2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 #include <linux/skbuff.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/prefetch.h>
46 #include "t4vf_common.h"
47 #include "t4vf_defs.h"
49 #include "../cxgb4/t4_regs.h"
50 #include "../cxgb4/t4fw_api.h"
51 #include "../cxgb4/t4_msg.h"
54 * Decoded Adapter Parameters.
56 static u32 FL_PG_ORDER
; /* large page allocation size */
57 static u32 STAT_LEN
; /* length of status page at ring end */
58 static u32 PKTSHIFT
; /* padding between CPL and packet data */
59 static u32 FL_ALIGN
; /* response queue message alignment */
66 * Egress Queue sizes, producer and consumer indices are all in units
67 * of Egress Context Units bytes. Note that as far as the hardware is
68 * concerned, the free list is an Egress Queue (the host produces free
69 * buffers which the hardware consumes) and free list entries are
70 * 64-bit PCI DMA addresses.
72 EQ_UNIT
= SGE_EQ_IDXSIZE
,
73 FL_PER_EQ_UNIT
= EQ_UNIT
/ sizeof(__be64
),
74 TXD_PER_EQ_UNIT
= EQ_UNIT
/ sizeof(__be64
),
77 * Max number of TX descriptors we clean up at a time. Should be
78 * modest as freeing skbs isn't cheap and it happens while holding
79 * locks. We just need to free packets faster than they arrive, we
80 * eventually catch up and keep the amortized cost reasonable.
85 * Max number of Rx buffers we replenish at a time. Again keep this
86 * modest, allocating buffers isn't cheap either.
91 * Period of the Rx queue check timer. This timer is infrequent as it
92 * has something to do only when the system experiences severe memory
95 RX_QCHECK_PERIOD
= (HZ
/ 2),
98 * Period of the TX queue check timer and the maximum number of TX
99 * descriptors to be reclaimed by the TX timer.
101 TX_QCHECK_PERIOD
= (HZ
/ 2),
102 MAX_TIMER_TX_RECLAIM
= 100,
105 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic
106 * timer will attempt to refill it.
111 * Suspend an Ethernet TX queue with fewer available descriptors than
112 * this. We always want to have room for a maximum sized packet:
113 * inline immediate data + MAX_SKB_FRAGS. This is the same as
114 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
115 * (see that function and its helpers for a description of the
118 ETHTXQ_MAX_FRAGS
= MAX_SKB_FRAGS
+ 1,
119 ETHTXQ_MAX_SGL_LEN
= ((3 * (ETHTXQ_MAX_FRAGS
-1))/2 +
120 ((ETHTXQ_MAX_FRAGS
-1) & 1) +
122 ETHTXQ_MAX_HDR
= (sizeof(struct fw_eth_tx_pkt_vm_wr
) +
123 sizeof(struct cpl_tx_pkt_lso_core
) +
124 sizeof(struct cpl_tx_pkt_core
)) / sizeof(__be64
),
125 ETHTXQ_MAX_FLITS
= ETHTXQ_MAX_SGL_LEN
+ ETHTXQ_MAX_HDR
,
127 ETHTXQ_STOP_THRES
= 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS
, TXD_PER_EQ_UNIT
),
130 * Max TX descriptor space we allow for an Ethernet packet to be
131 * inlined into a WR. This is limited by the maximum value which
132 * we can specify for immediate data in the firmware Ethernet TX
135 MAX_IMM_TX_PKT_LEN
= FW_WR_IMMDLEN_MASK
,
138 * Max size of a WR sent through a control TX queue.
140 MAX_CTRL_WR_LEN
= 256,
143 * Maximum amount of data which we'll ever need to inline into a
144 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
146 MAX_IMM_TX_LEN
= (MAX_IMM_TX_PKT_LEN
> MAX_CTRL_WR_LEN
151 * For incoming packets less than RX_COPY_THRES, we copy the data into
152 * an skb rather than referencing the data. We allocate enough
153 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
154 * of the data (header).
160 * Main body length for sk_buffs used for RX Ethernet packets with
161 * fragments. Should be >= RX_PULL_LEN but possibly bigger to give
162 * pskb_may_pull() some room.
168 * Software state per TX descriptor.
171 struct sk_buff
*skb
; /* socket buffer of TX data source */
172 struct ulptx_sgl
*sgl
; /* scatter/gather list in TX Queue */
176 * Software state per RX Free List descriptor. We keep track of the allocated
177 * FL page, its size, and its PCI DMA address (if the page is mapped). The FL
178 * page size and its PCI DMA mapped state are stored in the low bits of the
179 * PCI DMA address as per below.
182 struct page
*page
; /* Free List page buffer */
183 dma_addr_t dma_addr
; /* PCI DMA address (if mapped) */
184 /* and flags (see below) */
188 * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the
189 * SGE also uses the low 4 bits to determine the size of the buffer. It uses
190 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
191 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
192 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
193 * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is
194 * maintained in an inverse sense so the hardware never sees that bit high.
197 RX_LARGE_BUF
= 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */
198 RX_UNMAPPED_BUF
= 1 << 1, /* buffer is not mapped */
202 * get_buf_addr - return DMA buffer address of software descriptor
203 * @sdesc: pointer to the software buffer descriptor
205 * Return the DMA buffer address of a software descriptor (stripping out
206 * our low-order flag bits).
208 static inline dma_addr_t
get_buf_addr(const struct rx_sw_desc
*sdesc
)
210 return sdesc
->dma_addr
& ~(dma_addr_t
)(RX_LARGE_BUF
| RX_UNMAPPED_BUF
);
214 * is_buf_mapped - is buffer mapped for DMA?
215 * @sdesc: pointer to the software buffer descriptor
217 * Determine whether the buffer associated with a software descriptor in
218 * mapped for DMA or not.
220 static inline bool is_buf_mapped(const struct rx_sw_desc
*sdesc
)
222 return !(sdesc
->dma_addr
& RX_UNMAPPED_BUF
);
226 * need_skb_unmap - does the platform need unmapping of sk_buffs?
228 * Returns true if the platform needs sk_buff unmapping. The compiler
229 * optimizes away unnecessary code if this returns true.
231 static inline int need_skb_unmap(void)
233 #ifdef CONFIG_NEED_DMA_MAP_STATE
241 * txq_avail - return the number of available slots in a TX queue
244 * Returns the number of available descriptors in a TX queue.
246 static inline unsigned int txq_avail(const struct sge_txq
*tq
)
248 return tq
->size
- 1 - tq
->in_use
;
252 * fl_cap - return the capacity of a Free List
255 * Returns the capacity of a Free List. The capacity is less than the
256 * size because an Egress Queue Index Unit worth of descriptors needs to
257 * be left unpopulated, otherwise the Producer and Consumer indices PIDX
258 * and CIDX will match and the hardware will think the FL is empty.
260 static inline unsigned int fl_cap(const struct sge_fl
*fl
)
262 return fl
->size
- FL_PER_EQ_UNIT
;
266 * fl_starving - return whether a Free List is starving.
269 * Tests specified Free List to see whether the number of buffers
270 * available to the hardware has falled below our "starvation"
273 static inline bool fl_starving(const struct sge_fl
*fl
)
275 return fl
->avail
- fl
->pend_cred
<= FL_STARVE_THRES
;
279 * map_skb - map an skb for DMA to the device
280 * @dev: the egress net device
281 * @skb: the packet to map
282 * @addr: a pointer to the base of the DMA mapping array
284 * Map an skb for DMA to the device and return an array of DMA addresses.
286 static int map_skb(struct device
*dev
, const struct sk_buff
*skb
,
289 const skb_frag_t
*fp
, *end
;
290 const struct skb_shared_info
*si
;
292 *addr
= dma_map_single(dev
, skb
->data
, skb_headlen(skb
), DMA_TO_DEVICE
);
293 if (dma_mapping_error(dev
, *addr
))
296 si
= skb_shinfo(skb
);
297 end
= &si
->frags
[si
->nr_frags
];
298 for (fp
= si
->frags
; fp
< end
; fp
++) {
299 *++addr
= dma_map_page(dev
, fp
->page
, fp
->page_offset
, fp
->size
,
301 if (dma_mapping_error(dev
, *addr
))
307 while (fp
-- > si
->frags
)
308 dma_unmap_page(dev
, *--addr
, fp
->size
, DMA_TO_DEVICE
);
309 dma_unmap_single(dev
, addr
[-1], skb_headlen(skb
), DMA_TO_DEVICE
);
315 static void unmap_sgl(struct device
*dev
, const struct sk_buff
*skb
,
316 const struct ulptx_sgl
*sgl
, const struct sge_txq
*tq
)
318 const struct ulptx_sge_pair
*p
;
319 unsigned int nfrags
= skb_shinfo(skb
)->nr_frags
;
321 if (likely(skb_headlen(skb
)))
322 dma_unmap_single(dev
, be64_to_cpu(sgl
->addr0
),
323 be32_to_cpu(sgl
->len0
), DMA_TO_DEVICE
);
325 dma_unmap_page(dev
, be64_to_cpu(sgl
->addr0
),
326 be32_to_cpu(sgl
->len0
), DMA_TO_DEVICE
);
331 * the complexity below is because of the possibility of a wrap-around
332 * in the middle of an SGL
334 for (p
= sgl
->sge
; nfrags
>= 2; nfrags
-= 2) {
335 if (likely((u8
*)(p
+ 1) <= (u8
*)tq
->stat
)) {
337 dma_unmap_page(dev
, be64_to_cpu(p
->addr
[0]),
338 be32_to_cpu(p
->len
[0]), DMA_TO_DEVICE
);
339 dma_unmap_page(dev
, be64_to_cpu(p
->addr
[1]),
340 be32_to_cpu(p
->len
[1]), DMA_TO_DEVICE
);
342 } else if ((u8
*)p
== (u8
*)tq
->stat
) {
343 p
= (const struct ulptx_sge_pair
*)tq
->desc
;
345 } else if ((u8
*)p
+ 8 == (u8
*)tq
->stat
) {
346 const __be64
*addr
= (const __be64
*)tq
->desc
;
348 dma_unmap_page(dev
, be64_to_cpu(addr
[0]),
349 be32_to_cpu(p
->len
[0]), DMA_TO_DEVICE
);
350 dma_unmap_page(dev
, be64_to_cpu(addr
[1]),
351 be32_to_cpu(p
->len
[1]), DMA_TO_DEVICE
);
352 p
= (const struct ulptx_sge_pair
*)&addr
[2];
354 const __be64
*addr
= (const __be64
*)tq
->desc
;
356 dma_unmap_page(dev
, be64_to_cpu(p
->addr
[0]),
357 be32_to_cpu(p
->len
[0]), DMA_TO_DEVICE
);
358 dma_unmap_page(dev
, be64_to_cpu(addr
[0]),
359 be32_to_cpu(p
->len
[1]), DMA_TO_DEVICE
);
360 p
= (const struct ulptx_sge_pair
*)&addr
[1];
366 if ((u8
*)p
== (u8
*)tq
->stat
)
367 p
= (const struct ulptx_sge_pair
*)tq
->desc
;
368 addr
= ((u8
*)p
+ 16 <= (u8
*)tq
->stat
370 : *(const __be64
*)tq
->desc
);
371 dma_unmap_page(dev
, be64_to_cpu(addr
), be32_to_cpu(p
->len
[0]),
377 * free_tx_desc - reclaims TX descriptors and their buffers
378 * @adapter: the adapter
379 * @tq: the TX queue to reclaim descriptors from
380 * @n: the number of descriptors to reclaim
381 * @unmap: whether the buffers should be unmapped for DMA
383 * Reclaims TX descriptors from an SGE TX queue and frees the associated
384 * TX buffers. Called with the TX queue lock held.
386 static void free_tx_desc(struct adapter
*adapter
, struct sge_txq
*tq
,
387 unsigned int n
, bool unmap
)
389 struct tx_sw_desc
*sdesc
;
390 unsigned int cidx
= tq
->cidx
;
391 struct device
*dev
= adapter
->pdev_dev
;
393 const int need_unmap
= need_skb_unmap() && unmap
;
395 sdesc
= &tq
->sdesc
[cidx
];
398 * If we kept a reference to the original TX skb, we need to
399 * unmap it from PCI DMA space (if required) and free it.
403 unmap_sgl(dev
, sdesc
->skb
, sdesc
->sgl
, tq
);
404 kfree_skb(sdesc
->skb
);
409 if (++cidx
== tq
->size
) {
418 * Return the number of reclaimable descriptors in a TX queue.
420 static inline int reclaimable(const struct sge_txq
*tq
)
422 int hw_cidx
= be16_to_cpu(tq
->stat
->cidx
);
423 int reclaimable
= hw_cidx
- tq
->cidx
;
425 reclaimable
+= tq
->size
;
430 * reclaim_completed_tx - reclaims completed TX descriptors
431 * @adapter: the adapter
432 * @tq: the TX queue to reclaim completed descriptors from
433 * @unmap: whether the buffers should be unmapped for DMA
435 * Reclaims TX descriptors that the SGE has indicated it has processed,
436 * and frees the associated buffers if possible. Called with the TX
439 static inline void reclaim_completed_tx(struct adapter
*adapter
,
443 int avail
= reclaimable(tq
);
447 * Limit the amount of clean up work we do at a time to keep
448 * the TX lock hold time O(1).
450 if (avail
> MAX_TX_RECLAIM
)
451 avail
= MAX_TX_RECLAIM
;
453 free_tx_desc(adapter
, tq
, avail
, unmap
);
459 * get_buf_size - return the size of an RX Free List buffer.
460 * @sdesc: pointer to the software buffer descriptor
462 static inline int get_buf_size(const struct rx_sw_desc
*sdesc
)
464 return FL_PG_ORDER
> 0 && (sdesc
->dma_addr
& RX_LARGE_BUF
)
465 ? (PAGE_SIZE
<< FL_PG_ORDER
)
470 * free_rx_bufs - free RX buffers on an SGE Free List
471 * @adapter: the adapter
472 * @fl: the SGE Free List to free buffers from
473 * @n: how many buffers to free
475 * Release the next @n buffers on an SGE Free List RX queue. The
476 * buffers must be made inaccessible to hardware before calling this
479 static void free_rx_bufs(struct adapter
*adapter
, struct sge_fl
*fl
, int n
)
482 struct rx_sw_desc
*sdesc
= &fl
->sdesc
[fl
->cidx
];
484 if (is_buf_mapped(sdesc
))
485 dma_unmap_page(adapter
->pdev_dev
, get_buf_addr(sdesc
),
486 get_buf_size(sdesc
), PCI_DMA_FROMDEVICE
);
487 put_page(sdesc
->page
);
489 if (++fl
->cidx
== fl
->size
)
496 * unmap_rx_buf - unmap the current RX buffer on an SGE Free List
497 * @adapter: the adapter
498 * @fl: the SGE Free List
500 * Unmap the current buffer on an SGE Free List RX queue. The
501 * buffer must be made inaccessible to HW before calling this function.
503 * This is similar to @free_rx_bufs above but does not free the buffer.
504 * Do note that the FL still loses any further access to the buffer.
505 * This is used predominantly to "transfer ownership" of an FL buffer
506 * to another entity (typically an skb's fragment list).
508 static void unmap_rx_buf(struct adapter
*adapter
, struct sge_fl
*fl
)
510 struct rx_sw_desc
*sdesc
= &fl
->sdesc
[fl
->cidx
];
512 if (is_buf_mapped(sdesc
))
513 dma_unmap_page(adapter
->pdev_dev
, get_buf_addr(sdesc
),
514 get_buf_size(sdesc
), PCI_DMA_FROMDEVICE
);
516 if (++fl
->cidx
== fl
->size
)
522 * ring_fl_db - righ doorbell on free list
523 * @adapter: the adapter
524 * @fl: the Free List whose doorbell should be rung ...
526 * Tell the Scatter Gather Engine that there are new free list entries
529 static inline void ring_fl_db(struct adapter
*adapter
, struct sge_fl
*fl
)
532 * The SGE keeps track of its Producer and Consumer Indices in terms
533 * of Egress Queue Units so we can only tell it about integral numbers
534 * of multiples of Free List Entries per Egress Queue Units ...
536 if (fl
->pend_cred
>= FL_PER_EQ_UNIT
) {
538 t4_write_reg(adapter
, T4VF_SGE_BASE_ADDR
+ SGE_VF_KDOORBELL
,
541 PIDX(fl
->pend_cred
/ FL_PER_EQ_UNIT
));
542 fl
->pend_cred
%= FL_PER_EQ_UNIT
;
547 * set_rx_sw_desc - initialize software RX buffer descriptor
548 * @sdesc: pointer to the softwore RX buffer descriptor
549 * @page: pointer to the page data structure backing the RX buffer
550 * @dma_addr: PCI DMA address (possibly with low-bit flags)
552 static inline void set_rx_sw_desc(struct rx_sw_desc
*sdesc
, struct page
*page
,
556 sdesc
->dma_addr
= dma_addr
;
560 * Support for poisoning RX buffers ...
562 #define POISON_BUF_VAL -1
564 static inline void poison_buf(struct page
*page
, size_t sz
)
566 #if POISON_BUF_VAL >= 0
567 memset(page_address(page
), POISON_BUF_VAL
, sz
);
572 * refill_fl - refill an SGE RX buffer ring
573 * @adapter: the adapter
574 * @fl: the Free List ring to refill
575 * @n: the number of new buffers to allocate
576 * @gfp: the gfp flags for the allocations
578 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
579 * allocated with the supplied gfp flags. The caller must assure that
580 * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
581 * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number
582 * of buffers allocated. If afterwards the queue is found critically low,
583 * mark it as starving in the bitmap of starving FLs.
585 static unsigned int refill_fl(struct adapter
*adapter
, struct sge_fl
*fl
,
590 unsigned int cred
= fl
->avail
;
591 __be64
*d
= &fl
->desc
[fl
->pidx
];
592 struct rx_sw_desc
*sdesc
= &fl
->sdesc
[fl
->pidx
];
595 * Sanity: ensure that the result of adding n Free List buffers
596 * won't result in wrapping the SGE's Producer Index around to
597 * it's Consumer Index thereby indicating an empty Free List ...
599 BUG_ON(fl
->avail
+ n
> fl
->size
- FL_PER_EQ_UNIT
);
602 * If we support large pages, prefer large buffers and fail over to
603 * small pages if we can't allocate large pages to satisfy the refill.
604 * If we don't support large pages, drop directly into the small page
607 if (FL_PG_ORDER
== 0)
608 goto alloc_small_pages
;
611 page
= alloc_pages(gfp
| __GFP_COMP
| __GFP_NOWARN
,
613 if (unlikely(!page
)) {
615 * We've failed inour attempt to allocate a "large
616 * page". Fail over to the "small page" allocation
619 fl
->large_alloc_failed
++;
622 poison_buf(page
, PAGE_SIZE
<< FL_PG_ORDER
);
624 dma_addr
= dma_map_page(adapter
->pdev_dev
, page
, 0,
625 PAGE_SIZE
<< FL_PG_ORDER
,
627 if (unlikely(dma_mapping_error(adapter
->pdev_dev
, dma_addr
))) {
629 * We've run out of DMA mapping space. Free up the
630 * buffer and return with what we've managed to put
631 * into the free list. We don't want to fail over to
632 * the small page allocation below in this case
633 * because DMA mapping resources are typically
634 * critical resources once they become scarse.
636 __free_pages(page
, FL_PG_ORDER
);
639 dma_addr
|= RX_LARGE_BUF
;
640 *d
++ = cpu_to_be64(dma_addr
);
642 set_rx_sw_desc(sdesc
, page
, dma_addr
);
646 if (++fl
->pidx
== fl
->size
) {
656 page
= __netdev_alloc_page(adapter
->port
[0],
658 if (unlikely(!page
)) {
662 poison_buf(page
, PAGE_SIZE
);
664 dma_addr
= dma_map_page(adapter
->pdev_dev
, page
, 0, PAGE_SIZE
,
666 if (unlikely(dma_mapping_error(adapter
->pdev_dev
, dma_addr
))) {
667 netdev_free_page(adapter
->port
[0], page
);
670 *d
++ = cpu_to_be64(dma_addr
);
672 set_rx_sw_desc(sdesc
, page
, dma_addr
);
676 if (++fl
->pidx
== fl
->size
) {
685 * Update our accounting state to incorporate the new Free List
686 * buffers, tell the hardware about them and return the number of
687 * bufers which we were able to allocate.
689 cred
= fl
->avail
- cred
;
690 fl
->pend_cred
+= cred
;
691 ring_fl_db(adapter
, fl
);
693 if (unlikely(fl_starving(fl
))) {
695 set_bit(fl
->cntxt_id
, adapter
->sge
.starving_fl
);
702 * Refill a Free List to its capacity or the Maximum Refill Increment,
703 * whichever is smaller ...
705 static inline void __refill_fl(struct adapter
*adapter
, struct sge_fl
*fl
)
707 refill_fl(adapter
, fl
,
708 min((unsigned int)MAX_RX_REFILL
, fl_cap(fl
) - fl
->avail
),
713 * alloc_ring - allocate resources for an SGE descriptor ring
714 * @dev: the PCI device's core device
715 * @nelem: the number of descriptors
716 * @hwsize: the size of each hardware descriptor
717 * @swsize: the size of each software descriptor
718 * @busaddrp: the physical PCI bus address of the allocated ring
719 * @swringp: return address pointer for software ring
720 * @stat_size: extra space in hardware ring for status information
722 * Allocates resources for an SGE descriptor ring, such as TX queues,
723 * free buffer lists, response queues, etc. Each SGE ring requires
724 * space for its hardware descriptors plus, optionally, space for software
725 * state associated with each hardware entry (the metadata). The function
726 * returns three values: the virtual address for the hardware ring (the
727 * return value of the function), the PCI bus address of the hardware
728 * ring (in *busaddrp), and the address of the software ring (in swringp).
729 * Both the hardware and software rings are returned zeroed out.
731 static void *alloc_ring(struct device
*dev
, size_t nelem
, size_t hwsize
,
732 size_t swsize
, dma_addr_t
*busaddrp
, void *swringp
,
736 * Allocate the hardware ring and PCI DMA bus address space for said.
738 size_t hwlen
= nelem
* hwsize
+ stat_size
;
739 void *hwring
= dma_alloc_coherent(dev
, hwlen
, busaddrp
, GFP_KERNEL
);
745 * If the caller wants a software ring, allocate it and return a
746 * pointer to it in *swringp.
748 BUG_ON((swsize
!= 0) != (swringp
!= NULL
));
750 void *swring
= kcalloc(nelem
, swsize
, GFP_KERNEL
);
753 dma_free_coherent(dev
, hwlen
, hwring
, *busaddrp
);
756 *(void **)swringp
= swring
;
760 * Zero out the hardware ring and return its address as our function
763 memset(hwring
, 0, hwlen
);
768 * sgl_len - calculates the size of an SGL of the given capacity
769 * @n: the number of SGL entries
771 * Calculates the number of flits (8-byte units) needed for a Direct
772 * Scatter/Gather List that can hold the given number of entries.
774 static inline unsigned int sgl_len(unsigned int n
)
777 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
778 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
779 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
780 * repeated sequences of { Length[i], Length[i+1], Address[i],
781 * Address[i+1] } (this ensures that all addresses are on 64-bit
782 * boundaries). If N is even, then Length[N+1] should be set to 0 and
783 * Address[N+1] is omitted.
785 * The following calculation incorporates all of the above. It's
786 * somewhat hard to follow but, briefly: the "+2" accounts for the
787 * first two flits which include the DSGL header, Length0 and
788 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
789 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
790 * finally the "+((n-1)&1)" adds the one remaining flit needed if
794 return (3 * n
) / 2 + (n
& 1) + 2;
798 * flits_to_desc - returns the num of TX descriptors for the given flits
799 * @flits: the number of flits
801 * Returns the number of TX descriptors needed for the supplied number
804 static inline unsigned int flits_to_desc(unsigned int flits
)
806 BUG_ON(flits
> SGE_MAX_WR_LEN
/ sizeof(__be64
));
807 return DIV_ROUND_UP(flits
, TXD_PER_EQ_UNIT
);
811 * is_eth_imm - can an Ethernet packet be sent as immediate data?
814 * Returns whether an Ethernet packet is small enough to fit completely as
817 static inline int is_eth_imm(const struct sk_buff
*skb
)
820 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
821 * which does not accommodate immediate data. We could dike out all
822 * of the support code for immediate data but that would tie our hands
823 * too much if we ever want to enhace the firmware. It would also
824 * create more differences between the PF and VF Drivers.
830 * calc_tx_flits - calculate the number of flits for a packet TX WR
833 * Returns the number of flits needed for a TX Work Request for the
834 * given Ethernet packet, including the needed WR and CPL headers.
836 static inline unsigned int calc_tx_flits(const struct sk_buff
*skb
)
841 * If the skb is small enough, we can pump it out as a work request
842 * with only immediate data. In that case we just have to have the
843 * TX Packet header plus the skb data in the Work Request.
846 return DIV_ROUND_UP(skb
->len
+ sizeof(struct cpl_tx_pkt
),
850 * Otherwise, we're going to have to construct a Scatter gather list
851 * of the skb body and fragments. We also include the flits necessary
852 * for the TX Packet Work Request and CPL. We always have a firmware
853 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
854 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
855 * message or, if we're doing a Large Send Offload, an LSO CPL message
856 * with an embeded TX Packet Write CPL message.
858 flits
= sgl_len(skb_shinfo(skb
)->nr_frags
+ 1);
859 if (skb_shinfo(skb
)->gso_size
)
860 flits
+= (sizeof(struct fw_eth_tx_pkt_vm_wr
) +
861 sizeof(struct cpl_tx_pkt_lso_core
) +
862 sizeof(struct cpl_tx_pkt_core
)) / sizeof(__be64
);
864 flits
+= (sizeof(struct fw_eth_tx_pkt_vm_wr
) +
865 sizeof(struct cpl_tx_pkt_core
)) / sizeof(__be64
);
870 * write_sgl - populate a Scatter/Gather List for a packet
872 * @tq: the TX queue we are writing into
873 * @sgl: starting location for writing the SGL
874 * @end: points right after the end of the SGL
875 * @start: start offset into skb main-body data to include in the SGL
876 * @addr: the list of DMA bus addresses for the SGL elements
878 * Generates a Scatter/Gather List for the buffers that make up a packet.
879 * The caller must provide adequate space for the SGL that will be written.
880 * The SGL includes all of the packet's page fragments and the data in its
881 * main body except for the first @start bytes. @pos must be 16-byte
882 * aligned and within a TX descriptor with available space. @end points
883 * write after the end of the SGL but does not account for any potential
884 * wrap around, i.e., @end > @tq->stat.
886 static void write_sgl(const struct sk_buff
*skb
, struct sge_txq
*tq
,
887 struct ulptx_sgl
*sgl
, u64
*end
, unsigned int start
,
888 const dma_addr_t
*addr
)
891 struct ulptx_sge_pair
*to
;
892 const struct skb_shared_info
*si
= skb_shinfo(skb
);
893 unsigned int nfrags
= si
->nr_frags
;
894 struct ulptx_sge_pair buf
[MAX_SKB_FRAGS
/ 2 + 1];
896 len
= skb_headlen(skb
) - start
;
898 sgl
->len0
= htonl(len
);
899 sgl
->addr0
= cpu_to_be64(addr
[0] + start
);
902 sgl
->len0
= htonl(si
->frags
[0].size
);
903 sgl
->addr0
= cpu_to_be64(addr
[1]);
906 sgl
->cmd_nsge
= htonl(ULPTX_CMD(ULP_TX_SC_DSGL
) |
908 if (likely(--nfrags
== 0))
911 * Most of the complexity below deals with the possibility we hit the
912 * end of the queue in the middle of writing the SGL. For this case
913 * only we create the SGL in a temporary buffer and then copy it.
915 to
= (u8
*)end
> (u8
*)tq
->stat
? buf
: sgl
->sge
;
917 for (i
= (nfrags
!= si
->nr_frags
); nfrags
>= 2; nfrags
-= 2, to
++) {
918 to
->len
[0] = cpu_to_be32(si
->frags
[i
].size
);
919 to
->len
[1] = cpu_to_be32(si
->frags
[++i
].size
);
920 to
->addr
[0] = cpu_to_be64(addr
[i
]);
921 to
->addr
[1] = cpu_to_be64(addr
[++i
]);
924 to
->len
[0] = cpu_to_be32(si
->frags
[i
].size
);
925 to
->len
[1] = cpu_to_be32(0);
926 to
->addr
[0] = cpu_to_be64(addr
[i
+ 1]);
928 if (unlikely((u8
*)end
> (u8
*)tq
->stat
)) {
929 unsigned int part0
= (u8
*)tq
->stat
- (u8
*)sgl
->sge
, part1
;
932 memcpy(sgl
->sge
, buf
, part0
);
933 part1
= (u8
*)end
- (u8
*)tq
->stat
;
934 memcpy(tq
->desc
, (u8
*)buf
+ part0
, part1
);
935 end
= (void *)tq
->desc
+ part1
;
937 if ((uintptr_t)end
& 8) /* 0-pad to multiple of 16 */
942 * check_ring_tx_db - check and potentially ring a TX queue's doorbell
943 * @adapter: the adapter
945 * @n: number of new descriptors to give to HW
947 * Ring the doorbel for a TX queue.
949 static inline void ring_tx_db(struct adapter
*adapter
, struct sge_txq
*tq
,
953 * Warn if we write doorbells with the wrong priority and write
954 * descriptors before telling HW.
956 WARN_ON((QID(tq
->cntxt_id
) | PIDX(n
)) & DBPRIO
);
958 t4_write_reg(adapter
, T4VF_SGE_BASE_ADDR
+ SGE_VF_KDOORBELL
,
959 QID(tq
->cntxt_id
) | PIDX(n
));
963 * inline_tx_skb - inline a packet's data into TX descriptors
965 * @tq: the TX queue where the packet will be inlined
966 * @pos: starting position in the TX queue to inline the packet
968 * Inline a packet's contents directly into TX descriptors, starting at
969 * the given position within the TX DMA ring.
970 * Most of the complexity of this operation is dealing with wrap arounds
971 * in the middle of the packet we want to inline.
973 static void inline_tx_skb(const struct sk_buff
*skb
, const struct sge_txq
*tq
,
977 int left
= (void *)tq
->stat
- pos
;
979 if (likely(skb
->len
<= left
)) {
980 if (likely(!skb
->data_len
))
981 skb_copy_from_linear_data(skb
, pos
, skb
->len
);
983 skb_copy_bits(skb
, 0, pos
, skb
->len
);
986 skb_copy_bits(skb
, 0, pos
, left
);
987 skb_copy_bits(skb
, left
, tq
->desc
, skb
->len
- left
);
988 pos
= (void *)tq
->desc
+ (skb
->len
- left
);
991 /* 0-pad to multiple of 16 */
992 p
= PTR_ALIGN(pos
, 8);
993 if ((uintptr_t)p
& 8)
998 * Figure out what HW csum a packet wants and return the appropriate control
1001 static u64
hwcsum(const struct sk_buff
*skb
)
1004 const struct iphdr
*iph
= ip_hdr(skb
);
1006 if (iph
->version
== 4) {
1007 if (iph
->protocol
== IPPROTO_TCP
)
1008 csum_type
= TX_CSUM_TCPIP
;
1009 else if (iph
->protocol
== IPPROTO_UDP
)
1010 csum_type
= TX_CSUM_UDPIP
;
1014 * unknown protocol, disable HW csum
1015 * and hope a bad packet is detected
1017 return TXPKT_L4CSUM_DIS
;
1021 * this doesn't work with extension headers
1023 const struct ipv6hdr
*ip6h
= (const struct ipv6hdr
*)iph
;
1025 if (ip6h
->nexthdr
== IPPROTO_TCP
)
1026 csum_type
= TX_CSUM_TCPIP6
;
1027 else if (ip6h
->nexthdr
== IPPROTO_UDP
)
1028 csum_type
= TX_CSUM_UDPIP6
;
1033 if (likely(csum_type
>= TX_CSUM_TCPIP
))
1034 return TXPKT_CSUM_TYPE(csum_type
) |
1035 TXPKT_IPHDR_LEN(skb_network_header_len(skb
)) |
1036 TXPKT_ETHHDR_LEN(skb_network_offset(skb
) - ETH_HLEN
);
1038 int start
= skb_transport_offset(skb
);
1040 return TXPKT_CSUM_TYPE(csum_type
) |
1041 TXPKT_CSUM_START(start
) |
1042 TXPKT_CSUM_LOC(start
+ skb
->csum_offset
);
1047 * Stop an Ethernet TX queue and record that state change.
1049 static void txq_stop(struct sge_eth_txq
*txq
)
1051 netif_tx_stop_queue(txq
->txq
);
1056 * Advance our software state for a TX queue by adding n in use descriptors.
1058 static inline void txq_advance(struct sge_txq
*tq
, unsigned int n
)
1062 if (tq
->pidx
>= tq
->size
)
1063 tq
->pidx
-= tq
->size
;
1067 * t4vf_eth_xmit - add a packet to an Ethernet TX queue
1069 * @dev: the egress net device
1071 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1073 int t4vf_eth_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1078 unsigned int flits
, ndesc
;
1079 struct adapter
*adapter
;
1080 struct sge_eth_txq
*txq
;
1081 const struct port_info
*pi
;
1082 struct fw_eth_tx_pkt_vm_wr
*wr
;
1083 struct cpl_tx_pkt_core
*cpl
;
1084 const struct skb_shared_info
*ssi
;
1085 dma_addr_t addr
[MAX_SKB_FRAGS
+ 1];
1086 const size_t fw_hdr_copy_len
= (sizeof(wr
->ethmacdst
) +
1087 sizeof(wr
->ethmacsrc
) +
1088 sizeof(wr
->ethtype
) +
1089 sizeof(wr
->vlantci
));
1092 * The chip minimum packet length is 10 octets but the firmware
1093 * command that we are using requires that we copy the Ethernet header
1094 * (including the VLAN tag) into the header so we reject anything
1095 * smaller than that ...
1097 if (unlikely(skb
->len
< fw_hdr_copy_len
))
1101 * Figure out which TX Queue we're going to use.
1103 pi
= netdev_priv(dev
);
1104 adapter
= pi
->adapter
;
1105 qidx
= skb_get_queue_mapping(skb
);
1106 BUG_ON(qidx
>= pi
->nqsets
);
1107 txq
= &adapter
->sge
.ethtxq
[pi
->first_qset
+ qidx
];
1110 * Take this opportunity to reclaim any TX Descriptors whose DMA
1111 * transfers have completed.
1113 reclaim_completed_tx(adapter
, &txq
->q
, true);
1116 * Calculate the number of flits and TX Descriptors we're going to
1117 * need along with how many TX Descriptors will be left over after
1118 * we inject our Work Request.
1120 flits
= calc_tx_flits(skb
);
1121 ndesc
= flits_to_desc(flits
);
1122 credits
= txq_avail(&txq
->q
) - ndesc
;
1124 if (unlikely(credits
< 0)) {
1126 * Not enough room for this packet's Work Request. Stop the
1127 * TX Queue and return a "busy" condition. The queue will get
1128 * started later on when the firmware informs us that space
1132 dev_err(adapter
->pdev_dev
,
1133 "%s: TX ring %u full while queue awake!\n",
1135 return NETDEV_TX_BUSY
;
1138 if (!is_eth_imm(skb
) &&
1139 unlikely(map_skb(adapter
->pdev_dev
, skb
, addr
) < 0)) {
1141 * We need to map the skb into PCI DMA space (because it can't
1142 * be in-lined directly into the Work Request) and the mapping
1143 * operation failed. Record the error and drop the packet.
1149 wr_mid
= FW_WR_LEN16(DIV_ROUND_UP(flits
, 2));
1150 if (unlikely(credits
< ETHTXQ_STOP_THRES
)) {
1152 * After we're done injecting the Work Request for this
1153 * packet, we'll be below our "stop threshold" so stop the TX
1154 * Queue now and schedule a request for an SGE Egress Queue
1155 * Update message. The queue will get started later on when
1156 * the firmware processes this Work Request and sends us an
1157 * Egress Queue Status Update message indicating that space
1161 wr_mid
|= FW_WR_EQUEQ
| FW_WR_EQUIQ
;
1165 * Start filling in our Work Request. Note that we do _not_ handle
1166 * the WR Header wrapping around the TX Descriptor Ring. If our
1167 * maximum header size ever exceeds one TX Descriptor, we'll need to
1168 * do something else here.
1170 BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR
, TXD_PER_EQ_UNIT
) > 1);
1171 wr
= (void *)&txq
->q
.desc
[txq
->q
.pidx
];
1172 wr
->equiq_to_len16
= cpu_to_be32(wr_mid
);
1173 wr
->r3
[0] = cpu_to_be64(0);
1174 wr
->r3
[1] = cpu_to_be64(0);
1175 skb_copy_from_linear_data(skb
, (void *)wr
->ethmacdst
, fw_hdr_copy_len
);
1176 end
= (u64
*)wr
+ flits
;
1179 * If this is a Large Send Offload packet we'll put in an LSO CPL
1180 * message with an encapsulated TX Packet CPL message. Otherwise we
1181 * just use a TX Packet CPL message.
1183 ssi
= skb_shinfo(skb
);
1184 if (ssi
->gso_size
) {
1185 struct cpl_tx_pkt_lso_core
*lso
= (void *)(wr
+ 1);
1186 bool v6
= (ssi
->gso_type
& SKB_GSO_TCPV6
) != 0;
1187 int l3hdr_len
= skb_network_header_len(skb
);
1188 int eth_xtra_len
= skb_network_offset(skb
) - ETH_HLEN
;
1191 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR
) |
1192 FW_WR_IMMDLEN(sizeof(*lso
) +
1195 * Fill in the LSO CPL message.
1198 cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO
) |
1202 LSO_ETHHDR_LEN(eth_xtra_len
/4) |
1203 LSO_IPHDR_LEN(l3hdr_len
/4) |
1204 LSO_TCPHDR_LEN(tcp_hdr(skb
)->doff
));
1205 lso
->ipid_ofst
= cpu_to_be16(0);
1206 lso
->mss
= cpu_to_be16(ssi
->gso_size
);
1207 lso
->seqno_offset
= cpu_to_be32(0);
1208 lso
->len
= cpu_to_be32(skb
->len
);
1211 * Set up TX Packet CPL pointer, control word and perform
1214 cpl
= (void *)(lso
+ 1);
1215 cntrl
= (TXPKT_CSUM_TYPE(v6
? TX_CSUM_TCPIP6
: TX_CSUM_TCPIP
) |
1216 TXPKT_IPHDR_LEN(l3hdr_len
) |
1217 TXPKT_ETHHDR_LEN(eth_xtra_len
));
1219 txq
->tx_cso
+= ssi
->gso_segs
;
1223 len
= is_eth_imm(skb
) ? skb
->len
+ sizeof(*cpl
) : sizeof(*cpl
);
1225 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR
) |
1226 FW_WR_IMMDLEN(len
));
1229 * Set up TX Packet CPL pointer, control word and perform
1232 cpl
= (void *)(wr
+ 1);
1233 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1234 cntrl
= hwcsum(skb
) | TXPKT_IPCSUM_DIS
;
1237 cntrl
= TXPKT_L4CSUM_DIS
| TXPKT_IPCSUM_DIS
;
1241 * If there's a VLAN tag present, add that to the list of things to
1242 * do in this Work Request.
1244 if (vlan_tx_tag_present(skb
)) {
1246 cntrl
|= TXPKT_VLAN_VLD
| TXPKT_VLAN(vlan_tx_tag_get(skb
));
1250 * Fill in the TX Packet CPL message header.
1252 cpl
->ctrl0
= cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT
) |
1253 TXPKT_INTF(pi
->port_id
) |
1255 cpl
->pack
= cpu_to_be16(0);
1256 cpl
->len
= cpu_to_be16(skb
->len
);
1257 cpl
->ctrl1
= cpu_to_be64(cntrl
);
1260 T4_TRACE5(adapter
->tb
[txq
->q
.cntxt_id
& 7],
1261 "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1262 ndesc
, credits
, txq
->q
.pidx
, skb
->len
, ssi
->nr_frags
);
1266 * Fill in the body of the TX Packet CPL message with either in-lined
1267 * data or a Scatter/Gather List.
1269 if (is_eth_imm(skb
)) {
1271 * In-line the packet's data and free the skb since we don't
1272 * need it any longer.
1274 inline_tx_skb(skb
, &txq
->q
, cpl
+ 1);
1278 * Write the skb's Scatter/Gather list into the TX Packet CPL
1279 * message and retain a pointer to the skb so we can free it
1280 * later when its DMA completes. (We store the skb pointer
1281 * in the Software Descriptor corresponding to the last TX
1282 * Descriptor used by the Work Request.)
1284 * The retained skb will be freed when the corresponding TX
1285 * Descriptors are reclaimed after their DMAs complete.
1286 * However, this could take quite a while since, in general,
1287 * the hardware is set up to be lazy about sending DMA
1288 * completion notifications to us and we mostly perform TX
1289 * reclaims in the transmit routine.
1291 * This is good for performamce but means that we rely on new
1292 * TX packets arriving to run the destructors of completed
1293 * packets, which open up space in their sockets' send queues.
1294 * Sometimes we do not get such new packets causing TX to
1295 * stall. A single UDP transmitter is a good example of this
1296 * situation. We have a clean up timer that periodically
1297 * reclaims completed packets but it doesn't run often enough
1298 * (nor do we want it to) to prevent lengthy stalls. A
1299 * solution to this problem is to run the destructor early,
1300 * after the packet is queued but before it's DMAd. A con is
1301 * that we lie to socket memory accounting, but the amount of
1302 * extra memory is reasonable (limited by the number of TX
1303 * descriptors), the packets do actually get freed quickly by
1304 * new packets almost always, and for protocols like TCP that
1305 * wait for acks to really free up the data the extra memory
1306 * is even less. On the positive side we run the destructors
1307 * on the sending CPU rather than on a potentially different
1308 * completing CPU, usually a good thing.
1310 * Run the destructor before telling the DMA engine about the
1311 * packet to make sure it doesn't complete and get freed
1314 struct ulptx_sgl
*sgl
= (struct ulptx_sgl
*)(cpl
+ 1);
1315 struct sge_txq
*tq
= &txq
->q
;
1319 * If the Work Request header was an exact multiple of our TX
1320 * Descriptor length, then it's possible that the starting SGL
1321 * pointer lines up exactly with the end of our TX Descriptor
1322 * ring. If that's the case, wrap around to the beginning
1325 if (unlikely((void *)sgl
== (void *)tq
->stat
)) {
1326 sgl
= (void *)tq
->desc
;
1327 end
= (void *)((void *)tq
->desc
+
1328 ((void *)end
- (void *)tq
->stat
));
1331 write_sgl(skb
, tq
, sgl
, end
, 0, addr
);
1334 last_desc
= tq
->pidx
+ ndesc
- 1;
1335 if (last_desc
>= tq
->size
)
1336 last_desc
-= tq
->size
;
1337 tq
->sdesc
[last_desc
].skb
= skb
;
1338 tq
->sdesc
[last_desc
].sgl
= sgl
;
1342 * Advance our internal TX Queue state, tell the hardware about
1343 * the new TX descriptors and return success.
1345 txq_advance(&txq
->q
, ndesc
);
1346 dev
->trans_start
= jiffies
;
1347 ring_tx_db(adapter
, &txq
->q
, ndesc
);
1348 return NETDEV_TX_OK
;
1352 * An error of some sort happened. Free the TX skb and tell the
1353 * OS that we've "dealt" with the packet ...
1356 return NETDEV_TX_OK
;
1360 * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1361 * @gl: the gather list
1362 * @skb_len: size of sk_buff main body if it carries fragments
1363 * @pull_len: amount of data to move to the sk_buff's main body
1365 * Builds an sk_buff from the given packet gather list. Returns the
1366 * sk_buff or %NULL if sk_buff allocation failed.
1368 struct sk_buff
*t4vf_pktgl_to_skb(const struct pkt_gl
*gl
,
1369 unsigned int skb_len
, unsigned int pull_len
)
1371 struct sk_buff
*skb
;
1372 struct skb_shared_info
*ssi
;
1375 * If the ingress packet is small enough, allocate an skb large enough
1376 * for all of the data and copy it inline. Otherwise, allocate an skb
1377 * with enough room to pull in the header and reference the rest of
1378 * the data via the skb fragment list.
1380 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1381 * buff! size, which is expected since buffers are at least
1382 * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one
1385 if (gl
->tot_len
<= RX_COPY_THRES
) {
1386 /* small packets have only one fragment */
1387 skb
= alloc_skb(gl
->tot_len
, GFP_ATOMIC
);
1390 __skb_put(skb
, gl
->tot_len
);
1391 skb_copy_to_linear_data(skb
, gl
->va
, gl
->tot_len
);
1393 skb
= alloc_skb(skb_len
, GFP_ATOMIC
);
1396 __skb_put(skb
, pull_len
);
1397 skb_copy_to_linear_data(skb
, gl
->va
, pull_len
);
1399 ssi
= skb_shinfo(skb
);
1400 ssi
->frags
[0].page
= gl
->frags
[0].page
;
1401 ssi
->frags
[0].page_offset
= gl
->frags
[0].page_offset
+ pull_len
;
1402 ssi
->frags
[0].size
= gl
->frags
[0].size
- pull_len
;
1404 memcpy(&ssi
->frags
[1], &gl
->frags
[1],
1405 (gl
->nfrags
-1) * sizeof(skb_frag_t
));
1406 ssi
->nr_frags
= gl
->nfrags
;
1408 skb
->len
= gl
->tot_len
;
1409 skb
->data_len
= skb
->len
- pull_len
;
1410 skb
->truesize
+= skb
->data_len
;
1412 /* Get a reference for the last page, we don't own it */
1413 get_page(gl
->frags
[gl
->nfrags
- 1].page
);
1421 * t4vf_pktgl_free - free a packet gather list
1422 * @gl: the gather list
1424 * Releases the pages of a packet gather list. We do not own the last
1425 * page on the list and do not free it.
1427 void t4vf_pktgl_free(const struct pkt_gl
*gl
)
1431 frag
= gl
->nfrags
- 1;
1433 put_page(gl
->frags
[frag
].page
);
1437 * copy_frags - copy fragments from gather list into skb_shared_info
1438 * @si: destination skb shared info structure
1439 * @gl: source internal packet gather list
1440 * @offset: packet start offset in first page
1442 * Copy an internal packet gather list into a Linux skb_shared_info
1445 static inline void copy_frags(struct skb_shared_info
*si
,
1446 const struct pkt_gl
*gl
,
1447 unsigned int offset
)
1451 /* usually there's just one frag */
1452 si
->frags
[0].page
= gl
->frags
[0].page
;
1453 si
->frags
[0].page_offset
= gl
->frags
[0].page_offset
+ offset
;
1454 si
->frags
[0].size
= gl
->frags
[0].size
- offset
;
1455 si
->nr_frags
= gl
->nfrags
;
1459 memcpy(&si
->frags
[1], &gl
->frags
[1], n
* sizeof(skb_frag_t
));
1461 /* get a reference to the last page, we don't own it */
1462 get_page(gl
->frags
[n
].page
);
1466 * do_gro - perform Generic Receive Offload ingress packet processing
1467 * @rxq: ingress RX Ethernet Queue
1468 * @gl: gather list for ingress packet
1469 * @pkt: CPL header for last packet fragment
1471 * Perform Generic Receive Offload (GRO) ingress packet processing.
1472 * We use the standard Linux GRO interfaces for this.
1474 static void do_gro(struct sge_eth_rxq
*rxq
, const struct pkt_gl
*gl
,
1475 const struct cpl_rx_pkt
*pkt
)
1478 struct sk_buff
*skb
;
1480 skb
= napi_get_frags(&rxq
->rspq
.napi
);
1481 if (unlikely(!skb
)) {
1482 t4vf_pktgl_free(gl
);
1483 rxq
->stats
.rx_drops
++;
1487 copy_frags(skb_shinfo(skb
), gl
, PKTSHIFT
);
1488 skb
->len
= gl
->tot_len
- PKTSHIFT
;
1489 skb
->data_len
= skb
->len
;
1490 skb
->truesize
+= skb
->data_len
;
1491 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1492 skb_record_rx_queue(skb
, rxq
->rspq
.idx
);
1494 if (unlikely(pkt
->vlan_ex
)) {
1495 struct port_info
*pi
= netdev_priv(rxq
->rspq
.netdev
);
1496 struct vlan_group
*grp
= pi
->vlan_grp
;
1498 rxq
->stats
.vlan_ex
++;
1500 ret
= vlan_gro_frags(&rxq
->rspq
.napi
, grp
,
1501 be16_to_cpu(pkt
->vlan
));
1505 ret
= napi_gro_frags(&rxq
->rspq
.napi
);
1508 if (ret
== GRO_HELD
)
1509 rxq
->stats
.lro_pkts
++;
1510 else if (ret
== GRO_MERGED
|| ret
== GRO_MERGED_FREE
)
1511 rxq
->stats
.lro_merged
++;
1513 rxq
->stats
.rx_cso
++;
1517 * t4vf_ethrx_handler - process an ingress ethernet packet
1518 * @rspq: the response queue that received the packet
1519 * @rsp: the response queue descriptor holding the RX_PKT message
1520 * @gl: the gather list of packet fragments
1522 * Process an ingress ethernet packet and deliver it to the stack.
1524 int t4vf_ethrx_handler(struct sge_rspq
*rspq
, const __be64
*rsp
,
1525 const struct pkt_gl
*gl
)
1527 struct sk_buff
*skb
;
1528 struct port_info
*pi
;
1529 const struct cpl_rx_pkt
*pkt
= (void *)&rsp
[1];
1530 bool csum_ok
= pkt
->csum_calc
&& !pkt
->err_vec
;
1531 struct sge_eth_rxq
*rxq
= container_of(rspq
, struct sge_eth_rxq
, rspq
);
1534 * If this is a good TCP packet and we have Generic Receive Offload
1535 * enabled, handle the packet in the GRO path.
1537 if ((pkt
->l2info
& cpu_to_be32(RXF_TCP
)) &&
1538 (rspq
->netdev
->features
& NETIF_F_GRO
) && csum_ok
&&
1540 do_gro(rxq
, gl
, pkt
);
1545 * Convert the Packet Gather List into an skb.
1547 skb
= t4vf_pktgl_to_skb(gl
, RX_SKB_LEN
, RX_PULL_LEN
);
1548 if (unlikely(!skb
)) {
1549 t4vf_pktgl_free(gl
);
1550 rxq
->stats
.rx_drops
++;
1553 __skb_pull(skb
, PKTSHIFT
);
1554 skb
->protocol
= eth_type_trans(skb
, rspq
->netdev
);
1555 skb_record_rx_queue(skb
, rspq
->idx
);
1556 pi
= netdev_priv(skb
->dev
);
1559 if (csum_ok
&& (rspq
->netdev
->features
& NETIF_F_RXCSUM
) &&
1560 !pkt
->err_vec
&& (be32_to_cpu(pkt
->l2info
) & (RXF_UDP
|RXF_TCP
))) {
1562 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1564 __sum16 c
= (__force __sum16
)pkt
->csum
;
1565 skb
->csum
= csum_unfold(c
);
1566 skb
->ip_summed
= CHECKSUM_COMPLETE
;
1568 rxq
->stats
.rx_cso
++;
1570 skb_checksum_none_assert(skb
);
1573 * Deliver the packet to the stack.
1575 if (unlikely(pkt
->vlan_ex
)) {
1576 struct vlan_group
*grp
= pi
->vlan_grp
;
1578 rxq
->stats
.vlan_ex
++;
1580 vlan_hwaccel_receive_skb(skb
, grp
,
1581 be16_to_cpu(pkt
->vlan
));
1583 dev_kfree_skb_any(skb
);
1585 netif_receive_skb(skb
);
1591 * is_new_response - check if a response is newly written
1592 * @rc: the response control descriptor
1593 * @rspq: the response queue
1595 * Returns true if a response descriptor contains a yet unprocessed
1598 static inline bool is_new_response(const struct rsp_ctrl
*rc
,
1599 const struct sge_rspq
*rspq
)
1601 return RSPD_GEN(rc
->type_gen
) == rspq
->gen
;
1605 * restore_rx_bufs - put back a packet's RX buffers
1606 * @gl: the packet gather list
1607 * @fl: the SGE Free List
1608 * @nfrags: how many fragments in @si
1610 * Called when we find out that the current packet, @si, can't be
1611 * processed right away for some reason. This is a very rare event and
1612 * there's no effort to make this suspension/resumption process
1613 * particularly efficient.
1615 * We implement the suspension by putting all of the RX buffers associated
1616 * with the current packet back on the original Free List. The buffers
1617 * have already been unmapped and are left unmapped, we mark them as
1618 * unmapped in order to prevent further unmapping attempts. (Effectively
1619 * this function undoes the series of @unmap_rx_buf calls which were done
1620 * to create the current packet's gather list.) This leaves us ready to
1621 * restart processing of the packet the next time we start processing the
1624 static void restore_rx_bufs(const struct pkt_gl
*gl
, struct sge_fl
*fl
,
1627 struct rx_sw_desc
*sdesc
;
1631 fl
->cidx
= fl
->size
- 1;
1634 sdesc
= &fl
->sdesc
[fl
->cidx
];
1635 sdesc
->page
= gl
->frags
[frags
].page
;
1636 sdesc
->dma_addr
|= RX_UNMAPPED_BUF
;
1642 * rspq_next - advance to the next entry in a response queue
1645 * Updates the state of a response queue to advance it to the next entry.
1647 static inline void rspq_next(struct sge_rspq
*rspq
)
1649 rspq
->cur_desc
= (void *)rspq
->cur_desc
+ rspq
->iqe_len
;
1650 if (unlikely(++rspq
->cidx
== rspq
->size
)) {
1653 rspq
->cur_desc
= rspq
->desc
;
1658 * process_responses - process responses from an SGE response queue
1659 * @rspq: the ingress response queue to process
1660 * @budget: how many responses can be processed in this round
1662 * Process responses from a Scatter Gather Engine response queue up to
1663 * the supplied budget. Responses include received packets as well as
1664 * control messages from firmware or hardware.
1666 * Additionally choose the interrupt holdoff time for the next interrupt
1667 * on this queue. If the system is under memory shortage use a fairly
1668 * long delay to help recovery.
1670 int process_responses(struct sge_rspq
*rspq
, int budget
)
1672 struct sge_eth_rxq
*rxq
= container_of(rspq
, struct sge_eth_rxq
, rspq
);
1673 int budget_left
= budget
;
1675 while (likely(budget_left
)) {
1677 const struct rsp_ctrl
*rc
;
1679 rc
= (void *)rspq
->cur_desc
+ (rspq
->iqe_len
- sizeof(*rc
));
1680 if (!is_new_response(rc
, rspq
))
1684 * Figure out what kind of response we've received from the
1688 rsp_type
= RSPD_TYPE(rc
->type_gen
);
1689 if (likely(rsp_type
== RSP_TYPE_FLBUF
)) {
1692 const struct rx_sw_desc
*sdesc
;
1694 u32 len
= be32_to_cpu(rc
->pldbuflen_qid
);
1697 * If we get a "new buffer" message from the SGE we
1698 * need to move on to the next Free List buffer.
1700 if (len
& RSPD_NEWBUF
) {
1702 * We get one "new buffer" message when we
1703 * first start up a queue so we need to ignore
1704 * it when our offset into the buffer is 0.
1706 if (likely(rspq
->offset
> 0)) {
1707 free_rx_bufs(rspq
->adapter
, &rxq
->fl
,
1711 len
= RSPD_LEN(len
);
1716 * Gather packet fragments.
1718 for (frag
= 0, fp
= gl
.frags
; /**/; frag
++, fp
++) {
1719 BUG_ON(frag
>= MAX_SKB_FRAGS
);
1720 BUG_ON(rxq
->fl
.avail
== 0);
1721 sdesc
= &rxq
->fl
.sdesc
[rxq
->fl
.cidx
];
1722 bufsz
= get_buf_size(sdesc
);
1723 fp
->page
= sdesc
->page
;
1724 fp
->page_offset
= rspq
->offset
;
1725 fp
->size
= min(bufsz
, len
);
1729 unmap_rx_buf(rspq
->adapter
, &rxq
->fl
);
1734 * Last buffer remains mapped so explicitly make it
1735 * coherent for CPU access and start preloading first
1738 dma_sync_single_for_cpu(rspq
->adapter
->pdev_dev
,
1739 get_buf_addr(sdesc
),
1740 fp
->size
, DMA_FROM_DEVICE
);
1741 gl
.va
= (page_address(gl
.frags
[0].page
) +
1742 gl
.frags
[0].page_offset
);
1746 * Hand the new ingress packet to the handler for
1747 * this Response Queue.
1749 ret
= rspq
->handler(rspq
, rspq
->cur_desc
, &gl
);
1750 if (likely(ret
== 0))
1751 rspq
->offset
+= ALIGN(fp
->size
, FL_ALIGN
);
1753 restore_rx_bufs(&gl
, &rxq
->fl
, frag
);
1754 } else if (likely(rsp_type
== RSP_TYPE_CPL
)) {
1755 ret
= rspq
->handler(rspq
, rspq
->cur_desc
, NULL
);
1757 WARN_ON(rsp_type
> RSP_TYPE_CPL
);
1761 if (unlikely(ret
)) {
1763 * Couldn't process descriptor, back off for recovery.
1764 * We use the SGE's last timer which has the longest
1765 * interrupt coalescing value ...
1767 const int NOMEM_TIMER_IDX
= SGE_NTIMERS
-1;
1768 rspq
->next_intr_params
=
1769 QINTR_TIMER_IDX(NOMEM_TIMER_IDX
);
1778 * If this is a Response Queue with an associated Free List and
1779 * at least two Egress Queue units available in the Free List
1780 * for new buffer pointers, refill the Free List.
1782 if (rspq
->offset
>= 0 &&
1783 rxq
->fl
.size
- rxq
->fl
.avail
>= 2*FL_PER_EQ_UNIT
)
1784 __refill_fl(rspq
->adapter
, &rxq
->fl
);
1785 return budget
- budget_left
;
1789 * napi_rx_handler - the NAPI handler for RX processing
1790 * @napi: the napi instance
1791 * @budget: how many packets we can process in this round
1793 * Handler for new data events when using NAPI. This does not need any
1794 * locking or protection from interrupts as data interrupts are off at
1795 * this point and other adapter interrupts do not interfere (the latter
1796 * in not a concern at all with MSI-X as non-data interrupts then have
1797 * a separate handler).
1799 static int napi_rx_handler(struct napi_struct
*napi
, int budget
)
1801 unsigned int intr_params
;
1802 struct sge_rspq
*rspq
= container_of(napi
, struct sge_rspq
, napi
);
1803 int work_done
= process_responses(rspq
, budget
);
1805 if (likely(work_done
< budget
)) {
1806 napi_complete(napi
);
1807 intr_params
= rspq
->next_intr_params
;
1808 rspq
->next_intr_params
= rspq
->intr_params
;
1810 intr_params
= QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX
);
1812 if (unlikely(work_done
== 0))
1813 rspq
->unhandled_irqs
++;
1815 t4_write_reg(rspq
->adapter
,
1816 T4VF_SGE_BASE_ADDR
+ SGE_VF_GTS
,
1817 CIDXINC(work_done
) |
1818 INGRESSQID((u32
)rspq
->cntxt_id
) |
1819 SEINTARM(intr_params
));
1824 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1825 * (i.e., response queue serviced by NAPI polling).
1827 irqreturn_t
t4vf_sge_intr_msix(int irq
, void *cookie
)
1829 struct sge_rspq
*rspq
= cookie
;
1831 napi_schedule(&rspq
->napi
);
1836 * Process the indirect interrupt entries in the interrupt queue and kick off
1837 * NAPI for each queue that has generated an entry.
1839 static unsigned int process_intrq(struct adapter
*adapter
)
1841 struct sge
*s
= &adapter
->sge
;
1842 struct sge_rspq
*intrq
= &s
->intrq
;
1843 unsigned int work_done
;
1845 spin_lock(&adapter
->sge
.intrq_lock
);
1846 for (work_done
= 0; ; work_done
++) {
1847 const struct rsp_ctrl
*rc
;
1848 unsigned int qid
, iq_idx
;
1849 struct sge_rspq
*rspq
;
1852 * Grab the next response from the interrupt queue and bail
1853 * out if it's not a new response.
1855 rc
= (void *)intrq
->cur_desc
+ (intrq
->iqe_len
- sizeof(*rc
));
1856 if (!is_new_response(rc
, intrq
))
1860 * If the response isn't a forwarded interrupt message issue a
1861 * error and go on to the next response message. This should
1865 if (unlikely(RSPD_TYPE(rc
->type_gen
) != RSP_TYPE_INTR
)) {
1866 dev_err(adapter
->pdev_dev
,
1867 "Unexpected INTRQ response type %d\n",
1868 RSPD_TYPE(rc
->type_gen
));
1873 * Extract the Queue ID from the interrupt message and perform
1874 * sanity checking to make sure it really refers to one of our
1875 * Ingress Queues which is active and matches the queue's ID.
1876 * None of these error conditions should ever happen so we may
1877 * want to either make them fatal and/or conditionalized under
1880 qid
= RSPD_QID(be32_to_cpu(rc
->pldbuflen_qid
));
1881 iq_idx
= IQ_IDX(s
, qid
);
1882 if (unlikely(iq_idx
>= MAX_INGQ
)) {
1883 dev_err(adapter
->pdev_dev
,
1884 "Ingress QID %d out of range\n", qid
);
1887 rspq
= s
->ingr_map
[iq_idx
];
1888 if (unlikely(rspq
== NULL
)) {
1889 dev_err(adapter
->pdev_dev
,
1890 "Ingress QID %d RSPQ=NULL\n", qid
);
1893 if (unlikely(rspq
->abs_id
!= qid
)) {
1894 dev_err(adapter
->pdev_dev
,
1895 "Ingress QID %d refers to RSPQ %d\n",
1901 * Schedule NAPI processing on the indicated Response Queue
1902 * and move on to the next entry in the Forwarded Interrupt
1905 napi_schedule(&rspq
->napi
);
1909 t4_write_reg(adapter
, T4VF_SGE_BASE_ADDR
+ SGE_VF_GTS
,
1910 CIDXINC(work_done
) |
1911 INGRESSQID(intrq
->cntxt_id
) |
1912 SEINTARM(intrq
->intr_params
));
1914 spin_unlock(&adapter
->sge
.intrq_lock
);
1920 * The MSI interrupt handler handles data events from SGE response queues as
1921 * well as error and other async events as they all use the same MSI vector.
1923 irqreturn_t
t4vf_intr_msi(int irq
, void *cookie
)
1925 struct adapter
*adapter
= cookie
;
1927 process_intrq(adapter
);
1932 * t4vf_intr_handler - select the top-level interrupt handler
1933 * @adapter: the adapter
1935 * Selects the top-level interrupt handler based on the type of interrupts
1938 irq_handler_t
t4vf_intr_handler(struct adapter
*adapter
)
1940 BUG_ON((adapter
->flags
& (USING_MSIX
|USING_MSI
)) == 0);
1941 if (adapter
->flags
& USING_MSIX
)
1942 return t4vf_sge_intr_msix
;
1944 return t4vf_intr_msi
;
1948 * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
1949 * @data: the adapter
1951 * Runs periodically from a timer to perform maintenance of SGE RX queues.
1953 * a) Replenishes RX queues that have run out due to memory shortage.
1954 * Normally new RX buffers are added when existing ones are consumed but
1955 * when out of memory a queue can become empty. We schedule NAPI to do
1956 * the actual refill.
1958 static void sge_rx_timer_cb(unsigned long data
)
1960 struct adapter
*adapter
= (struct adapter
*)data
;
1961 struct sge
*s
= &adapter
->sge
;
1965 * Scan the "Starving Free Lists" flag array looking for any Free
1966 * Lists in need of more free buffers. If we find one and it's not
1967 * being actively polled, then bump its "starving" counter and attempt
1968 * to refill it. If we're successful in adding enough buffers to push
1969 * the Free List over the starving threshold, then we can clear its
1970 * "starving" status.
1972 for (i
= 0; i
< ARRAY_SIZE(s
->starving_fl
); i
++) {
1975 for (m
= s
->starving_fl
[i
]; m
; m
&= m
- 1) {
1976 unsigned int id
= __ffs(m
) + i
* BITS_PER_LONG
;
1977 struct sge_fl
*fl
= s
->egr_map
[id
];
1979 clear_bit(id
, s
->starving_fl
);
1980 smp_mb__after_clear_bit();
1983 * Since we are accessing fl without a lock there's a
1984 * small probability of a false positive where we
1985 * schedule napi but the FL is no longer starving.
1988 if (fl_starving(fl
)) {
1989 struct sge_eth_rxq
*rxq
;
1991 rxq
= container_of(fl
, struct sge_eth_rxq
, fl
);
1992 if (napi_reschedule(&rxq
->rspq
.napi
))
1995 set_bit(id
, s
->starving_fl
);
2001 * Reschedule the next scan for starving Free Lists ...
2003 mod_timer(&s
->rx_timer
, jiffies
+ RX_QCHECK_PERIOD
);
2007 * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
2008 * @data: the adapter
2010 * Runs periodically from a timer to perform maintenance of SGE TX queues.
2012 * b) Reclaims completed Tx packets for the Ethernet queues. Normally
2013 * packets are cleaned up by new Tx packets, this timer cleans up packets
2014 * when no new packets are being submitted. This is essential for pktgen,
2017 static void sge_tx_timer_cb(unsigned long data
)
2019 struct adapter
*adapter
= (struct adapter
*)data
;
2020 struct sge
*s
= &adapter
->sge
;
2021 unsigned int i
, budget
;
2023 budget
= MAX_TIMER_TX_RECLAIM
;
2024 i
= s
->ethtxq_rover
;
2026 struct sge_eth_txq
*txq
= &s
->ethtxq
[i
];
2028 if (reclaimable(&txq
->q
) && __netif_tx_trylock(txq
->txq
)) {
2029 int avail
= reclaimable(&txq
->q
);
2034 free_tx_desc(adapter
, &txq
->q
, avail
, true);
2035 txq
->q
.in_use
-= avail
;
2036 __netif_tx_unlock(txq
->txq
);
2044 if (i
>= s
->ethqsets
)
2046 } while (i
!= s
->ethtxq_rover
);
2047 s
->ethtxq_rover
= i
;
2050 * If we found too many reclaimable packets schedule a timer in the
2051 * near future to continue where we left off. Otherwise the next timer
2052 * will be at its normal interval.
2054 mod_timer(&s
->tx_timer
, jiffies
+ (budget
? TX_QCHECK_PERIOD
: 2));
2058 * t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2059 * @adapter: the adapter
2060 * @rspq: pointer to to the new rxq's Response Queue to be filled in
2061 * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2062 * @dev: the network device associated with the new rspq
2063 * @intr_dest: MSI-X vector index (overriden in MSI mode)
2064 * @fl: pointer to the new rxq's Free List to be filled in
2065 * @hnd: the interrupt handler to invoke for the rspq
2067 int t4vf_sge_alloc_rxq(struct adapter
*adapter
, struct sge_rspq
*rspq
,
2068 bool iqasynch
, struct net_device
*dev
,
2070 struct sge_fl
*fl
, rspq_handler_t hnd
)
2072 struct port_info
*pi
= netdev_priv(dev
);
2073 struct fw_iq_cmd cmd
, rpl
;
2074 int ret
, iqandst
, flsz
= 0;
2077 * If we're using MSI interrupts and we're not initializing the
2078 * Forwarded Interrupt Queue itself, then set up this queue for
2079 * indirect interrupts to the Forwarded Interrupt Queue. Obviously
2080 * the Forwarded Interrupt Queue must be set up before any other
2083 if ((adapter
->flags
& USING_MSI
) && rspq
!= &adapter
->sge
.intrq
) {
2084 iqandst
= SGE_INTRDST_IQ
;
2085 intr_dest
= adapter
->sge
.intrq
.abs_id
;
2087 iqandst
= SGE_INTRDST_PCI
;
2090 * Allocate the hardware ring for the Response Queue. The size needs
2091 * to be a multiple of 16 which includes the mandatory status entry
2092 * (regardless of whether the Status Page capabilities are enabled or
2095 rspq
->size
= roundup(rspq
->size
, 16);
2096 rspq
->desc
= alloc_ring(adapter
->pdev_dev
, rspq
->size
, rspq
->iqe_len
,
2097 0, &rspq
->phys_addr
, NULL
, 0);
2102 * Fill in the Ingress Queue Command. Note: Ideally this code would
2103 * be in t4vf_hw.c but there are so many parameters and dependencies
2104 * on our Linux SGE state that we would end up having to pass tons of
2105 * parameters. We'll have to think about how this might be migrated
2106 * into OS-independent common code ...
2108 memset(&cmd
, 0, sizeof(cmd
));
2109 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_IQ_CMD
) |
2113 cmd
.alloc_to_len16
= cpu_to_be32(FW_IQ_CMD_ALLOC
|
2114 FW_IQ_CMD_IQSTART(1) |
2116 cmd
.type_to_iqandstindex
=
2117 cpu_to_be32(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP
) |
2118 FW_IQ_CMD_IQASYNCH(iqasynch
) |
2119 FW_IQ_CMD_VIID(pi
->viid
) |
2120 FW_IQ_CMD_IQANDST(iqandst
) |
2121 FW_IQ_CMD_IQANUS(1) |
2122 FW_IQ_CMD_IQANUD(SGE_UPDATEDEL_INTR
) |
2123 FW_IQ_CMD_IQANDSTINDEX(intr_dest
));
2124 cmd
.iqdroprss_to_iqesize
=
2125 cpu_to_be16(FW_IQ_CMD_IQPCIECH(pi
->port_id
) |
2126 FW_IQ_CMD_IQGTSMODE
|
2127 FW_IQ_CMD_IQINTCNTTHRESH(rspq
->pktcnt_idx
) |
2128 FW_IQ_CMD_IQESIZE(ilog2(rspq
->iqe_len
) - 4));
2129 cmd
.iqsize
= cpu_to_be16(rspq
->size
);
2130 cmd
.iqaddr
= cpu_to_be64(rspq
->phys_addr
);
2134 * Allocate the ring for the hardware free list (with space
2135 * for its status page) along with the associated software
2136 * descriptor ring. The free list size needs to be a multiple
2137 * of the Egress Queue Unit.
2139 fl
->size
= roundup(fl
->size
, FL_PER_EQ_UNIT
);
2140 fl
->desc
= alloc_ring(adapter
->pdev_dev
, fl
->size
,
2141 sizeof(__be64
), sizeof(struct rx_sw_desc
),
2142 &fl
->addr
, &fl
->sdesc
, STAT_LEN
);
2149 * Calculate the size of the hardware free list ring plus
2150 * Status Page (which the SGE will place after the end of the
2151 * free list ring) in Egress Queue Units.
2153 flsz
= (fl
->size
/ FL_PER_EQ_UNIT
+
2154 STAT_LEN
/ EQ_UNIT
);
2157 * Fill in all the relevant firmware Ingress Queue Command
2158 * fields for the free list.
2160 cmd
.iqns_to_fl0congen
=
2162 FW_IQ_CMD_FL0HOSTFCMODE(SGE_HOSTFCMODE_NONE
) |
2163 FW_IQ_CMD_FL0PACKEN
|
2164 FW_IQ_CMD_FL0PADEN
);
2165 cmd
.fl0dcaen_to_fl0cidxfthresh
=
2167 FW_IQ_CMD_FL0FBMIN(SGE_FETCHBURSTMIN_64B
) |
2168 FW_IQ_CMD_FL0FBMAX(SGE_FETCHBURSTMAX_512B
));
2169 cmd
.fl0size
= cpu_to_be16(flsz
);
2170 cmd
.fl0addr
= cpu_to_be64(fl
->addr
);
2174 * Issue the firmware Ingress Queue Command and extract the results if
2175 * it completes successfully.
2177 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
2181 netif_napi_add(dev
, &rspq
->napi
, napi_rx_handler
, 64);
2182 rspq
->cur_desc
= rspq
->desc
;
2185 rspq
->next_intr_params
= rspq
->intr_params
;
2186 rspq
->cntxt_id
= be16_to_cpu(rpl
.iqid
);
2187 rspq
->abs_id
= be16_to_cpu(rpl
.physiqid
);
2188 rspq
->size
--; /* subtract status entry */
2189 rspq
->adapter
= adapter
;
2191 rspq
->handler
= hnd
;
2193 /* set offset to -1 to distinguish ingress queues without FL */
2194 rspq
->offset
= fl
? 0 : -1;
2197 fl
->cntxt_id
= be16_to_cpu(rpl
.fl0id
);
2202 fl
->alloc_failed
= 0;
2203 fl
->large_alloc_failed
= 0;
2205 refill_fl(adapter
, fl
, fl_cap(fl
), GFP_KERNEL
);
2212 * An error occurred. Clean up our partial allocation state and
2216 dma_free_coherent(adapter
->pdev_dev
, rspq
->size
* rspq
->iqe_len
,
2217 rspq
->desc
, rspq
->phys_addr
);
2220 if (fl
&& fl
->desc
) {
2223 dma_free_coherent(adapter
->pdev_dev
, flsz
* EQ_UNIT
,
2224 fl
->desc
, fl
->addr
);
2231 * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2232 * @adapter: the adapter
2233 * @txq: pointer to the new txq to be filled in
2234 * @devq: the network TX queue associated with the new txq
2235 * @iqid: the relative ingress queue ID to which events relating to
2236 * the new txq should be directed
2238 int t4vf_sge_alloc_eth_txq(struct adapter
*adapter
, struct sge_eth_txq
*txq
,
2239 struct net_device
*dev
, struct netdev_queue
*devq
,
2243 struct fw_eq_eth_cmd cmd
, rpl
;
2244 struct port_info
*pi
= netdev_priv(dev
);
2247 * Calculate the size of the hardware TX Queue (including the Status
2248 * Page on the end of the TX Queue) in units of TX Descriptors.
2250 nentries
= txq
->q
.size
+ STAT_LEN
/ sizeof(struct tx_desc
);
2253 * Allocate the hardware ring for the TX ring (with space for its
2254 * status page) along with the associated software descriptor ring.
2256 txq
->q
.desc
= alloc_ring(adapter
->pdev_dev
, txq
->q
.size
,
2257 sizeof(struct tx_desc
),
2258 sizeof(struct tx_sw_desc
),
2259 &txq
->q
.phys_addr
, &txq
->q
.sdesc
, STAT_LEN
);
2264 * Fill in the Egress Queue Command. Note: As with the direct use of
2265 * the firmware Ingress Queue COmmand above in our RXQ allocation
2266 * routine, ideally, this code would be in t4vf_hw.c. Again, we'll
2267 * have to see if there's some reasonable way to parameterize it
2268 * into the common code ...
2270 memset(&cmd
, 0, sizeof(cmd
));
2271 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD
) |
2275 cmd
.alloc_to_len16
= cpu_to_be32(FW_EQ_ETH_CMD_ALLOC
|
2276 FW_EQ_ETH_CMD_EQSTART
|
2278 cmd
.viid_pkd
= cpu_to_be32(FW_EQ_ETH_CMD_VIID(pi
->viid
));
2279 cmd
.fetchszm_to_iqid
=
2280 cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE(SGE_HOSTFCMODE_STPG
) |
2281 FW_EQ_ETH_CMD_PCIECHN(pi
->port_id
) |
2282 FW_EQ_ETH_CMD_IQID(iqid
));
2283 cmd
.dcaen_to_eqsize
=
2284 cpu_to_be32(FW_EQ_ETH_CMD_FBMIN(SGE_FETCHBURSTMIN_64B
) |
2285 FW_EQ_ETH_CMD_FBMAX(SGE_FETCHBURSTMAX_512B
) |
2286 FW_EQ_ETH_CMD_CIDXFTHRESH(SGE_CIDXFLUSHTHRESH_32
) |
2287 FW_EQ_ETH_CMD_EQSIZE(nentries
));
2288 cmd
.eqaddr
= cpu_to_be64(txq
->q
.phys_addr
);
2291 * Issue the firmware Egress Queue Command and extract the results if
2292 * it completes successfully.
2294 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
2297 * The girmware Ingress Queue Command failed for some reason.
2298 * Free up our partial allocation state and return the error.
2300 kfree(txq
->q
.sdesc
);
2301 txq
->q
.sdesc
= NULL
;
2302 dma_free_coherent(adapter
->pdev_dev
,
2303 nentries
* sizeof(struct tx_desc
),
2304 txq
->q
.desc
, txq
->q
.phys_addr
);
2312 txq
->q
.stat
= (void *)&txq
->q
.desc
[txq
->q
.size
];
2313 txq
->q
.cntxt_id
= FW_EQ_ETH_CMD_EQID_GET(be32_to_cpu(rpl
.eqid_pkd
));
2315 FW_EQ_ETH_CMD_PHYSEQID_GET(be32_to_cpu(rpl
.physeqid_pkd
));
2321 txq
->q
.restarts
= 0;
2322 txq
->mapping_err
= 0;
2327 * Free the DMA map resources associated with a TX queue.
2329 static void free_txq(struct adapter
*adapter
, struct sge_txq
*tq
)
2331 dma_free_coherent(adapter
->pdev_dev
,
2332 tq
->size
* sizeof(*tq
->desc
) + STAT_LEN
,
2333 tq
->desc
, tq
->phys_addr
);
2340 * Free the resources associated with a response queue (possibly including a
2343 static void free_rspq_fl(struct adapter
*adapter
, struct sge_rspq
*rspq
,
2346 unsigned int flid
= fl
? fl
->cntxt_id
: 0xffff;
2348 t4vf_iq_free(adapter
, FW_IQ_TYPE_FL_INT_CAP
,
2349 rspq
->cntxt_id
, flid
, 0xffff);
2350 dma_free_coherent(adapter
->pdev_dev
, (rspq
->size
+ 1) * rspq
->iqe_len
,
2351 rspq
->desc
, rspq
->phys_addr
);
2352 netif_napi_del(&rspq
->napi
);
2353 rspq
->netdev
= NULL
;
2359 free_rx_bufs(adapter
, fl
, fl
->avail
);
2360 dma_free_coherent(adapter
->pdev_dev
,
2361 fl
->size
* sizeof(*fl
->desc
) + STAT_LEN
,
2362 fl
->desc
, fl
->addr
);
2371 * t4vf_free_sge_resources - free SGE resources
2372 * @adapter: the adapter
2374 * Frees resources used by the SGE queue sets.
2376 void t4vf_free_sge_resources(struct adapter
*adapter
)
2378 struct sge
*s
= &adapter
->sge
;
2379 struct sge_eth_rxq
*rxq
= s
->ethrxq
;
2380 struct sge_eth_txq
*txq
= s
->ethtxq
;
2381 struct sge_rspq
*evtq
= &s
->fw_evtq
;
2382 struct sge_rspq
*intrq
= &s
->intrq
;
2385 for (qs
= 0; qs
< adapter
->sge
.ethqsets
; qs
++, rxq
++, txq
++) {
2387 free_rspq_fl(adapter
, &rxq
->rspq
, &rxq
->fl
);
2389 t4vf_eth_eq_free(adapter
, txq
->q
.cntxt_id
);
2390 free_tx_desc(adapter
, &txq
->q
, txq
->q
.in_use
, true);
2391 kfree(txq
->q
.sdesc
);
2392 free_txq(adapter
, &txq
->q
);
2396 free_rspq_fl(adapter
, evtq
, NULL
);
2398 free_rspq_fl(adapter
, intrq
, NULL
);
2402 * t4vf_sge_start - enable SGE operation
2403 * @adapter: the adapter
2405 * Start tasklets and timers associated with the DMA engine.
2407 void t4vf_sge_start(struct adapter
*adapter
)
2409 adapter
->sge
.ethtxq_rover
= 0;
2410 mod_timer(&adapter
->sge
.rx_timer
, jiffies
+ RX_QCHECK_PERIOD
);
2411 mod_timer(&adapter
->sge
.tx_timer
, jiffies
+ TX_QCHECK_PERIOD
);
2415 * t4vf_sge_stop - disable SGE operation
2416 * @adapter: the adapter
2418 * Stop tasklets and timers associated with the DMA engine. Note that
2419 * this is effective only if measures have been taken to disable any HW
2420 * events that may restart them.
2422 void t4vf_sge_stop(struct adapter
*adapter
)
2424 struct sge
*s
= &adapter
->sge
;
2426 if (s
->rx_timer
.function
)
2427 del_timer_sync(&s
->rx_timer
);
2428 if (s
->tx_timer
.function
)
2429 del_timer_sync(&s
->tx_timer
);
2433 * t4vf_sge_init - initialize SGE
2434 * @adapter: the adapter
2436 * Performs SGE initialization needed every time after a chip reset.
2437 * We do not initialize any of the queue sets here, instead the driver
2438 * top-level must request those individually. We also do not enable DMA
2439 * here, that should be done after the queues have been set up.
2441 int t4vf_sge_init(struct adapter
*adapter
)
2443 struct sge_params
*sge_params
= &adapter
->params
.sge
;
2444 u32 fl0
= sge_params
->sge_fl_buffer_size
[0];
2445 u32 fl1
= sge_params
->sge_fl_buffer_size
[1];
2446 struct sge
*s
= &adapter
->sge
;
2449 * Start by vetting the basic SGE parameters which have been set up by
2450 * the Physical Function Driver. Ideally we should be able to deal
2451 * with _any_ configuration. Practice is different ...
2453 if (fl0
!= PAGE_SIZE
|| (fl1
!= 0 && fl1
<= fl0
)) {
2454 dev_err(adapter
->pdev_dev
, "bad SGE FL buffer sizes [%d, %d]\n",
2458 if ((sge_params
->sge_control
& RXPKTCPLMODE
) == 0) {
2459 dev_err(adapter
->pdev_dev
, "bad SGE CPL MODE\n");
2464 * Now translate the adapter parameters into our internal forms.
2467 FL_PG_ORDER
= ilog2(fl1
) - PAGE_SHIFT
;
2468 STAT_LEN
= ((sge_params
->sge_control
& EGRSTATUSPAGESIZE
) ? 128 : 64);
2469 PKTSHIFT
= PKTSHIFT_GET(sge_params
->sge_control
);
2470 FL_ALIGN
= 1 << (INGPADBOUNDARY_GET(sge_params
->sge_control
) +
2471 SGE_INGPADBOUNDARY_SHIFT
);
2474 * Set up tasklet timers.
2476 setup_timer(&s
->rx_timer
, sge_rx_timer_cb
, (unsigned long)adapter
);
2477 setup_timer(&s
->tx_timer
, sge_tx_timer_cb
, (unsigned long)adapter
);
2480 * Initialize Forwarded Interrupt Queue lock.
2482 spin_lock_init(&s
->intrq_lock
);