Input: wacom - fix touch parsing on newer Bamboos
[linux-btrfs-devel.git] / drivers / staging / tty / istallion.c
blobca18cbf4e3c9f26c1d49cc980d79e59bf8ab08ba
1 /*****************************************************************************/
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 /*****************************************************************************/
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/interrupt.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial.h>
28 #include <linux/seq_file.h>
29 #include <linux/cdk.h>
30 #include <linux/comstats.h>
31 #include <linux/istallion.h>
32 #include <linux/ioport.h>
33 #include <linux/delay.h>
34 #include <linux/init.h>
35 #include <linux/device.h>
36 #include <linux/wait.h>
37 #include <linux/eisa.h>
38 #include <linux/ctype.h>
40 #include <asm/io.h>
41 #include <asm/uaccess.h>
43 #include <linux/pci.h>
45 /*****************************************************************************/
48 * Define different board types. Not all of the following board types
49 * are supported by this driver. But I will use the standard "assigned"
50 * board numbers. Currently supported boards are abbreviated as:
51 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
52 * STAL = Stallion.
54 #define BRD_UNKNOWN 0
55 #define BRD_STALLION 1
56 #define BRD_BRUMBY4 2
57 #define BRD_ONBOARD2 3
58 #define BRD_ONBOARD 4
59 #define BRD_ONBOARDE 7
60 #define BRD_ECP 23
61 #define BRD_ECPE 24
62 #define BRD_ECPMC 25
63 #define BRD_ECPPCI 29
65 #define BRD_BRUMBY BRD_BRUMBY4
68 * Define a configuration structure to hold the board configuration.
69 * Need to set this up in the code (for now) with the boards that are
70 * to be configured into the system. This is what needs to be modified
71 * when adding/removing/modifying boards. Each line entry in the
72 * stli_brdconf[] array is a board. Each line contains io/irq/memory
73 * ranges for that board (as well as what type of board it is).
74 * Some examples:
75 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
76 * This line will configure an EasyConnection 8/64 at io address 2a0,
77 * and shared memory address of cc000. Multiple EasyConnection 8/64
78 * boards can share the same shared memory address space. No interrupt
79 * is required for this board type.
80 * Another example:
81 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
82 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
83 * shared memory address of 0x80000000 (2 GByte). Multiple
84 * EasyConnection 8/64 EISA boards can share the same shared memory
85 * address space. No interrupt is required for this board type.
86 * Another example:
87 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
88 * This line will configure an ONboard (ISA type) at io address 240,
89 * and shared memory address of d0000. Multiple ONboards can share
90 * the same shared memory address space. No interrupt required.
91 * Another example:
92 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
93 * This line will configure a Brumby board (any number of ports!) at
94 * io address 360 and shared memory address of c8000. All Brumby boards
95 * configured into a system must have their own separate io and memory
96 * addresses. No interrupt is required.
97 * Another example:
98 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
99 * This line will configure an original Stallion board at io address 330
100 * and shared memory address d0000 (this would only be valid for a "V4.0"
101 * or Rev.O Stallion board). All Stallion boards configured into the
102 * system must have their own separate io and memory addresses. No
103 * interrupt is required.
106 struct stlconf {
107 int brdtype;
108 int ioaddr1;
109 int ioaddr2;
110 unsigned long memaddr;
111 int irq;
112 int irqtype;
115 static unsigned int stli_nrbrds;
117 /* stli_lock must NOT be taken holding brd_lock */
118 static spinlock_t stli_lock; /* TTY logic lock */
119 static spinlock_t brd_lock; /* Board logic lock */
122 * There is some experimental EISA board detection code in this driver.
123 * By default it is disabled, but for those that want to try it out,
124 * then set the define below to be 1.
126 #define STLI_EISAPROBE 0
128 /*****************************************************************************/
131 * Define some important driver characteristics. Device major numbers
132 * allocated as per Linux Device Registry.
134 #ifndef STL_SIOMEMMAJOR
135 #define STL_SIOMEMMAJOR 28
136 #endif
137 #ifndef STL_SERIALMAJOR
138 #define STL_SERIALMAJOR 24
139 #endif
140 #ifndef STL_CALLOUTMAJOR
141 #define STL_CALLOUTMAJOR 25
142 #endif
144 /*****************************************************************************/
147 * Define our local driver identity first. Set up stuff to deal with
148 * all the local structures required by a serial tty driver.
150 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
151 static char *stli_drvname = "istallion";
152 static char *stli_drvversion = "5.6.0";
153 static char *stli_serialname = "ttyE";
155 static struct tty_driver *stli_serial;
156 static const struct tty_port_operations stli_port_ops;
158 #define STLI_TXBUFSIZE 4096
161 * Use a fast local buffer for cooked characters. Typically a whole
162 * bunch of cooked characters come in for a port, 1 at a time. So we
163 * save those up into a local buffer, then write out the whole lot
164 * with a large memcpy. Just use 1 buffer for all ports, since its
165 * use it is only need for short periods of time by each port.
167 static char *stli_txcookbuf;
168 static int stli_txcooksize;
169 static int stli_txcookrealsize;
170 static struct tty_struct *stli_txcooktty;
173 * Define a local default termios struct. All ports will be created
174 * with this termios initially. Basically all it defines is a raw port
175 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
177 static struct ktermios stli_deftermios = {
178 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
179 .c_cc = INIT_C_CC,
180 .c_ispeed = 9600,
181 .c_ospeed = 9600,
185 * Define global stats structures. Not used often, and can be
186 * re-used for each stats call.
188 static comstats_t stli_comstats;
189 static struct asystats stli_cdkstats;
191 /*****************************************************************************/
193 static DEFINE_MUTEX(stli_brdslock);
194 static struct stlibrd *stli_brds[STL_MAXBRDS];
196 static int stli_shared;
199 * Per board state flags. Used with the state field of the board struct.
200 * Not really much here... All we need to do is keep track of whether
201 * the board has been detected, and whether it is actually running a slave
202 * or not.
204 #define BST_FOUND 0
205 #define BST_STARTED 1
206 #define BST_PROBED 2
209 * Define the set of port state flags. These are marked for internal
210 * state purposes only, usually to do with the state of communications
211 * with the slave. Most of them need to be updated atomically, so always
212 * use the bit setting operations (unless protected by cli/sti).
214 #define ST_OPENING 2
215 #define ST_CLOSING 3
216 #define ST_CMDING 4
217 #define ST_TXBUSY 5
218 #define ST_RXING 6
219 #define ST_DOFLUSHRX 7
220 #define ST_DOFLUSHTX 8
221 #define ST_DOSIGS 9
222 #define ST_RXSTOP 10
223 #define ST_GETSIGS 11
226 * Define an array of board names as printable strings. Handy for
227 * referencing boards when printing trace and stuff.
229 static char *stli_brdnames[] = {
230 "Unknown",
231 "Stallion",
232 "Brumby",
233 "ONboard-MC",
234 "ONboard",
235 "Brumby",
236 "Brumby",
237 "ONboard-EI",
238 NULL,
239 "ONboard",
240 "ONboard-MC",
241 "ONboard-MC",
242 NULL,
243 NULL,
244 NULL,
245 NULL,
246 NULL,
247 NULL,
248 NULL,
249 NULL,
250 "EasyIO",
251 "EC8/32-AT",
252 "EC8/32-MC",
253 "EC8/64-AT",
254 "EC8/64-EI",
255 "EC8/64-MC",
256 "EC8/32-PCI",
257 "EC8/64-PCI",
258 "EasyIO-PCI",
259 "EC/RA-PCI",
262 /*****************************************************************************/
265 * Define some string labels for arguments passed from the module
266 * load line. These allow for easy board definitions, and easy
267 * modification of the io, memory and irq resoucres.
270 static char *board0[8];
271 static char *board1[8];
272 static char *board2[8];
273 static char *board3[8];
275 static char **stli_brdsp[] = {
276 (char **) &board0,
277 (char **) &board1,
278 (char **) &board2,
279 (char **) &board3
283 * Define a set of common board names, and types. This is used to
284 * parse any module arguments.
287 static struct stlibrdtype {
288 char *name;
289 int type;
290 } stli_brdstr[] = {
291 { "stallion", BRD_STALLION },
292 { "1", BRD_STALLION },
293 { "brumby", BRD_BRUMBY },
294 { "brumby4", BRD_BRUMBY },
295 { "brumby/4", BRD_BRUMBY },
296 { "brumby-4", BRD_BRUMBY },
297 { "brumby8", BRD_BRUMBY },
298 { "brumby/8", BRD_BRUMBY },
299 { "brumby-8", BRD_BRUMBY },
300 { "brumby16", BRD_BRUMBY },
301 { "brumby/16", BRD_BRUMBY },
302 { "brumby-16", BRD_BRUMBY },
303 { "2", BRD_BRUMBY },
304 { "onboard2", BRD_ONBOARD2 },
305 { "onboard-2", BRD_ONBOARD2 },
306 { "onboard/2", BRD_ONBOARD2 },
307 { "onboard-mc", BRD_ONBOARD2 },
308 { "onboard/mc", BRD_ONBOARD2 },
309 { "onboard-mca", BRD_ONBOARD2 },
310 { "onboard/mca", BRD_ONBOARD2 },
311 { "3", BRD_ONBOARD2 },
312 { "onboard", BRD_ONBOARD },
313 { "onboardat", BRD_ONBOARD },
314 { "4", BRD_ONBOARD },
315 { "onboarde", BRD_ONBOARDE },
316 { "onboard-e", BRD_ONBOARDE },
317 { "onboard/e", BRD_ONBOARDE },
318 { "onboard-ei", BRD_ONBOARDE },
319 { "onboard/ei", BRD_ONBOARDE },
320 { "7", BRD_ONBOARDE },
321 { "ecp", BRD_ECP },
322 { "ecpat", BRD_ECP },
323 { "ec8/64", BRD_ECP },
324 { "ec8/64-at", BRD_ECP },
325 { "ec8/64-isa", BRD_ECP },
326 { "23", BRD_ECP },
327 { "ecpe", BRD_ECPE },
328 { "ecpei", BRD_ECPE },
329 { "ec8/64-e", BRD_ECPE },
330 { "ec8/64-ei", BRD_ECPE },
331 { "24", BRD_ECPE },
332 { "ecpmc", BRD_ECPMC },
333 { "ec8/64-mc", BRD_ECPMC },
334 { "ec8/64-mca", BRD_ECPMC },
335 { "25", BRD_ECPMC },
336 { "ecppci", BRD_ECPPCI },
337 { "ec/ra", BRD_ECPPCI },
338 { "ec/ra-pc", BRD_ECPPCI },
339 { "ec/ra-pci", BRD_ECPPCI },
340 { "29", BRD_ECPPCI },
344 * Define the module agruments.
346 MODULE_AUTHOR("Greg Ungerer");
347 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
348 MODULE_LICENSE("GPL");
351 module_param_array(board0, charp, NULL, 0);
352 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
353 module_param_array(board1, charp, NULL, 0);
354 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
355 module_param_array(board2, charp, NULL, 0);
356 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
357 module_param_array(board3, charp, NULL, 0);
358 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
360 #if STLI_EISAPROBE != 0
362 * Set up a default memory address table for EISA board probing.
363 * The default addresses are all bellow 1Mbyte, which has to be the
364 * case anyway. They should be safe, since we only read values from
365 * them, and interrupts are disabled while we do it. If the higher
366 * memory support is compiled in then we also try probing around
367 * the 1Gb, 2Gb and 3Gb areas as well...
369 static unsigned long stli_eisamemprobeaddrs[] = {
370 0xc0000, 0xd0000, 0xe0000, 0xf0000,
371 0x80000000, 0x80010000, 0x80020000, 0x80030000,
372 0x40000000, 0x40010000, 0x40020000, 0x40030000,
373 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
374 0xff000000, 0xff010000, 0xff020000, 0xff030000,
377 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
378 #endif
381 * Define the Stallion PCI vendor and device IDs.
383 #ifndef PCI_DEVICE_ID_ECRA
384 #define PCI_DEVICE_ID_ECRA 0x0004
385 #endif
387 static struct pci_device_id istallion_pci_tbl[] = {
388 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
389 { 0 }
391 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
393 static struct pci_driver stli_pcidriver;
395 /*****************************************************************************/
398 * Hardware configuration info for ECP boards. These defines apply
399 * to the directly accessible io ports of the ECP. There is a set of
400 * defines for each ECP board type, ISA, EISA, MCA and PCI.
402 #define ECP_IOSIZE 4
404 #define ECP_MEMSIZE (128 * 1024)
405 #define ECP_PCIMEMSIZE (256 * 1024)
407 #define ECP_ATPAGESIZE (4 * 1024)
408 #define ECP_MCPAGESIZE (4 * 1024)
409 #define ECP_EIPAGESIZE (64 * 1024)
410 #define ECP_PCIPAGESIZE (64 * 1024)
412 #define STL_EISAID 0x8c4e
415 * Important defines for the ISA class of ECP board.
417 #define ECP_ATIREG 0
418 #define ECP_ATCONFR 1
419 #define ECP_ATMEMAR 2
420 #define ECP_ATMEMPR 3
421 #define ECP_ATSTOP 0x1
422 #define ECP_ATINTENAB 0x10
423 #define ECP_ATENABLE 0x20
424 #define ECP_ATDISABLE 0x00
425 #define ECP_ATADDRMASK 0x3f000
426 #define ECP_ATADDRSHFT 12
429 * Important defines for the EISA class of ECP board.
431 #define ECP_EIIREG 0
432 #define ECP_EIMEMARL 1
433 #define ECP_EICONFR 2
434 #define ECP_EIMEMARH 3
435 #define ECP_EIENABLE 0x1
436 #define ECP_EIDISABLE 0x0
437 #define ECP_EISTOP 0x4
438 #define ECP_EIEDGE 0x00
439 #define ECP_EILEVEL 0x80
440 #define ECP_EIADDRMASKL 0x00ff0000
441 #define ECP_EIADDRSHFTL 16
442 #define ECP_EIADDRMASKH 0xff000000
443 #define ECP_EIADDRSHFTH 24
444 #define ECP_EIBRDENAB 0xc84
446 #define ECP_EISAID 0x4
449 * Important defines for the Micro-channel class of ECP board.
450 * (It has a lot in common with the ISA boards.)
452 #define ECP_MCIREG 0
453 #define ECP_MCCONFR 1
454 #define ECP_MCSTOP 0x20
455 #define ECP_MCENABLE 0x80
456 #define ECP_MCDISABLE 0x00
459 * Important defines for the PCI class of ECP board.
460 * (It has a lot in common with the other ECP boards.)
462 #define ECP_PCIIREG 0
463 #define ECP_PCICONFR 1
464 #define ECP_PCISTOP 0x01
467 * Hardware configuration info for ONboard and Brumby boards. These
468 * defines apply to the directly accessible io ports of these boards.
470 #define ONB_IOSIZE 16
471 #define ONB_MEMSIZE (64 * 1024)
472 #define ONB_ATPAGESIZE (64 * 1024)
473 #define ONB_MCPAGESIZE (64 * 1024)
474 #define ONB_EIMEMSIZE (128 * 1024)
475 #define ONB_EIPAGESIZE (64 * 1024)
478 * Important defines for the ISA class of ONboard board.
480 #define ONB_ATIREG 0
481 #define ONB_ATMEMAR 1
482 #define ONB_ATCONFR 2
483 #define ONB_ATSTOP 0x4
484 #define ONB_ATENABLE 0x01
485 #define ONB_ATDISABLE 0x00
486 #define ONB_ATADDRMASK 0xff0000
487 #define ONB_ATADDRSHFT 16
489 #define ONB_MEMENABLO 0
490 #define ONB_MEMENABHI 0x02
493 * Important defines for the EISA class of ONboard board.
495 #define ONB_EIIREG 0
496 #define ONB_EIMEMARL 1
497 #define ONB_EICONFR 2
498 #define ONB_EIMEMARH 3
499 #define ONB_EIENABLE 0x1
500 #define ONB_EIDISABLE 0x0
501 #define ONB_EISTOP 0x4
502 #define ONB_EIEDGE 0x00
503 #define ONB_EILEVEL 0x80
504 #define ONB_EIADDRMASKL 0x00ff0000
505 #define ONB_EIADDRSHFTL 16
506 #define ONB_EIADDRMASKH 0xff000000
507 #define ONB_EIADDRSHFTH 24
508 #define ONB_EIBRDENAB 0xc84
510 #define ONB_EISAID 0x1
513 * Important defines for the Brumby boards. They are pretty simple,
514 * there is not much that is programmably configurable.
516 #define BBY_IOSIZE 16
517 #define BBY_MEMSIZE (64 * 1024)
518 #define BBY_PAGESIZE (16 * 1024)
520 #define BBY_ATIREG 0
521 #define BBY_ATCONFR 1
522 #define BBY_ATSTOP 0x4
525 * Important defines for the Stallion boards. They are pretty simple,
526 * there is not much that is programmably configurable.
528 #define STAL_IOSIZE 16
529 #define STAL_MEMSIZE (64 * 1024)
530 #define STAL_PAGESIZE (64 * 1024)
533 * Define the set of status register values for EasyConnection panels.
534 * The signature will return with the status value for each panel. From
535 * this we can determine what is attached to the board - before we have
536 * actually down loaded any code to it.
538 #define ECH_PNLSTATUS 2
539 #define ECH_PNL16PORT 0x20
540 #define ECH_PNLIDMASK 0x07
541 #define ECH_PNLXPID 0x40
542 #define ECH_PNLINTRPEND 0x80
545 * Define some macros to do things to the board. Even those these boards
546 * are somewhat related there is often significantly different ways of
547 * doing some operation on it (like enable, paging, reset, etc). So each
548 * board class has a set of functions which do the commonly required
549 * operations. The macros below basically just call these functions,
550 * generally checking for a NULL function - which means that the board
551 * needs nothing done to it to achieve this operation!
553 #define EBRDINIT(brdp) \
554 if (brdp->init != NULL) \
555 (* brdp->init)(brdp)
557 #define EBRDENABLE(brdp) \
558 if (brdp->enable != NULL) \
559 (* brdp->enable)(brdp);
561 #define EBRDDISABLE(brdp) \
562 if (brdp->disable != NULL) \
563 (* brdp->disable)(brdp);
565 #define EBRDINTR(brdp) \
566 if (brdp->intr != NULL) \
567 (* brdp->intr)(brdp);
569 #define EBRDRESET(brdp) \
570 if (brdp->reset != NULL) \
571 (* brdp->reset)(brdp);
573 #define EBRDGETMEMPTR(brdp,offset) \
574 (* brdp->getmemptr)(brdp, offset, __LINE__)
577 * Define the maximal baud rate, and the default baud base for ports.
579 #define STL_MAXBAUD 460800
580 #define STL_BAUDBASE 115200
581 #define STL_CLOSEDELAY (5 * HZ / 10)
583 /*****************************************************************************/
586 * Define macros to extract a brd or port number from a minor number.
588 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
589 #define MINOR2PORT(min) ((min) & 0x3f)
591 /*****************************************************************************/
594 * Prototype all functions in this driver!
597 static int stli_parsebrd(struct stlconf *confp, char **argp);
598 static int stli_open(struct tty_struct *tty, struct file *filp);
599 static void stli_close(struct tty_struct *tty, struct file *filp);
600 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
601 static int stli_putchar(struct tty_struct *tty, unsigned char ch);
602 static void stli_flushchars(struct tty_struct *tty);
603 static int stli_writeroom(struct tty_struct *tty);
604 static int stli_charsinbuffer(struct tty_struct *tty);
605 static int stli_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg);
606 static void stli_settermios(struct tty_struct *tty, struct ktermios *old);
607 static void stli_throttle(struct tty_struct *tty);
608 static void stli_unthrottle(struct tty_struct *tty);
609 static void stli_stop(struct tty_struct *tty);
610 static void stli_start(struct tty_struct *tty);
611 static void stli_flushbuffer(struct tty_struct *tty);
612 static int stli_breakctl(struct tty_struct *tty, int state);
613 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
614 static void stli_sendxchar(struct tty_struct *tty, char ch);
615 static void stli_hangup(struct tty_struct *tty);
617 static int stli_brdinit(struct stlibrd *brdp);
618 static int stli_startbrd(struct stlibrd *brdp);
619 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
620 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
621 static long stli_memioctl(struct file *fp, unsigned int cmd, unsigned long arg);
622 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
623 static void stli_poll(unsigned long arg);
624 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
625 static int stli_initopen(struct tty_struct *tty, struct stlibrd *brdp, struct stliport *portp);
626 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
627 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
628 static int stli_setport(struct tty_struct *tty);
629 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
630 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
631 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
632 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
633 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
634 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
635 static long stli_mktiocm(unsigned long sigvalue);
636 static void stli_read(struct stlibrd *brdp, struct stliport *portp);
637 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
638 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp);
639 static int stli_getbrdstats(combrd_t __user *bp);
640 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp, comstats_t __user *cp);
641 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp);
642 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
643 static int stli_getportstruct(struct stliport __user *arg);
644 static int stli_getbrdstruct(struct stlibrd __user *arg);
645 static struct stlibrd *stli_allocbrd(void);
647 static void stli_ecpinit(struct stlibrd *brdp);
648 static void stli_ecpenable(struct stlibrd *brdp);
649 static void stli_ecpdisable(struct stlibrd *brdp);
650 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
651 static void stli_ecpreset(struct stlibrd *brdp);
652 static void stli_ecpintr(struct stlibrd *brdp);
653 static void stli_ecpeiinit(struct stlibrd *brdp);
654 static void stli_ecpeienable(struct stlibrd *brdp);
655 static void stli_ecpeidisable(struct stlibrd *brdp);
656 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
657 static void stli_ecpeireset(struct stlibrd *brdp);
658 static void stli_ecpmcenable(struct stlibrd *brdp);
659 static void stli_ecpmcdisable(struct stlibrd *brdp);
660 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
661 static void stli_ecpmcreset(struct stlibrd *brdp);
662 static void stli_ecppciinit(struct stlibrd *brdp);
663 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
664 static void stli_ecppcireset(struct stlibrd *brdp);
666 static void stli_onbinit(struct stlibrd *brdp);
667 static void stli_onbenable(struct stlibrd *brdp);
668 static void stli_onbdisable(struct stlibrd *brdp);
669 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
670 static void stli_onbreset(struct stlibrd *brdp);
671 static void stli_onbeinit(struct stlibrd *brdp);
672 static void stli_onbeenable(struct stlibrd *brdp);
673 static void stli_onbedisable(struct stlibrd *brdp);
674 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
675 static void stli_onbereset(struct stlibrd *brdp);
676 static void stli_bbyinit(struct stlibrd *brdp);
677 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
678 static void stli_bbyreset(struct stlibrd *brdp);
679 static void stli_stalinit(struct stlibrd *brdp);
680 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
681 static void stli_stalreset(struct stlibrd *brdp);
683 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
685 static int stli_initecp(struct stlibrd *brdp);
686 static int stli_initonb(struct stlibrd *brdp);
687 #if STLI_EISAPROBE != 0
688 static int stli_eisamemprobe(struct stlibrd *brdp);
689 #endif
690 static int stli_initports(struct stlibrd *brdp);
692 /*****************************************************************************/
695 * Define the driver info for a user level shared memory device. This
696 * device will work sort of like the /dev/kmem device - except that it
697 * will give access to the shared memory on the Stallion intelligent
698 * board. This is also a very useful debugging tool.
700 static const struct file_operations stli_fsiomem = {
701 .owner = THIS_MODULE,
702 .read = stli_memread,
703 .write = stli_memwrite,
704 .unlocked_ioctl = stli_memioctl,
705 .llseek = default_llseek,
708 /*****************************************************************************/
711 * Define a timer_list entry for our poll routine. The slave board
712 * is polled every so often to see if anything needs doing. This is
713 * much cheaper on host cpu than using interrupts. It turns out to
714 * not increase character latency by much either...
716 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
718 static int stli_timeron;
721 * Define the calculation for the timeout routine.
723 #define STLI_TIMEOUT (jiffies + 1)
725 /*****************************************************************************/
727 static struct class *istallion_class;
729 static void stli_cleanup_ports(struct stlibrd *brdp)
731 struct stliport *portp;
732 unsigned int j;
733 struct tty_struct *tty;
735 for (j = 0; j < STL_MAXPORTS; j++) {
736 portp = brdp->ports[j];
737 if (portp != NULL) {
738 tty = tty_port_tty_get(&portp->port);
739 if (tty != NULL) {
740 tty_hangup(tty);
741 tty_kref_put(tty);
743 kfree(portp);
748 /*****************************************************************************/
751 * Parse the supplied argument string, into the board conf struct.
754 static int stli_parsebrd(struct stlconf *confp, char **argp)
756 unsigned int i;
757 char *sp;
759 if (argp[0] == NULL || *argp[0] == 0)
760 return 0;
762 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
763 *sp = tolower(*sp);
765 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
766 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
767 break;
769 if (i == ARRAY_SIZE(stli_brdstr)) {
770 printk(KERN_WARNING "istallion: unknown board name, %s?\n", argp[0]);
771 return 0;
774 confp->brdtype = stli_brdstr[i].type;
775 if (argp[1] != NULL && *argp[1] != 0)
776 confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
777 if (argp[2] != NULL && *argp[2] != 0)
778 confp->memaddr = simple_strtoul(argp[2], NULL, 0);
779 return(1);
782 /*****************************************************************************/
785 * On the first open of the device setup the port hardware, and
786 * initialize the per port data structure. Since initializing the port
787 * requires several commands to the board we will need to wait for any
788 * other open that is already initializing the port.
790 * Locking: protected by the port mutex.
793 static int stli_activate(struct tty_port *port, struct tty_struct *tty)
795 struct stliport *portp = container_of(port, struct stliport, port);
796 struct stlibrd *brdp = stli_brds[portp->brdnr];
797 int rc;
799 if ((rc = stli_initopen(tty, brdp, portp)) >= 0)
800 clear_bit(TTY_IO_ERROR, &tty->flags);
801 wake_up_interruptible(&portp->raw_wait);
802 return rc;
805 static int stli_open(struct tty_struct *tty, struct file *filp)
807 struct stlibrd *brdp;
808 struct stliport *portp;
809 unsigned int minordev, brdnr, portnr;
811 minordev = tty->index;
812 brdnr = MINOR2BRD(minordev);
813 if (brdnr >= stli_nrbrds)
814 return -ENODEV;
815 brdp = stli_brds[brdnr];
816 if (brdp == NULL)
817 return -ENODEV;
818 if (!test_bit(BST_STARTED, &brdp->state))
819 return -ENODEV;
820 portnr = MINOR2PORT(minordev);
821 if (portnr > brdp->nrports)
822 return -ENODEV;
824 portp = brdp->ports[portnr];
825 if (portp == NULL)
826 return -ENODEV;
827 if (portp->devnr < 1)
828 return -ENODEV;
830 tty->driver_data = portp;
831 return tty_port_open(&portp->port, tty, filp);
835 /*****************************************************************************/
837 static void stli_shutdown(struct tty_port *port)
839 struct stlibrd *brdp;
840 unsigned long ftype;
841 unsigned long flags;
842 struct stliport *portp = container_of(port, struct stliport, port);
844 if (portp->brdnr >= stli_nrbrds)
845 return;
846 brdp = stli_brds[portp->brdnr];
847 if (brdp == NULL)
848 return;
851 * May want to wait for data to drain before closing. The BUSY
852 * flag keeps track of whether we are still transmitting or not.
853 * It is updated by messages from the slave - indicating when all
854 * chars really have drained.
857 if (!test_bit(ST_CLOSING, &portp->state))
858 stli_rawclose(brdp, portp, 0, 0);
860 spin_lock_irqsave(&stli_lock, flags);
861 clear_bit(ST_TXBUSY, &portp->state);
862 clear_bit(ST_RXSTOP, &portp->state);
863 spin_unlock_irqrestore(&stli_lock, flags);
865 ftype = FLUSHTX | FLUSHRX;
866 stli_cmdwait(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
869 static void stli_close(struct tty_struct *tty, struct file *filp)
871 struct stliport *portp = tty->driver_data;
872 unsigned long flags;
873 if (portp == NULL)
874 return;
875 spin_lock_irqsave(&stli_lock, flags);
876 /* Flush any internal buffering out first */
877 if (tty == stli_txcooktty)
878 stli_flushchars(tty);
879 spin_unlock_irqrestore(&stli_lock, flags);
880 tty_port_close(&portp->port, tty, filp);
883 /*****************************************************************************/
886 * Carry out first open operations on a port. This involves a number of
887 * commands to be sent to the slave. We need to open the port, set the
888 * notification events, set the initial port settings, get and set the
889 * initial signal values. We sleep and wait in between each one. But
890 * this still all happens pretty quickly.
893 static int stli_initopen(struct tty_struct *tty,
894 struct stlibrd *brdp, struct stliport *portp)
896 asynotify_t nt;
897 asyport_t aport;
898 int rc;
900 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
901 return rc;
903 memset(&nt, 0, sizeof(asynotify_t));
904 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
905 nt.signal = SG_DCD;
906 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
907 sizeof(asynotify_t), 0)) < 0)
908 return rc;
910 stli_mkasyport(tty, portp, &aport, tty->termios);
911 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
912 sizeof(asyport_t), 0)) < 0)
913 return rc;
915 set_bit(ST_GETSIGS, &portp->state);
916 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
917 sizeof(asysigs_t), 1)) < 0)
918 return rc;
919 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
920 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
921 stli_mkasysigs(&portp->asig, 1, 1);
922 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
923 sizeof(asysigs_t), 0)) < 0)
924 return rc;
926 return 0;
929 /*****************************************************************************/
932 * Send an open message to the slave. This will sleep waiting for the
933 * acknowledgement, so must have user context. We need to co-ordinate
934 * with close events here, since we don't want open and close events
935 * to overlap.
938 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
940 cdkhdr_t __iomem *hdrp;
941 cdkctrl_t __iomem *cp;
942 unsigned char __iomem *bits;
943 unsigned long flags;
944 int rc;
947 * Send a message to the slave to open this port.
951 * Slave is already closing this port. This can happen if a hangup
952 * occurs on this port. So we must wait until it is complete. The
953 * order of opens and closes may not be preserved across shared
954 * memory, so we must wait until it is complete.
956 wait_event_interruptible_tty(portp->raw_wait,
957 !test_bit(ST_CLOSING, &portp->state));
958 if (signal_pending(current)) {
959 return -ERESTARTSYS;
963 * Everything is ready now, so write the open message into shared
964 * memory. Once the message is in set the service bits to say that
965 * this port wants service.
967 spin_lock_irqsave(&brd_lock, flags);
968 EBRDENABLE(brdp);
969 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
970 writel(arg, &cp->openarg);
971 writeb(1, &cp->open);
972 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
973 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
974 portp->portidx;
975 writeb(readb(bits) | portp->portbit, bits);
976 EBRDDISABLE(brdp);
978 if (wait == 0) {
979 spin_unlock_irqrestore(&brd_lock, flags);
980 return 0;
984 * Slave is in action, so now we must wait for the open acknowledgment
985 * to come back.
987 rc = 0;
988 set_bit(ST_OPENING, &portp->state);
989 spin_unlock_irqrestore(&brd_lock, flags);
991 wait_event_interruptible_tty(portp->raw_wait,
992 !test_bit(ST_OPENING, &portp->state));
993 if (signal_pending(current))
994 rc = -ERESTARTSYS;
996 if ((rc == 0) && (portp->rc != 0))
997 rc = -EIO;
998 return rc;
1001 /*****************************************************************************/
1004 * Send a close message to the slave. Normally this will sleep waiting
1005 * for the acknowledgement, but if wait parameter is 0 it will not. If
1006 * wait is true then must have user context (to sleep).
1009 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1011 cdkhdr_t __iomem *hdrp;
1012 cdkctrl_t __iomem *cp;
1013 unsigned char __iomem *bits;
1014 unsigned long flags;
1015 int rc;
1018 * Slave is already closing this port. This can happen if a hangup
1019 * occurs on this port.
1021 if (wait) {
1022 wait_event_interruptible_tty(portp->raw_wait,
1023 !test_bit(ST_CLOSING, &portp->state));
1024 if (signal_pending(current)) {
1025 return -ERESTARTSYS;
1030 * Write the close command into shared memory.
1032 spin_lock_irqsave(&brd_lock, flags);
1033 EBRDENABLE(brdp);
1034 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1035 writel(arg, &cp->closearg);
1036 writeb(1, &cp->close);
1037 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1038 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1039 portp->portidx;
1040 writeb(readb(bits) |portp->portbit, bits);
1041 EBRDDISABLE(brdp);
1043 set_bit(ST_CLOSING, &portp->state);
1044 spin_unlock_irqrestore(&brd_lock, flags);
1046 if (wait == 0)
1047 return 0;
1050 * Slave is in action, so now we must wait for the open acknowledgment
1051 * to come back.
1053 rc = 0;
1054 wait_event_interruptible_tty(portp->raw_wait,
1055 !test_bit(ST_CLOSING, &portp->state));
1056 if (signal_pending(current))
1057 rc = -ERESTARTSYS;
1059 if ((rc == 0) && (portp->rc != 0))
1060 rc = -EIO;
1061 return rc;
1064 /*****************************************************************************/
1067 * Send a command to the slave and wait for the response. This must
1068 * have user context (it sleeps). This routine is generic in that it
1069 * can send any type of command. Its purpose is to wait for that command
1070 * to complete (as opposed to initiating the command then returning).
1073 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1076 * no need for wait_event_tty because clearing ST_CMDING cannot block
1077 * on BTM
1079 wait_event_interruptible(portp->raw_wait,
1080 !test_bit(ST_CMDING, &portp->state));
1081 if (signal_pending(current))
1082 return -ERESTARTSYS;
1084 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1086 wait_event_interruptible(portp->raw_wait,
1087 !test_bit(ST_CMDING, &portp->state));
1088 if (signal_pending(current))
1089 return -ERESTARTSYS;
1091 if (portp->rc != 0)
1092 return -EIO;
1093 return 0;
1096 /*****************************************************************************/
1099 * Send the termios settings for this port to the slave. This sleeps
1100 * waiting for the command to complete - so must have user context.
1103 static int stli_setport(struct tty_struct *tty)
1105 struct stliport *portp = tty->driver_data;
1106 struct stlibrd *brdp;
1107 asyport_t aport;
1109 if (portp == NULL)
1110 return -ENODEV;
1111 if (portp->brdnr >= stli_nrbrds)
1112 return -ENODEV;
1113 brdp = stli_brds[portp->brdnr];
1114 if (brdp == NULL)
1115 return -ENODEV;
1117 stli_mkasyport(tty, portp, &aport, tty->termios);
1118 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1121 /*****************************************************************************/
1123 static int stli_carrier_raised(struct tty_port *port)
1125 struct stliport *portp = container_of(port, struct stliport, port);
1126 return (portp->sigs & TIOCM_CD) ? 1 : 0;
1129 static void stli_dtr_rts(struct tty_port *port, int on)
1131 struct stliport *portp = container_of(port, struct stliport, port);
1132 struct stlibrd *brdp = stli_brds[portp->brdnr];
1133 stli_mkasysigs(&portp->asig, on, on);
1134 if (stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1135 sizeof(asysigs_t), 0) < 0)
1136 printk(KERN_WARNING "istallion: dtr set failed.\n");
1140 /*****************************************************************************/
1143 * Write routine. Take the data and put it in the shared memory ring
1144 * queue. If port is not already sending chars then need to mark the
1145 * service bits for this port.
1148 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1150 cdkasy_t __iomem *ap;
1151 cdkhdr_t __iomem *hdrp;
1152 unsigned char __iomem *bits;
1153 unsigned char __iomem *shbuf;
1154 unsigned char *chbuf;
1155 struct stliport *portp;
1156 struct stlibrd *brdp;
1157 unsigned int len, stlen, head, tail, size;
1158 unsigned long flags;
1160 if (tty == stli_txcooktty)
1161 stli_flushchars(tty);
1162 portp = tty->driver_data;
1163 if (portp == NULL)
1164 return 0;
1165 if (portp->brdnr >= stli_nrbrds)
1166 return 0;
1167 brdp = stli_brds[portp->brdnr];
1168 if (brdp == NULL)
1169 return 0;
1170 chbuf = (unsigned char *) buf;
1173 * All data is now local, shove as much as possible into shared memory.
1175 spin_lock_irqsave(&brd_lock, flags);
1176 EBRDENABLE(brdp);
1177 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1178 head = (unsigned int) readw(&ap->txq.head);
1179 tail = (unsigned int) readw(&ap->txq.tail);
1180 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1181 tail = (unsigned int) readw(&ap->txq.tail);
1182 size = portp->txsize;
1183 if (head >= tail) {
1184 len = size - (head - tail) - 1;
1185 stlen = size - head;
1186 } else {
1187 len = tail - head - 1;
1188 stlen = len;
1191 len = min(len, (unsigned int)count);
1192 count = 0;
1193 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1195 while (len > 0) {
1196 stlen = min(len, stlen);
1197 memcpy_toio(shbuf + head, chbuf, stlen);
1198 chbuf += stlen;
1199 len -= stlen;
1200 count += stlen;
1201 head += stlen;
1202 if (head >= size) {
1203 head = 0;
1204 stlen = tail;
1208 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1209 writew(head, &ap->txq.head);
1210 if (test_bit(ST_TXBUSY, &portp->state)) {
1211 if (readl(&ap->changed.data) & DT_TXEMPTY)
1212 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1214 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1215 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1216 portp->portidx;
1217 writeb(readb(bits) | portp->portbit, bits);
1218 set_bit(ST_TXBUSY, &portp->state);
1219 EBRDDISABLE(brdp);
1220 spin_unlock_irqrestore(&brd_lock, flags);
1222 return(count);
1225 /*****************************************************************************/
1228 * Output a single character. We put it into a temporary local buffer
1229 * (for speed) then write out that buffer when the flushchars routine
1230 * is called. There is a safety catch here so that if some other port
1231 * writes chars before the current buffer has been, then we write them
1232 * first them do the new ports.
1235 static int stli_putchar(struct tty_struct *tty, unsigned char ch)
1237 if (tty != stli_txcooktty) {
1238 if (stli_txcooktty != NULL)
1239 stli_flushchars(stli_txcooktty);
1240 stli_txcooktty = tty;
1243 stli_txcookbuf[stli_txcooksize++] = ch;
1244 return 0;
1247 /*****************************************************************************/
1250 * Transfer characters from the local TX cooking buffer to the board.
1251 * We sort of ignore the tty that gets passed in here. We rely on the
1252 * info stored with the TX cook buffer to tell us which port to flush
1253 * the data on. In any case we clean out the TX cook buffer, for re-use
1254 * by someone else.
1257 static void stli_flushchars(struct tty_struct *tty)
1259 cdkhdr_t __iomem *hdrp;
1260 unsigned char __iomem *bits;
1261 cdkasy_t __iomem *ap;
1262 struct tty_struct *cooktty;
1263 struct stliport *portp;
1264 struct stlibrd *brdp;
1265 unsigned int len, stlen, head, tail, size, count, cooksize;
1266 unsigned char *buf;
1267 unsigned char __iomem *shbuf;
1268 unsigned long flags;
1270 cooksize = stli_txcooksize;
1271 cooktty = stli_txcooktty;
1272 stli_txcooksize = 0;
1273 stli_txcookrealsize = 0;
1274 stli_txcooktty = NULL;
1276 if (cooktty == NULL)
1277 return;
1278 if (tty != cooktty)
1279 tty = cooktty;
1280 if (cooksize == 0)
1281 return;
1283 portp = tty->driver_data;
1284 if (portp == NULL)
1285 return;
1286 if (portp->brdnr >= stli_nrbrds)
1287 return;
1288 brdp = stli_brds[portp->brdnr];
1289 if (brdp == NULL)
1290 return;
1292 spin_lock_irqsave(&brd_lock, flags);
1293 EBRDENABLE(brdp);
1295 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1296 head = (unsigned int) readw(&ap->txq.head);
1297 tail = (unsigned int) readw(&ap->txq.tail);
1298 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1299 tail = (unsigned int) readw(&ap->txq.tail);
1300 size = portp->txsize;
1301 if (head >= tail) {
1302 len = size - (head - tail) - 1;
1303 stlen = size - head;
1304 } else {
1305 len = tail - head - 1;
1306 stlen = len;
1309 len = min(len, cooksize);
1310 count = 0;
1311 shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1312 buf = stli_txcookbuf;
1314 while (len > 0) {
1315 stlen = min(len, stlen);
1316 memcpy_toio(shbuf + head, buf, stlen);
1317 buf += stlen;
1318 len -= stlen;
1319 count += stlen;
1320 head += stlen;
1321 if (head >= size) {
1322 head = 0;
1323 stlen = tail;
1327 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1328 writew(head, &ap->txq.head);
1330 if (test_bit(ST_TXBUSY, &portp->state)) {
1331 if (readl(&ap->changed.data) & DT_TXEMPTY)
1332 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1334 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1335 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1336 portp->portidx;
1337 writeb(readb(bits) | portp->portbit, bits);
1338 set_bit(ST_TXBUSY, &portp->state);
1340 EBRDDISABLE(brdp);
1341 spin_unlock_irqrestore(&brd_lock, flags);
1344 /*****************************************************************************/
1346 static int stli_writeroom(struct tty_struct *tty)
1348 cdkasyrq_t __iomem *rp;
1349 struct stliport *portp;
1350 struct stlibrd *brdp;
1351 unsigned int head, tail, len;
1352 unsigned long flags;
1354 if (tty == stli_txcooktty) {
1355 if (stli_txcookrealsize != 0) {
1356 len = stli_txcookrealsize - stli_txcooksize;
1357 return len;
1361 portp = tty->driver_data;
1362 if (portp == NULL)
1363 return 0;
1364 if (portp->brdnr >= stli_nrbrds)
1365 return 0;
1366 brdp = stli_brds[portp->brdnr];
1367 if (brdp == NULL)
1368 return 0;
1370 spin_lock_irqsave(&brd_lock, flags);
1371 EBRDENABLE(brdp);
1372 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1373 head = (unsigned int) readw(&rp->head);
1374 tail = (unsigned int) readw(&rp->tail);
1375 if (tail != ((unsigned int) readw(&rp->tail)))
1376 tail = (unsigned int) readw(&rp->tail);
1377 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1378 len--;
1379 EBRDDISABLE(brdp);
1380 spin_unlock_irqrestore(&brd_lock, flags);
1382 if (tty == stli_txcooktty) {
1383 stli_txcookrealsize = len;
1384 len -= stli_txcooksize;
1386 return len;
1389 /*****************************************************************************/
1392 * Return the number of characters in the transmit buffer. Normally we
1393 * will return the number of chars in the shared memory ring queue.
1394 * We need to kludge around the case where the shared memory buffer is
1395 * empty but not all characters have drained yet, for this case just
1396 * return that there is 1 character in the buffer!
1399 static int stli_charsinbuffer(struct tty_struct *tty)
1401 cdkasyrq_t __iomem *rp;
1402 struct stliport *portp;
1403 struct stlibrd *brdp;
1404 unsigned int head, tail, len;
1405 unsigned long flags;
1407 if (tty == stli_txcooktty)
1408 stli_flushchars(tty);
1409 portp = tty->driver_data;
1410 if (portp == NULL)
1411 return 0;
1412 if (portp->brdnr >= stli_nrbrds)
1413 return 0;
1414 brdp = stli_brds[portp->brdnr];
1415 if (brdp == NULL)
1416 return 0;
1418 spin_lock_irqsave(&brd_lock, flags);
1419 EBRDENABLE(brdp);
1420 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1421 head = (unsigned int) readw(&rp->head);
1422 tail = (unsigned int) readw(&rp->tail);
1423 if (tail != ((unsigned int) readw(&rp->tail)))
1424 tail = (unsigned int) readw(&rp->tail);
1425 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1426 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1427 len = 1;
1428 EBRDDISABLE(brdp);
1429 spin_unlock_irqrestore(&brd_lock, flags);
1431 return len;
1434 /*****************************************************************************/
1437 * Generate the serial struct info.
1440 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1442 struct serial_struct sio;
1443 struct stlibrd *brdp;
1445 memset(&sio, 0, sizeof(struct serial_struct));
1446 sio.type = PORT_UNKNOWN;
1447 sio.line = portp->portnr;
1448 sio.irq = 0;
1449 sio.flags = portp->port.flags;
1450 sio.baud_base = portp->baud_base;
1451 sio.close_delay = portp->port.close_delay;
1452 sio.closing_wait = portp->closing_wait;
1453 sio.custom_divisor = portp->custom_divisor;
1454 sio.xmit_fifo_size = 0;
1455 sio.hub6 = 0;
1457 brdp = stli_brds[portp->brdnr];
1458 if (brdp != NULL)
1459 sio.port = brdp->iobase;
1461 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1462 -EFAULT : 0;
1465 /*****************************************************************************/
1468 * Set port according to the serial struct info.
1469 * At this point we do not do any auto-configure stuff, so we will
1470 * just quietly ignore any requests to change irq, etc.
1473 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1475 struct serial_struct sio;
1476 int rc;
1477 struct stliport *portp = tty->driver_data;
1479 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1480 return -EFAULT;
1481 if (!capable(CAP_SYS_ADMIN)) {
1482 if ((sio.baud_base != portp->baud_base) ||
1483 (sio.close_delay != portp->port.close_delay) ||
1484 ((sio.flags & ~ASYNC_USR_MASK) !=
1485 (portp->port.flags & ~ASYNC_USR_MASK)))
1486 return -EPERM;
1489 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1490 (sio.flags & ASYNC_USR_MASK);
1491 portp->baud_base = sio.baud_base;
1492 portp->port.close_delay = sio.close_delay;
1493 portp->closing_wait = sio.closing_wait;
1494 portp->custom_divisor = sio.custom_divisor;
1496 if ((rc = stli_setport(tty)) < 0)
1497 return rc;
1498 return 0;
1501 /*****************************************************************************/
1503 static int stli_tiocmget(struct tty_struct *tty)
1505 struct stliport *portp = tty->driver_data;
1506 struct stlibrd *brdp;
1507 int rc;
1509 if (portp == NULL)
1510 return -ENODEV;
1511 if (portp->brdnr >= stli_nrbrds)
1512 return 0;
1513 brdp = stli_brds[portp->brdnr];
1514 if (brdp == NULL)
1515 return 0;
1516 if (tty->flags & (1 << TTY_IO_ERROR))
1517 return -EIO;
1519 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1520 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1521 return rc;
1523 return stli_mktiocm(portp->asig.sigvalue);
1526 static int stli_tiocmset(struct tty_struct *tty,
1527 unsigned int set, unsigned int clear)
1529 struct stliport *portp = tty->driver_data;
1530 struct stlibrd *brdp;
1531 int rts = -1, dtr = -1;
1533 if (portp == NULL)
1534 return -ENODEV;
1535 if (portp->brdnr >= stli_nrbrds)
1536 return 0;
1537 brdp = stli_brds[portp->brdnr];
1538 if (brdp == NULL)
1539 return 0;
1540 if (tty->flags & (1 << TTY_IO_ERROR))
1541 return -EIO;
1543 if (set & TIOCM_RTS)
1544 rts = 1;
1545 if (set & TIOCM_DTR)
1546 dtr = 1;
1547 if (clear & TIOCM_RTS)
1548 rts = 0;
1549 if (clear & TIOCM_DTR)
1550 dtr = 0;
1552 stli_mkasysigs(&portp->asig, dtr, rts);
1554 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1555 sizeof(asysigs_t), 0);
1558 static int stli_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg)
1560 struct stliport *portp;
1561 struct stlibrd *brdp;
1562 int rc;
1563 void __user *argp = (void __user *)arg;
1565 portp = tty->driver_data;
1566 if (portp == NULL)
1567 return -ENODEV;
1568 if (portp->brdnr >= stli_nrbrds)
1569 return 0;
1570 brdp = stli_brds[portp->brdnr];
1571 if (brdp == NULL)
1572 return 0;
1574 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1575 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1576 if (tty->flags & (1 << TTY_IO_ERROR))
1577 return -EIO;
1580 rc = 0;
1582 switch (cmd) {
1583 case TIOCGSERIAL:
1584 rc = stli_getserial(portp, argp);
1585 break;
1586 case TIOCSSERIAL:
1587 rc = stli_setserial(tty, argp);
1588 break;
1589 case STL_GETPFLAG:
1590 rc = put_user(portp->pflag, (unsigned __user *)argp);
1591 break;
1592 case STL_SETPFLAG:
1593 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1594 stli_setport(tty);
1595 break;
1596 case COM_GETPORTSTATS:
1597 rc = stli_getportstats(tty, portp, argp);
1598 break;
1599 case COM_CLRPORTSTATS:
1600 rc = stli_clrportstats(portp, argp);
1601 break;
1602 case TIOCSERCONFIG:
1603 case TIOCSERGWILD:
1604 case TIOCSERSWILD:
1605 case TIOCSERGETLSR:
1606 case TIOCSERGSTRUCT:
1607 case TIOCSERGETMULTI:
1608 case TIOCSERSETMULTI:
1609 default:
1610 rc = -ENOIOCTLCMD;
1611 break;
1614 return rc;
1617 /*****************************************************************************/
1620 * This routine assumes that we have user context and can sleep.
1621 * Looks like it is true for the current ttys implementation..!!
1624 static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1626 struct stliport *portp;
1627 struct stlibrd *brdp;
1628 struct ktermios *tiosp;
1629 asyport_t aport;
1631 portp = tty->driver_data;
1632 if (portp == NULL)
1633 return;
1634 if (portp->brdnr >= stli_nrbrds)
1635 return;
1636 brdp = stli_brds[portp->brdnr];
1637 if (brdp == NULL)
1638 return;
1640 tiosp = tty->termios;
1642 stli_mkasyport(tty, portp, &aport, tiosp);
1643 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1644 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1645 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1646 sizeof(asysigs_t), 0);
1647 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1648 tty->hw_stopped = 0;
1649 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1650 wake_up_interruptible(&portp->port.open_wait);
1653 /*****************************************************************************/
1656 * Attempt to flow control who ever is sending us data. We won't really
1657 * do any flow control action here. We can't directly, and even if we
1658 * wanted to we would have to send a command to the slave. The slave
1659 * knows how to flow control, and will do so when its buffers reach its
1660 * internal high water marks. So what we will do is set a local state
1661 * bit that will stop us sending any RX data up from the poll routine
1662 * (which is the place where RX data from the slave is handled).
1665 static void stli_throttle(struct tty_struct *tty)
1667 struct stliport *portp = tty->driver_data;
1668 if (portp == NULL)
1669 return;
1670 set_bit(ST_RXSTOP, &portp->state);
1673 /*****************************************************************************/
1676 * Unflow control the device sending us data... That means that all
1677 * we have to do is clear the RXSTOP state bit. The next poll call
1678 * will then be able to pass the RX data back up.
1681 static void stli_unthrottle(struct tty_struct *tty)
1683 struct stliport *portp = tty->driver_data;
1684 if (portp == NULL)
1685 return;
1686 clear_bit(ST_RXSTOP, &portp->state);
1689 /*****************************************************************************/
1692 * Stop the transmitter.
1695 static void stli_stop(struct tty_struct *tty)
1699 /*****************************************************************************/
1702 * Start the transmitter again.
1705 static void stli_start(struct tty_struct *tty)
1709 /*****************************************************************************/
1713 * Hangup this port. This is pretty much like closing the port, only
1714 * a little more brutal. No waiting for data to drain. Shutdown the
1715 * port and maybe drop signals. This is rather tricky really. We want
1716 * to close the port as well.
1719 static void stli_hangup(struct tty_struct *tty)
1721 struct stliport *portp = tty->driver_data;
1722 tty_port_hangup(&portp->port);
1725 /*****************************************************************************/
1728 * Flush characters from the lower buffer. We may not have user context
1729 * so we cannot sleep waiting for it to complete. Also we need to check
1730 * if there is chars for this port in the TX cook buffer, and flush them
1731 * as well.
1734 static void stli_flushbuffer(struct tty_struct *tty)
1736 struct stliport *portp;
1737 struct stlibrd *brdp;
1738 unsigned long ftype, flags;
1740 portp = tty->driver_data;
1741 if (portp == NULL)
1742 return;
1743 if (portp->brdnr >= stli_nrbrds)
1744 return;
1745 brdp = stli_brds[portp->brdnr];
1746 if (brdp == NULL)
1747 return;
1749 spin_lock_irqsave(&brd_lock, flags);
1750 if (tty == stli_txcooktty) {
1751 stli_txcooktty = NULL;
1752 stli_txcooksize = 0;
1753 stli_txcookrealsize = 0;
1755 if (test_bit(ST_CMDING, &portp->state)) {
1756 set_bit(ST_DOFLUSHTX, &portp->state);
1757 } else {
1758 ftype = FLUSHTX;
1759 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1760 ftype |= FLUSHRX;
1761 clear_bit(ST_DOFLUSHRX, &portp->state);
1763 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1765 spin_unlock_irqrestore(&brd_lock, flags);
1766 tty_wakeup(tty);
1769 /*****************************************************************************/
1771 static int stli_breakctl(struct tty_struct *tty, int state)
1773 struct stlibrd *brdp;
1774 struct stliport *portp;
1775 long arg;
1777 portp = tty->driver_data;
1778 if (portp == NULL)
1779 return -EINVAL;
1780 if (portp->brdnr >= stli_nrbrds)
1781 return -EINVAL;
1782 brdp = stli_brds[portp->brdnr];
1783 if (brdp == NULL)
1784 return -EINVAL;
1786 arg = (state == -1) ? BREAKON : BREAKOFF;
1787 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1788 return 0;
1791 /*****************************************************************************/
1793 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1795 struct stliport *portp;
1796 unsigned long tend;
1798 portp = tty->driver_data;
1799 if (portp == NULL)
1800 return;
1802 if (timeout == 0)
1803 timeout = HZ;
1804 tend = jiffies + timeout;
1806 while (test_bit(ST_TXBUSY, &portp->state)) {
1807 if (signal_pending(current))
1808 break;
1809 msleep_interruptible(20);
1810 if (time_after_eq(jiffies, tend))
1811 break;
1815 /*****************************************************************************/
1817 static void stli_sendxchar(struct tty_struct *tty, char ch)
1819 struct stlibrd *brdp;
1820 struct stliport *portp;
1821 asyctrl_t actrl;
1823 portp = tty->driver_data;
1824 if (portp == NULL)
1825 return;
1826 if (portp->brdnr >= stli_nrbrds)
1827 return;
1828 brdp = stli_brds[portp->brdnr];
1829 if (brdp == NULL)
1830 return;
1832 memset(&actrl, 0, sizeof(asyctrl_t));
1833 if (ch == STOP_CHAR(tty)) {
1834 actrl.rxctrl = CT_STOPFLOW;
1835 } else if (ch == START_CHAR(tty)) {
1836 actrl.rxctrl = CT_STARTFLOW;
1837 } else {
1838 actrl.txctrl = CT_SENDCHR;
1839 actrl.tximdch = ch;
1841 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
1844 static void stli_portinfo(struct seq_file *m, struct stlibrd *brdp, struct stliport *portp, int portnr)
1846 char *uart;
1847 int rc;
1849 rc = stli_portcmdstats(NULL, portp);
1851 uart = "UNKNOWN";
1852 if (test_bit(BST_STARTED, &brdp->state)) {
1853 switch (stli_comstats.hwid) {
1854 case 0: uart = "2681"; break;
1855 case 1: uart = "SC26198"; break;
1856 default:uart = "CD1400"; break;
1859 seq_printf(m, "%d: uart:%s ", portnr, uart);
1861 if (test_bit(BST_STARTED, &brdp->state) && rc >= 0) {
1862 char sep;
1864 seq_printf(m, "tx:%d rx:%d", (int) stli_comstats.txtotal,
1865 (int) stli_comstats.rxtotal);
1867 if (stli_comstats.rxframing)
1868 seq_printf(m, " fe:%d",
1869 (int) stli_comstats.rxframing);
1870 if (stli_comstats.rxparity)
1871 seq_printf(m, " pe:%d",
1872 (int) stli_comstats.rxparity);
1873 if (stli_comstats.rxbreaks)
1874 seq_printf(m, " brk:%d",
1875 (int) stli_comstats.rxbreaks);
1876 if (stli_comstats.rxoverrun)
1877 seq_printf(m, " oe:%d",
1878 (int) stli_comstats.rxoverrun);
1880 sep = ' ';
1881 if (stli_comstats.signals & TIOCM_RTS) {
1882 seq_printf(m, "%c%s", sep, "RTS");
1883 sep = '|';
1885 if (stli_comstats.signals & TIOCM_CTS) {
1886 seq_printf(m, "%c%s", sep, "CTS");
1887 sep = '|';
1889 if (stli_comstats.signals & TIOCM_DTR) {
1890 seq_printf(m, "%c%s", sep, "DTR");
1891 sep = '|';
1893 if (stli_comstats.signals & TIOCM_CD) {
1894 seq_printf(m, "%c%s", sep, "DCD");
1895 sep = '|';
1897 if (stli_comstats.signals & TIOCM_DSR) {
1898 seq_printf(m, "%c%s", sep, "DSR");
1899 sep = '|';
1902 seq_putc(m, '\n');
1905 /*****************************************************************************/
1908 * Port info, read from the /proc file system.
1911 static int stli_proc_show(struct seq_file *m, void *v)
1913 struct stlibrd *brdp;
1914 struct stliport *portp;
1915 unsigned int brdnr, portnr, totalport;
1917 totalport = 0;
1919 seq_printf(m, "%s: version %s\n", stli_drvtitle, stli_drvversion);
1922 * We scan through for each board, panel and port. The offset is
1923 * calculated on the fly, and irrelevant ports are skipped.
1925 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
1926 brdp = stli_brds[brdnr];
1927 if (brdp == NULL)
1928 continue;
1929 if (brdp->state == 0)
1930 continue;
1932 totalport = brdnr * STL_MAXPORTS;
1933 for (portnr = 0; (portnr < brdp->nrports); portnr++,
1934 totalport++) {
1935 portp = brdp->ports[portnr];
1936 if (portp == NULL)
1937 continue;
1938 stli_portinfo(m, brdp, portp, totalport);
1941 return 0;
1944 static int stli_proc_open(struct inode *inode, struct file *file)
1946 return single_open(file, stli_proc_show, NULL);
1949 static const struct file_operations stli_proc_fops = {
1950 .owner = THIS_MODULE,
1951 .open = stli_proc_open,
1952 .read = seq_read,
1953 .llseek = seq_lseek,
1954 .release = single_release,
1957 /*****************************************************************************/
1960 * Generic send command routine. This will send a message to the slave,
1961 * of the specified type with the specified argument. Must be very
1962 * careful of data that will be copied out from shared memory -
1963 * containing command results. The command completion is all done from
1964 * a poll routine that does not have user context. Therefore you cannot
1965 * copy back directly into user space, or to the kernel stack of a
1966 * process. This routine does not sleep, so can be called from anywhere.
1968 * The caller must hold the brd_lock (see also stli_sendcmd the usual
1969 * entry point)
1972 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1974 cdkhdr_t __iomem *hdrp;
1975 cdkctrl_t __iomem *cp;
1976 unsigned char __iomem *bits;
1978 if (test_bit(ST_CMDING, &portp->state)) {
1979 printk(KERN_ERR "istallion: command already busy, cmd=%x!\n",
1980 (int) cmd);
1981 return;
1984 EBRDENABLE(brdp);
1985 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1986 if (size > 0) {
1987 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
1988 if (copyback) {
1989 portp->argp = arg;
1990 portp->argsize = size;
1993 writel(0, &cp->status);
1994 writel(cmd, &cp->cmd);
1995 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1996 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1997 portp->portidx;
1998 writeb(readb(bits) | portp->portbit, bits);
1999 set_bit(ST_CMDING, &portp->state);
2000 EBRDDISABLE(brdp);
2003 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2005 unsigned long flags;
2007 spin_lock_irqsave(&brd_lock, flags);
2008 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2009 spin_unlock_irqrestore(&brd_lock, flags);
2012 /*****************************************************************************/
2015 * Read data from shared memory. This assumes that the shared memory
2016 * is enabled and that interrupts are off. Basically we just empty out
2017 * the shared memory buffer into the tty buffer. Must be careful to
2018 * handle the case where we fill up the tty buffer, but still have
2019 * more chars to unload.
2022 static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2024 cdkasyrq_t __iomem *rp;
2025 char __iomem *shbuf;
2026 struct tty_struct *tty;
2027 unsigned int head, tail, size;
2028 unsigned int len, stlen;
2030 if (test_bit(ST_RXSTOP, &portp->state))
2031 return;
2032 tty = tty_port_tty_get(&portp->port);
2033 if (tty == NULL)
2034 return;
2036 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2037 head = (unsigned int) readw(&rp->head);
2038 if (head != ((unsigned int) readw(&rp->head)))
2039 head = (unsigned int) readw(&rp->head);
2040 tail = (unsigned int) readw(&rp->tail);
2041 size = portp->rxsize;
2042 if (head >= tail) {
2043 len = head - tail;
2044 stlen = len;
2045 } else {
2046 len = size - (tail - head);
2047 stlen = size - tail;
2050 len = tty_buffer_request_room(tty, len);
2052 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2054 while (len > 0) {
2055 unsigned char *cptr;
2057 stlen = min(len, stlen);
2058 tty_prepare_flip_string(tty, &cptr, stlen);
2059 memcpy_fromio(cptr, shbuf + tail, stlen);
2060 len -= stlen;
2061 tail += stlen;
2062 if (tail >= size) {
2063 tail = 0;
2064 stlen = head;
2067 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2068 writew(tail, &rp->tail);
2070 if (head != tail)
2071 set_bit(ST_RXING, &portp->state);
2073 tty_schedule_flip(tty);
2074 tty_kref_put(tty);
2077 /*****************************************************************************/
2080 * Set up and carry out any delayed commands. There is only a small set
2081 * of slave commands that can be done "off-level". So it is not too
2082 * difficult to deal with them here.
2085 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2087 int cmd;
2089 if (test_bit(ST_DOSIGS, &portp->state)) {
2090 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2091 test_bit(ST_DOFLUSHRX, &portp->state))
2092 cmd = A_SETSIGNALSF;
2093 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2094 cmd = A_SETSIGNALSFTX;
2095 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2096 cmd = A_SETSIGNALSFRX;
2097 else
2098 cmd = A_SETSIGNALS;
2099 clear_bit(ST_DOFLUSHTX, &portp->state);
2100 clear_bit(ST_DOFLUSHRX, &portp->state);
2101 clear_bit(ST_DOSIGS, &portp->state);
2102 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2103 sizeof(asysigs_t));
2104 writel(0, &cp->status);
2105 writel(cmd, &cp->cmd);
2106 set_bit(ST_CMDING, &portp->state);
2107 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2108 test_bit(ST_DOFLUSHRX, &portp->state)) {
2109 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2110 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2111 clear_bit(ST_DOFLUSHTX, &portp->state);
2112 clear_bit(ST_DOFLUSHRX, &portp->state);
2113 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2114 writel(0, &cp->status);
2115 writel(A_FLUSH, &cp->cmd);
2116 set_bit(ST_CMDING, &portp->state);
2120 /*****************************************************************************/
2123 * Host command service checking. This handles commands or messages
2124 * coming from the slave to the host. Must have board shared memory
2125 * enabled and interrupts off when called. Notice that by servicing the
2126 * read data last we don't need to change the shared memory pointer
2127 * during processing (which is a slow IO operation).
2128 * Return value indicates if this port is still awaiting actions from
2129 * the slave (like open, command, or even TX data being sent). If 0
2130 * then port is still busy, otherwise no longer busy.
2133 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2135 cdkasy_t __iomem *ap;
2136 cdkctrl_t __iomem *cp;
2137 struct tty_struct *tty;
2138 asynotify_t nt;
2139 unsigned long oldsigs;
2140 int rc, donerx;
2142 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2143 cp = &ap->ctrl;
2146 * Check if we are waiting for an open completion message.
2148 if (test_bit(ST_OPENING, &portp->state)) {
2149 rc = readl(&cp->openarg);
2150 if (readb(&cp->open) == 0 && rc != 0) {
2151 if (rc > 0)
2152 rc--;
2153 writel(0, &cp->openarg);
2154 portp->rc = rc;
2155 clear_bit(ST_OPENING, &portp->state);
2156 wake_up_interruptible(&portp->raw_wait);
2161 * Check if we are waiting for a close completion message.
2163 if (test_bit(ST_CLOSING, &portp->state)) {
2164 rc = (int) readl(&cp->closearg);
2165 if (readb(&cp->close) == 0 && rc != 0) {
2166 if (rc > 0)
2167 rc--;
2168 writel(0, &cp->closearg);
2169 portp->rc = rc;
2170 clear_bit(ST_CLOSING, &portp->state);
2171 wake_up_interruptible(&portp->raw_wait);
2176 * Check if we are waiting for a command completion message. We may
2177 * need to copy out the command results associated with this command.
2179 if (test_bit(ST_CMDING, &portp->state)) {
2180 rc = readl(&cp->status);
2181 if (readl(&cp->cmd) == 0 && rc != 0) {
2182 if (rc > 0)
2183 rc--;
2184 if (portp->argp != NULL) {
2185 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2186 portp->argsize);
2187 portp->argp = NULL;
2189 writel(0, &cp->status);
2190 portp->rc = rc;
2191 clear_bit(ST_CMDING, &portp->state);
2192 stli_dodelaycmd(portp, cp);
2193 wake_up_interruptible(&portp->raw_wait);
2198 * Check for any notification messages ready. This includes lots of
2199 * different types of events - RX chars ready, RX break received,
2200 * TX data low or empty in the slave, modem signals changed state.
2202 donerx = 0;
2204 if (ap->notify) {
2205 nt = ap->changed;
2206 ap->notify = 0;
2207 tty = tty_port_tty_get(&portp->port);
2209 if (nt.signal & SG_DCD) {
2210 oldsigs = portp->sigs;
2211 portp->sigs = stli_mktiocm(nt.sigvalue);
2212 clear_bit(ST_GETSIGS, &portp->state);
2213 if ((portp->sigs & TIOCM_CD) &&
2214 ((oldsigs & TIOCM_CD) == 0))
2215 wake_up_interruptible(&portp->port.open_wait);
2216 if ((oldsigs & TIOCM_CD) &&
2217 ((portp->sigs & TIOCM_CD) == 0)) {
2218 if (portp->port.flags & ASYNC_CHECK_CD) {
2219 if (tty)
2220 tty_hangup(tty);
2225 if (nt.data & DT_TXEMPTY)
2226 clear_bit(ST_TXBUSY, &portp->state);
2227 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2228 if (tty != NULL) {
2229 tty_wakeup(tty);
2230 EBRDENABLE(brdp);
2234 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2235 if (tty != NULL) {
2236 tty_insert_flip_char(tty, 0, TTY_BREAK);
2237 if (portp->port.flags & ASYNC_SAK) {
2238 do_SAK(tty);
2239 EBRDENABLE(brdp);
2241 tty_schedule_flip(tty);
2244 tty_kref_put(tty);
2246 if (nt.data & DT_RXBUSY) {
2247 donerx++;
2248 stli_read(brdp, portp);
2253 * It might seem odd that we are checking for more RX chars here.
2254 * But, we need to handle the case where the tty buffer was previously
2255 * filled, but we had more characters to pass up. The slave will not
2256 * send any more RX notify messages until the RX buffer has been emptied.
2257 * But it will leave the service bits on (since the buffer is not empty).
2258 * So from here we can try to process more RX chars.
2260 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2261 clear_bit(ST_RXING, &portp->state);
2262 stli_read(brdp, portp);
2265 return((test_bit(ST_OPENING, &portp->state) ||
2266 test_bit(ST_CLOSING, &portp->state) ||
2267 test_bit(ST_CMDING, &portp->state) ||
2268 test_bit(ST_TXBUSY, &portp->state) ||
2269 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2272 /*****************************************************************************/
2275 * Service all ports on a particular board. Assumes that the boards
2276 * shared memory is enabled, and that the page pointer is pointed
2277 * at the cdk header structure.
2280 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2282 struct stliport *portp;
2283 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2284 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2285 unsigned char __iomem *slavep;
2286 int bitpos, bitat, bitsize;
2287 int channr, nrdevs, slavebitchange;
2289 bitsize = brdp->bitsize;
2290 nrdevs = brdp->nrdevs;
2293 * Check if slave wants any service. Basically we try to do as
2294 * little work as possible here. There are 2 levels of service
2295 * bits. So if there is nothing to do we bail early. We check
2296 * 8 service bits at a time in the inner loop, so we can bypass
2297 * the lot if none of them want service.
2299 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2300 bitsize);
2302 memset(&slavebits[0], 0, bitsize);
2303 slavebitchange = 0;
2305 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2306 if (hostbits[bitpos] == 0)
2307 continue;
2308 channr = bitpos * 8;
2309 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2310 if (hostbits[bitpos] & bitat) {
2311 portp = brdp->ports[(channr - 1)];
2312 if (stli_hostcmd(brdp, portp)) {
2313 slavebitchange++;
2314 slavebits[bitpos] |= bitat;
2321 * If any of the ports are no longer busy then update them in the
2322 * slave request bits. We need to do this after, since a host port
2323 * service may initiate more slave requests.
2325 if (slavebitchange) {
2326 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2327 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2328 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2329 if (readb(slavebits + bitpos))
2330 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2335 /*****************************************************************************/
2338 * Driver poll routine. This routine polls the boards in use and passes
2339 * messages back up to host when necessary. This is actually very
2340 * CPU efficient, since we will always have the kernel poll clock, it
2341 * adds only a few cycles when idle (since board service can be
2342 * determined very easily), but when loaded generates no interrupts
2343 * (with their expensive associated context change).
2346 static void stli_poll(unsigned long arg)
2348 cdkhdr_t __iomem *hdrp;
2349 struct stlibrd *brdp;
2350 unsigned int brdnr;
2352 mod_timer(&stli_timerlist, STLI_TIMEOUT);
2355 * Check each board and do any servicing required.
2357 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2358 brdp = stli_brds[brdnr];
2359 if (brdp == NULL)
2360 continue;
2361 if (!test_bit(BST_STARTED, &brdp->state))
2362 continue;
2364 spin_lock(&brd_lock);
2365 EBRDENABLE(brdp);
2366 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2367 if (readb(&hdrp->hostreq))
2368 stli_brdpoll(brdp, hdrp);
2369 EBRDDISABLE(brdp);
2370 spin_unlock(&brd_lock);
2374 /*****************************************************************************/
2377 * Translate the termios settings into the port setting structure of
2378 * the slave.
2381 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp,
2382 asyport_t *pp, struct ktermios *tiosp)
2384 memset(pp, 0, sizeof(asyport_t));
2387 * Start of by setting the baud, char size, parity and stop bit info.
2389 pp->baudout = tty_get_baud_rate(tty);
2390 if ((tiosp->c_cflag & CBAUD) == B38400) {
2391 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2392 pp->baudout = 57600;
2393 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2394 pp->baudout = 115200;
2395 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2396 pp->baudout = 230400;
2397 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2398 pp->baudout = 460800;
2399 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2400 pp->baudout = (portp->baud_base / portp->custom_divisor);
2402 if (pp->baudout > STL_MAXBAUD)
2403 pp->baudout = STL_MAXBAUD;
2404 pp->baudin = pp->baudout;
2406 switch (tiosp->c_cflag & CSIZE) {
2407 case CS5:
2408 pp->csize = 5;
2409 break;
2410 case CS6:
2411 pp->csize = 6;
2412 break;
2413 case CS7:
2414 pp->csize = 7;
2415 break;
2416 default:
2417 pp->csize = 8;
2418 break;
2421 if (tiosp->c_cflag & CSTOPB)
2422 pp->stopbs = PT_STOP2;
2423 else
2424 pp->stopbs = PT_STOP1;
2426 if (tiosp->c_cflag & PARENB) {
2427 if (tiosp->c_cflag & PARODD)
2428 pp->parity = PT_ODDPARITY;
2429 else
2430 pp->parity = PT_EVENPARITY;
2431 } else {
2432 pp->parity = PT_NOPARITY;
2436 * Set up any flow control options enabled.
2438 if (tiosp->c_iflag & IXON) {
2439 pp->flow |= F_IXON;
2440 if (tiosp->c_iflag & IXANY)
2441 pp->flow |= F_IXANY;
2443 if (tiosp->c_cflag & CRTSCTS)
2444 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2446 pp->startin = tiosp->c_cc[VSTART];
2447 pp->stopin = tiosp->c_cc[VSTOP];
2448 pp->startout = tiosp->c_cc[VSTART];
2449 pp->stopout = tiosp->c_cc[VSTOP];
2452 * Set up the RX char marking mask with those RX error types we must
2453 * catch. We can get the slave to help us out a little here, it will
2454 * ignore parity errors and breaks for us, and mark parity errors in
2455 * the data stream.
2457 if (tiosp->c_iflag & IGNPAR)
2458 pp->iflag |= FI_IGNRXERRS;
2459 if (tiosp->c_iflag & IGNBRK)
2460 pp->iflag |= FI_IGNBREAK;
2462 portp->rxmarkmsk = 0;
2463 if (tiosp->c_iflag & (INPCK | PARMRK))
2464 pp->iflag |= FI_1MARKRXERRS;
2465 if (tiosp->c_iflag & BRKINT)
2466 portp->rxmarkmsk |= BRKINT;
2469 * Set up clocal processing as required.
2471 if (tiosp->c_cflag & CLOCAL)
2472 portp->port.flags &= ~ASYNC_CHECK_CD;
2473 else
2474 portp->port.flags |= ASYNC_CHECK_CD;
2477 * Transfer any persistent flags into the asyport structure.
2479 pp->pflag = (portp->pflag & 0xffff);
2480 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2481 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2482 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2485 /*****************************************************************************/
2488 * Construct a slave signals structure for setting the DTR and RTS
2489 * signals as specified.
2492 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2494 memset(sp, 0, sizeof(asysigs_t));
2495 if (dtr >= 0) {
2496 sp->signal |= SG_DTR;
2497 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2499 if (rts >= 0) {
2500 sp->signal |= SG_RTS;
2501 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2505 /*****************************************************************************/
2508 * Convert the signals returned from the slave into a local TIOCM type
2509 * signals value. We keep them locally in TIOCM format.
2512 static long stli_mktiocm(unsigned long sigvalue)
2514 long tiocm = 0;
2515 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2516 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2517 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2518 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2519 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2520 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2521 return(tiocm);
2524 /*****************************************************************************/
2527 * All panels and ports actually attached have been worked out. All
2528 * we need to do here is set up the appropriate per port data structures.
2531 static int stli_initports(struct stlibrd *brdp)
2533 struct stliport *portp;
2534 unsigned int i, panelnr, panelport;
2536 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2537 portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2538 if (!portp) {
2539 printk(KERN_WARNING "istallion: failed to allocate port structure\n");
2540 continue;
2542 tty_port_init(&portp->port);
2543 portp->port.ops = &stli_port_ops;
2544 portp->magic = STLI_PORTMAGIC;
2545 portp->portnr = i;
2546 portp->brdnr = brdp->brdnr;
2547 portp->panelnr = panelnr;
2548 portp->baud_base = STL_BAUDBASE;
2549 portp->port.close_delay = STL_CLOSEDELAY;
2550 portp->closing_wait = 30 * HZ;
2551 init_waitqueue_head(&portp->port.open_wait);
2552 init_waitqueue_head(&portp->port.close_wait);
2553 init_waitqueue_head(&portp->raw_wait);
2554 panelport++;
2555 if (panelport >= brdp->panels[panelnr]) {
2556 panelport = 0;
2557 panelnr++;
2559 brdp->ports[i] = portp;
2562 return 0;
2565 /*****************************************************************************/
2568 * All the following routines are board specific hardware operations.
2571 static void stli_ecpinit(struct stlibrd *brdp)
2573 unsigned long memconf;
2575 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2576 udelay(10);
2577 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2578 udelay(100);
2580 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2581 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2584 /*****************************************************************************/
2586 static void stli_ecpenable(struct stlibrd *brdp)
2588 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2591 /*****************************************************************************/
2593 static void stli_ecpdisable(struct stlibrd *brdp)
2595 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2598 /*****************************************************************************/
2600 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2602 void __iomem *ptr;
2603 unsigned char val;
2605 if (offset > brdp->memsize) {
2606 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2607 "range at line=%d(%d), brd=%d\n",
2608 (int) offset, line, __LINE__, brdp->brdnr);
2609 ptr = NULL;
2610 val = 0;
2611 } else {
2612 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2613 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2615 outb(val, (brdp->iobase + ECP_ATMEMPR));
2616 return(ptr);
2619 /*****************************************************************************/
2621 static void stli_ecpreset(struct stlibrd *brdp)
2623 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2624 udelay(10);
2625 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2626 udelay(500);
2629 /*****************************************************************************/
2631 static void stli_ecpintr(struct stlibrd *brdp)
2633 outb(0x1, brdp->iobase);
2636 /*****************************************************************************/
2639 * The following set of functions act on ECP EISA boards.
2642 static void stli_ecpeiinit(struct stlibrd *brdp)
2644 unsigned long memconf;
2646 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2647 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2648 udelay(10);
2649 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2650 udelay(500);
2652 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2653 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2654 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2655 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2658 /*****************************************************************************/
2660 static void stli_ecpeienable(struct stlibrd *brdp)
2662 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2665 /*****************************************************************************/
2667 static void stli_ecpeidisable(struct stlibrd *brdp)
2669 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2672 /*****************************************************************************/
2674 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2676 void __iomem *ptr;
2677 unsigned char val;
2679 if (offset > brdp->memsize) {
2680 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2681 "range at line=%d(%d), brd=%d\n",
2682 (int) offset, line, __LINE__, brdp->brdnr);
2683 ptr = NULL;
2684 val = 0;
2685 } else {
2686 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2687 if (offset < ECP_EIPAGESIZE)
2688 val = ECP_EIENABLE;
2689 else
2690 val = ECP_EIENABLE | 0x40;
2692 outb(val, (brdp->iobase + ECP_EICONFR));
2693 return(ptr);
2696 /*****************************************************************************/
2698 static void stli_ecpeireset(struct stlibrd *brdp)
2700 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2701 udelay(10);
2702 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2703 udelay(500);
2706 /*****************************************************************************/
2709 * The following set of functions act on ECP MCA boards.
2712 static void stli_ecpmcenable(struct stlibrd *brdp)
2714 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2717 /*****************************************************************************/
2719 static void stli_ecpmcdisable(struct stlibrd *brdp)
2721 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2724 /*****************************************************************************/
2726 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2728 void __iomem *ptr;
2729 unsigned char val;
2731 if (offset > brdp->memsize) {
2732 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2733 "range at line=%d(%d), brd=%d\n",
2734 (int) offset, line, __LINE__, brdp->brdnr);
2735 ptr = NULL;
2736 val = 0;
2737 } else {
2738 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2739 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2741 outb(val, (brdp->iobase + ECP_MCCONFR));
2742 return(ptr);
2745 /*****************************************************************************/
2747 static void stli_ecpmcreset(struct stlibrd *brdp)
2749 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2750 udelay(10);
2751 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2752 udelay(500);
2755 /*****************************************************************************/
2758 * The following set of functions act on ECP PCI boards.
2761 static void stli_ecppciinit(struct stlibrd *brdp)
2763 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2764 udelay(10);
2765 outb(0, (brdp->iobase + ECP_PCICONFR));
2766 udelay(500);
2769 /*****************************************************************************/
2771 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2773 void __iomem *ptr;
2774 unsigned char val;
2776 if (offset > brdp->memsize) {
2777 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2778 "range at line=%d(%d), board=%d\n",
2779 (int) offset, line, __LINE__, brdp->brdnr);
2780 ptr = NULL;
2781 val = 0;
2782 } else {
2783 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2784 val = (offset / ECP_PCIPAGESIZE) << 1;
2786 outb(val, (brdp->iobase + ECP_PCICONFR));
2787 return(ptr);
2790 /*****************************************************************************/
2792 static void stli_ecppcireset(struct stlibrd *brdp)
2794 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2795 udelay(10);
2796 outb(0, (brdp->iobase + ECP_PCICONFR));
2797 udelay(500);
2800 /*****************************************************************************/
2803 * The following routines act on ONboards.
2806 static void stli_onbinit(struct stlibrd *brdp)
2808 unsigned long memconf;
2810 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2811 udelay(10);
2812 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2813 mdelay(1000);
2815 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
2816 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
2817 outb(0x1, brdp->iobase);
2818 mdelay(1);
2821 /*****************************************************************************/
2823 static void stli_onbenable(struct stlibrd *brdp)
2825 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
2828 /*****************************************************************************/
2830 static void stli_onbdisable(struct stlibrd *brdp)
2832 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
2835 /*****************************************************************************/
2837 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2839 void __iomem *ptr;
2841 if (offset > brdp->memsize) {
2842 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2843 "range at line=%d(%d), brd=%d\n",
2844 (int) offset, line, __LINE__, brdp->brdnr);
2845 ptr = NULL;
2846 } else {
2847 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
2849 return(ptr);
2852 /*****************************************************************************/
2854 static void stli_onbreset(struct stlibrd *brdp)
2856 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2857 udelay(10);
2858 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2859 mdelay(1000);
2862 /*****************************************************************************/
2865 * The following routines act on ONboard EISA.
2868 static void stli_onbeinit(struct stlibrd *brdp)
2870 unsigned long memconf;
2872 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
2873 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2874 udelay(10);
2875 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2876 mdelay(1000);
2878 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
2879 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
2880 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
2881 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
2882 outb(0x1, brdp->iobase);
2883 mdelay(1);
2886 /*****************************************************************************/
2888 static void stli_onbeenable(struct stlibrd *brdp)
2890 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
2893 /*****************************************************************************/
2895 static void stli_onbedisable(struct stlibrd *brdp)
2897 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2900 /*****************************************************************************/
2902 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2904 void __iomem *ptr;
2905 unsigned char val;
2907 if (offset > brdp->memsize) {
2908 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2909 "range at line=%d(%d), brd=%d\n",
2910 (int) offset, line, __LINE__, brdp->brdnr);
2911 ptr = NULL;
2912 val = 0;
2913 } else {
2914 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
2915 if (offset < ONB_EIPAGESIZE)
2916 val = ONB_EIENABLE;
2917 else
2918 val = ONB_EIENABLE | 0x40;
2920 outb(val, (brdp->iobase + ONB_EICONFR));
2921 return(ptr);
2924 /*****************************************************************************/
2926 static void stli_onbereset(struct stlibrd *brdp)
2928 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2929 udelay(10);
2930 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2931 mdelay(1000);
2934 /*****************************************************************************/
2937 * The following routines act on Brumby boards.
2940 static void stli_bbyinit(struct stlibrd *brdp)
2942 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2943 udelay(10);
2944 outb(0, (brdp->iobase + BBY_ATCONFR));
2945 mdelay(1000);
2946 outb(0x1, brdp->iobase);
2947 mdelay(1);
2950 /*****************************************************************************/
2952 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2954 void __iomem *ptr;
2955 unsigned char val;
2957 BUG_ON(offset > brdp->memsize);
2959 ptr = brdp->membase + (offset % BBY_PAGESIZE);
2960 val = (unsigned char) (offset / BBY_PAGESIZE);
2961 outb(val, (brdp->iobase + BBY_ATCONFR));
2962 return(ptr);
2965 /*****************************************************************************/
2967 static void stli_bbyreset(struct stlibrd *brdp)
2969 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2970 udelay(10);
2971 outb(0, (brdp->iobase + BBY_ATCONFR));
2972 mdelay(1000);
2975 /*****************************************************************************/
2978 * The following routines act on original old Stallion boards.
2981 static void stli_stalinit(struct stlibrd *brdp)
2983 outb(0x1, brdp->iobase);
2984 mdelay(1000);
2987 /*****************************************************************************/
2989 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2991 BUG_ON(offset > brdp->memsize);
2992 return brdp->membase + (offset % STAL_PAGESIZE);
2995 /*****************************************************************************/
2997 static void stli_stalreset(struct stlibrd *brdp)
2999 u32 __iomem *vecp;
3001 vecp = (u32 __iomem *) (brdp->membase + 0x30);
3002 writel(0xffff0000, vecp);
3003 outb(0, brdp->iobase);
3004 mdelay(1000);
3007 /*****************************************************************************/
3010 * Try to find an ECP board and initialize it. This handles only ECP
3011 * board types.
3014 static int stli_initecp(struct stlibrd *brdp)
3016 cdkecpsig_t sig;
3017 cdkecpsig_t __iomem *sigsp;
3018 unsigned int status, nxtid;
3019 char *name;
3020 int retval, panelnr, nrports;
3022 if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3023 retval = -ENODEV;
3024 goto err;
3027 brdp->iosize = ECP_IOSIZE;
3029 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3030 retval = -EIO;
3031 goto err;
3035 * Based on the specific board type setup the common vars to access
3036 * and enable shared memory. Set all board specific information now
3037 * as well.
3039 switch (brdp->brdtype) {
3040 case BRD_ECP:
3041 brdp->memsize = ECP_MEMSIZE;
3042 brdp->pagesize = ECP_ATPAGESIZE;
3043 brdp->init = stli_ecpinit;
3044 brdp->enable = stli_ecpenable;
3045 brdp->reenable = stli_ecpenable;
3046 brdp->disable = stli_ecpdisable;
3047 brdp->getmemptr = stli_ecpgetmemptr;
3048 brdp->intr = stli_ecpintr;
3049 brdp->reset = stli_ecpreset;
3050 name = "serial(EC8/64)";
3051 break;
3053 case BRD_ECPE:
3054 brdp->memsize = ECP_MEMSIZE;
3055 brdp->pagesize = ECP_EIPAGESIZE;
3056 brdp->init = stli_ecpeiinit;
3057 brdp->enable = stli_ecpeienable;
3058 brdp->reenable = stli_ecpeienable;
3059 brdp->disable = stli_ecpeidisable;
3060 brdp->getmemptr = stli_ecpeigetmemptr;
3061 brdp->intr = stli_ecpintr;
3062 brdp->reset = stli_ecpeireset;
3063 name = "serial(EC8/64-EI)";
3064 break;
3066 case BRD_ECPMC:
3067 brdp->memsize = ECP_MEMSIZE;
3068 brdp->pagesize = ECP_MCPAGESIZE;
3069 brdp->init = NULL;
3070 brdp->enable = stli_ecpmcenable;
3071 brdp->reenable = stli_ecpmcenable;
3072 brdp->disable = stli_ecpmcdisable;
3073 brdp->getmemptr = stli_ecpmcgetmemptr;
3074 brdp->intr = stli_ecpintr;
3075 brdp->reset = stli_ecpmcreset;
3076 name = "serial(EC8/64-MCA)";
3077 break;
3079 case BRD_ECPPCI:
3080 brdp->memsize = ECP_PCIMEMSIZE;
3081 brdp->pagesize = ECP_PCIPAGESIZE;
3082 brdp->init = stli_ecppciinit;
3083 brdp->enable = NULL;
3084 brdp->reenable = NULL;
3085 brdp->disable = NULL;
3086 brdp->getmemptr = stli_ecppcigetmemptr;
3087 brdp->intr = stli_ecpintr;
3088 brdp->reset = stli_ecppcireset;
3089 name = "serial(EC/RA-PCI)";
3090 break;
3092 default:
3093 retval = -EINVAL;
3094 goto err_reg;
3098 * The per-board operations structure is all set up, so now let's go
3099 * and get the board operational. Firstly initialize board configuration
3100 * registers. Set the memory mapping info so we can get at the boards
3101 * shared memory.
3103 EBRDINIT(brdp);
3105 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3106 if (brdp->membase == NULL) {
3107 retval = -ENOMEM;
3108 goto err_reg;
3112 * Now that all specific code is set up, enable the shared memory and
3113 * look for the a signature area that will tell us exactly what board
3114 * this is, and what it is connected to it.
3116 EBRDENABLE(brdp);
3117 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3118 memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3119 EBRDDISABLE(brdp);
3121 if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3122 retval = -ENODEV;
3123 goto err_unmap;
3127 * Scan through the signature looking at the panels connected to the
3128 * board. Calculate the total number of ports as we go.
3130 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3131 status = sig.panelid[nxtid];
3132 if ((status & ECH_PNLIDMASK) != nxtid)
3133 break;
3135 brdp->panelids[panelnr] = status;
3136 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3137 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3138 nxtid++;
3139 brdp->panels[panelnr] = nrports;
3140 brdp->nrports += nrports;
3141 nxtid++;
3142 brdp->nrpanels++;
3146 set_bit(BST_FOUND, &brdp->state);
3147 return 0;
3148 err_unmap:
3149 iounmap(brdp->membase);
3150 brdp->membase = NULL;
3151 err_reg:
3152 release_region(brdp->iobase, brdp->iosize);
3153 err:
3154 return retval;
3157 /*****************************************************************************/
3160 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3161 * This handles only these board types.
3164 static int stli_initonb(struct stlibrd *brdp)
3166 cdkonbsig_t sig;
3167 cdkonbsig_t __iomem *sigsp;
3168 char *name;
3169 int i, retval;
3172 * Do a basic sanity check on the IO and memory addresses.
3174 if (brdp->iobase == 0 || brdp->memaddr == 0) {
3175 retval = -ENODEV;
3176 goto err;
3179 brdp->iosize = ONB_IOSIZE;
3181 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3182 retval = -EIO;
3183 goto err;
3187 * Based on the specific board type setup the common vars to access
3188 * and enable shared memory. Set all board specific information now
3189 * as well.
3191 switch (brdp->brdtype) {
3192 case BRD_ONBOARD:
3193 case BRD_ONBOARD2:
3194 brdp->memsize = ONB_MEMSIZE;
3195 brdp->pagesize = ONB_ATPAGESIZE;
3196 brdp->init = stli_onbinit;
3197 brdp->enable = stli_onbenable;
3198 brdp->reenable = stli_onbenable;
3199 brdp->disable = stli_onbdisable;
3200 brdp->getmemptr = stli_onbgetmemptr;
3201 brdp->intr = stli_ecpintr;
3202 brdp->reset = stli_onbreset;
3203 if (brdp->memaddr > 0x100000)
3204 brdp->enabval = ONB_MEMENABHI;
3205 else
3206 brdp->enabval = ONB_MEMENABLO;
3207 name = "serial(ONBoard)";
3208 break;
3210 case BRD_ONBOARDE:
3211 brdp->memsize = ONB_EIMEMSIZE;
3212 brdp->pagesize = ONB_EIPAGESIZE;
3213 brdp->init = stli_onbeinit;
3214 brdp->enable = stli_onbeenable;
3215 brdp->reenable = stli_onbeenable;
3216 brdp->disable = stli_onbedisable;
3217 brdp->getmemptr = stli_onbegetmemptr;
3218 brdp->intr = stli_ecpintr;
3219 brdp->reset = stli_onbereset;
3220 name = "serial(ONBoard/E)";
3221 break;
3223 case BRD_BRUMBY4:
3224 brdp->memsize = BBY_MEMSIZE;
3225 brdp->pagesize = BBY_PAGESIZE;
3226 brdp->init = stli_bbyinit;
3227 brdp->enable = NULL;
3228 brdp->reenable = NULL;
3229 brdp->disable = NULL;
3230 brdp->getmemptr = stli_bbygetmemptr;
3231 brdp->intr = stli_ecpintr;
3232 brdp->reset = stli_bbyreset;
3233 name = "serial(Brumby)";
3234 break;
3236 case BRD_STALLION:
3237 brdp->memsize = STAL_MEMSIZE;
3238 brdp->pagesize = STAL_PAGESIZE;
3239 brdp->init = stli_stalinit;
3240 brdp->enable = NULL;
3241 brdp->reenable = NULL;
3242 brdp->disable = NULL;
3243 brdp->getmemptr = stli_stalgetmemptr;
3244 brdp->intr = stli_ecpintr;
3245 brdp->reset = stli_stalreset;
3246 name = "serial(Stallion)";
3247 break;
3249 default:
3250 retval = -EINVAL;
3251 goto err_reg;
3255 * The per-board operations structure is all set up, so now let's go
3256 * and get the board operational. Firstly initialize board configuration
3257 * registers. Set the memory mapping info so we can get at the boards
3258 * shared memory.
3260 EBRDINIT(brdp);
3262 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3263 if (brdp->membase == NULL) {
3264 retval = -ENOMEM;
3265 goto err_reg;
3269 * Now that all specific code is set up, enable the shared memory and
3270 * look for the a signature area that will tell us exactly what board
3271 * this is, and how many ports.
3273 EBRDENABLE(brdp);
3274 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3275 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3276 EBRDDISABLE(brdp);
3278 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3279 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3280 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3281 sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3282 retval = -ENODEV;
3283 goto err_unmap;
3287 * Scan through the signature alive mask and calculate how many ports
3288 * there are on this board.
3290 brdp->nrpanels = 1;
3291 if (sig.amask1) {
3292 brdp->nrports = 32;
3293 } else {
3294 for (i = 0; (i < 16); i++) {
3295 if (((sig.amask0 << i) & 0x8000) == 0)
3296 break;
3298 brdp->nrports = i;
3300 brdp->panels[0] = brdp->nrports;
3303 set_bit(BST_FOUND, &brdp->state);
3304 return 0;
3305 err_unmap:
3306 iounmap(brdp->membase);
3307 brdp->membase = NULL;
3308 err_reg:
3309 release_region(brdp->iobase, brdp->iosize);
3310 err:
3311 return retval;
3314 /*****************************************************************************/
3317 * Start up a running board. This routine is only called after the
3318 * code has been down loaded to the board and is operational. It will
3319 * read in the memory map, and get the show on the road...
3322 static int stli_startbrd(struct stlibrd *brdp)
3324 cdkhdr_t __iomem *hdrp;
3325 cdkmem_t __iomem *memp;
3326 cdkasy_t __iomem *ap;
3327 unsigned long flags;
3328 unsigned int portnr, nrdevs, i;
3329 struct stliport *portp;
3330 int rc = 0;
3331 u32 memoff;
3333 spin_lock_irqsave(&brd_lock, flags);
3334 EBRDENABLE(brdp);
3335 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3336 nrdevs = hdrp->nrdevs;
3338 #if 0
3339 printk("%s(%d): CDK version %d.%d.%d --> "
3340 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3341 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3342 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3343 readl(&hdrp->slavep));
3344 #endif
3346 if (nrdevs < (brdp->nrports + 1)) {
3347 printk(KERN_ERR "istallion: slave failed to allocate memory for "
3348 "all devices, devices=%d\n", nrdevs);
3349 brdp->nrports = nrdevs - 1;
3351 brdp->nrdevs = nrdevs;
3352 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3353 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3354 brdp->bitsize = (nrdevs + 7) / 8;
3355 memoff = readl(&hdrp->memp);
3356 if (memoff > brdp->memsize) {
3357 printk(KERN_ERR "istallion: corrupted shared memory region?\n");
3358 rc = -EIO;
3359 goto stli_donestartup;
3361 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3362 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3363 printk(KERN_ERR "istallion: no slave control device found\n");
3364 goto stli_donestartup;
3366 memp++;
3369 * Cycle through memory allocation of each port. We are guaranteed to
3370 * have all ports inside the first page of slave window, so no need to
3371 * change pages while reading memory map.
3373 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3374 if (readw(&memp->dtype) != TYP_ASYNC)
3375 break;
3376 portp = brdp->ports[portnr];
3377 if (portp == NULL)
3378 break;
3379 portp->devnr = i;
3380 portp->addr = readl(&memp->offset);
3381 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3382 portp->portidx = (unsigned char) (i / 8);
3383 portp->portbit = (unsigned char) (0x1 << (i % 8));
3386 writeb(0xff, &hdrp->slavereq);
3389 * For each port setup a local copy of the RX and TX buffer offsets
3390 * and sizes. We do this separate from the above, because we need to
3391 * move the shared memory page...
3393 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3394 portp = brdp->ports[portnr];
3395 if (portp == NULL)
3396 break;
3397 if (portp->addr == 0)
3398 break;
3399 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3400 if (ap != NULL) {
3401 portp->rxsize = readw(&ap->rxq.size);
3402 portp->txsize = readw(&ap->txq.size);
3403 portp->rxoffset = readl(&ap->rxq.offset);
3404 portp->txoffset = readl(&ap->txq.offset);
3408 stli_donestartup:
3409 EBRDDISABLE(brdp);
3410 spin_unlock_irqrestore(&brd_lock, flags);
3412 if (rc == 0)
3413 set_bit(BST_STARTED, &brdp->state);
3415 if (! stli_timeron) {
3416 stli_timeron++;
3417 mod_timer(&stli_timerlist, STLI_TIMEOUT);
3420 return rc;
3423 /*****************************************************************************/
3426 * Probe and initialize the specified board.
3429 static int __devinit stli_brdinit(struct stlibrd *brdp)
3431 int retval;
3433 switch (brdp->brdtype) {
3434 case BRD_ECP:
3435 case BRD_ECPE:
3436 case BRD_ECPMC:
3437 case BRD_ECPPCI:
3438 retval = stli_initecp(brdp);
3439 break;
3440 case BRD_ONBOARD:
3441 case BRD_ONBOARDE:
3442 case BRD_ONBOARD2:
3443 case BRD_BRUMBY4:
3444 case BRD_STALLION:
3445 retval = stli_initonb(brdp);
3446 break;
3447 default:
3448 printk(KERN_ERR "istallion: board=%d is unknown board "
3449 "type=%d\n", brdp->brdnr, brdp->brdtype);
3450 retval = -ENODEV;
3453 if (retval)
3454 return retval;
3456 stli_initports(brdp);
3457 printk(KERN_INFO "istallion: %s found, board=%d io=%x mem=%x "
3458 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3459 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3460 brdp->nrpanels, brdp->nrports);
3461 return 0;
3464 #if STLI_EISAPROBE != 0
3465 /*****************************************************************************/
3468 * Probe around trying to find where the EISA boards shared memory
3469 * might be. This is a bit if hack, but it is the best we can do.
3472 static int stli_eisamemprobe(struct stlibrd *brdp)
3474 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3475 cdkonbsig_t onbsig, __iomem *onbsigp;
3476 int i, foundit;
3479 * First up we reset the board, to get it into a known state. There
3480 * is only 2 board types here we need to worry about. Don;t use the
3481 * standard board init routine here, it programs up the shared
3482 * memory address, and we don't know it yet...
3484 if (brdp->brdtype == BRD_ECPE) {
3485 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3486 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3487 udelay(10);
3488 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3489 udelay(500);
3490 stli_ecpeienable(brdp);
3491 } else if (brdp->brdtype == BRD_ONBOARDE) {
3492 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3493 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3494 udelay(10);
3495 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3496 mdelay(100);
3497 outb(0x1, brdp->iobase);
3498 mdelay(1);
3499 stli_onbeenable(brdp);
3500 } else {
3501 return -ENODEV;
3504 foundit = 0;
3505 brdp->memsize = ECP_MEMSIZE;
3508 * Board shared memory is enabled, so now we have a poke around and
3509 * see if we can find it.
3511 for (i = 0; (i < stli_eisamempsize); i++) {
3512 brdp->memaddr = stli_eisamemprobeaddrs[i];
3513 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3514 if (brdp->membase == NULL)
3515 continue;
3517 if (brdp->brdtype == BRD_ECPE) {
3518 ecpsigp = stli_ecpeigetmemptr(brdp,
3519 CDK_SIGADDR, __LINE__);
3520 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3521 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3522 foundit = 1;
3523 } else {
3524 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3525 CDK_SIGADDR, __LINE__);
3526 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3527 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3528 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3529 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3530 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3531 foundit = 1;
3534 iounmap(brdp->membase);
3535 if (foundit)
3536 break;
3540 * Regardless of whether we found the shared memory or not we must
3541 * disable the region. After that return success or failure.
3543 if (brdp->brdtype == BRD_ECPE)
3544 stli_ecpeidisable(brdp);
3545 else
3546 stli_onbedisable(brdp);
3548 if (! foundit) {
3549 brdp->memaddr = 0;
3550 brdp->membase = NULL;
3551 printk(KERN_ERR "istallion: failed to probe shared memory "
3552 "region for %s in EISA slot=%d\n",
3553 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3554 return -ENODEV;
3556 return 0;
3558 #endif
3560 static int stli_getbrdnr(void)
3562 unsigned int i;
3564 for (i = 0; i < STL_MAXBRDS; i++) {
3565 if (!stli_brds[i]) {
3566 if (i >= stli_nrbrds)
3567 stli_nrbrds = i + 1;
3568 return i;
3571 return -1;
3574 #if STLI_EISAPROBE != 0
3575 /*****************************************************************************/
3578 * Probe around and try to find any EISA boards in system. The biggest
3579 * problem here is finding out what memory address is associated with
3580 * an EISA board after it is found. The registers of the ECPE and
3581 * ONboardE are not readable - so we can't read them from there. We
3582 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3583 * actually have any way to find out the real value. The best we can
3584 * do is go probing around in the usual places hoping we can find it.
3587 static int __init stli_findeisabrds(void)
3589 struct stlibrd *brdp;
3590 unsigned int iobase, eid, i;
3591 int brdnr, found = 0;
3594 * Firstly check if this is an EISA system. If this is not an EISA system then
3595 * don't bother going any further!
3597 if (EISA_bus)
3598 return 0;
3601 * Looks like an EISA system, so go searching for EISA boards.
3603 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3604 outb(0xff, (iobase + 0xc80));
3605 eid = inb(iobase + 0xc80);
3606 eid |= inb(iobase + 0xc81) << 8;
3607 if (eid != STL_EISAID)
3608 continue;
3611 * We have found a board. Need to check if this board was
3612 * statically configured already (just in case!).
3614 for (i = 0; (i < STL_MAXBRDS); i++) {
3615 brdp = stli_brds[i];
3616 if (brdp == NULL)
3617 continue;
3618 if (brdp->iobase == iobase)
3619 break;
3621 if (i < STL_MAXBRDS)
3622 continue;
3625 * We have found a Stallion board and it is not configured already.
3626 * Allocate a board structure and initialize it.
3628 if ((brdp = stli_allocbrd()) == NULL)
3629 return found ? : -ENOMEM;
3630 brdnr = stli_getbrdnr();
3631 if (brdnr < 0)
3632 return found ? : -ENOMEM;
3633 brdp->brdnr = (unsigned int)brdnr;
3634 eid = inb(iobase + 0xc82);
3635 if (eid == ECP_EISAID)
3636 brdp->brdtype = BRD_ECPE;
3637 else if (eid == ONB_EISAID)
3638 brdp->brdtype = BRD_ONBOARDE;
3639 else
3640 brdp->brdtype = BRD_UNKNOWN;
3641 brdp->iobase = iobase;
3642 outb(0x1, (iobase + 0xc84));
3643 if (stli_eisamemprobe(brdp))
3644 outb(0, (iobase + 0xc84));
3645 if (stli_brdinit(brdp) < 0) {
3646 kfree(brdp);
3647 continue;
3650 stli_brds[brdp->brdnr] = brdp;
3651 found++;
3653 for (i = 0; i < brdp->nrports; i++)
3654 tty_register_device(stli_serial,
3655 brdp->brdnr * STL_MAXPORTS + i, NULL);
3658 return found;
3660 #else
3661 static inline int stli_findeisabrds(void) { return 0; }
3662 #endif
3664 /*****************************************************************************/
3667 * Find the next available board number that is free.
3670 /*****************************************************************************/
3673 * We have a Stallion board. Allocate a board structure and
3674 * initialize it. Read its IO and MEMORY resources from PCI
3675 * configuration space.
3678 static int __devinit stli_pciprobe(struct pci_dev *pdev,
3679 const struct pci_device_id *ent)
3681 struct stlibrd *brdp;
3682 unsigned int i;
3683 int brdnr, retval = -EIO;
3685 retval = pci_enable_device(pdev);
3686 if (retval)
3687 goto err;
3688 brdp = stli_allocbrd();
3689 if (brdp == NULL) {
3690 retval = -ENOMEM;
3691 goto err;
3693 mutex_lock(&stli_brdslock);
3694 brdnr = stli_getbrdnr();
3695 if (brdnr < 0) {
3696 printk(KERN_INFO "istallion: too many boards found, "
3697 "maximum supported %d\n", STL_MAXBRDS);
3698 mutex_unlock(&stli_brdslock);
3699 retval = -EIO;
3700 goto err_fr;
3702 brdp->brdnr = (unsigned int)brdnr;
3703 stli_brds[brdp->brdnr] = brdp;
3704 mutex_unlock(&stli_brdslock);
3705 brdp->brdtype = BRD_ECPPCI;
3707 * We have all resources from the board, so lets setup the actual
3708 * board structure now.
3710 brdp->iobase = pci_resource_start(pdev, 3);
3711 brdp->memaddr = pci_resource_start(pdev, 2);
3712 retval = stli_brdinit(brdp);
3713 if (retval)
3714 goto err_null;
3716 set_bit(BST_PROBED, &brdp->state);
3717 pci_set_drvdata(pdev, brdp);
3719 EBRDENABLE(brdp);
3720 brdp->enable = NULL;
3721 brdp->disable = NULL;
3723 for (i = 0; i < brdp->nrports; i++)
3724 tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3725 &pdev->dev);
3727 return 0;
3728 err_null:
3729 stli_brds[brdp->brdnr] = NULL;
3730 err_fr:
3731 kfree(brdp);
3732 err:
3733 return retval;
3736 static void __devexit stli_pciremove(struct pci_dev *pdev)
3738 struct stlibrd *brdp = pci_get_drvdata(pdev);
3740 stli_cleanup_ports(brdp);
3742 iounmap(brdp->membase);
3743 if (brdp->iosize > 0)
3744 release_region(brdp->iobase, brdp->iosize);
3746 stli_brds[brdp->brdnr] = NULL;
3747 kfree(brdp);
3750 static struct pci_driver stli_pcidriver = {
3751 .name = "istallion",
3752 .id_table = istallion_pci_tbl,
3753 .probe = stli_pciprobe,
3754 .remove = __devexit_p(stli_pciremove)
3756 /*****************************************************************************/
3759 * Allocate a new board structure. Fill out the basic info in it.
3762 static struct stlibrd *stli_allocbrd(void)
3764 struct stlibrd *brdp;
3766 brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3767 if (!brdp) {
3768 printk(KERN_ERR "istallion: failed to allocate memory "
3769 "(size=%Zd)\n", sizeof(struct stlibrd));
3770 return NULL;
3772 brdp->magic = STLI_BOARDMAGIC;
3773 return brdp;
3776 /*****************************************************************************/
3779 * Scan through all the boards in the configuration and see what we
3780 * can find.
3783 static int __init stli_initbrds(void)
3785 struct stlibrd *brdp, *nxtbrdp;
3786 struct stlconf conf;
3787 unsigned int i, j, found = 0;
3788 int retval;
3790 for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3791 stli_nrbrds++) {
3792 memset(&conf, 0, sizeof(conf));
3793 if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3794 continue;
3795 if ((brdp = stli_allocbrd()) == NULL)
3796 continue;
3797 brdp->brdnr = stli_nrbrds;
3798 brdp->brdtype = conf.brdtype;
3799 brdp->iobase = conf.ioaddr1;
3800 brdp->memaddr = conf.memaddr;
3801 if (stli_brdinit(brdp) < 0) {
3802 kfree(brdp);
3803 continue;
3805 stli_brds[brdp->brdnr] = brdp;
3806 found++;
3808 for (i = 0; i < brdp->nrports; i++)
3809 tty_register_device(stli_serial,
3810 brdp->brdnr * STL_MAXPORTS + i, NULL);
3813 retval = stli_findeisabrds();
3814 if (retval > 0)
3815 found += retval;
3818 * All found boards are initialized. Now for a little optimization, if
3819 * no boards are sharing the "shared memory" regions then we can just
3820 * leave them all enabled. This is in fact the usual case.
3822 stli_shared = 0;
3823 if (stli_nrbrds > 1) {
3824 for (i = 0; (i < stli_nrbrds); i++) {
3825 brdp = stli_brds[i];
3826 if (brdp == NULL)
3827 continue;
3828 for (j = i + 1; (j < stli_nrbrds); j++) {
3829 nxtbrdp = stli_brds[j];
3830 if (nxtbrdp == NULL)
3831 continue;
3832 if ((brdp->membase >= nxtbrdp->membase) &&
3833 (brdp->membase <= (nxtbrdp->membase +
3834 nxtbrdp->memsize - 1))) {
3835 stli_shared++;
3836 break;
3842 if (stli_shared == 0) {
3843 for (i = 0; (i < stli_nrbrds); i++) {
3844 brdp = stli_brds[i];
3845 if (brdp == NULL)
3846 continue;
3847 if (test_bit(BST_FOUND, &brdp->state)) {
3848 EBRDENABLE(brdp);
3849 brdp->enable = NULL;
3850 brdp->disable = NULL;
3855 retval = pci_register_driver(&stli_pcidriver);
3856 if (retval && found == 0) {
3857 printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
3858 "driver can be registered!\n");
3859 goto err;
3862 return 0;
3863 err:
3864 return retval;
3867 /*****************************************************************************/
3870 * Code to handle an "staliomem" read operation. This device is the
3871 * contents of the board shared memory. It is used for down loading
3872 * the slave image (and debugging :-)
3875 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
3877 unsigned long flags;
3878 void __iomem *memptr;
3879 struct stlibrd *brdp;
3880 unsigned int brdnr;
3881 int size, n;
3882 void *p;
3883 loff_t off = *offp;
3885 brdnr = iminor(fp->f_path.dentry->d_inode);
3886 if (brdnr >= stli_nrbrds)
3887 return -ENODEV;
3888 brdp = stli_brds[brdnr];
3889 if (brdp == NULL)
3890 return -ENODEV;
3891 if (brdp->state == 0)
3892 return -ENODEV;
3893 if (off >= brdp->memsize || off + count < off)
3894 return 0;
3896 size = min(count, (size_t)(brdp->memsize - off));
3899 * Copy the data a page at a time
3902 p = (void *)__get_free_page(GFP_KERNEL);
3903 if(p == NULL)
3904 return -ENOMEM;
3906 while (size > 0) {
3907 spin_lock_irqsave(&brd_lock, flags);
3908 EBRDENABLE(brdp);
3909 memptr = EBRDGETMEMPTR(brdp, off);
3910 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3911 n = min(n, (int)PAGE_SIZE);
3912 memcpy_fromio(p, memptr, n);
3913 EBRDDISABLE(brdp);
3914 spin_unlock_irqrestore(&brd_lock, flags);
3915 if (copy_to_user(buf, p, n)) {
3916 count = -EFAULT;
3917 goto out;
3919 off += n;
3920 buf += n;
3921 size -= n;
3923 out:
3924 *offp = off;
3925 free_page((unsigned long)p);
3926 return count;
3929 /*****************************************************************************/
3932 * Code to handle an "staliomem" write operation. This device is the
3933 * contents of the board shared memory. It is used for down loading
3934 * the slave image (and debugging :-)
3936 * FIXME: copy under lock
3939 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
3941 unsigned long flags;
3942 void __iomem *memptr;
3943 struct stlibrd *brdp;
3944 char __user *chbuf;
3945 unsigned int brdnr;
3946 int size, n;
3947 void *p;
3948 loff_t off = *offp;
3950 brdnr = iminor(fp->f_path.dentry->d_inode);
3952 if (brdnr >= stli_nrbrds)
3953 return -ENODEV;
3954 brdp = stli_brds[brdnr];
3955 if (brdp == NULL)
3956 return -ENODEV;
3957 if (brdp->state == 0)
3958 return -ENODEV;
3959 if (off >= brdp->memsize || off + count < off)
3960 return 0;
3962 chbuf = (char __user *) buf;
3963 size = min(count, (size_t)(brdp->memsize - off));
3966 * Copy the data a page at a time
3969 p = (void *)__get_free_page(GFP_KERNEL);
3970 if(p == NULL)
3971 return -ENOMEM;
3973 while (size > 0) {
3974 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3975 n = min(n, (int)PAGE_SIZE);
3976 if (copy_from_user(p, chbuf, n)) {
3977 if (count == 0)
3978 count = -EFAULT;
3979 goto out;
3981 spin_lock_irqsave(&brd_lock, flags);
3982 EBRDENABLE(brdp);
3983 memptr = EBRDGETMEMPTR(brdp, off);
3984 memcpy_toio(memptr, p, n);
3985 EBRDDISABLE(brdp);
3986 spin_unlock_irqrestore(&brd_lock, flags);
3987 off += n;
3988 chbuf += n;
3989 size -= n;
3991 out:
3992 free_page((unsigned long) p);
3993 *offp = off;
3994 return count;
3997 /*****************************************************************************/
4000 * Return the board stats structure to user app.
4003 static int stli_getbrdstats(combrd_t __user *bp)
4005 struct stlibrd *brdp;
4006 unsigned int i;
4007 combrd_t stli_brdstats;
4009 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4010 return -EFAULT;
4011 if (stli_brdstats.brd >= STL_MAXBRDS)
4012 return -ENODEV;
4013 brdp = stli_brds[stli_brdstats.brd];
4014 if (brdp == NULL)
4015 return -ENODEV;
4017 memset(&stli_brdstats, 0, sizeof(combrd_t));
4019 stli_brdstats.brd = brdp->brdnr;
4020 stli_brdstats.type = brdp->brdtype;
4021 stli_brdstats.hwid = 0;
4022 stli_brdstats.state = brdp->state;
4023 stli_brdstats.ioaddr = brdp->iobase;
4024 stli_brdstats.memaddr = brdp->memaddr;
4025 stli_brdstats.nrpanels = brdp->nrpanels;
4026 stli_brdstats.nrports = brdp->nrports;
4027 for (i = 0; (i < brdp->nrpanels); i++) {
4028 stli_brdstats.panels[i].panel = i;
4029 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4030 stli_brdstats.panels[i].nrports = brdp->panels[i];
4033 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4034 return -EFAULT;
4035 return 0;
4038 /*****************************************************************************/
4041 * Resolve the referenced port number into a port struct pointer.
4044 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4045 unsigned int portnr)
4047 struct stlibrd *brdp;
4048 unsigned int i;
4050 if (brdnr >= STL_MAXBRDS)
4051 return NULL;
4052 brdp = stli_brds[brdnr];
4053 if (brdp == NULL)
4054 return NULL;
4055 for (i = 0; (i < panelnr); i++)
4056 portnr += brdp->panels[i];
4057 if (portnr >= brdp->nrports)
4058 return NULL;
4059 return brdp->ports[portnr];
4062 /*****************************************************************************/
4065 * Return the port stats structure to user app. A NULL port struct
4066 * pointer passed in means that we need to find out from the app
4067 * what port to get stats for (used through board control device).
4070 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp)
4072 unsigned long flags;
4073 struct stlibrd *brdp;
4074 int rc;
4076 memset(&stli_comstats, 0, sizeof(comstats_t));
4078 if (portp == NULL)
4079 return -ENODEV;
4080 brdp = stli_brds[portp->brdnr];
4081 if (brdp == NULL)
4082 return -ENODEV;
4084 mutex_lock(&portp->port.mutex);
4085 if (test_bit(BST_STARTED, &brdp->state)) {
4086 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4087 &stli_cdkstats, sizeof(asystats_t), 1)) < 0) {
4088 mutex_unlock(&portp->port.mutex);
4089 return rc;
4091 } else {
4092 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4095 stli_comstats.brd = portp->brdnr;
4096 stli_comstats.panel = portp->panelnr;
4097 stli_comstats.port = portp->portnr;
4098 stli_comstats.state = portp->state;
4099 stli_comstats.flags = portp->port.flags;
4101 spin_lock_irqsave(&brd_lock, flags);
4102 if (tty != NULL) {
4103 if (portp->port.tty == tty) {
4104 stli_comstats.ttystate = tty->flags;
4105 stli_comstats.rxbuffered = -1;
4106 if (tty->termios != NULL) {
4107 stli_comstats.cflags = tty->termios->c_cflag;
4108 stli_comstats.iflags = tty->termios->c_iflag;
4109 stli_comstats.oflags = tty->termios->c_oflag;
4110 stli_comstats.lflags = tty->termios->c_lflag;
4114 spin_unlock_irqrestore(&brd_lock, flags);
4116 stli_comstats.txtotal = stli_cdkstats.txchars;
4117 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4118 stli_comstats.txbuffered = stli_cdkstats.txringq;
4119 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4120 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4121 stli_comstats.rxparity = stli_cdkstats.parity;
4122 stli_comstats.rxframing = stli_cdkstats.framing;
4123 stli_comstats.rxlost = stli_cdkstats.ringover;
4124 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4125 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4126 stli_comstats.txxon = stli_cdkstats.txstart;
4127 stli_comstats.txxoff = stli_cdkstats.txstop;
4128 stli_comstats.rxxon = stli_cdkstats.rxstart;
4129 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4130 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4131 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4132 stli_comstats.modem = stli_cdkstats.dcdcnt;
4133 stli_comstats.hwid = stli_cdkstats.hwid;
4134 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4135 mutex_unlock(&portp->port.mutex);
4137 return 0;
4140 /*****************************************************************************/
4143 * Return the port stats structure to user app. A NULL port struct
4144 * pointer passed in means that we need to find out from the app
4145 * what port to get stats for (used through board control device).
4148 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp,
4149 comstats_t __user *cp)
4151 struct stlibrd *brdp;
4152 int rc;
4154 if (!portp) {
4155 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4156 return -EFAULT;
4157 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4158 stli_comstats.port);
4159 if (!portp)
4160 return -ENODEV;
4163 brdp = stli_brds[portp->brdnr];
4164 if (!brdp)
4165 return -ENODEV;
4167 if ((rc = stli_portcmdstats(tty, portp)) < 0)
4168 return rc;
4170 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4171 -EFAULT : 0;
4174 /*****************************************************************************/
4177 * Clear the port stats structure. We also return it zeroed out...
4180 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4182 struct stlibrd *brdp;
4183 int rc;
4185 if (!portp) {
4186 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4187 return -EFAULT;
4188 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4189 stli_comstats.port);
4190 if (!portp)
4191 return -ENODEV;
4194 brdp = stli_brds[portp->brdnr];
4195 if (!brdp)
4196 return -ENODEV;
4198 mutex_lock(&portp->port.mutex);
4200 if (test_bit(BST_STARTED, &brdp->state)) {
4201 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0) {
4202 mutex_unlock(&portp->port.mutex);
4203 return rc;
4207 memset(&stli_comstats, 0, sizeof(comstats_t));
4208 stli_comstats.brd = portp->brdnr;
4209 stli_comstats.panel = portp->panelnr;
4210 stli_comstats.port = portp->portnr;
4211 mutex_unlock(&portp->port.mutex);
4213 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4214 return -EFAULT;
4215 return 0;
4218 /*****************************************************************************/
4221 * Return the entire driver ports structure to a user app.
4224 static int stli_getportstruct(struct stliport __user *arg)
4226 struct stliport stli_dummyport;
4227 struct stliport *portp;
4229 if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4230 return -EFAULT;
4231 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4232 stli_dummyport.portnr);
4233 if (!portp)
4234 return -ENODEV;
4235 if (copy_to_user(arg, portp, sizeof(struct stliport)))
4236 return -EFAULT;
4237 return 0;
4240 /*****************************************************************************/
4243 * Return the entire driver board structure to a user app.
4246 static int stli_getbrdstruct(struct stlibrd __user *arg)
4248 struct stlibrd stli_dummybrd;
4249 struct stlibrd *brdp;
4251 if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4252 return -EFAULT;
4253 if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4254 return -ENODEV;
4255 brdp = stli_brds[stli_dummybrd.brdnr];
4256 if (!brdp)
4257 return -ENODEV;
4258 if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4259 return -EFAULT;
4260 return 0;
4263 /*****************************************************************************/
4266 * The "staliomem" device is also required to do some special operations on
4267 * the board. We need to be able to send an interrupt to the board,
4268 * reset it, and start/stop it.
4271 static long stli_memioctl(struct file *fp, unsigned int cmd, unsigned long arg)
4273 struct stlibrd *brdp;
4274 int brdnr, rc, done;
4275 void __user *argp = (void __user *)arg;
4278 * First up handle the board independent ioctls.
4280 done = 0;
4281 rc = 0;
4283 switch (cmd) {
4284 case COM_GETPORTSTATS:
4285 rc = stli_getportstats(NULL, NULL, argp);
4286 done++;
4287 break;
4288 case COM_CLRPORTSTATS:
4289 rc = stli_clrportstats(NULL, argp);
4290 done++;
4291 break;
4292 case COM_GETBRDSTATS:
4293 rc = stli_getbrdstats(argp);
4294 done++;
4295 break;
4296 case COM_READPORT:
4297 rc = stli_getportstruct(argp);
4298 done++;
4299 break;
4300 case COM_READBOARD:
4301 rc = stli_getbrdstruct(argp);
4302 done++;
4303 break;
4305 if (done)
4306 return rc;
4309 * Now handle the board specific ioctls. These all depend on the
4310 * minor number of the device they were called from.
4312 brdnr = iminor(fp->f_dentry->d_inode);
4313 if (brdnr >= STL_MAXBRDS)
4314 return -ENODEV;
4315 brdp = stli_brds[brdnr];
4316 if (!brdp)
4317 return -ENODEV;
4318 if (brdp->state == 0)
4319 return -ENODEV;
4321 switch (cmd) {
4322 case STL_BINTR:
4323 EBRDINTR(brdp);
4324 break;
4325 case STL_BSTART:
4326 rc = stli_startbrd(brdp);
4327 break;
4328 case STL_BSTOP:
4329 clear_bit(BST_STARTED, &brdp->state);
4330 break;
4331 case STL_BRESET:
4332 clear_bit(BST_STARTED, &brdp->state);
4333 EBRDRESET(brdp);
4334 if (stli_shared == 0) {
4335 if (brdp->reenable != NULL)
4336 (* brdp->reenable)(brdp);
4338 break;
4339 default:
4340 rc = -ENOIOCTLCMD;
4341 break;
4343 return rc;
4346 static const struct tty_operations stli_ops = {
4347 .open = stli_open,
4348 .close = stli_close,
4349 .write = stli_write,
4350 .put_char = stli_putchar,
4351 .flush_chars = stli_flushchars,
4352 .write_room = stli_writeroom,
4353 .chars_in_buffer = stli_charsinbuffer,
4354 .ioctl = stli_ioctl,
4355 .set_termios = stli_settermios,
4356 .throttle = stli_throttle,
4357 .unthrottle = stli_unthrottle,
4358 .stop = stli_stop,
4359 .start = stli_start,
4360 .hangup = stli_hangup,
4361 .flush_buffer = stli_flushbuffer,
4362 .break_ctl = stli_breakctl,
4363 .wait_until_sent = stli_waituntilsent,
4364 .send_xchar = stli_sendxchar,
4365 .tiocmget = stli_tiocmget,
4366 .tiocmset = stli_tiocmset,
4367 .proc_fops = &stli_proc_fops,
4370 static const struct tty_port_operations stli_port_ops = {
4371 .carrier_raised = stli_carrier_raised,
4372 .dtr_rts = stli_dtr_rts,
4373 .activate = stli_activate,
4374 .shutdown = stli_shutdown,
4377 /*****************************************************************************/
4379 * Loadable module initialization stuff.
4382 static void istallion_cleanup_isa(void)
4384 struct stlibrd *brdp;
4385 unsigned int j;
4387 for (j = 0; (j < stli_nrbrds); j++) {
4388 if ((brdp = stli_brds[j]) == NULL ||
4389 test_bit(BST_PROBED, &brdp->state))
4390 continue;
4392 stli_cleanup_ports(brdp);
4394 iounmap(brdp->membase);
4395 if (brdp->iosize > 0)
4396 release_region(brdp->iobase, brdp->iosize);
4397 kfree(brdp);
4398 stli_brds[j] = NULL;
4402 static int __init istallion_module_init(void)
4404 unsigned int i;
4405 int retval;
4407 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4409 spin_lock_init(&stli_lock);
4410 spin_lock_init(&brd_lock);
4412 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4413 if (!stli_txcookbuf) {
4414 printk(KERN_ERR "istallion: failed to allocate memory "
4415 "(size=%d)\n", STLI_TXBUFSIZE);
4416 retval = -ENOMEM;
4417 goto err;
4420 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4421 if (!stli_serial) {
4422 retval = -ENOMEM;
4423 goto err_free;
4426 stli_serial->owner = THIS_MODULE;
4427 stli_serial->driver_name = stli_drvname;
4428 stli_serial->name = stli_serialname;
4429 stli_serial->major = STL_SERIALMAJOR;
4430 stli_serial->minor_start = 0;
4431 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4432 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4433 stli_serial->init_termios = stli_deftermios;
4434 stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4435 tty_set_operations(stli_serial, &stli_ops);
4437 retval = tty_register_driver(stli_serial);
4438 if (retval) {
4439 printk(KERN_ERR "istallion: failed to register serial driver\n");
4440 goto err_ttyput;
4443 retval = stli_initbrds();
4444 if (retval)
4445 goto err_ttyunr;
4448 * Set up a character driver for the shared memory region. We need this
4449 * to down load the slave code image. Also it is a useful debugging tool.
4451 retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4452 if (retval) {
4453 printk(KERN_ERR "istallion: failed to register serial memory "
4454 "device\n");
4455 goto err_deinit;
4458 istallion_class = class_create(THIS_MODULE, "staliomem");
4459 for (i = 0; i < 4; i++)
4460 device_create(istallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4461 NULL, "staliomem%d", i);
4463 return 0;
4464 err_deinit:
4465 pci_unregister_driver(&stli_pcidriver);
4466 istallion_cleanup_isa();
4467 err_ttyunr:
4468 tty_unregister_driver(stli_serial);
4469 err_ttyput:
4470 put_tty_driver(stli_serial);
4471 err_free:
4472 kfree(stli_txcookbuf);
4473 err:
4474 return retval;
4477 /*****************************************************************************/
4479 static void __exit istallion_module_exit(void)
4481 unsigned int j;
4483 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4484 stli_drvversion);
4486 if (stli_timeron) {
4487 stli_timeron = 0;
4488 del_timer_sync(&stli_timerlist);
4491 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4493 for (j = 0; j < 4; j++)
4494 device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
4495 class_destroy(istallion_class);
4497 pci_unregister_driver(&stli_pcidriver);
4498 istallion_cleanup_isa();
4500 tty_unregister_driver(stli_serial);
4501 put_tty_driver(stli_serial);
4503 kfree(stli_txcookbuf);
4506 module_init(istallion_module_init);
4507 module_exit(istallion_module_exit);