to read the contents, cut 0xFF bytes from the end and copy only
1073 * the first part. We must do this to avoid writing 0xFF bytes as it
1074 * may have some side-effects. And not only this. It is important not
1075 * to include those 0xFFs to CRC because later the they may be filled
1076 * by data.
1078 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1079 aldata_size = data_size =
1080 ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
1082 cond_resched();
1083 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
1084 cond_resched();
1087 * It may turn out to be that the whole @from physical eraseblock
1088 * contains only 0xFF bytes. Then we have to only write the VID header
1089 * and do not write any data. This also means we should not set
1090 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1092 if (data_size > 0) {
1093 vid_hdr->copy_flag = 1;
1094 vid_hdr->data_size = cpu_to_be32(data_size);
1095 vid_hdr->data_crc = cpu_to_be32(crc);
1097 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
1099 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1100 if (err) {
1101 if (err == -EIO)
1102 err = MOVE_TARGET_WR_ERR;
1103 goto out_unlock_buf;
1106 cond_resched();
1108 /* Read the VID header back and check if it was written correctly */
1109 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1110 if (err) {
1111 if (err != UBI_IO_BITFLIPS) {
1112 ubi_warn("error %d while reading VID header back from "
1113 "PEB %d", err, to);
1114 if (is_error_sane(err))
1115 err = MOVE_TARGET_RD_ERR;
1116 } else
1117 err = MOVE_CANCEL_BITFLIPS;
1118 goto out_unlock_buf;
1121 if (data_size > 0) {
1122 err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
1123 if (err) {
1124 if (err == -EIO)
1125 err = MOVE_TARGET_WR_ERR;
1126 goto out_unlock_buf;
1129 cond_resched();
1132 * We've written the data and are going to read it back to make
1133 * sure it was written correctly.
1136 err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
1137 if (err) {
1138 if (err != UBI_IO_BITFLIPS) {
1139 ubi_warn("error %d while reading data back "
1140 "from PEB %d", err, to);
1141 if (is_error_sane(err))
1142 err = MOVE_TARGET_RD_ERR;
1143 } else
1144 err = MOVE_CANCEL_BITFLIPS;
1145 goto out_unlock_buf;
1148 cond_resched();
1150 if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
1151 ubi_warn("read data back from PEB %d and it is "
1152 "different", to);
1153 err = -EINVAL;
1154 goto out_unlock_buf;
1158 ubi_assert(vol->eba_tbl[lnum] == from);
1159 vol->eba_tbl[lnum] = to;
1161 out_unlock_buf:
1162 mutex_unlock(&ubi->buf_mutex);
1163 out_unlock_leb:
1164 leb_write_unlock(ubi, vol_id, lnum);
1165 return err;
1169 * print_rsvd_warning - warn about not having enough reserved PEBs.
1170 * @ubi: UBI device description object
1172 * This is a helper function for 'ubi_eba_init_scan()' which is called when UBI
1173 * cannot reserve enough PEBs for bad block handling. This function makes a
1174 * decision whether we have to print a warning or not. The algorithm is as
1175 * follows:
1176 * o if this is a new UBI image, then just print the warning
1177 * o if this is an UBI image which has already been used for some time, print
1178 * a warning only if we can reserve less than 10% of the expected amount of
1179 * the reserved PEB.
1181 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1182 * of PEBs becomes smaller, which is normal and we do not want to scare users
1183 * with a warning every time they attach the MTD device. This was an issue
1184 * reported by real users.
1186 static void print_rsvd_warning(struct ubi_device *ubi,
1187 struct ubi_scan_info *si)
1190 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1191 * large number to distinguish between newly flashed and used images.
1193 if (si->max_sqnum > (1 << 18)) {
1194 int min = ubi->beb_rsvd_level / 10;
1196 if (!min)
1197 min = 1;
1198 if (ubi->beb_rsvd_pebs > min)
1199 return;
1202 ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d,"
1203 " need %d", ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1204 if (ubi->corr_peb_count)
1205 ubi_warn("%d PEBs are corrupted and not used",
1206 ubi->corr_peb_count);
1210 * ubi_eba_init_scan - initialize the EBA sub-system using scanning information.
1211 * @ubi: UBI device description object
1212 * @si: scanning information
1214 * This function returns zero in case of success and a negative error code in
1215 * case of failure.
1217 int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1219 int i, j, err, num_volumes;
1220 struct ubi_scan_volume *sv;
1221 struct ubi_volume *vol;
1222 struct ubi_scan_leb *seb;
1223 struct rb_node *rb;
1225 dbg_eba("initialize EBA sub-system");
1227 spin_lock_init(&ubi->ltree_lock);
1228 mutex_init(&ubi->alc_mutex);
1229 ubi->ltree = RB_ROOT;
1231 ubi->global_sqnum = si->max_sqnum + 1;
1232 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1234 for (i = 0; i < num_volumes; i++) {
1235 vol = ubi->volumes[i];
1236 if (!vol)
1237 continue;
1239 cond_resched();
1241 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1242 GFP_KERNEL);
1243 if (!vol->eba_tbl) {
1244 err = -ENOMEM;
1245 goto out_free;
1248 for (j = 0; j < vol->reserved_pebs; j++)
1249 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1251 sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
1252 if (!sv)
1253 continue;
1255 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
1256 if (seb->lnum >= vol->reserved_pebs)
1258 * This may happen in case of an unclean reboot
1259 * during re-size.
1261 ubi_scan_move_to_list(sv, seb, &si->erase);
1262 vol->eba_tbl[seb->lnum] = seb->pnum;
1266 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1267 ubi_err("no enough physical eraseblocks (%d, need %d)",
1268 ubi->avail_pebs, EBA_RESERVED_PEBS);
1269 if (ubi->corr_peb_count)
1270 ubi_err("%d PEBs are corrupted and not used",
1271 ubi->corr_peb_count);
1272 err = -ENOSPC;
1273 goto out_free;
1275 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1276 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1278 if (ubi->bad_allowed) {
1279 ubi_calculate_reserved(ubi);
1281 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1282 /* No enough free physical eraseblocks */
1283 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1284 print_rsvd_warning(ubi, si);
1285 } else
1286 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1288 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1289 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1292 dbg_eba("EBA sub-system is initialized");
1293 return 0;
1295 out_free:
1296 for (i = 0; i < num_volumes; i++) {
1297 if (!ubi->volumes[i])
1298 continue;
1299 kfree(ubi->volumes[i]->eba_tbl);
1300 ubi->volumes[i]->eba_tbl = NULL;
1302 return err;