Input: wacom - fix touch parsing on newer Bamboos
[linux-btrfs-devel.git] / drivers / net / igb / igb_ethtool.c
blobfdc895e5a3f86afe3442e1ea4bdfe1a1890d9a8e
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* ethtool support for igb */
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
40 #include "igb.h"
42 struct igb_stats {
43 char stat_string[ETH_GSTRING_LEN];
44 int sizeof_stat;
45 int stat_offset;
48 #define IGB_STAT(_name, _stat) { \
49 .stat_string = _name, \
50 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
51 .stat_offset = offsetof(struct igb_adapter, _stat) \
53 static const struct igb_stats igb_gstrings_stats[] = {
54 IGB_STAT("rx_packets", stats.gprc),
55 IGB_STAT("tx_packets", stats.gptc),
56 IGB_STAT("rx_bytes", stats.gorc),
57 IGB_STAT("tx_bytes", stats.gotc),
58 IGB_STAT("rx_broadcast", stats.bprc),
59 IGB_STAT("tx_broadcast", stats.bptc),
60 IGB_STAT("rx_multicast", stats.mprc),
61 IGB_STAT("tx_multicast", stats.mptc),
62 IGB_STAT("multicast", stats.mprc),
63 IGB_STAT("collisions", stats.colc),
64 IGB_STAT("rx_crc_errors", stats.crcerrs),
65 IGB_STAT("rx_no_buffer_count", stats.rnbc),
66 IGB_STAT("rx_missed_errors", stats.mpc),
67 IGB_STAT("tx_aborted_errors", stats.ecol),
68 IGB_STAT("tx_carrier_errors", stats.tncrs),
69 IGB_STAT("tx_window_errors", stats.latecol),
70 IGB_STAT("tx_abort_late_coll", stats.latecol),
71 IGB_STAT("tx_deferred_ok", stats.dc),
72 IGB_STAT("tx_single_coll_ok", stats.scc),
73 IGB_STAT("tx_multi_coll_ok", stats.mcc),
74 IGB_STAT("tx_timeout_count", tx_timeout_count),
75 IGB_STAT("rx_long_length_errors", stats.roc),
76 IGB_STAT("rx_short_length_errors", stats.ruc),
77 IGB_STAT("rx_align_errors", stats.algnerrc),
78 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
79 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
81 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 IGB_STAT("tx_flow_control_xon", stats.xontxc),
83 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
84 IGB_STAT("rx_long_byte_count", stats.gorc),
85 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
86 IGB_STAT("tx_smbus", stats.mgptc),
87 IGB_STAT("rx_smbus", stats.mgprc),
88 IGB_STAT("dropped_smbus", stats.mgpdc),
89 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
90 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
91 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
92 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
95 #define IGB_NETDEV_STAT(_net_stat) { \
96 .stat_string = __stringify(_net_stat), \
97 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
98 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 static const struct igb_stats igb_gstrings_net_stats[] = {
101 IGB_NETDEV_STAT(rx_errors),
102 IGB_NETDEV_STAT(tx_errors),
103 IGB_NETDEV_STAT(tx_dropped),
104 IGB_NETDEV_STAT(rx_length_errors),
105 IGB_NETDEV_STAT(rx_over_errors),
106 IGB_NETDEV_STAT(rx_frame_errors),
107 IGB_NETDEV_STAT(rx_fifo_errors),
108 IGB_NETDEV_STAT(tx_fifo_errors),
109 IGB_NETDEV_STAT(tx_heartbeat_errors)
112 #define IGB_GLOBAL_STATS_LEN \
113 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
114 #define IGB_NETDEV_STATS_LEN \
115 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
116 #define IGB_RX_QUEUE_STATS_LEN \
117 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121 #define IGB_QUEUE_STATS_LEN \
122 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
123 IGB_RX_QUEUE_STATS_LEN) + \
124 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
125 IGB_TX_QUEUE_STATS_LEN))
126 #define IGB_STATS_LEN \
127 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
130 "Register test (offline)", "Eeprom test (offline)",
131 "Interrupt test (offline)", "Loopback test (offline)",
132 "Link test (on/offline)"
134 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 struct igb_adapter *adapter = netdev_priv(netdev);
139 struct e1000_hw *hw = &adapter->hw;
140 u32 status;
142 if (hw->phy.media_type == e1000_media_type_copper) {
144 ecmd->supported = (SUPPORTED_10baseT_Half |
145 SUPPORTED_10baseT_Full |
146 SUPPORTED_100baseT_Half |
147 SUPPORTED_100baseT_Full |
148 SUPPORTED_1000baseT_Full|
149 SUPPORTED_Autoneg |
150 SUPPORTED_TP);
151 ecmd->advertising = ADVERTISED_TP;
153 if (hw->mac.autoneg == 1) {
154 ecmd->advertising |= ADVERTISED_Autoneg;
155 /* the e1000 autoneg seems to match ethtool nicely */
156 ecmd->advertising |= hw->phy.autoneg_advertised;
159 ecmd->port = PORT_TP;
160 ecmd->phy_address = hw->phy.addr;
161 } else {
162 ecmd->supported = (SUPPORTED_1000baseT_Full |
163 SUPPORTED_FIBRE |
164 SUPPORTED_Autoneg);
166 ecmd->advertising = (ADVERTISED_1000baseT_Full |
167 ADVERTISED_FIBRE |
168 ADVERTISED_Autoneg);
170 ecmd->port = PORT_FIBRE;
173 ecmd->transceiver = XCVR_INTERNAL;
175 status = rd32(E1000_STATUS);
177 if (status & E1000_STATUS_LU) {
179 if ((status & E1000_STATUS_SPEED_1000) ||
180 hw->phy.media_type != e1000_media_type_copper)
181 ethtool_cmd_speed_set(ecmd, SPEED_1000);
182 else if (status & E1000_STATUS_SPEED_100)
183 ethtool_cmd_speed_set(ecmd, SPEED_100);
184 else
185 ethtool_cmd_speed_set(ecmd, SPEED_10);
187 if ((status & E1000_STATUS_FD) ||
188 hw->phy.media_type != e1000_media_type_copper)
189 ecmd->duplex = DUPLEX_FULL;
190 else
191 ecmd->duplex = DUPLEX_HALF;
192 } else {
193 ethtool_cmd_speed_set(ecmd, -1);
194 ecmd->duplex = -1;
197 ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
198 return 0;
201 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
203 struct igb_adapter *adapter = netdev_priv(netdev);
204 struct e1000_hw *hw = &adapter->hw;
206 /* When SoL/IDER sessions are active, autoneg/speed/duplex
207 * cannot be changed */
208 if (igb_check_reset_block(hw)) {
209 dev_err(&adapter->pdev->dev, "Cannot change link "
210 "characteristics when SoL/IDER is active.\n");
211 return -EINVAL;
214 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
215 msleep(1);
217 if (ecmd->autoneg == AUTONEG_ENABLE) {
218 hw->mac.autoneg = 1;
219 hw->phy.autoneg_advertised = ecmd->advertising |
220 ADVERTISED_TP |
221 ADVERTISED_Autoneg;
222 ecmd->advertising = hw->phy.autoneg_advertised;
223 if (adapter->fc_autoneg)
224 hw->fc.requested_mode = e1000_fc_default;
225 } else {
226 u32 speed = ethtool_cmd_speed(ecmd);
227 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
228 clear_bit(__IGB_RESETTING, &adapter->state);
229 return -EINVAL;
233 /* reset the link */
234 if (netif_running(adapter->netdev)) {
235 igb_down(adapter);
236 igb_up(adapter);
237 } else
238 igb_reset(adapter);
240 clear_bit(__IGB_RESETTING, &adapter->state);
241 return 0;
244 static u32 igb_get_link(struct net_device *netdev)
246 struct igb_adapter *adapter = netdev_priv(netdev);
247 struct e1000_mac_info *mac = &adapter->hw.mac;
250 * If the link is not reported up to netdev, interrupts are disabled,
251 * and so the physical link state may have changed since we last
252 * looked. Set get_link_status to make sure that the true link
253 * state is interrogated, rather than pulling a cached and possibly
254 * stale link state from the driver.
256 if (!netif_carrier_ok(netdev))
257 mac->get_link_status = 1;
259 return igb_has_link(adapter);
262 static void igb_get_pauseparam(struct net_device *netdev,
263 struct ethtool_pauseparam *pause)
265 struct igb_adapter *adapter = netdev_priv(netdev);
266 struct e1000_hw *hw = &adapter->hw;
268 pause->autoneg =
269 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
271 if (hw->fc.current_mode == e1000_fc_rx_pause)
272 pause->rx_pause = 1;
273 else if (hw->fc.current_mode == e1000_fc_tx_pause)
274 pause->tx_pause = 1;
275 else if (hw->fc.current_mode == e1000_fc_full) {
276 pause->rx_pause = 1;
277 pause->tx_pause = 1;
281 static int igb_set_pauseparam(struct net_device *netdev,
282 struct ethtool_pauseparam *pause)
284 struct igb_adapter *adapter = netdev_priv(netdev);
285 struct e1000_hw *hw = &adapter->hw;
286 int retval = 0;
288 adapter->fc_autoneg = pause->autoneg;
290 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
291 msleep(1);
293 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
294 hw->fc.requested_mode = e1000_fc_default;
295 if (netif_running(adapter->netdev)) {
296 igb_down(adapter);
297 igb_up(adapter);
298 } else {
299 igb_reset(adapter);
301 } else {
302 if (pause->rx_pause && pause->tx_pause)
303 hw->fc.requested_mode = e1000_fc_full;
304 else if (pause->rx_pause && !pause->tx_pause)
305 hw->fc.requested_mode = e1000_fc_rx_pause;
306 else if (!pause->rx_pause && pause->tx_pause)
307 hw->fc.requested_mode = e1000_fc_tx_pause;
308 else if (!pause->rx_pause && !pause->tx_pause)
309 hw->fc.requested_mode = e1000_fc_none;
311 hw->fc.current_mode = hw->fc.requested_mode;
313 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
314 igb_force_mac_fc(hw) : igb_setup_link(hw));
317 clear_bit(__IGB_RESETTING, &adapter->state);
318 return retval;
321 static u32 igb_get_rx_csum(struct net_device *netdev)
323 struct igb_adapter *adapter = netdev_priv(netdev);
324 return !!(adapter->rx_ring[0]->flags & IGB_RING_FLAG_RX_CSUM);
327 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
329 struct igb_adapter *adapter = netdev_priv(netdev);
330 int i;
332 for (i = 0; i < adapter->num_rx_queues; i++) {
333 if (data)
334 adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
335 else
336 adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
339 return 0;
342 static u32 igb_get_tx_csum(struct net_device *netdev)
344 return (netdev->features & NETIF_F_IP_CSUM) != 0;
347 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
349 struct igb_adapter *adapter = netdev_priv(netdev);
351 if (data) {
352 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
353 if (adapter->hw.mac.type >= e1000_82576)
354 netdev->features |= NETIF_F_SCTP_CSUM;
355 } else {
356 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
357 NETIF_F_SCTP_CSUM);
360 return 0;
363 static int igb_set_tso(struct net_device *netdev, u32 data)
365 struct igb_adapter *adapter = netdev_priv(netdev);
367 if (data) {
368 netdev->features |= NETIF_F_TSO;
369 netdev->features |= NETIF_F_TSO6;
370 } else {
371 netdev->features &= ~NETIF_F_TSO;
372 netdev->features &= ~NETIF_F_TSO6;
375 dev_info(&adapter->pdev->dev, "TSO is %s\n",
376 data ? "Enabled" : "Disabled");
377 return 0;
380 static u32 igb_get_msglevel(struct net_device *netdev)
382 struct igb_adapter *adapter = netdev_priv(netdev);
383 return adapter->msg_enable;
386 static void igb_set_msglevel(struct net_device *netdev, u32 data)
388 struct igb_adapter *adapter = netdev_priv(netdev);
389 adapter->msg_enable = data;
392 static int igb_get_regs_len(struct net_device *netdev)
394 #define IGB_REGS_LEN 551
395 return IGB_REGS_LEN * sizeof(u32);
398 static void igb_get_regs(struct net_device *netdev,
399 struct ethtool_regs *regs, void *p)
401 struct igb_adapter *adapter = netdev_priv(netdev);
402 struct e1000_hw *hw = &adapter->hw;
403 u32 *regs_buff = p;
404 u8 i;
406 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
408 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
410 /* General Registers */
411 regs_buff[0] = rd32(E1000_CTRL);
412 regs_buff[1] = rd32(E1000_STATUS);
413 regs_buff[2] = rd32(E1000_CTRL_EXT);
414 regs_buff[3] = rd32(E1000_MDIC);
415 regs_buff[4] = rd32(E1000_SCTL);
416 regs_buff[5] = rd32(E1000_CONNSW);
417 regs_buff[6] = rd32(E1000_VET);
418 regs_buff[7] = rd32(E1000_LEDCTL);
419 regs_buff[8] = rd32(E1000_PBA);
420 regs_buff[9] = rd32(E1000_PBS);
421 regs_buff[10] = rd32(E1000_FRTIMER);
422 regs_buff[11] = rd32(E1000_TCPTIMER);
424 /* NVM Register */
425 regs_buff[12] = rd32(E1000_EECD);
427 /* Interrupt */
428 /* Reading EICS for EICR because they read the
429 * same but EICS does not clear on read */
430 regs_buff[13] = rd32(E1000_EICS);
431 regs_buff[14] = rd32(E1000_EICS);
432 regs_buff[15] = rd32(E1000_EIMS);
433 regs_buff[16] = rd32(E1000_EIMC);
434 regs_buff[17] = rd32(E1000_EIAC);
435 regs_buff[18] = rd32(E1000_EIAM);
436 /* Reading ICS for ICR because they read the
437 * same but ICS does not clear on read */
438 regs_buff[19] = rd32(E1000_ICS);
439 regs_buff[20] = rd32(E1000_ICS);
440 regs_buff[21] = rd32(E1000_IMS);
441 regs_buff[22] = rd32(E1000_IMC);
442 regs_buff[23] = rd32(E1000_IAC);
443 regs_buff[24] = rd32(E1000_IAM);
444 regs_buff[25] = rd32(E1000_IMIRVP);
446 /* Flow Control */
447 regs_buff[26] = rd32(E1000_FCAL);
448 regs_buff[27] = rd32(E1000_FCAH);
449 regs_buff[28] = rd32(E1000_FCTTV);
450 regs_buff[29] = rd32(E1000_FCRTL);
451 regs_buff[30] = rd32(E1000_FCRTH);
452 regs_buff[31] = rd32(E1000_FCRTV);
454 /* Receive */
455 regs_buff[32] = rd32(E1000_RCTL);
456 regs_buff[33] = rd32(E1000_RXCSUM);
457 regs_buff[34] = rd32(E1000_RLPML);
458 regs_buff[35] = rd32(E1000_RFCTL);
459 regs_buff[36] = rd32(E1000_MRQC);
460 regs_buff[37] = rd32(E1000_VT_CTL);
462 /* Transmit */
463 regs_buff[38] = rd32(E1000_TCTL);
464 regs_buff[39] = rd32(E1000_TCTL_EXT);
465 regs_buff[40] = rd32(E1000_TIPG);
466 regs_buff[41] = rd32(E1000_DTXCTL);
468 /* Wake Up */
469 regs_buff[42] = rd32(E1000_WUC);
470 regs_buff[43] = rd32(E1000_WUFC);
471 regs_buff[44] = rd32(E1000_WUS);
472 regs_buff[45] = rd32(E1000_IPAV);
473 regs_buff[46] = rd32(E1000_WUPL);
475 /* MAC */
476 regs_buff[47] = rd32(E1000_PCS_CFG0);
477 regs_buff[48] = rd32(E1000_PCS_LCTL);
478 regs_buff[49] = rd32(E1000_PCS_LSTAT);
479 regs_buff[50] = rd32(E1000_PCS_ANADV);
480 regs_buff[51] = rd32(E1000_PCS_LPAB);
481 regs_buff[52] = rd32(E1000_PCS_NPTX);
482 regs_buff[53] = rd32(E1000_PCS_LPABNP);
484 /* Statistics */
485 regs_buff[54] = adapter->stats.crcerrs;
486 regs_buff[55] = adapter->stats.algnerrc;
487 regs_buff[56] = adapter->stats.symerrs;
488 regs_buff[57] = adapter->stats.rxerrc;
489 regs_buff[58] = adapter->stats.mpc;
490 regs_buff[59] = adapter->stats.scc;
491 regs_buff[60] = adapter->stats.ecol;
492 regs_buff[61] = adapter->stats.mcc;
493 regs_buff[62] = adapter->stats.latecol;
494 regs_buff[63] = adapter->stats.colc;
495 regs_buff[64] = adapter->stats.dc;
496 regs_buff[65] = adapter->stats.tncrs;
497 regs_buff[66] = adapter->stats.sec;
498 regs_buff[67] = adapter->stats.htdpmc;
499 regs_buff[68] = adapter->stats.rlec;
500 regs_buff[69] = adapter->stats.xonrxc;
501 regs_buff[70] = adapter->stats.xontxc;
502 regs_buff[71] = adapter->stats.xoffrxc;
503 regs_buff[72] = adapter->stats.xofftxc;
504 regs_buff[73] = adapter->stats.fcruc;
505 regs_buff[74] = adapter->stats.prc64;
506 regs_buff[75] = adapter->stats.prc127;
507 regs_buff[76] = adapter->stats.prc255;
508 regs_buff[77] = adapter->stats.prc511;
509 regs_buff[78] = adapter->stats.prc1023;
510 regs_buff[79] = adapter->stats.prc1522;
511 regs_buff[80] = adapter->stats.gprc;
512 regs_buff[81] = adapter->stats.bprc;
513 regs_buff[82] = adapter->stats.mprc;
514 regs_buff[83] = adapter->stats.gptc;
515 regs_buff[84] = adapter->stats.gorc;
516 regs_buff[86] = adapter->stats.gotc;
517 regs_buff[88] = adapter->stats.rnbc;
518 regs_buff[89] = adapter->stats.ruc;
519 regs_buff[90] = adapter->stats.rfc;
520 regs_buff[91] = adapter->stats.roc;
521 regs_buff[92] = adapter->stats.rjc;
522 regs_buff[93] = adapter->stats.mgprc;
523 regs_buff[94] = adapter->stats.mgpdc;
524 regs_buff[95] = adapter->stats.mgptc;
525 regs_buff[96] = adapter->stats.tor;
526 regs_buff[98] = adapter->stats.tot;
527 regs_buff[100] = adapter->stats.tpr;
528 regs_buff[101] = adapter->stats.tpt;
529 regs_buff[102] = adapter->stats.ptc64;
530 regs_buff[103] = adapter->stats.ptc127;
531 regs_buff[104] = adapter->stats.ptc255;
532 regs_buff[105] = adapter->stats.ptc511;
533 regs_buff[106] = adapter->stats.ptc1023;
534 regs_buff[107] = adapter->stats.ptc1522;
535 regs_buff[108] = adapter->stats.mptc;
536 regs_buff[109] = adapter->stats.bptc;
537 regs_buff[110] = adapter->stats.tsctc;
538 regs_buff[111] = adapter->stats.iac;
539 regs_buff[112] = adapter->stats.rpthc;
540 regs_buff[113] = adapter->stats.hgptc;
541 regs_buff[114] = adapter->stats.hgorc;
542 regs_buff[116] = adapter->stats.hgotc;
543 regs_buff[118] = adapter->stats.lenerrs;
544 regs_buff[119] = adapter->stats.scvpc;
545 regs_buff[120] = adapter->stats.hrmpc;
547 for (i = 0; i < 4; i++)
548 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
549 for (i = 0; i < 4; i++)
550 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
551 for (i = 0; i < 4; i++)
552 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
553 for (i = 0; i < 4; i++)
554 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
555 for (i = 0; i < 4; i++)
556 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
557 for (i = 0; i < 4; i++)
558 regs_buff[141 + i] = rd32(E1000_RDH(i));
559 for (i = 0; i < 4; i++)
560 regs_buff[145 + i] = rd32(E1000_RDT(i));
561 for (i = 0; i < 4; i++)
562 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
564 for (i = 0; i < 10; i++)
565 regs_buff[153 + i] = rd32(E1000_EITR(i));
566 for (i = 0; i < 8; i++)
567 regs_buff[163 + i] = rd32(E1000_IMIR(i));
568 for (i = 0; i < 8; i++)
569 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
570 for (i = 0; i < 16; i++)
571 regs_buff[179 + i] = rd32(E1000_RAL(i));
572 for (i = 0; i < 16; i++)
573 regs_buff[195 + i] = rd32(E1000_RAH(i));
575 for (i = 0; i < 4; i++)
576 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
577 for (i = 0; i < 4; i++)
578 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
579 for (i = 0; i < 4; i++)
580 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
581 for (i = 0; i < 4; i++)
582 regs_buff[223 + i] = rd32(E1000_TDH(i));
583 for (i = 0; i < 4; i++)
584 regs_buff[227 + i] = rd32(E1000_TDT(i));
585 for (i = 0; i < 4; i++)
586 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
587 for (i = 0; i < 4; i++)
588 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
589 for (i = 0; i < 4; i++)
590 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
591 for (i = 0; i < 4; i++)
592 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
594 for (i = 0; i < 4; i++)
595 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
596 for (i = 0; i < 4; i++)
597 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
598 for (i = 0; i < 32; i++)
599 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
600 for (i = 0; i < 128; i++)
601 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
602 for (i = 0; i < 128; i++)
603 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
604 for (i = 0; i < 4; i++)
605 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
607 regs_buff[547] = rd32(E1000_TDFH);
608 regs_buff[548] = rd32(E1000_TDFT);
609 regs_buff[549] = rd32(E1000_TDFHS);
610 regs_buff[550] = rd32(E1000_TDFPC);
611 regs_buff[551] = adapter->stats.o2bgptc;
612 regs_buff[552] = adapter->stats.b2ospc;
613 regs_buff[553] = adapter->stats.o2bspc;
614 regs_buff[554] = adapter->stats.b2ogprc;
617 static int igb_get_eeprom_len(struct net_device *netdev)
619 struct igb_adapter *adapter = netdev_priv(netdev);
620 return adapter->hw.nvm.word_size * 2;
623 static int igb_get_eeprom(struct net_device *netdev,
624 struct ethtool_eeprom *eeprom, u8 *bytes)
626 struct igb_adapter *adapter = netdev_priv(netdev);
627 struct e1000_hw *hw = &adapter->hw;
628 u16 *eeprom_buff;
629 int first_word, last_word;
630 int ret_val = 0;
631 u16 i;
633 if (eeprom->len == 0)
634 return -EINVAL;
636 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
638 first_word = eeprom->offset >> 1;
639 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
641 eeprom_buff = kmalloc(sizeof(u16) *
642 (last_word - first_word + 1), GFP_KERNEL);
643 if (!eeprom_buff)
644 return -ENOMEM;
646 if (hw->nvm.type == e1000_nvm_eeprom_spi)
647 ret_val = hw->nvm.ops.read(hw, first_word,
648 last_word - first_word + 1,
649 eeprom_buff);
650 else {
651 for (i = 0; i < last_word - first_word + 1; i++) {
652 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
653 &eeprom_buff[i]);
654 if (ret_val)
655 break;
659 /* Device's eeprom is always little-endian, word addressable */
660 for (i = 0; i < last_word - first_word + 1; i++)
661 le16_to_cpus(&eeprom_buff[i]);
663 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
664 eeprom->len);
665 kfree(eeprom_buff);
667 return ret_val;
670 static int igb_set_eeprom(struct net_device *netdev,
671 struct ethtool_eeprom *eeprom, u8 *bytes)
673 struct igb_adapter *adapter = netdev_priv(netdev);
674 struct e1000_hw *hw = &adapter->hw;
675 u16 *eeprom_buff;
676 void *ptr;
677 int max_len, first_word, last_word, ret_val = 0;
678 u16 i;
680 if (eeprom->len == 0)
681 return -EOPNOTSUPP;
683 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
684 return -EFAULT;
686 max_len = hw->nvm.word_size * 2;
688 first_word = eeprom->offset >> 1;
689 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
690 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
691 if (!eeprom_buff)
692 return -ENOMEM;
694 ptr = (void *)eeprom_buff;
696 if (eeprom->offset & 1) {
697 /* need read/modify/write of first changed EEPROM word */
698 /* only the second byte of the word is being modified */
699 ret_val = hw->nvm.ops.read(hw, first_word, 1,
700 &eeprom_buff[0]);
701 ptr++;
703 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
704 /* need read/modify/write of last changed EEPROM word */
705 /* only the first byte of the word is being modified */
706 ret_val = hw->nvm.ops.read(hw, last_word, 1,
707 &eeprom_buff[last_word - first_word]);
710 /* Device's eeprom is always little-endian, word addressable */
711 for (i = 0; i < last_word - first_word + 1; i++)
712 le16_to_cpus(&eeprom_buff[i]);
714 memcpy(ptr, bytes, eeprom->len);
716 for (i = 0; i < last_word - first_word + 1; i++)
717 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
719 ret_val = hw->nvm.ops.write(hw, first_word,
720 last_word - first_word + 1, eeprom_buff);
722 /* Update the checksum over the first part of the EEPROM if needed
723 * and flush shadow RAM for 82573 controllers */
724 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
725 hw->nvm.ops.update(hw);
727 kfree(eeprom_buff);
728 return ret_val;
731 static void igb_get_drvinfo(struct net_device *netdev,
732 struct ethtool_drvinfo *drvinfo)
734 struct igb_adapter *adapter = netdev_priv(netdev);
735 char firmware_version[32];
736 u16 eeprom_data;
738 strncpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver) - 1);
739 strncpy(drvinfo->version, igb_driver_version,
740 sizeof(drvinfo->version) - 1);
742 /* EEPROM image version # is reported as firmware version # for
743 * 82575 controllers */
744 adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
745 sprintf(firmware_version, "%d.%d-%d",
746 (eeprom_data & 0xF000) >> 12,
747 (eeprom_data & 0x0FF0) >> 4,
748 eeprom_data & 0x000F);
750 strncpy(drvinfo->fw_version, firmware_version,
751 sizeof(drvinfo->fw_version) - 1);
752 strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
753 sizeof(drvinfo->bus_info) - 1);
754 drvinfo->n_stats = IGB_STATS_LEN;
755 drvinfo->testinfo_len = IGB_TEST_LEN;
756 drvinfo->regdump_len = igb_get_regs_len(netdev);
757 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
760 static void igb_get_ringparam(struct net_device *netdev,
761 struct ethtool_ringparam *ring)
763 struct igb_adapter *adapter = netdev_priv(netdev);
765 ring->rx_max_pending = IGB_MAX_RXD;
766 ring->tx_max_pending = IGB_MAX_TXD;
767 ring->rx_mini_max_pending = 0;
768 ring->rx_jumbo_max_pending = 0;
769 ring->rx_pending = adapter->rx_ring_count;
770 ring->tx_pending = adapter->tx_ring_count;
771 ring->rx_mini_pending = 0;
772 ring->rx_jumbo_pending = 0;
775 static int igb_set_ringparam(struct net_device *netdev,
776 struct ethtool_ringparam *ring)
778 struct igb_adapter *adapter = netdev_priv(netdev);
779 struct igb_ring *temp_ring;
780 int i, err = 0;
781 u16 new_rx_count, new_tx_count;
783 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
784 return -EINVAL;
786 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
787 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
788 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
790 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
791 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
792 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
794 if ((new_tx_count == adapter->tx_ring_count) &&
795 (new_rx_count == adapter->rx_ring_count)) {
796 /* nothing to do */
797 return 0;
800 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
801 msleep(1);
803 if (!netif_running(adapter->netdev)) {
804 for (i = 0; i < adapter->num_tx_queues; i++)
805 adapter->tx_ring[i]->count = new_tx_count;
806 for (i = 0; i < adapter->num_rx_queues; i++)
807 adapter->rx_ring[i]->count = new_rx_count;
808 adapter->tx_ring_count = new_tx_count;
809 adapter->rx_ring_count = new_rx_count;
810 goto clear_reset;
813 if (adapter->num_tx_queues > adapter->num_rx_queues)
814 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
815 else
816 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
818 if (!temp_ring) {
819 err = -ENOMEM;
820 goto clear_reset;
823 igb_down(adapter);
826 * We can't just free everything and then setup again,
827 * because the ISRs in MSI-X mode get passed pointers
828 * to the tx and rx ring structs.
830 if (new_tx_count != adapter->tx_ring_count) {
831 for (i = 0; i < adapter->num_tx_queues; i++) {
832 memcpy(&temp_ring[i], adapter->tx_ring[i],
833 sizeof(struct igb_ring));
835 temp_ring[i].count = new_tx_count;
836 err = igb_setup_tx_resources(&temp_ring[i]);
837 if (err) {
838 while (i) {
839 i--;
840 igb_free_tx_resources(&temp_ring[i]);
842 goto err_setup;
846 for (i = 0; i < adapter->num_tx_queues; i++) {
847 igb_free_tx_resources(adapter->tx_ring[i]);
849 memcpy(adapter->tx_ring[i], &temp_ring[i],
850 sizeof(struct igb_ring));
853 adapter->tx_ring_count = new_tx_count;
856 if (new_rx_count != adapter->rx_ring_count) {
857 for (i = 0; i < adapter->num_rx_queues; i++) {
858 memcpy(&temp_ring[i], adapter->rx_ring[i],
859 sizeof(struct igb_ring));
861 temp_ring[i].count = new_rx_count;
862 err = igb_setup_rx_resources(&temp_ring[i]);
863 if (err) {
864 while (i) {
865 i--;
866 igb_free_rx_resources(&temp_ring[i]);
868 goto err_setup;
873 for (i = 0; i < adapter->num_rx_queues; i++) {
874 igb_free_rx_resources(adapter->rx_ring[i]);
876 memcpy(adapter->rx_ring[i], &temp_ring[i],
877 sizeof(struct igb_ring));
880 adapter->rx_ring_count = new_rx_count;
882 err_setup:
883 igb_up(adapter);
884 vfree(temp_ring);
885 clear_reset:
886 clear_bit(__IGB_RESETTING, &adapter->state);
887 return err;
890 /* ethtool register test data */
891 struct igb_reg_test {
892 u16 reg;
893 u16 reg_offset;
894 u16 array_len;
895 u16 test_type;
896 u32 mask;
897 u32 write;
900 /* In the hardware, registers are laid out either singly, in arrays
901 * spaced 0x100 bytes apart, or in contiguous tables. We assume
902 * most tests take place on arrays or single registers (handled
903 * as a single-element array) and special-case the tables.
904 * Table tests are always pattern tests.
906 * We also make provision for some required setup steps by specifying
907 * registers to be written without any read-back testing.
910 #define PATTERN_TEST 1
911 #define SET_READ_TEST 2
912 #define WRITE_NO_TEST 3
913 #define TABLE32_TEST 4
914 #define TABLE64_TEST_LO 5
915 #define TABLE64_TEST_HI 6
917 /* i350 reg test */
918 static struct igb_reg_test reg_test_i350[] = {
919 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
920 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
921 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
922 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
923 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
924 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
925 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
926 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
927 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
928 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
929 /* RDH is read-only for i350, only test RDT. */
930 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
931 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
932 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
933 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
934 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
935 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
936 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
937 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
938 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
939 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
940 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
941 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
942 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
943 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
944 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
945 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
946 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
947 { E1000_RA, 0, 16, TABLE64_TEST_LO,
948 0xFFFFFFFF, 0xFFFFFFFF },
949 { E1000_RA, 0, 16, TABLE64_TEST_HI,
950 0xC3FFFFFF, 0xFFFFFFFF },
951 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
952 0xFFFFFFFF, 0xFFFFFFFF },
953 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
954 0xC3FFFFFF, 0xFFFFFFFF },
955 { E1000_MTA, 0, 128, TABLE32_TEST,
956 0xFFFFFFFF, 0xFFFFFFFF },
957 { 0, 0, 0, 0 }
960 /* 82580 reg test */
961 static struct igb_reg_test reg_test_82580[] = {
962 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
963 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
964 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
965 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
966 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
967 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
968 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
969 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
970 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
971 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
972 /* RDH is read-only for 82580, only test RDT. */
973 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
974 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
975 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
976 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
977 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
978 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
979 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
980 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
981 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
982 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
983 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
984 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
985 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
986 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
987 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
988 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
989 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
990 { E1000_RA, 0, 16, TABLE64_TEST_LO,
991 0xFFFFFFFF, 0xFFFFFFFF },
992 { E1000_RA, 0, 16, TABLE64_TEST_HI,
993 0x83FFFFFF, 0xFFFFFFFF },
994 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
995 0xFFFFFFFF, 0xFFFFFFFF },
996 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
997 0x83FFFFFF, 0xFFFFFFFF },
998 { E1000_MTA, 0, 128, TABLE32_TEST,
999 0xFFFFFFFF, 0xFFFFFFFF },
1000 { 0, 0, 0, 0 }
1003 /* 82576 reg test */
1004 static struct igb_reg_test reg_test_82576[] = {
1005 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1006 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1007 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1008 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1009 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1010 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1011 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1012 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1013 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1014 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1015 /* Enable all RX queues before testing. */
1016 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1017 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1018 /* RDH is read-only for 82576, only test RDT. */
1019 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1020 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1021 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1022 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1023 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1024 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1025 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1026 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1027 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1028 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1029 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1030 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1032 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1033 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1034 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1035 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1036 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1037 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1038 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1039 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1040 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1041 { 0, 0, 0, 0 }
1044 /* 82575 register test */
1045 static struct igb_reg_test reg_test_82575[] = {
1046 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1047 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1048 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1049 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1050 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1051 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1052 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1053 /* Enable all four RX queues before testing. */
1054 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1055 /* RDH is read-only for 82575, only test RDT. */
1056 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1057 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1058 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1059 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1060 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1061 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1062 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1063 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1064 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1065 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1066 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1067 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1068 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1069 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1070 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1071 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1072 { 0, 0, 0, 0 }
1075 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1076 int reg, u32 mask, u32 write)
1078 struct e1000_hw *hw = &adapter->hw;
1079 u32 pat, val;
1080 static const u32 _test[] =
1081 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1082 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1083 wr32(reg, (_test[pat] & write));
1084 val = rd32(reg) & mask;
1085 if (val != (_test[pat] & write & mask)) {
1086 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1087 "failed: got 0x%08X expected 0x%08X\n",
1088 reg, val, (_test[pat] & write & mask));
1089 *data = reg;
1090 return 1;
1094 return 0;
1097 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1098 int reg, u32 mask, u32 write)
1100 struct e1000_hw *hw = &adapter->hw;
1101 u32 val;
1102 wr32(reg, write & mask);
1103 val = rd32(reg);
1104 if ((write & mask) != (val & mask)) {
1105 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1106 " got 0x%08X expected 0x%08X\n", reg,
1107 (val & mask), (write & mask));
1108 *data = reg;
1109 return 1;
1112 return 0;
1115 #define REG_PATTERN_TEST(reg, mask, write) \
1116 do { \
1117 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1118 return 1; \
1119 } while (0)
1121 #define REG_SET_AND_CHECK(reg, mask, write) \
1122 do { \
1123 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1124 return 1; \
1125 } while (0)
1127 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1129 struct e1000_hw *hw = &adapter->hw;
1130 struct igb_reg_test *test;
1131 u32 value, before, after;
1132 u32 i, toggle;
1134 switch (adapter->hw.mac.type) {
1135 case e1000_i350:
1136 test = reg_test_i350;
1137 toggle = 0x7FEFF3FF;
1138 break;
1139 case e1000_82580:
1140 test = reg_test_82580;
1141 toggle = 0x7FEFF3FF;
1142 break;
1143 case e1000_82576:
1144 test = reg_test_82576;
1145 toggle = 0x7FFFF3FF;
1146 break;
1147 default:
1148 test = reg_test_82575;
1149 toggle = 0x7FFFF3FF;
1150 break;
1153 /* Because the status register is such a special case,
1154 * we handle it separately from the rest of the register
1155 * tests. Some bits are read-only, some toggle, and some
1156 * are writable on newer MACs.
1158 before = rd32(E1000_STATUS);
1159 value = (rd32(E1000_STATUS) & toggle);
1160 wr32(E1000_STATUS, toggle);
1161 after = rd32(E1000_STATUS) & toggle;
1162 if (value != after) {
1163 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1164 "got: 0x%08X expected: 0x%08X\n", after, value);
1165 *data = 1;
1166 return 1;
1168 /* restore previous status */
1169 wr32(E1000_STATUS, before);
1171 /* Perform the remainder of the register test, looping through
1172 * the test table until we either fail or reach the null entry.
1174 while (test->reg) {
1175 for (i = 0; i < test->array_len; i++) {
1176 switch (test->test_type) {
1177 case PATTERN_TEST:
1178 REG_PATTERN_TEST(test->reg +
1179 (i * test->reg_offset),
1180 test->mask,
1181 test->write);
1182 break;
1183 case SET_READ_TEST:
1184 REG_SET_AND_CHECK(test->reg +
1185 (i * test->reg_offset),
1186 test->mask,
1187 test->write);
1188 break;
1189 case WRITE_NO_TEST:
1190 writel(test->write,
1191 (adapter->hw.hw_addr + test->reg)
1192 + (i * test->reg_offset));
1193 break;
1194 case TABLE32_TEST:
1195 REG_PATTERN_TEST(test->reg + (i * 4),
1196 test->mask,
1197 test->write);
1198 break;
1199 case TABLE64_TEST_LO:
1200 REG_PATTERN_TEST(test->reg + (i * 8),
1201 test->mask,
1202 test->write);
1203 break;
1204 case TABLE64_TEST_HI:
1205 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1206 test->mask,
1207 test->write);
1208 break;
1211 test++;
1214 *data = 0;
1215 return 0;
1218 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1220 u16 temp;
1221 u16 checksum = 0;
1222 u16 i;
1224 *data = 0;
1225 /* Read and add up the contents of the EEPROM */
1226 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1227 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp)) < 0) {
1228 *data = 1;
1229 break;
1231 checksum += temp;
1234 /* If Checksum is not Correct return error else test passed */
1235 if ((checksum != (u16) NVM_SUM) && !(*data))
1236 *data = 2;
1238 return *data;
1241 static irqreturn_t igb_test_intr(int irq, void *data)
1243 struct igb_adapter *adapter = (struct igb_adapter *) data;
1244 struct e1000_hw *hw = &adapter->hw;
1246 adapter->test_icr |= rd32(E1000_ICR);
1248 return IRQ_HANDLED;
1251 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1253 struct e1000_hw *hw = &adapter->hw;
1254 struct net_device *netdev = adapter->netdev;
1255 u32 mask, ics_mask, i = 0, shared_int = true;
1256 u32 irq = adapter->pdev->irq;
1258 *data = 0;
1260 /* Hook up test interrupt handler just for this test */
1261 if (adapter->msix_entries) {
1262 if (request_irq(adapter->msix_entries[0].vector,
1263 igb_test_intr, 0, netdev->name, adapter)) {
1264 *data = 1;
1265 return -1;
1267 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1268 shared_int = false;
1269 if (request_irq(irq,
1270 igb_test_intr, 0, netdev->name, adapter)) {
1271 *data = 1;
1272 return -1;
1274 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1275 netdev->name, adapter)) {
1276 shared_int = false;
1277 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1278 netdev->name, adapter)) {
1279 *data = 1;
1280 return -1;
1282 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1283 (shared_int ? "shared" : "unshared"));
1285 /* Disable all the interrupts */
1286 wr32(E1000_IMC, ~0);
1287 msleep(10);
1289 /* Define all writable bits for ICS */
1290 switch (hw->mac.type) {
1291 case e1000_82575:
1292 ics_mask = 0x37F47EDD;
1293 break;
1294 case e1000_82576:
1295 ics_mask = 0x77D4FBFD;
1296 break;
1297 case e1000_82580:
1298 ics_mask = 0x77DCFED5;
1299 break;
1300 case e1000_i350:
1301 ics_mask = 0x77DCFED5;
1302 break;
1303 default:
1304 ics_mask = 0x7FFFFFFF;
1305 break;
1308 /* Test each interrupt */
1309 for (; i < 31; i++) {
1310 /* Interrupt to test */
1311 mask = 1 << i;
1313 if (!(mask & ics_mask))
1314 continue;
1316 if (!shared_int) {
1317 /* Disable the interrupt to be reported in
1318 * the cause register and then force the same
1319 * interrupt and see if one gets posted. If
1320 * an interrupt was posted to the bus, the
1321 * test failed.
1323 adapter->test_icr = 0;
1325 /* Flush any pending interrupts */
1326 wr32(E1000_ICR, ~0);
1328 wr32(E1000_IMC, mask);
1329 wr32(E1000_ICS, mask);
1330 msleep(10);
1332 if (adapter->test_icr & mask) {
1333 *data = 3;
1334 break;
1338 /* Enable the interrupt to be reported in
1339 * the cause register and then force the same
1340 * interrupt and see if one gets posted. If
1341 * an interrupt was not posted to the bus, the
1342 * test failed.
1344 adapter->test_icr = 0;
1346 /* Flush any pending interrupts */
1347 wr32(E1000_ICR, ~0);
1349 wr32(E1000_IMS, mask);
1350 wr32(E1000_ICS, mask);
1351 msleep(10);
1353 if (!(adapter->test_icr & mask)) {
1354 *data = 4;
1355 break;
1358 if (!shared_int) {
1359 /* Disable the other interrupts to be reported in
1360 * the cause register and then force the other
1361 * interrupts and see if any get posted. If
1362 * an interrupt was posted to the bus, the
1363 * test failed.
1365 adapter->test_icr = 0;
1367 /* Flush any pending interrupts */
1368 wr32(E1000_ICR, ~0);
1370 wr32(E1000_IMC, ~mask);
1371 wr32(E1000_ICS, ~mask);
1372 msleep(10);
1374 if (adapter->test_icr & mask) {
1375 *data = 5;
1376 break;
1381 /* Disable all the interrupts */
1382 wr32(E1000_IMC, ~0);
1383 msleep(10);
1385 /* Unhook test interrupt handler */
1386 if (adapter->msix_entries)
1387 free_irq(adapter->msix_entries[0].vector, adapter);
1388 else
1389 free_irq(irq, adapter);
1391 return *data;
1394 static void igb_free_desc_rings(struct igb_adapter *adapter)
1396 igb_free_tx_resources(&adapter->test_tx_ring);
1397 igb_free_rx_resources(&adapter->test_rx_ring);
1400 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1402 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1403 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1404 struct e1000_hw *hw = &adapter->hw;
1405 int ret_val;
1407 /* Setup Tx descriptor ring and Tx buffers */
1408 tx_ring->count = IGB_DEFAULT_TXD;
1409 tx_ring->dev = &adapter->pdev->dev;
1410 tx_ring->netdev = adapter->netdev;
1411 tx_ring->reg_idx = adapter->vfs_allocated_count;
1413 if (igb_setup_tx_resources(tx_ring)) {
1414 ret_val = 1;
1415 goto err_nomem;
1418 igb_setup_tctl(adapter);
1419 igb_configure_tx_ring(adapter, tx_ring);
1421 /* Setup Rx descriptor ring and Rx buffers */
1422 rx_ring->count = IGB_DEFAULT_RXD;
1423 rx_ring->dev = &adapter->pdev->dev;
1424 rx_ring->netdev = adapter->netdev;
1425 rx_ring->rx_buffer_len = IGB_RXBUFFER_2048;
1426 rx_ring->reg_idx = adapter->vfs_allocated_count;
1428 if (igb_setup_rx_resources(rx_ring)) {
1429 ret_val = 3;
1430 goto err_nomem;
1433 /* set the default queue to queue 0 of PF */
1434 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1436 /* enable receive ring */
1437 igb_setup_rctl(adapter);
1438 igb_configure_rx_ring(adapter, rx_ring);
1440 igb_alloc_rx_buffers_adv(rx_ring, igb_desc_unused(rx_ring));
1442 return 0;
1444 err_nomem:
1445 igb_free_desc_rings(adapter);
1446 return ret_val;
1449 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1451 struct e1000_hw *hw = &adapter->hw;
1453 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1454 igb_write_phy_reg(hw, 29, 0x001F);
1455 igb_write_phy_reg(hw, 30, 0x8FFC);
1456 igb_write_phy_reg(hw, 29, 0x001A);
1457 igb_write_phy_reg(hw, 30, 0x8FF0);
1460 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1462 struct e1000_hw *hw = &adapter->hw;
1463 u32 ctrl_reg = 0;
1465 hw->mac.autoneg = false;
1467 if (hw->phy.type == e1000_phy_m88) {
1468 /* Auto-MDI/MDIX Off */
1469 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1470 /* reset to update Auto-MDI/MDIX */
1471 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1472 /* autoneg off */
1473 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1474 } else if (hw->phy.type == e1000_phy_82580) {
1475 /* enable MII loopback */
1476 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1479 ctrl_reg = rd32(E1000_CTRL);
1481 /* force 1000, set loopback */
1482 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1484 /* Now set up the MAC to the same speed/duplex as the PHY. */
1485 ctrl_reg = rd32(E1000_CTRL);
1486 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1487 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1488 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1489 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1490 E1000_CTRL_FD | /* Force Duplex to FULL */
1491 E1000_CTRL_SLU); /* Set link up enable bit */
1493 if (hw->phy.type == e1000_phy_m88)
1494 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1496 wr32(E1000_CTRL, ctrl_reg);
1498 /* Disable the receiver on the PHY so when a cable is plugged in, the
1499 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1501 if (hw->phy.type == e1000_phy_m88)
1502 igb_phy_disable_receiver(adapter);
1504 udelay(500);
1506 return 0;
1509 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1511 return igb_integrated_phy_loopback(adapter);
1514 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1516 struct e1000_hw *hw = &adapter->hw;
1517 u32 reg;
1519 reg = rd32(E1000_CTRL_EXT);
1521 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1522 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1523 reg = rd32(E1000_RCTL);
1524 reg |= E1000_RCTL_LBM_TCVR;
1525 wr32(E1000_RCTL, reg);
1527 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1529 reg = rd32(E1000_CTRL);
1530 reg &= ~(E1000_CTRL_RFCE |
1531 E1000_CTRL_TFCE |
1532 E1000_CTRL_LRST);
1533 reg |= E1000_CTRL_SLU |
1534 E1000_CTRL_FD;
1535 wr32(E1000_CTRL, reg);
1537 /* Unset switch control to serdes energy detect */
1538 reg = rd32(E1000_CONNSW);
1539 reg &= ~E1000_CONNSW_ENRGSRC;
1540 wr32(E1000_CONNSW, reg);
1542 /* Set PCS register for forced speed */
1543 reg = rd32(E1000_PCS_LCTL);
1544 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1545 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1546 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1547 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1548 E1000_PCS_LCTL_FSD | /* Force Speed */
1549 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1550 wr32(E1000_PCS_LCTL, reg);
1552 return 0;
1555 return igb_set_phy_loopback(adapter);
1558 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1560 struct e1000_hw *hw = &adapter->hw;
1561 u32 rctl;
1562 u16 phy_reg;
1564 rctl = rd32(E1000_RCTL);
1565 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1566 wr32(E1000_RCTL, rctl);
1568 hw->mac.autoneg = true;
1569 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1570 if (phy_reg & MII_CR_LOOPBACK) {
1571 phy_reg &= ~MII_CR_LOOPBACK;
1572 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1573 igb_phy_sw_reset(hw);
1577 static void igb_create_lbtest_frame(struct sk_buff *skb,
1578 unsigned int frame_size)
1580 memset(skb->data, 0xFF, frame_size);
1581 frame_size /= 2;
1582 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1583 memset(&skb->data[frame_size + 10], 0xBE, 1);
1584 memset(&skb->data[frame_size + 12], 0xAF, 1);
1587 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1589 frame_size /= 2;
1590 if (*(skb->data + 3) == 0xFF) {
1591 if ((*(skb->data + frame_size + 10) == 0xBE) &&
1592 (*(skb->data + frame_size + 12) == 0xAF)) {
1593 return 0;
1596 return 13;
1599 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1600 struct igb_ring *tx_ring,
1601 unsigned int size)
1603 union e1000_adv_rx_desc *rx_desc;
1604 struct igb_buffer *buffer_info;
1605 int rx_ntc, tx_ntc, count = 0;
1606 u32 staterr;
1608 /* initialize next to clean and descriptor values */
1609 rx_ntc = rx_ring->next_to_clean;
1610 tx_ntc = tx_ring->next_to_clean;
1611 rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1612 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1614 while (staterr & E1000_RXD_STAT_DD) {
1615 /* check rx buffer */
1616 buffer_info = &rx_ring->buffer_info[rx_ntc];
1618 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1619 dma_unmap_single(rx_ring->dev,
1620 buffer_info->dma,
1621 rx_ring->rx_buffer_len,
1622 DMA_FROM_DEVICE);
1623 buffer_info->dma = 0;
1625 /* verify contents of skb */
1626 if (!igb_check_lbtest_frame(buffer_info->skb, size))
1627 count++;
1629 /* unmap buffer on tx side */
1630 buffer_info = &tx_ring->buffer_info[tx_ntc];
1631 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
1633 /* increment rx/tx next to clean counters */
1634 rx_ntc++;
1635 if (rx_ntc == rx_ring->count)
1636 rx_ntc = 0;
1637 tx_ntc++;
1638 if (tx_ntc == tx_ring->count)
1639 tx_ntc = 0;
1641 /* fetch next descriptor */
1642 rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1643 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1646 /* re-map buffers to ring, store next to clean values */
1647 igb_alloc_rx_buffers_adv(rx_ring, count);
1648 rx_ring->next_to_clean = rx_ntc;
1649 tx_ring->next_to_clean = tx_ntc;
1651 return count;
1654 static int igb_run_loopback_test(struct igb_adapter *adapter)
1656 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1657 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1658 int i, j, lc, good_cnt, ret_val = 0;
1659 unsigned int size = 1024;
1660 netdev_tx_t tx_ret_val;
1661 struct sk_buff *skb;
1663 /* allocate test skb */
1664 skb = alloc_skb(size, GFP_KERNEL);
1665 if (!skb)
1666 return 11;
1668 /* place data into test skb */
1669 igb_create_lbtest_frame(skb, size);
1670 skb_put(skb, size);
1673 * Calculate the loop count based on the largest descriptor ring
1674 * The idea is to wrap the largest ring a number of times using 64
1675 * send/receive pairs during each loop
1678 if (rx_ring->count <= tx_ring->count)
1679 lc = ((tx_ring->count / 64) * 2) + 1;
1680 else
1681 lc = ((rx_ring->count / 64) * 2) + 1;
1683 for (j = 0; j <= lc; j++) { /* loop count loop */
1684 /* reset count of good packets */
1685 good_cnt = 0;
1687 /* place 64 packets on the transmit queue*/
1688 for (i = 0; i < 64; i++) {
1689 skb_get(skb);
1690 tx_ret_val = igb_xmit_frame_ring_adv(skb, tx_ring);
1691 if (tx_ret_val == NETDEV_TX_OK)
1692 good_cnt++;
1695 if (good_cnt != 64) {
1696 ret_val = 12;
1697 break;
1700 /* allow 200 milliseconds for packets to go from tx to rx */
1701 msleep(200);
1703 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1704 if (good_cnt != 64) {
1705 ret_val = 13;
1706 break;
1708 } /* end loop count loop */
1710 /* free the original skb */
1711 kfree_skb(skb);
1713 return ret_val;
1716 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1718 /* PHY loopback cannot be performed if SoL/IDER
1719 * sessions are active */
1720 if (igb_check_reset_block(&adapter->hw)) {
1721 dev_err(&adapter->pdev->dev,
1722 "Cannot do PHY loopback test "
1723 "when SoL/IDER is active.\n");
1724 *data = 0;
1725 goto out;
1727 *data = igb_setup_desc_rings(adapter);
1728 if (*data)
1729 goto out;
1730 *data = igb_setup_loopback_test(adapter);
1731 if (*data)
1732 goto err_loopback;
1733 *data = igb_run_loopback_test(adapter);
1734 igb_loopback_cleanup(adapter);
1736 err_loopback:
1737 igb_free_desc_rings(adapter);
1738 out:
1739 return *data;
1742 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1744 struct e1000_hw *hw = &adapter->hw;
1745 *data = 0;
1746 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1747 int i = 0;
1748 hw->mac.serdes_has_link = false;
1750 /* On some blade server designs, link establishment
1751 * could take as long as 2-3 minutes */
1752 do {
1753 hw->mac.ops.check_for_link(&adapter->hw);
1754 if (hw->mac.serdes_has_link)
1755 return *data;
1756 msleep(20);
1757 } while (i++ < 3750);
1759 *data = 1;
1760 } else {
1761 hw->mac.ops.check_for_link(&adapter->hw);
1762 if (hw->mac.autoneg)
1763 msleep(4000);
1765 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1766 *data = 1;
1768 return *data;
1771 static void igb_diag_test(struct net_device *netdev,
1772 struct ethtool_test *eth_test, u64 *data)
1774 struct igb_adapter *adapter = netdev_priv(netdev);
1775 u16 autoneg_advertised;
1776 u8 forced_speed_duplex, autoneg;
1777 bool if_running = netif_running(netdev);
1779 set_bit(__IGB_TESTING, &adapter->state);
1780 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1781 /* Offline tests */
1783 /* save speed, duplex, autoneg settings */
1784 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1785 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1786 autoneg = adapter->hw.mac.autoneg;
1788 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1790 /* power up link for link test */
1791 igb_power_up_link(adapter);
1793 /* Link test performed before hardware reset so autoneg doesn't
1794 * interfere with test result */
1795 if (igb_link_test(adapter, &data[4]))
1796 eth_test->flags |= ETH_TEST_FL_FAILED;
1798 if (if_running)
1799 /* indicate we're in test mode */
1800 dev_close(netdev);
1801 else
1802 igb_reset(adapter);
1804 if (igb_reg_test(adapter, &data[0]))
1805 eth_test->flags |= ETH_TEST_FL_FAILED;
1807 igb_reset(adapter);
1808 if (igb_eeprom_test(adapter, &data[1]))
1809 eth_test->flags |= ETH_TEST_FL_FAILED;
1811 igb_reset(adapter);
1812 if (igb_intr_test(adapter, &data[2]))
1813 eth_test->flags |= ETH_TEST_FL_FAILED;
1815 igb_reset(adapter);
1816 /* power up link for loopback test */
1817 igb_power_up_link(adapter);
1818 if (igb_loopback_test(adapter, &data[3]))
1819 eth_test->flags |= ETH_TEST_FL_FAILED;
1821 /* restore speed, duplex, autoneg settings */
1822 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1823 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1824 adapter->hw.mac.autoneg = autoneg;
1826 /* force this routine to wait until autoneg complete/timeout */
1827 adapter->hw.phy.autoneg_wait_to_complete = true;
1828 igb_reset(adapter);
1829 adapter->hw.phy.autoneg_wait_to_complete = false;
1831 clear_bit(__IGB_TESTING, &adapter->state);
1832 if (if_running)
1833 dev_open(netdev);
1834 } else {
1835 dev_info(&adapter->pdev->dev, "online testing starting\n");
1837 /* PHY is powered down when interface is down */
1838 if (if_running && igb_link_test(adapter, &data[4]))
1839 eth_test->flags |= ETH_TEST_FL_FAILED;
1840 else
1841 data[4] = 0;
1843 /* Online tests aren't run; pass by default */
1844 data[0] = 0;
1845 data[1] = 0;
1846 data[2] = 0;
1847 data[3] = 0;
1849 clear_bit(__IGB_TESTING, &adapter->state);
1851 msleep_interruptible(4 * 1000);
1854 static int igb_wol_exclusion(struct igb_adapter *adapter,
1855 struct ethtool_wolinfo *wol)
1857 struct e1000_hw *hw = &adapter->hw;
1858 int retval = 1; /* fail by default */
1860 switch (hw->device_id) {
1861 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1862 /* WoL not supported */
1863 wol->supported = 0;
1864 break;
1865 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1866 case E1000_DEV_ID_82576_FIBER:
1867 case E1000_DEV_ID_82576_SERDES:
1868 /* Wake events not supported on port B */
1869 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1870 wol->supported = 0;
1871 break;
1873 /* return success for non excluded adapter ports */
1874 retval = 0;
1875 break;
1876 case E1000_DEV_ID_82576_QUAD_COPPER:
1877 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1878 /* quad port adapters only support WoL on port A */
1879 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1880 wol->supported = 0;
1881 break;
1883 /* return success for non excluded adapter ports */
1884 retval = 0;
1885 break;
1886 default:
1887 /* dual port cards only support WoL on port A from now on
1888 * unless it was enabled in the eeprom for port B
1889 * so exclude FUNC_1 ports from having WoL enabled */
1890 if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1891 !adapter->eeprom_wol) {
1892 wol->supported = 0;
1893 break;
1896 retval = 0;
1899 return retval;
1902 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1904 struct igb_adapter *adapter = netdev_priv(netdev);
1906 wol->supported = WAKE_UCAST | WAKE_MCAST |
1907 WAKE_BCAST | WAKE_MAGIC |
1908 WAKE_PHY;
1909 wol->wolopts = 0;
1911 /* this function will set ->supported = 0 and return 1 if wol is not
1912 * supported by this hardware */
1913 if (igb_wol_exclusion(adapter, wol) ||
1914 !device_can_wakeup(&adapter->pdev->dev))
1915 return;
1917 /* apply any specific unsupported masks here */
1918 switch (adapter->hw.device_id) {
1919 default:
1920 break;
1923 if (adapter->wol & E1000_WUFC_EX)
1924 wol->wolopts |= WAKE_UCAST;
1925 if (adapter->wol & E1000_WUFC_MC)
1926 wol->wolopts |= WAKE_MCAST;
1927 if (adapter->wol & E1000_WUFC_BC)
1928 wol->wolopts |= WAKE_BCAST;
1929 if (adapter->wol & E1000_WUFC_MAG)
1930 wol->wolopts |= WAKE_MAGIC;
1931 if (adapter->wol & E1000_WUFC_LNKC)
1932 wol->wolopts |= WAKE_PHY;
1935 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1937 struct igb_adapter *adapter = netdev_priv(netdev);
1939 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
1940 return -EOPNOTSUPP;
1942 if (igb_wol_exclusion(adapter, wol) ||
1943 !device_can_wakeup(&adapter->pdev->dev))
1944 return wol->wolopts ? -EOPNOTSUPP : 0;
1946 /* these settings will always override what we currently have */
1947 adapter->wol = 0;
1949 if (wol->wolopts & WAKE_UCAST)
1950 adapter->wol |= E1000_WUFC_EX;
1951 if (wol->wolopts & WAKE_MCAST)
1952 adapter->wol |= E1000_WUFC_MC;
1953 if (wol->wolopts & WAKE_BCAST)
1954 adapter->wol |= E1000_WUFC_BC;
1955 if (wol->wolopts & WAKE_MAGIC)
1956 adapter->wol |= E1000_WUFC_MAG;
1957 if (wol->wolopts & WAKE_PHY)
1958 adapter->wol |= E1000_WUFC_LNKC;
1959 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1961 return 0;
1964 /* bit defines for adapter->led_status */
1965 #define IGB_LED_ON 0
1967 static int igb_set_phys_id(struct net_device *netdev,
1968 enum ethtool_phys_id_state state)
1970 struct igb_adapter *adapter = netdev_priv(netdev);
1971 struct e1000_hw *hw = &adapter->hw;
1973 switch (state) {
1974 case ETHTOOL_ID_ACTIVE:
1975 igb_blink_led(hw);
1976 return 2;
1977 case ETHTOOL_ID_ON:
1978 igb_blink_led(hw);
1979 break;
1980 case ETHTOOL_ID_OFF:
1981 igb_led_off(hw);
1982 break;
1983 case ETHTOOL_ID_INACTIVE:
1984 igb_led_off(hw);
1985 clear_bit(IGB_LED_ON, &adapter->led_status);
1986 igb_cleanup_led(hw);
1987 break;
1990 return 0;
1993 static int igb_set_coalesce(struct net_device *netdev,
1994 struct ethtool_coalesce *ec)
1996 struct igb_adapter *adapter = netdev_priv(netdev);
1997 int i;
1999 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2000 ((ec->rx_coalesce_usecs > 3) &&
2001 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2002 (ec->rx_coalesce_usecs == 2))
2003 return -EINVAL;
2005 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2006 ((ec->tx_coalesce_usecs > 3) &&
2007 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2008 (ec->tx_coalesce_usecs == 2))
2009 return -EINVAL;
2011 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2012 return -EINVAL;
2014 /* If ITR is disabled, disable DMAC */
2015 if (ec->rx_coalesce_usecs == 0) {
2016 if (adapter->flags & IGB_FLAG_DMAC)
2017 adapter->flags &= ~IGB_FLAG_DMAC;
2020 /* convert to rate of irq's per second */
2021 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2022 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2023 else
2024 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2026 /* convert to rate of irq's per second */
2027 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2028 adapter->tx_itr_setting = adapter->rx_itr_setting;
2029 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2030 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2031 else
2032 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2034 for (i = 0; i < adapter->num_q_vectors; i++) {
2035 struct igb_q_vector *q_vector = adapter->q_vector[i];
2036 if (q_vector->rx_ring)
2037 q_vector->itr_val = adapter->rx_itr_setting;
2038 else
2039 q_vector->itr_val = adapter->tx_itr_setting;
2040 if (q_vector->itr_val && q_vector->itr_val <= 3)
2041 q_vector->itr_val = IGB_START_ITR;
2042 q_vector->set_itr = 1;
2045 return 0;
2048 static int igb_get_coalesce(struct net_device *netdev,
2049 struct ethtool_coalesce *ec)
2051 struct igb_adapter *adapter = netdev_priv(netdev);
2053 if (adapter->rx_itr_setting <= 3)
2054 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2055 else
2056 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2058 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2059 if (adapter->tx_itr_setting <= 3)
2060 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2061 else
2062 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2065 return 0;
2068 static int igb_nway_reset(struct net_device *netdev)
2070 struct igb_adapter *adapter = netdev_priv(netdev);
2071 if (netif_running(netdev))
2072 igb_reinit_locked(adapter);
2073 return 0;
2076 static int igb_get_sset_count(struct net_device *netdev, int sset)
2078 switch (sset) {
2079 case ETH_SS_STATS:
2080 return IGB_STATS_LEN;
2081 case ETH_SS_TEST:
2082 return IGB_TEST_LEN;
2083 default:
2084 return -ENOTSUPP;
2088 static void igb_get_ethtool_stats(struct net_device *netdev,
2089 struct ethtool_stats *stats, u64 *data)
2091 struct igb_adapter *adapter = netdev_priv(netdev);
2092 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2093 unsigned int start;
2094 struct igb_ring *ring;
2095 int i, j;
2096 char *p;
2098 spin_lock(&adapter->stats64_lock);
2099 igb_update_stats(adapter, net_stats);
2101 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2102 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2103 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2104 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2106 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2107 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2108 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2109 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2111 for (j = 0; j < adapter->num_tx_queues; j++) {
2112 u64 restart2;
2114 ring = adapter->tx_ring[j];
2115 do {
2116 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2117 data[i] = ring->tx_stats.packets;
2118 data[i+1] = ring->tx_stats.bytes;
2119 data[i+2] = ring->tx_stats.restart_queue;
2120 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2121 do {
2122 start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2123 restart2 = ring->tx_stats.restart_queue2;
2124 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2125 data[i+2] += restart2;
2127 i += IGB_TX_QUEUE_STATS_LEN;
2129 for (j = 0; j < adapter->num_rx_queues; j++) {
2130 ring = adapter->rx_ring[j];
2131 do {
2132 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2133 data[i] = ring->rx_stats.packets;
2134 data[i+1] = ring->rx_stats.bytes;
2135 data[i+2] = ring->rx_stats.drops;
2136 data[i+3] = ring->rx_stats.csum_err;
2137 data[i+4] = ring->rx_stats.alloc_failed;
2138 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2139 i += IGB_RX_QUEUE_STATS_LEN;
2141 spin_unlock(&adapter->stats64_lock);
2144 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2146 struct igb_adapter *adapter = netdev_priv(netdev);
2147 u8 *p = data;
2148 int i;
2150 switch (stringset) {
2151 case ETH_SS_TEST:
2152 memcpy(data, *igb_gstrings_test,
2153 IGB_TEST_LEN*ETH_GSTRING_LEN);
2154 break;
2155 case ETH_SS_STATS:
2156 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2157 memcpy(p, igb_gstrings_stats[i].stat_string,
2158 ETH_GSTRING_LEN);
2159 p += ETH_GSTRING_LEN;
2161 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2162 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2163 ETH_GSTRING_LEN);
2164 p += ETH_GSTRING_LEN;
2166 for (i = 0; i < adapter->num_tx_queues; i++) {
2167 sprintf(p, "tx_queue_%u_packets", i);
2168 p += ETH_GSTRING_LEN;
2169 sprintf(p, "tx_queue_%u_bytes", i);
2170 p += ETH_GSTRING_LEN;
2171 sprintf(p, "tx_queue_%u_restart", i);
2172 p += ETH_GSTRING_LEN;
2174 for (i = 0; i < adapter->num_rx_queues; i++) {
2175 sprintf(p, "rx_queue_%u_packets", i);
2176 p += ETH_GSTRING_LEN;
2177 sprintf(p, "rx_queue_%u_bytes", i);
2178 p += ETH_GSTRING_LEN;
2179 sprintf(p, "rx_queue_%u_drops", i);
2180 p += ETH_GSTRING_LEN;
2181 sprintf(p, "rx_queue_%u_csum_err", i);
2182 p += ETH_GSTRING_LEN;
2183 sprintf(p, "rx_queue_%u_alloc_failed", i);
2184 p += ETH_GSTRING_LEN;
2186 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2187 break;
2191 static const struct ethtool_ops igb_ethtool_ops = {
2192 .get_settings = igb_get_settings,
2193 .set_settings = igb_set_settings,
2194 .get_drvinfo = igb_get_drvinfo,
2195 .get_regs_len = igb_get_regs_len,
2196 .get_regs = igb_get_regs,
2197 .get_wol = igb_get_wol,
2198 .set_wol = igb_set_wol,
2199 .get_msglevel = igb_get_msglevel,
2200 .set_msglevel = igb_set_msglevel,
2201 .nway_reset = igb_nway_reset,
2202 .get_link = igb_get_link,
2203 .get_eeprom_len = igb_get_eeprom_len,
2204 .get_eeprom = igb_get_eeprom,
2205 .set_eeprom = igb_set_eeprom,
2206 .get_ringparam = igb_get_ringparam,
2207 .set_ringparam = igb_set_ringparam,
2208 .get_pauseparam = igb_get_pauseparam,
2209 .set_pauseparam = igb_set_pauseparam,
2210 .get_rx_csum = igb_get_rx_csum,
2211 .set_rx_csum = igb_set_rx_csum,
2212 .get_tx_csum = igb_get_tx_csum,
2213 .set_tx_csum = igb_set_tx_csum,
2214 .get_sg = ethtool_op_get_sg,
2215 .set_sg = ethtool_op_set_sg,
2216 .get_tso = ethtool_op_get_tso,
2217 .set_tso = igb_set_tso,
2218 .self_test = igb_diag_test,
2219 .get_strings = igb_get_strings,
2220 .set_phys_id = igb_set_phys_id,
2221 .get_sset_count = igb_get_sset_count,
2222 .get_ethtool_stats = igb_get_ethtool_stats,
2223 .get_coalesce = igb_get_coalesce,
2224 .set_coalesce = igb_set_coalesce,
2227 void igb_set_ethtool_ops(struct net_device *netdev)
2229 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);