1 /*****************************************************************************/
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/sched.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/tty.h>
34 #include <linux/tty_flip.h>
35 #include <linux/serial.h>
36 #include <linux/seq_file.h>
37 #include <linux/cd1400.h>
38 #include <linux/sc26198.h>
39 #include <linux/comstats.h>
40 #include <linux/stallion.h>
41 #include <linux/ioport.h>
42 #include <linux/init.h>
43 #include <linux/device.h>
44 #include <linux/delay.h>
45 #include <linux/ctype.h>
48 #include <asm/uaccess.h>
50 #include <linux/pci.h>
52 /*****************************************************************************/
55 * Define different board types. Use the standard Stallion "assigned"
56 * board numbers. Boards supported in this driver are abbreviated as
57 * EIO = EasyIO and ECH = EasyConnection 8/32.
63 #define BRD_ECH64PCI 27
64 #define BRD_EASYIOPCI 28
70 unsigned long memaddr
;
75 static unsigned int stl_nrbrds
;
77 /*****************************************************************************/
80 * Define some important driver characteristics. Device major numbers
81 * allocated as per Linux Device Registry.
83 #ifndef STL_SIOMEMMAJOR
84 #define STL_SIOMEMMAJOR 28
86 #ifndef STL_SERIALMAJOR
87 #define STL_SERIALMAJOR 24
89 #ifndef STL_CALLOUTMAJOR
90 #define STL_CALLOUTMAJOR 25
94 * Set the TX buffer size. Bigger is better, but we don't want
95 * to chew too much memory with buffers!
97 #define STL_TXBUFLOW 512
98 #define STL_TXBUFSIZE 4096
100 /*****************************************************************************/
103 * Define our local driver identity first. Set up stuff to deal with
104 * all the local structures required by a serial tty driver.
106 static char *stl_drvtitle
= "Stallion Multiport Serial Driver";
107 static char *stl_drvname
= "stallion";
108 static char *stl_drvversion
= "5.6.0";
110 static struct tty_driver
*stl_serial
;
113 * Define a local default termios struct. All ports will be created
114 * with this termios initially. Basically all it defines is a raw port
115 * at 9600, 8 data bits, 1 stop bit.
117 static struct ktermios stl_deftermios
= {
118 .c_cflag
= (B9600
| CS8
| CREAD
| HUPCL
| CLOCAL
),
125 * Define global place to put buffer overflow characters.
127 static char stl_unwanted
[SC26198_RXFIFOSIZE
];
129 /*****************************************************************************/
131 static DEFINE_MUTEX(stl_brdslock
);
132 static struct stlbrd
*stl_brds
[STL_MAXBRDS
];
134 static const struct tty_port_operations stl_port_ops
;
137 * Per board state flags. Used with the state field of the board struct.
138 * Not really much here!
140 #define BRD_FOUND 0x1
141 #define STL_PROBED 0x2
145 * Define the port structure istate flags. These set of flags are
146 * modified at interrupt time - so setting and reseting them needs
147 * to be atomic. Use the bit clear/setting routines for this.
149 #define ASYI_TXBUSY 1
151 #define ASYI_TXFLOWED 3
154 * Define an array of board names as printable strings. Handy for
155 * referencing boards when printing trace and stuff.
157 static char *stl_brdnames
[] = {
189 /*****************************************************************************/
192 * Define some string labels for arguments passed from the module
193 * load line. These allow for easy board definitions, and easy
194 * modification of the io, memory and irq resoucres.
196 static unsigned int stl_nargs
;
197 static char *board0
[4];
198 static char *board1
[4];
199 static char *board2
[4];
200 static char *board3
[4];
202 static char **stl_brdsp
[] = {
210 * Define a set of common board names, and types. This is used to
211 * parse any module arguments.
218 { "easyio", BRD_EASYIO
},
219 { "eio", BRD_EASYIO
},
220 { "20", BRD_EASYIO
},
221 { "ec8/32", BRD_ECH
},
222 { "ec8/32-at", BRD_ECH
},
223 { "ec8/32-isa", BRD_ECH
},
225 { "echat", BRD_ECH
},
227 { "ec8/32-mc", BRD_ECHMC
},
228 { "ec8/32-mca", BRD_ECHMC
},
229 { "echmc", BRD_ECHMC
},
230 { "echmca", BRD_ECHMC
},
232 { "ec8/32-pc", BRD_ECHPCI
},
233 { "ec8/32-pci", BRD_ECHPCI
},
234 { "26", BRD_ECHPCI
},
235 { "ec8/64-pc", BRD_ECH64PCI
},
236 { "ec8/64-pci", BRD_ECH64PCI
},
237 { "ech-pci", BRD_ECH64PCI
},
238 { "echpci", BRD_ECH64PCI
},
239 { "echpc", BRD_ECH64PCI
},
240 { "27", BRD_ECH64PCI
},
241 { "easyio-pc", BRD_EASYIOPCI
},
242 { "easyio-pci", BRD_EASYIOPCI
},
243 { "eio-pci", BRD_EASYIOPCI
},
244 { "eiopci", BRD_EASYIOPCI
},
245 { "28", BRD_EASYIOPCI
},
249 * Define the module agruments.
252 module_param_array(board0
, charp
, &stl_nargs
, 0);
253 MODULE_PARM_DESC(board0
, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
254 module_param_array(board1
, charp
, &stl_nargs
, 0);
255 MODULE_PARM_DESC(board1
, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
256 module_param_array(board2
, charp
, &stl_nargs
, 0);
257 MODULE_PARM_DESC(board2
, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
258 module_param_array(board3
, charp
, &stl_nargs
, 0);
259 MODULE_PARM_DESC(board3
, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
261 /*****************************************************************************/
264 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
265 * to the directly accessible io ports of these boards (not the uarts -
266 * they are in cd1400.h and sc26198.h).
268 #define EIO_8PORTRS 0x04
269 #define EIO_4PORTRS 0x05
270 #define EIO_8PORTDI 0x00
271 #define EIO_8PORTM 0x06
273 #define EIO_IDBITMASK 0x07
275 #define EIO_BRDMASK 0xf0
278 #define ID_BRD16 0x30
280 #define EIO_INTRPEND 0x08
281 #define EIO_INTEDGE 0x00
282 #define EIO_INTLEVEL 0x08
286 #define ECH_IDBITMASK 0xe0
287 #define ECH_BRDENABLE 0x08
288 #define ECH_BRDDISABLE 0x00
289 #define ECH_INTENABLE 0x01
290 #define ECH_INTDISABLE 0x00
291 #define ECH_INTLEVEL 0x02
292 #define ECH_INTEDGE 0x00
293 #define ECH_INTRPEND 0x01
294 #define ECH_BRDRESET 0x01
296 #define ECHMC_INTENABLE 0x01
297 #define ECHMC_BRDRESET 0x02
299 #define ECH_PNLSTATUS 2
300 #define ECH_PNL16PORT 0x20
301 #define ECH_PNLIDMASK 0x07
302 #define ECH_PNLXPID 0x40
303 #define ECH_PNLINTRPEND 0x80
305 #define ECH_ADDR2MASK 0x1e0
308 * Define the vector mapping bits for the programmable interrupt board
309 * hardware. These bits encode the interrupt for the board to use - it
310 * is software selectable (except the EIO-8M).
312 static unsigned char stl_vecmap
[] = {
313 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
314 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
318 * Lock ordering is that you may not take stallion_lock holding
322 static spinlock_t brd_lock
; /* Guard the board mapping */
323 static spinlock_t stallion_lock
; /* Guard the tty driver */
326 * Set up enable and disable macros for the ECH boards. They require
327 * the secondary io address space to be activated and deactivated.
328 * This way all ECH boards can share their secondary io region.
329 * If this is an ECH-PCI board then also need to set the page pointer
330 * to point to the correct page.
332 #define BRDENABLE(brdnr,pagenr) \
333 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
334 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
335 stl_brds[(brdnr)]->ioctrl); \
336 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
337 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
339 #define BRDDISABLE(brdnr) \
340 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
341 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
342 stl_brds[(brdnr)]->ioctrl);
344 #define STL_CD1400MAXBAUD 230400
345 #define STL_SC26198MAXBAUD 460800
347 #define STL_BAUDBASE 115200
348 #define STL_CLOSEDELAY (5 * HZ / 10)
350 /*****************************************************************************/
353 * Define the Stallion PCI vendor and device IDs.
355 #ifndef PCI_VENDOR_ID_STALLION
356 #define PCI_VENDOR_ID_STALLION 0x124d
358 #ifndef PCI_DEVICE_ID_ECHPCI832
359 #define PCI_DEVICE_ID_ECHPCI832 0x0000
361 #ifndef PCI_DEVICE_ID_ECHPCI864
362 #define PCI_DEVICE_ID_ECHPCI864 0x0002
364 #ifndef PCI_DEVICE_ID_EIOPCI
365 #define PCI_DEVICE_ID_EIOPCI 0x0003
369 * Define structure to hold all Stallion PCI boards.
372 static struct pci_device_id stl_pcibrds
[] = {
373 { PCI_DEVICE(PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_ECHPCI864
),
374 .driver_data
= BRD_ECH64PCI
},
375 { PCI_DEVICE(PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_EIOPCI
),
376 .driver_data
= BRD_EASYIOPCI
},
377 { PCI_DEVICE(PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_ECHPCI832
),
378 .driver_data
= BRD_ECHPCI
},
379 { PCI_DEVICE(PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_87410
),
380 .driver_data
= BRD_ECHPCI
},
383 MODULE_DEVICE_TABLE(pci
, stl_pcibrds
);
385 /*****************************************************************************/
388 * Define macros to extract a brd/port number from a minor number.
390 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
391 #define MINOR2PORT(min) ((min) & 0x3f)
394 * Define a baud rate table that converts termios baud rate selector
395 * into the actual baud rate value. All baud rate calculations are
396 * based on the actual baud rate required.
398 static unsigned int stl_baudrates
[] = {
399 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
400 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
403 /*****************************************************************************/
406 * Declare all those functions in this driver!
409 static long stl_memioctl(struct file
*fp
, unsigned int cmd
, unsigned long arg
);
410 static int stl_brdinit(struct stlbrd
*brdp
);
411 static int stl_getportstats(struct tty_struct
*tty
, struct stlport
*portp
, comstats_t __user
*cp
);
412 static int stl_clrportstats(struct stlport
*portp
, comstats_t __user
*cp
);
415 * CD1400 uart specific handling functions.
417 static void stl_cd1400setreg(struct stlport
*portp
, int regnr
, int value
);
418 static int stl_cd1400getreg(struct stlport
*portp
, int regnr
);
419 static int stl_cd1400updatereg(struct stlport
*portp
, int regnr
, int value
);
420 static int stl_cd1400panelinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
);
421 static void stl_cd1400portinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
);
422 static void stl_cd1400setport(struct stlport
*portp
, struct ktermios
*tiosp
);
423 static int stl_cd1400getsignals(struct stlport
*portp
);
424 static void stl_cd1400setsignals(struct stlport
*portp
, int dtr
, int rts
);
425 static void stl_cd1400ccrwait(struct stlport
*portp
);
426 static void stl_cd1400enablerxtx(struct stlport
*portp
, int rx
, int tx
);
427 static void stl_cd1400startrxtx(struct stlport
*portp
, int rx
, int tx
);
428 static void stl_cd1400disableintrs(struct stlport
*portp
);
429 static void stl_cd1400sendbreak(struct stlport
*portp
, int len
);
430 static void stl_cd1400flowctrl(struct stlport
*portp
, int state
);
431 static void stl_cd1400sendflow(struct stlport
*portp
, int state
);
432 static void stl_cd1400flush(struct stlport
*portp
);
433 static int stl_cd1400datastate(struct stlport
*portp
);
434 static void stl_cd1400eiointr(struct stlpanel
*panelp
, unsigned int iobase
);
435 static void stl_cd1400echintr(struct stlpanel
*panelp
, unsigned int iobase
);
436 static void stl_cd1400txisr(struct stlpanel
*panelp
, int ioaddr
);
437 static void stl_cd1400rxisr(struct stlpanel
*panelp
, int ioaddr
);
438 static void stl_cd1400mdmisr(struct stlpanel
*panelp
, int ioaddr
);
440 static inline int stl_cd1400breakisr(struct stlport
*portp
, int ioaddr
);
443 * SC26198 uart specific handling functions.
445 static void stl_sc26198setreg(struct stlport
*portp
, int regnr
, int value
);
446 static int stl_sc26198getreg(struct stlport
*portp
, int regnr
);
447 static int stl_sc26198updatereg(struct stlport
*portp
, int regnr
, int value
);
448 static int stl_sc26198getglobreg(struct stlport
*portp
, int regnr
);
449 static int stl_sc26198panelinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
);
450 static void stl_sc26198portinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
);
451 static void stl_sc26198setport(struct stlport
*portp
, struct ktermios
*tiosp
);
452 static int stl_sc26198getsignals(struct stlport
*portp
);
453 static void stl_sc26198setsignals(struct stlport
*portp
, int dtr
, int rts
);
454 static void stl_sc26198enablerxtx(struct stlport
*portp
, int rx
, int tx
);
455 static void stl_sc26198startrxtx(struct stlport
*portp
, int rx
, int tx
);
456 static void stl_sc26198disableintrs(struct stlport
*portp
);
457 static void stl_sc26198sendbreak(struct stlport
*portp
, int len
);
458 static void stl_sc26198flowctrl(struct stlport
*portp
, int state
);
459 static void stl_sc26198sendflow(struct stlport
*portp
, int state
);
460 static void stl_sc26198flush(struct stlport
*portp
);
461 static int stl_sc26198datastate(struct stlport
*portp
);
462 static void stl_sc26198wait(struct stlport
*portp
);
463 static void stl_sc26198txunflow(struct stlport
*portp
, struct tty_struct
*tty
);
464 static void stl_sc26198intr(struct stlpanel
*panelp
, unsigned int iobase
);
465 static void stl_sc26198txisr(struct stlport
*port
);
466 static void stl_sc26198rxisr(struct stlport
*port
, unsigned int iack
);
467 static void stl_sc26198rxbadch(struct stlport
*portp
, unsigned char status
, char ch
);
468 static void stl_sc26198rxbadchars(struct stlport
*portp
);
469 static void stl_sc26198otherisr(struct stlport
*port
, unsigned int iack
);
471 /*****************************************************************************/
474 * Generic UART support structure.
476 typedef struct uart
{
477 int (*panelinit
)(struct stlbrd
*brdp
, struct stlpanel
*panelp
);
478 void (*portinit
)(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
);
479 void (*setport
)(struct stlport
*portp
, struct ktermios
*tiosp
);
480 int (*getsignals
)(struct stlport
*portp
);
481 void (*setsignals
)(struct stlport
*portp
, int dtr
, int rts
);
482 void (*enablerxtx
)(struct stlport
*portp
, int rx
, int tx
);
483 void (*startrxtx
)(struct stlport
*portp
, int rx
, int tx
);
484 void (*disableintrs
)(struct stlport
*portp
);
485 void (*sendbreak
)(struct stlport
*portp
, int len
);
486 void (*flowctrl
)(struct stlport
*portp
, int state
);
487 void (*sendflow
)(struct stlport
*portp
, int state
);
488 void (*flush
)(struct stlport
*portp
);
489 int (*datastate
)(struct stlport
*portp
);
490 void (*intr
)(struct stlpanel
*panelp
, unsigned int iobase
);
494 * Define some macros to make calling these functions nice and clean.
496 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
497 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
498 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
499 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
500 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
501 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
502 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
503 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
504 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
505 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
506 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
507 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
508 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
510 /*****************************************************************************/
513 * CD1400 UART specific data initialization.
515 static uart_t stl_cd1400uart
= {
519 stl_cd1400getsignals
,
520 stl_cd1400setsignals
,
521 stl_cd1400enablerxtx
,
523 stl_cd1400disableintrs
,
533 * Define the offsets within the register bank of a cd1400 based panel.
534 * These io address offsets are common to the EasyIO board as well.
542 #define EREG_BANKSIZE 8
544 #define CD1400_CLK 25000000
545 #define CD1400_CLK8M 20000000
548 * Define the cd1400 baud rate clocks. These are used when calculating
549 * what clock and divisor to use for the required baud rate. Also
550 * define the maximum baud rate allowed, and the default base baud.
552 static int stl_cd1400clkdivs
[] = {
553 CD1400_CLK0
, CD1400_CLK1
, CD1400_CLK2
, CD1400_CLK3
, CD1400_CLK4
556 /*****************************************************************************/
559 * SC26198 UART specific data initization.
561 static uart_t stl_sc26198uart
= {
562 stl_sc26198panelinit
,
565 stl_sc26198getsignals
,
566 stl_sc26198setsignals
,
567 stl_sc26198enablerxtx
,
568 stl_sc26198startrxtx
,
569 stl_sc26198disableintrs
,
570 stl_sc26198sendbreak
,
574 stl_sc26198datastate
,
579 * Define the offsets within the register bank of a sc26198 based panel.
587 #define XP_BANKSIZE 4
590 * Define the sc26198 baud rate table. Offsets within the table
591 * represent the actual baud rate selector of sc26198 registers.
593 static unsigned int sc26198_baudtable
[] = {
594 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
595 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
596 230400, 460800, 921600
599 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
601 /*****************************************************************************/
604 * Define the driver info for a user level control device. Used mainly
605 * to get at port stats - only not using the port device itself.
607 static const struct file_operations stl_fsiomem
= {
608 .owner
= THIS_MODULE
,
609 .unlocked_ioctl
= stl_memioctl
,
610 .llseek
= noop_llseek
,
613 static struct class *stallion_class
;
615 static void stl_cd_change(struct stlport
*portp
)
617 unsigned int oldsigs
= portp
->sigs
;
618 struct tty_struct
*tty
= tty_port_tty_get(&portp
->port
);
623 portp
->sigs
= stl_getsignals(portp
);
625 if ((portp
->sigs
& TIOCM_CD
) && ((oldsigs
& TIOCM_CD
) == 0))
626 wake_up_interruptible(&portp
->port
.open_wait
);
628 if ((oldsigs
& TIOCM_CD
) && ((portp
->sigs
& TIOCM_CD
) == 0))
629 if (portp
->port
.flags
& ASYNC_CHECK_CD
)
635 * Check for any arguments passed in on the module load command line.
638 /*****************************************************************************/
641 * Parse the supplied argument string, into the board conf struct.
644 static int __init
stl_parsebrd(struct stlconf
*confp
, char **argp
)
649 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp
, argp
);
651 if ((argp
[0] == NULL
) || (*argp
[0] == 0))
654 for (sp
= argp
[0], i
= 0; (*sp
!= 0) && (i
< 25); sp
++, i
++)
657 for (i
= 0; i
< ARRAY_SIZE(stl_brdstr
); i
++)
658 if (strcmp(stl_brdstr
[i
].name
, argp
[0]) == 0)
661 if (i
== ARRAY_SIZE(stl_brdstr
)) {
662 printk("STALLION: unknown board name, %s?\n", argp
[0]);
666 confp
->brdtype
= stl_brdstr
[i
].type
;
669 if ((argp
[i
] != NULL
) && (*argp
[i
] != 0))
670 confp
->ioaddr1
= simple_strtoul(argp
[i
], NULL
, 0);
672 if (confp
->brdtype
== BRD_ECH
) {
673 if ((argp
[i
] != NULL
) && (*argp
[i
] != 0))
674 confp
->ioaddr2
= simple_strtoul(argp
[i
], NULL
, 0);
677 if ((argp
[i
] != NULL
) && (*argp
[i
] != 0))
678 confp
->irq
= simple_strtoul(argp
[i
], NULL
, 0);
682 /*****************************************************************************/
685 * Allocate a new board structure. Fill out the basic info in it.
688 static struct stlbrd
*stl_allocbrd(void)
692 brdp
= kzalloc(sizeof(struct stlbrd
), GFP_KERNEL
);
694 printk("STALLION: failed to allocate memory (size=%Zd)\n",
695 sizeof(struct stlbrd
));
699 brdp
->magic
= STL_BOARDMAGIC
;
703 /*****************************************************************************/
705 static int stl_activate(struct tty_port
*port
, struct tty_struct
*tty
)
707 struct stlport
*portp
= container_of(port
, struct stlport
, port
);
708 if (!portp
->tx
.buf
) {
709 portp
->tx
.buf
= kmalloc(STL_TXBUFSIZE
, GFP_KERNEL
);
712 portp
->tx
.head
= portp
->tx
.buf
;
713 portp
->tx
.tail
= portp
->tx
.buf
;
715 stl_setport(portp
, tty
->termios
);
716 portp
->sigs
= stl_getsignals(portp
);
717 stl_setsignals(portp
, 1, 1);
718 stl_enablerxtx(portp
, 1, 1);
719 stl_startrxtx(portp
, 1, 0);
723 static int stl_open(struct tty_struct
*tty
, struct file
*filp
)
725 struct stlport
*portp
;
727 unsigned int minordev
, brdnr
, panelnr
;
730 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty
, filp
, tty
->name
);
732 minordev
= tty
->index
;
733 brdnr
= MINOR2BRD(minordev
);
734 if (brdnr
>= stl_nrbrds
)
736 brdp
= stl_brds
[brdnr
];
740 minordev
= MINOR2PORT(minordev
);
741 for (portnr
= -1, panelnr
= 0; panelnr
< STL_MAXPANELS
; panelnr
++) {
742 if (brdp
->panels
[panelnr
] == NULL
)
744 if (minordev
< brdp
->panels
[panelnr
]->nrports
) {
748 minordev
-= brdp
->panels
[panelnr
]->nrports
;
753 portp
= brdp
->panels
[panelnr
]->ports
[portnr
];
757 tty
->driver_data
= portp
;
758 return tty_port_open(&portp
->port
, tty
, filp
);
762 /*****************************************************************************/
764 static int stl_carrier_raised(struct tty_port
*port
)
766 struct stlport
*portp
= container_of(port
, struct stlport
, port
);
767 return (portp
->sigs
& TIOCM_CD
) ? 1 : 0;
770 static void stl_dtr_rts(struct tty_port
*port
, int on
)
772 struct stlport
*portp
= container_of(port
, struct stlport
, port
);
773 /* Takes brd_lock internally */
774 stl_setsignals(portp
, on
, on
);
777 /*****************************************************************************/
779 static void stl_flushbuffer(struct tty_struct
*tty
)
781 struct stlport
*portp
;
783 pr_debug("stl_flushbuffer(tty=%p)\n", tty
);
785 portp
= tty
->driver_data
;
793 /*****************************************************************************/
795 static void stl_waituntilsent(struct tty_struct
*tty
, int timeout
)
797 struct stlport
*portp
;
800 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty
, timeout
);
802 portp
= tty
->driver_data
;
808 tend
= jiffies
+ timeout
;
810 while (stl_datastate(portp
)) {
811 if (signal_pending(current
))
813 msleep_interruptible(20);
814 if (time_after_eq(jiffies
, tend
))
819 /*****************************************************************************/
821 static void stl_shutdown(struct tty_port
*port
)
823 struct stlport
*portp
= container_of(port
, struct stlport
, port
);
824 stl_disableintrs(portp
);
825 stl_enablerxtx(portp
, 0, 0);
828 if (portp
->tx
.buf
!= NULL
) {
829 kfree(portp
->tx
.buf
);
830 portp
->tx
.buf
= NULL
;
831 portp
->tx
.head
= NULL
;
832 portp
->tx
.tail
= NULL
;
836 static void stl_close(struct tty_struct
*tty
, struct file
*filp
)
838 struct stlport
*portp
;
839 pr_debug("stl_close(tty=%p,filp=%p)\n", tty
, filp
);
841 portp
= tty
->driver_data
;
844 tty_port_close(&portp
->port
, tty
, filp
);
847 /*****************************************************************************/
850 * Write routine. Take data and stuff it in to the TX ring queue.
851 * If transmit interrupts are not running then start them.
854 static int stl_write(struct tty_struct
*tty
, const unsigned char *buf
, int count
)
856 struct stlport
*portp
;
857 unsigned int len
, stlen
;
858 unsigned char *chbuf
;
861 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty
, buf
, count
);
863 portp
= tty
->driver_data
;
866 if (portp
->tx
.buf
== NULL
)
870 * If copying direct from user space we must cater for page faults,
871 * causing us to "sleep" here for a while. To handle this copy in all
872 * the data we need now, into a local buffer. Then when we got it all
873 * copy it into the TX buffer.
875 chbuf
= (unsigned char *) buf
;
877 head
= portp
->tx
.head
;
878 tail
= portp
->tx
.tail
;
880 len
= STL_TXBUFSIZE
- (head
- tail
) - 1;
881 stlen
= STL_TXBUFSIZE
- (head
- portp
->tx
.buf
);
883 len
= tail
- head
- 1;
887 len
= min(len
, (unsigned int)count
);
890 stlen
= min(len
, stlen
);
891 memcpy(head
, chbuf
, stlen
);
896 if (head
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
)) {
897 head
= portp
->tx
.buf
;
901 portp
->tx
.head
= head
;
903 clear_bit(ASYI_TXLOW
, &portp
->istate
);
904 stl_startrxtx(portp
, -1, 1);
909 /*****************************************************************************/
911 static int stl_putchar(struct tty_struct
*tty
, unsigned char ch
)
913 struct stlport
*portp
;
917 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty
, ch
);
919 portp
= tty
->driver_data
;
922 if (portp
->tx
.buf
== NULL
)
925 head
= portp
->tx
.head
;
926 tail
= portp
->tx
.tail
;
928 len
= (head
>= tail
) ? (STL_TXBUFSIZE
- (head
- tail
)) : (tail
- head
);
933 if (head
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
))
934 head
= portp
->tx
.buf
;
936 portp
->tx
.head
= head
;
940 /*****************************************************************************/
943 * If there are any characters in the buffer then make sure that TX
944 * interrupts are on and get'em out. Normally used after the putchar
945 * routine has been called.
948 static void stl_flushchars(struct tty_struct
*tty
)
950 struct stlport
*portp
;
952 pr_debug("stl_flushchars(tty=%p)\n", tty
);
954 portp
= tty
->driver_data
;
957 if (portp
->tx
.buf
== NULL
)
960 stl_startrxtx(portp
, -1, 1);
963 /*****************************************************************************/
965 static int stl_writeroom(struct tty_struct
*tty
)
967 struct stlport
*portp
;
970 pr_debug("stl_writeroom(tty=%p)\n", tty
);
972 portp
= tty
->driver_data
;
975 if (portp
->tx
.buf
== NULL
)
978 head
= portp
->tx
.head
;
979 tail
= portp
->tx
.tail
;
980 return (head
>= tail
) ? (STL_TXBUFSIZE
- (head
- tail
) - 1) : (tail
- head
- 1);
983 /*****************************************************************************/
986 * Return number of chars in the TX buffer. Normally we would just
987 * calculate the number of chars in the buffer and return that, but if
988 * the buffer is empty and TX interrupts are still on then we return
989 * that the buffer still has 1 char in it. This way whoever called us
990 * will not think that ALL chars have drained - since the UART still
991 * must have some chars in it (we are busy after all).
994 static int stl_charsinbuffer(struct tty_struct
*tty
)
996 struct stlport
*portp
;
1000 pr_debug("stl_charsinbuffer(tty=%p)\n", tty
);
1002 portp
= tty
->driver_data
;
1005 if (portp
->tx
.buf
== NULL
)
1008 head
= portp
->tx
.head
;
1009 tail
= portp
->tx
.tail
;
1010 size
= (head
>= tail
) ? (head
- tail
) : (STL_TXBUFSIZE
- (tail
- head
));
1011 if ((size
== 0) && test_bit(ASYI_TXBUSY
, &portp
->istate
))
1016 /*****************************************************************************/
1019 * Generate the serial struct info.
1022 static int stl_getserial(struct stlport
*portp
, struct serial_struct __user
*sp
)
1024 struct serial_struct sio
;
1025 struct stlbrd
*brdp
;
1027 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp
, sp
);
1029 memset(&sio
, 0, sizeof(struct serial_struct
));
1031 mutex_lock(&portp
->port
.mutex
);
1032 sio
.line
= portp
->portnr
;
1033 sio
.port
= portp
->ioaddr
;
1034 sio
.flags
= portp
->port
.flags
;
1035 sio
.baud_base
= portp
->baud_base
;
1036 sio
.close_delay
= portp
->close_delay
;
1037 sio
.closing_wait
= portp
->closing_wait
;
1038 sio
.custom_divisor
= portp
->custom_divisor
;
1040 if (portp
->uartp
== &stl_cd1400uart
) {
1041 sio
.type
= PORT_CIRRUS
;
1042 sio
.xmit_fifo_size
= CD1400_TXFIFOSIZE
;
1044 sio
.type
= PORT_UNKNOWN
;
1045 sio
.xmit_fifo_size
= SC26198_TXFIFOSIZE
;
1048 brdp
= stl_brds
[portp
->brdnr
];
1050 sio
.irq
= brdp
->irq
;
1051 mutex_unlock(&portp
->port
.mutex
);
1053 return copy_to_user(sp
, &sio
, sizeof(struct serial_struct
)) ? -EFAULT
: 0;
1056 /*****************************************************************************/
1059 * Set port according to the serial struct info.
1060 * At this point we do not do any auto-configure stuff, so we will
1061 * just quietly ignore any requests to change irq, etc.
1064 static int stl_setserial(struct tty_struct
*tty
, struct serial_struct __user
*sp
)
1066 struct stlport
* portp
= tty
->driver_data
;
1067 struct serial_struct sio
;
1069 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp
, sp
);
1071 if (copy_from_user(&sio
, sp
, sizeof(struct serial_struct
)))
1073 mutex_lock(&portp
->port
.mutex
);
1074 if (!capable(CAP_SYS_ADMIN
)) {
1075 if ((sio
.baud_base
!= portp
->baud_base
) ||
1076 (sio
.close_delay
!= portp
->close_delay
) ||
1077 ((sio
.flags
& ~ASYNC_USR_MASK
) !=
1078 (portp
->port
.flags
& ~ASYNC_USR_MASK
))) {
1079 mutex_unlock(&portp
->port
.mutex
);
1084 portp
->port
.flags
= (portp
->port
.flags
& ~ASYNC_USR_MASK
) |
1085 (sio
.flags
& ASYNC_USR_MASK
);
1086 portp
->baud_base
= sio
.baud_base
;
1087 portp
->close_delay
= sio
.close_delay
;
1088 portp
->closing_wait
= sio
.closing_wait
;
1089 portp
->custom_divisor
= sio
.custom_divisor
;
1090 mutex_unlock(&portp
->port
.mutex
);
1091 stl_setport(portp
, tty
->termios
);
1095 /*****************************************************************************/
1097 static int stl_tiocmget(struct tty_struct
*tty
)
1099 struct stlport
*portp
;
1101 portp
= tty
->driver_data
;
1104 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1107 return stl_getsignals(portp
);
1110 static int stl_tiocmset(struct tty_struct
*tty
,
1111 unsigned int set
, unsigned int clear
)
1113 struct stlport
*portp
;
1114 int rts
= -1, dtr
= -1;
1116 portp
= tty
->driver_data
;
1119 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1122 if (set
& TIOCM_RTS
)
1124 if (set
& TIOCM_DTR
)
1126 if (clear
& TIOCM_RTS
)
1128 if (clear
& TIOCM_DTR
)
1131 stl_setsignals(portp
, dtr
, rts
);
1135 static int stl_ioctl(struct tty_struct
*tty
, unsigned int cmd
, unsigned long arg
)
1137 struct stlport
*portp
;
1139 void __user
*argp
= (void __user
*)arg
;
1141 pr_debug("stl_ioctl(tty=%p,cmd=%x,arg=%lx)\n", tty
, cmd
, arg
);
1143 portp
= tty
->driver_data
;
1147 if ((cmd
!= TIOCGSERIAL
) && (cmd
!= TIOCSSERIAL
) &&
1148 (cmd
!= COM_GETPORTSTATS
) && (cmd
!= COM_CLRPORTSTATS
))
1149 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1156 rc
= stl_getserial(portp
, argp
);
1159 rc
= stl_setserial(tty
, argp
);
1161 case COM_GETPORTSTATS
:
1162 rc
= stl_getportstats(tty
, portp
, argp
);
1164 case COM_CLRPORTSTATS
:
1165 rc
= stl_clrportstats(portp
, argp
);
1171 case TIOCSERGSTRUCT
:
1172 case TIOCSERGETMULTI
:
1173 case TIOCSERSETMULTI
:
1181 /*****************************************************************************/
1184 * Start the transmitter again. Just turn TX interrupts back on.
1187 static void stl_start(struct tty_struct
*tty
)
1189 struct stlport
*portp
;
1191 pr_debug("stl_start(tty=%p)\n", tty
);
1193 portp
= tty
->driver_data
;
1196 stl_startrxtx(portp
, -1, 1);
1199 /*****************************************************************************/
1201 static void stl_settermios(struct tty_struct
*tty
, struct ktermios
*old
)
1203 struct stlport
*portp
;
1204 struct ktermios
*tiosp
;
1206 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty
, old
);
1208 portp
= tty
->driver_data
;
1212 tiosp
= tty
->termios
;
1213 if ((tiosp
->c_cflag
== old
->c_cflag
) &&
1214 (tiosp
->c_iflag
== old
->c_iflag
))
1217 stl_setport(portp
, tiosp
);
1218 stl_setsignals(portp
, ((tiosp
->c_cflag
& (CBAUD
& ~CBAUDEX
)) ? 1 : 0),
1220 if ((old
->c_cflag
& CRTSCTS
) && ((tiosp
->c_cflag
& CRTSCTS
) == 0)) {
1221 tty
->hw_stopped
= 0;
1224 if (((old
->c_cflag
& CLOCAL
) == 0) && (tiosp
->c_cflag
& CLOCAL
))
1225 wake_up_interruptible(&portp
->port
.open_wait
);
1228 /*****************************************************************************/
1231 * Attempt to flow control who ever is sending us data. Based on termios
1232 * settings use software or/and hardware flow control.
1235 static void stl_throttle(struct tty_struct
*tty
)
1237 struct stlport
*portp
;
1239 pr_debug("stl_throttle(tty=%p)\n", tty
);
1241 portp
= tty
->driver_data
;
1244 stl_flowctrl(portp
, 0);
1247 /*****************************************************************************/
1250 * Unflow control the device sending us data...
1253 static void stl_unthrottle(struct tty_struct
*tty
)
1255 struct stlport
*portp
;
1257 pr_debug("stl_unthrottle(tty=%p)\n", tty
);
1259 portp
= tty
->driver_data
;
1262 stl_flowctrl(portp
, 1);
1265 /*****************************************************************************/
1268 * Stop the transmitter. Basically to do this we will just turn TX
1272 static void stl_stop(struct tty_struct
*tty
)
1274 struct stlport
*portp
;
1276 pr_debug("stl_stop(tty=%p)\n", tty
);
1278 portp
= tty
->driver_data
;
1281 stl_startrxtx(portp
, -1, 0);
1284 /*****************************************************************************/
1287 * Hangup this port. This is pretty much like closing the port, only
1288 * a little more brutal. No waiting for data to drain. Shutdown the
1289 * port and maybe drop signals.
1292 static void stl_hangup(struct tty_struct
*tty
)
1294 struct stlport
*portp
= tty
->driver_data
;
1295 pr_debug("stl_hangup(tty=%p)\n", tty
);
1299 tty_port_hangup(&portp
->port
);
1302 /*****************************************************************************/
1304 static int stl_breakctl(struct tty_struct
*tty
, int state
)
1306 struct stlport
*portp
;
1308 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty
, state
);
1310 portp
= tty
->driver_data
;
1314 stl_sendbreak(portp
, ((state
== -1) ? 1 : 2));
1318 /*****************************************************************************/
1320 static void stl_sendxchar(struct tty_struct
*tty
, char ch
)
1322 struct stlport
*portp
;
1324 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty
, ch
);
1326 portp
= tty
->driver_data
;
1330 if (ch
== STOP_CHAR(tty
))
1331 stl_sendflow(portp
, 0);
1332 else if (ch
== START_CHAR(tty
))
1333 stl_sendflow(portp
, 1);
1335 stl_putchar(tty
, ch
);
1338 static void stl_portinfo(struct seq_file
*m
, struct stlport
*portp
, int portnr
)
1343 seq_printf(m
, "%d: uart:%s tx:%d rx:%d",
1344 portnr
, (portp
->hwid
== 1) ? "SC26198" : "CD1400",
1345 (int) portp
->stats
.txtotal
, (int) portp
->stats
.rxtotal
);
1347 if (portp
->stats
.rxframing
)
1348 seq_printf(m
, " fe:%d", (int) portp
->stats
.rxframing
);
1349 if (portp
->stats
.rxparity
)
1350 seq_printf(m
, " pe:%d", (int) portp
->stats
.rxparity
);
1351 if (portp
->stats
.rxbreaks
)
1352 seq_printf(m
, " brk:%d", (int) portp
->stats
.rxbreaks
);
1353 if (portp
->stats
.rxoverrun
)
1354 seq_printf(m
, " oe:%d", (int) portp
->stats
.rxoverrun
);
1356 sigs
= stl_getsignals(portp
);
1358 if (sigs
& TIOCM_RTS
) {
1359 seq_printf(m
, "%c%s", sep
, "RTS");
1362 if (sigs
& TIOCM_CTS
) {
1363 seq_printf(m
, "%c%s", sep
, "CTS");
1366 if (sigs
& TIOCM_DTR
) {
1367 seq_printf(m
, "%c%s", sep
, "DTR");
1370 if (sigs
& TIOCM_CD
) {
1371 seq_printf(m
, "%c%s", sep
, "DCD");
1374 if (sigs
& TIOCM_DSR
) {
1375 seq_printf(m
, "%c%s", sep
, "DSR");
1381 /*****************************************************************************/
1384 * Port info, read from the /proc file system.
1387 static int stl_proc_show(struct seq_file
*m
, void *v
)
1389 struct stlbrd
*brdp
;
1390 struct stlpanel
*panelp
;
1391 struct stlport
*portp
;
1392 unsigned int brdnr
, panelnr
, portnr
;
1397 seq_printf(m
, "%s: version %s\n", stl_drvtitle
, stl_drvversion
);
1400 * We scan through for each board, panel and port. The offset is
1401 * calculated on the fly, and irrelevant ports are skipped.
1403 for (brdnr
= 0; brdnr
< stl_nrbrds
; brdnr
++) {
1404 brdp
= stl_brds
[brdnr
];
1407 if (brdp
->state
== 0)
1410 totalport
= brdnr
* STL_MAXPORTS
;
1411 for (panelnr
= 0; panelnr
< brdp
->nrpanels
; panelnr
++) {
1412 panelp
= brdp
->panels
[panelnr
];
1416 for (portnr
= 0; portnr
< panelp
->nrports
; portnr
++,
1418 portp
= panelp
->ports
[portnr
];
1421 stl_portinfo(m
, portp
, totalport
);
1428 static int stl_proc_open(struct inode
*inode
, struct file
*file
)
1430 return single_open(file
, stl_proc_show
, NULL
);
1433 static const struct file_operations stl_proc_fops
= {
1434 .owner
= THIS_MODULE
,
1435 .open
= stl_proc_open
,
1437 .llseek
= seq_lseek
,
1438 .release
= single_release
,
1441 /*****************************************************************************/
1444 * All board interrupts are vectored through here first. This code then
1445 * calls off to the approrpriate board interrupt handlers.
1448 static irqreturn_t
stl_intr(int irq
, void *dev_id
)
1450 struct stlbrd
*brdp
= dev_id
;
1452 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp
, brdp
->irq
);
1454 return IRQ_RETVAL((* brdp
->isr
)(brdp
));
1457 /*****************************************************************************/
1460 * Interrupt service routine for EasyIO board types.
1463 static int stl_eiointr(struct stlbrd
*brdp
)
1465 struct stlpanel
*panelp
;
1466 unsigned int iobase
;
1469 spin_lock(&brd_lock
);
1470 panelp
= brdp
->panels
[0];
1471 iobase
= panelp
->iobase
;
1472 while (inb(brdp
->iostatus
) & EIO_INTRPEND
) {
1474 (* panelp
->isr
)(panelp
, iobase
);
1476 spin_unlock(&brd_lock
);
1480 /*****************************************************************************/
1483 * Interrupt service routine for ECH-AT board types.
1486 static int stl_echatintr(struct stlbrd
*brdp
)
1488 struct stlpanel
*panelp
;
1489 unsigned int ioaddr
, bnknr
;
1492 outb((brdp
->ioctrlval
| ECH_BRDENABLE
), brdp
->ioctrl
);
1494 while (inb(brdp
->iostatus
) & ECH_INTRPEND
) {
1496 for (bnknr
= 0; bnknr
< brdp
->nrbnks
; bnknr
++) {
1497 ioaddr
= brdp
->bnkstataddr
[bnknr
];
1498 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
1499 panelp
= brdp
->bnk2panel
[bnknr
];
1500 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
1505 outb((brdp
->ioctrlval
| ECH_BRDDISABLE
), brdp
->ioctrl
);
1510 /*****************************************************************************/
1513 * Interrupt service routine for ECH-MCA board types.
1516 static int stl_echmcaintr(struct stlbrd
*brdp
)
1518 struct stlpanel
*panelp
;
1519 unsigned int ioaddr
, bnknr
;
1522 while (inb(brdp
->iostatus
) & ECH_INTRPEND
) {
1524 for (bnknr
= 0; bnknr
< brdp
->nrbnks
; bnknr
++) {
1525 ioaddr
= brdp
->bnkstataddr
[bnknr
];
1526 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
1527 panelp
= brdp
->bnk2panel
[bnknr
];
1528 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
1535 /*****************************************************************************/
1538 * Interrupt service routine for ECH-PCI board types.
1541 static int stl_echpciintr(struct stlbrd
*brdp
)
1543 struct stlpanel
*panelp
;
1544 unsigned int ioaddr
, bnknr
, recheck
;
1549 for (bnknr
= 0; bnknr
< brdp
->nrbnks
; bnknr
++) {
1550 outb(brdp
->bnkpageaddr
[bnknr
], brdp
->ioctrl
);
1551 ioaddr
= brdp
->bnkstataddr
[bnknr
];
1552 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
1553 panelp
= brdp
->bnk2panel
[bnknr
];
1554 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
1565 /*****************************************************************************/
1568 * Interrupt service routine for ECH-8/64-PCI board types.
1571 static int stl_echpci64intr(struct stlbrd
*brdp
)
1573 struct stlpanel
*panelp
;
1574 unsigned int ioaddr
, bnknr
;
1577 while (inb(brdp
->ioctrl
) & 0x1) {
1579 for (bnknr
= 0; bnknr
< brdp
->nrbnks
; bnknr
++) {
1580 ioaddr
= brdp
->bnkstataddr
[bnknr
];
1581 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
1582 panelp
= brdp
->bnk2panel
[bnknr
];
1583 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
1591 /*****************************************************************************/
1594 * Initialize all the ports on a panel.
1597 static int __devinit
stl_initports(struct stlbrd
*brdp
, struct stlpanel
*panelp
)
1599 struct stlport
*portp
;
1603 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp
, panelp
);
1605 chipmask
= stl_panelinit(brdp
, panelp
);
1608 * All UART's are initialized (if found!). Now go through and setup
1609 * each ports data structures.
1611 for (i
= 0; i
< panelp
->nrports
; i
++) {
1612 portp
= kzalloc(sizeof(struct stlport
), GFP_KERNEL
);
1614 printk("STALLION: failed to allocate memory "
1615 "(size=%Zd)\n", sizeof(struct stlport
));
1618 tty_port_init(&portp
->port
);
1619 portp
->port
.ops
= &stl_port_ops
;
1620 portp
->magic
= STL_PORTMAGIC
;
1622 portp
->brdnr
= panelp
->brdnr
;
1623 portp
->panelnr
= panelp
->panelnr
;
1624 portp
->uartp
= panelp
->uartp
;
1625 portp
->clk
= brdp
->clk
;
1626 portp
->baud_base
= STL_BAUDBASE
;
1627 portp
->close_delay
= STL_CLOSEDELAY
;
1628 portp
->closing_wait
= 30 * HZ
;
1629 init_waitqueue_head(&portp
->port
.open_wait
);
1630 init_waitqueue_head(&portp
->port
.close_wait
);
1631 portp
->stats
.brd
= portp
->brdnr
;
1632 portp
->stats
.panel
= portp
->panelnr
;
1633 portp
->stats
.port
= portp
->portnr
;
1634 panelp
->ports
[i
] = portp
;
1635 stl_portinit(brdp
, panelp
, portp
);
1641 static void stl_cleanup_panels(struct stlbrd
*brdp
)
1643 struct stlpanel
*panelp
;
1644 struct stlport
*portp
;
1646 struct tty_struct
*tty
;
1648 for (j
= 0; j
< STL_MAXPANELS
; j
++) {
1649 panelp
= brdp
->panels
[j
];
1652 for (k
= 0; k
< STL_PORTSPERPANEL
; k
++) {
1653 portp
= panelp
->ports
[k
];
1656 tty
= tty_port_tty_get(&portp
->port
);
1661 kfree(portp
->tx
.buf
);
1668 /*****************************************************************************/
1671 * Try to find and initialize an EasyIO board.
1674 static int __devinit
stl_initeio(struct stlbrd
*brdp
)
1676 struct stlpanel
*panelp
;
1677 unsigned int status
;
1681 pr_debug("stl_initeio(brdp=%p)\n", brdp
);
1683 brdp
->ioctrl
= brdp
->ioaddr1
+ 1;
1684 brdp
->iostatus
= brdp
->ioaddr1
+ 2;
1686 status
= inb(brdp
->iostatus
);
1687 if ((status
& EIO_IDBITMASK
) == EIO_MK3
)
1691 * Handle board specific stuff now. The real difference is PCI
1694 if (brdp
->brdtype
== BRD_EASYIOPCI
) {
1695 brdp
->iosize1
= 0x80;
1696 brdp
->iosize2
= 0x80;
1697 name
= "serial(EIO-PCI)";
1698 outb(0x41, (brdp
->ioaddr2
+ 0x4c));
1701 name
= "serial(EIO)";
1702 if ((brdp
->irq
< 0) || (brdp
->irq
> 15) ||
1703 (stl_vecmap
[brdp
->irq
] == (unsigned char) 0xff)) {
1704 printk("STALLION: invalid irq=%d for brd=%d\n",
1705 brdp
->irq
, brdp
->brdnr
);
1709 outb((stl_vecmap
[brdp
->irq
] | EIO_0WS
|
1710 ((brdp
->irqtype
) ? EIO_INTLEVEL
: EIO_INTEDGE
)),
1715 if (!request_region(brdp
->ioaddr1
, brdp
->iosize1
, name
)) {
1716 printk(KERN_WARNING
"STALLION: Warning, board %d I/O address "
1717 "%x conflicts with another device\n", brdp
->brdnr
,
1722 if (brdp
->iosize2
> 0)
1723 if (!request_region(brdp
->ioaddr2
, brdp
->iosize2
, name
)) {
1724 printk(KERN_WARNING
"STALLION: Warning, board %d I/O "
1725 "address %x conflicts with another device\n",
1726 brdp
->brdnr
, brdp
->ioaddr2
);
1727 printk(KERN_WARNING
"STALLION: Warning, also "
1728 "releasing board %d I/O address %x \n",
1729 brdp
->brdnr
, brdp
->ioaddr1
);
1734 * Everything looks OK, so let's go ahead and probe for the hardware.
1736 brdp
->clk
= CD1400_CLK
;
1737 brdp
->isr
= stl_eiointr
;
1740 switch (status
& EIO_IDBITMASK
) {
1742 brdp
->clk
= CD1400_CLK8M
;
1752 switch (status
& EIO_BRDMASK
) {
1771 * We have verified that the board is actually present, so now we
1772 * can complete the setup.
1775 panelp
= kzalloc(sizeof(struct stlpanel
), GFP_KERNEL
);
1777 printk(KERN_WARNING
"STALLION: failed to allocate memory "
1778 "(size=%Zd)\n", sizeof(struct stlpanel
));
1783 panelp
->magic
= STL_PANELMAGIC
;
1784 panelp
->brdnr
= brdp
->brdnr
;
1785 panelp
->panelnr
= 0;
1786 panelp
->nrports
= brdp
->nrports
;
1787 panelp
->iobase
= brdp
->ioaddr1
;
1788 panelp
->hwid
= status
;
1789 if ((status
& EIO_IDBITMASK
) == EIO_MK3
) {
1790 panelp
->uartp
= &stl_sc26198uart
;
1791 panelp
->isr
= stl_sc26198intr
;
1793 panelp
->uartp
= &stl_cd1400uart
;
1794 panelp
->isr
= stl_cd1400eiointr
;
1797 brdp
->panels
[0] = panelp
;
1799 brdp
->state
|= BRD_FOUND
;
1800 brdp
->hwid
= status
;
1801 if (request_irq(brdp
->irq
, stl_intr
, IRQF_SHARED
, name
, brdp
) != 0) {
1802 printk("STALLION: failed to register interrupt "
1803 "routine for %s irq=%d\n", name
, brdp
->irq
);
1810 stl_cleanup_panels(brdp
);
1812 if (brdp
->iosize2
> 0)
1813 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
1815 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
1820 /*****************************************************************************/
1823 * Try to find an ECH board and initialize it. This code is capable of
1824 * dealing with all types of ECH board.
1827 static int __devinit
stl_initech(struct stlbrd
*brdp
)
1829 struct stlpanel
*panelp
;
1830 unsigned int status
, nxtid
, ioaddr
, conflict
, panelnr
, banknr
, i
;
1834 pr_debug("stl_initech(brdp=%p)\n", brdp
);
1840 * Set up the initial board register contents for boards. This varies a
1841 * bit between the different board types. So we need to handle each
1842 * separately. Also do a check that the supplied IRQ is good.
1844 switch (brdp
->brdtype
) {
1847 brdp
->isr
= stl_echatintr
;
1848 brdp
->ioctrl
= brdp
->ioaddr1
+ 1;
1849 brdp
->iostatus
= brdp
->ioaddr1
+ 1;
1850 status
= inb(brdp
->iostatus
);
1851 if ((status
& ECH_IDBITMASK
) != ECH_ID
) {
1855 if ((brdp
->irq
< 0) || (brdp
->irq
> 15) ||
1856 (stl_vecmap
[brdp
->irq
] == (unsigned char) 0xff)) {
1857 printk("STALLION: invalid irq=%d for brd=%d\n",
1858 brdp
->irq
, brdp
->brdnr
);
1862 status
= ((brdp
->ioaddr2
& ECH_ADDR2MASK
) >> 1);
1863 status
|= (stl_vecmap
[brdp
->irq
] << 1);
1864 outb((status
| ECH_BRDRESET
), brdp
->ioaddr1
);
1865 brdp
->ioctrlval
= ECH_INTENABLE
|
1866 ((brdp
->irqtype
) ? ECH_INTLEVEL
: ECH_INTEDGE
);
1867 for (i
= 0; i
< 10; i
++)
1868 outb((brdp
->ioctrlval
| ECH_BRDENABLE
), brdp
->ioctrl
);
1871 name
= "serial(EC8/32)";
1872 outb(status
, brdp
->ioaddr1
);
1876 brdp
->isr
= stl_echmcaintr
;
1877 brdp
->ioctrl
= brdp
->ioaddr1
+ 0x20;
1878 brdp
->iostatus
= brdp
->ioctrl
;
1879 status
= inb(brdp
->iostatus
);
1880 if ((status
& ECH_IDBITMASK
) != ECH_ID
) {
1884 if ((brdp
->irq
< 0) || (brdp
->irq
> 15) ||
1885 (stl_vecmap
[brdp
->irq
] == (unsigned char) 0xff)) {
1886 printk("STALLION: invalid irq=%d for brd=%d\n",
1887 brdp
->irq
, brdp
->brdnr
);
1891 outb(ECHMC_BRDRESET
, brdp
->ioctrl
);
1892 outb(ECHMC_INTENABLE
, brdp
->ioctrl
);
1894 name
= "serial(EC8/32-MC)";
1898 brdp
->isr
= stl_echpciintr
;
1899 brdp
->ioctrl
= brdp
->ioaddr1
+ 2;
1902 name
= "serial(EC8/32-PCI)";
1906 brdp
->isr
= stl_echpci64intr
;
1907 brdp
->ioctrl
= brdp
->ioaddr2
+ 0x40;
1908 outb(0x43, (brdp
->ioaddr1
+ 0x4c));
1909 brdp
->iosize1
= 0x80;
1910 brdp
->iosize2
= 0x80;
1911 name
= "serial(EC8/64-PCI)";
1915 printk("STALLION: unknown board type=%d\n", brdp
->brdtype
);
1921 * Check boards for possible IO address conflicts and return fail status
1922 * if an IO conflict found.
1925 if (!request_region(brdp
->ioaddr1
, brdp
->iosize1
, name
)) {
1926 printk(KERN_WARNING
"STALLION: Warning, board %d I/O address "
1927 "%x conflicts with another device\n", brdp
->brdnr
,
1932 if (brdp
->iosize2
> 0)
1933 if (!request_region(brdp
->ioaddr2
, brdp
->iosize2
, name
)) {
1934 printk(KERN_WARNING
"STALLION: Warning, board %d I/O "
1935 "address %x conflicts with another device\n",
1936 brdp
->brdnr
, brdp
->ioaddr2
);
1937 printk(KERN_WARNING
"STALLION: Warning, also "
1938 "releasing board %d I/O address %x \n",
1939 brdp
->brdnr
, brdp
->ioaddr1
);
1944 * Scan through the secondary io address space looking for panels.
1945 * As we find'em allocate and initialize panel structures for each.
1947 brdp
->clk
= CD1400_CLK
;
1948 brdp
->hwid
= status
;
1950 ioaddr
= brdp
->ioaddr2
;
1955 for (i
= 0; i
< STL_MAXPANELS
; i
++) {
1956 if (brdp
->brdtype
== BRD_ECHPCI
) {
1957 outb(nxtid
, brdp
->ioctrl
);
1958 ioaddr
= brdp
->ioaddr2
;
1960 status
= inb(ioaddr
+ ECH_PNLSTATUS
);
1961 if ((status
& ECH_PNLIDMASK
) != nxtid
)
1963 panelp
= kzalloc(sizeof(struct stlpanel
), GFP_KERNEL
);
1965 printk("STALLION: failed to allocate memory "
1966 "(size=%Zd)\n", sizeof(struct stlpanel
));
1970 panelp
->magic
= STL_PANELMAGIC
;
1971 panelp
->brdnr
= brdp
->brdnr
;
1972 panelp
->panelnr
= panelnr
;
1973 panelp
->iobase
= ioaddr
;
1974 panelp
->pagenr
= nxtid
;
1975 panelp
->hwid
= status
;
1976 brdp
->bnk2panel
[banknr
] = panelp
;
1977 brdp
->bnkpageaddr
[banknr
] = nxtid
;
1978 brdp
->bnkstataddr
[banknr
++] = ioaddr
+ ECH_PNLSTATUS
;
1980 if (status
& ECH_PNLXPID
) {
1981 panelp
->uartp
= &stl_sc26198uart
;
1982 panelp
->isr
= stl_sc26198intr
;
1983 if (status
& ECH_PNL16PORT
) {
1984 panelp
->nrports
= 16;
1985 brdp
->bnk2panel
[banknr
] = panelp
;
1986 brdp
->bnkpageaddr
[banknr
] = nxtid
;
1987 brdp
->bnkstataddr
[banknr
++] = ioaddr
+ 4 +
1990 panelp
->nrports
= 8;
1992 panelp
->uartp
= &stl_cd1400uart
;
1993 panelp
->isr
= stl_cd1400echintr
;
1994 if (status
& ECH_PNL16PORT
) {
1995 panelp
->nrports
= 16;
1996 panelp
->ackmask
= 0x80;
1997 if (brdp
->brdtype
!= BRD_ECHPCI
)
1998 ioaddr
+= EREG_BANKSIZE
;
1999 brdp
->bnk2panel
[banknr
] = panelp
;
2000 brdp
->bnkpageaddr
[banknr
] = ++nxtid
;
2001 brdp
->bnkstataddr
[banknr
++] = ioaddr
+
2004 panelp
->nrports
= 8;
2005 panelp
->ackmask
= 0xc0;
2010 ioaddr
+= EREG_BANKSIZE
;
2011 brdp
->nrports
+= panelp
->nrports
;
2012 brdp
->panels
[panelnr
++] = panelp
;
2013 if ((brdp
->brdtype
!= BRD_ECHPCI
) &&
2014 (ioaddr
>= (brdp
->ioaddr2
+ brdp
->iosize2
))) {
2020 brdp
->nrpanels
= panelnr
;
2021 brdp
->nrbnks
= banknr
;
2022 if (brdp
->brdtype
== BRD_ECH
)
2023 outb((brdp
->ioctrlval
| ECH_BRDDISABLE
), brdp
->ioctrl
);
2025 brdp
->state
|= BRD_FOUND
;
2026 if (request_irq(brdp
->irq
, stl_intr
, IRQF_SHARED
, name
, brdp
) != 0) {
2027 printk("STALLION: failed to register interrupt "
2028 "routine for %s irq=%d\n", name
, brdp
->irq
);
2035 stl_cleanup_panels(brdp
);
2036 if (brdp
->iosize2
> 0)
2037 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
2039 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
2044 /*****************************************************************************/
2047 * Initialize and configure the specified board.
2048 * Scan through all the boards in the configuration and see what we
2049 * can find. Handle EIO and the ECH boards a little differently here
2050 * since the initial search and setup is very different.
2053 static int __devinit
stl_brdinit(struct stlbrd
*brdp
)
2057 pr_debug("stl_brdinit(brdp=%p)\n", brdp
);
2059 switch (brdp
->brdtype
) {
2062 retval
= stl_initeio(brdp
);
2070 retval
= stl_initech(brdp
);
2075 printk("STALLION: board=%d is unknown board type=%d\n",
2076 brdp
->brdnr
, brdp
->brdtype
);
2081 if ((brdp
->state
& BRD_FOUND
) == 0) {
2082 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2083 stl_brdnames
[brdp
->brdtype
], brdp
->brdnr
,
2084 brdp
->ioaddr1
, brdp
->irq
);
2088 for (i
= 0; i
< STL_MAXPANELS
; i
++)
2089 if (brdp
->panels
[i
] != NULL
)
2090 stl_initports(brdp
, brdp
->panels
[i
]);
2092 printk("STALLION: %s found, board=%d io=%x irq=%d "
2093 "nrpanels=%d nrports=%d\n", stl_brdnames
[brdp
->brdtype
],
2094 brdp
->brdnr
, brdp
->ioaddr1
, brdp
->irq
, brdp
->nrpanels
,
2099 free_irq(brdp
->irq
, brdp
);
2101 stl_cleanup_panels(brdp
);
2103 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
2104 if (brdp
->iosize2
> 0)
2105 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
2110 /*****************************************************************************/
2113 * Find the next available board number that is free.
2116 static int __devinit
stl_getbrdnr(void)
2120 for (i
= 0; i
< STL_MAXBRDS
; i
++)
2121 if (stl_brds
[i
] == NULL
) {
2122 if (i
>= stl_nrbrds
)
2130 /*****************************************************************************/
2132 * We have a Stallion board. Allocate a board structure and
2133 * initialize it. Read its IO and IRQ resources from PCI
2134 * configuration space.
2137 static int __devinit
stl_pciprobe(struct pci_dev
*pdev
,
2138 const struct pci_device_id
*ent
)
2140 struct stlbrd
*brdp
;
2141 unsigned int i
, brdtype
= ent
->driver_data
;
2142 int brdnr
, retval
= -ENODEV
;
2144 if ((pdev
->class >> 8) == PCI_CLASS_STORAGE_IDE
)
2147 retval
= pci_enable_device(pdev
);
2150 brdp
= stl_allocbrd();
2155 mutex_lock(&stl_brdslock
);
2156 brdnr
= stl_getbrdnr();
2158 dev_err(&pdev
->dev
, "too many boards found, "
2159 "maximum supported %d\n", STL_MAXBRDS
);
2160 mutex_unlock(&stl_brdslock
);
2164 brdp
->brdnr
= (unsigned int)brdnr
;
2165 stl_brds
[brdp
->brdnr
] = brdp
;
2166 mutex_unlock(&stl_brdslock
);
2168 brdp
->brdtype
= brdtype
;
2169 brdp
->state
|= STL_PROBED
;
2172 * We have all resources from the board, so let's setup the actual
2173 * board structure now.
2177 brdp
->ioaddr2
= pci_resource_start(pdev
, 0);
2178 brdp
->ioaddr1
= pci_resource_start(pdev
, 1);
2181 brdp
->ioaddr2
= pci_resource_start(pdev
, 2);
2182 brdp
->ioaddr1
= pci_resource_start(pdev
, 1);
2185 brdp
->ioaddr1
= pci_resource_start(pdev
, 2);
2186 brdp
->ioaddr2
= pci_resource_start(pdev
, 1);
2189 dev_err(&pdev
->dev
, "unknown PCI board type=%u\n", brdtype
);
2193 brdp
->irq
= pdev
->irq
;
2194 retval
= stl_brdinit(brdp
);
2198 pci_set_drvdata(pdev
, brdp
);
2200 for (i
= 0; i
< brdp
->nrports
; i
++)
2201 tty_register_device(stl_serial
,
2202 brdp
->brdnr
* STL_MAXPORTS
+ i
, &pdev
->dev
);
2206 stl_brds
[brdp
->brdnr
] = NULL
;
2213 static void __devexit
stl_pciremove(struct pci_dev
*pdev
)
2215 struct stlbrd
*brdp
= pci_get_drvdata(pdev
);
2218 free_irq(brdp
->irq
, brdp
);
2220 stl_cleanup_panels(brdp
);
2222 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
2223 if (brdp
->iosize2
> 0)
2224 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
2226 for (i
= 0; i
< brdp
->nrports
; i
++)
2227 tty_unregister_device(stl_serial
,
2228 brdp
->brdnr
* STL_MAXPORTS
+ i
);
2230 stl_brds
[brdp
->brdnr
] = NULL
;
2234 static struct pci_driver stl_pcidriver
= {
2236 .id_table
= stl_pcibrds
,
2237 .probe
= stl_pciprobe
,
2238 .remove
= __devexit_p(stl_pciremove
)
2241 /*****************************************************************************/
2244 * Return the board stats structure to user app.
2247 static int stl_getbrdstats(combrd_t __user
*bp
)
2249 combrd_t stl_brdstats
;
2250 struct stlbrd
*brdp
;
2251 struct stlpanel
*panelp
;
2254 if (copy_from_user(&stl_brdstats
, bp
, sizeof(combrd_t
)))
2256 if (stl_brdstats
.brd
>= STL_MAXBRDS
)
2258 brdp
= stl_brds
[stl_brdstats
.brd
];
2262 memset(&stl_brdstats
, 0, sizeof(combrd_t
));
2263 stl_brdstats
.brd
= brdp
->brdnr
;
2264 stl_brdstats
.type
= brdp
->brdtype
;
2265 stl_brdstats
.hwid
= brdp
->hwid
;
2266 stl_brdstats
.state
= brdp
->state
;
2267 stl_brdstats
.ioaddr
= brdp
->ioaddr1
;
2268 stl_brdstats
.ioaddr2
= brdp
->ioaddr2
;
2269 stl_brdstats
.irq
= brdp
->irq
;
2270 stl_brdstats
.nrpanels
= brdp
->nrpanels
;
2271 stl_brdstats
.nrports
= brdp
->nrports
;
2272 for (i
= 0; i
< brdp
->nrpanels
; i
++) {
2273 panelp
= brdp
->panels
[i
];
2274 stl_brdstats
.panels
[i
].panel
= i
;
2275 stl_brdstats
.panels
[i
].hwid
= panelp
->hwid
;
2276 stl_brdstats
.panels
[i
].nrports
= panelp
->nrports
;
2279 return copy_to_user(bp
, &stl_brdstats
, sizeof(combrd_t
)) ? -EFAULT
: 0;
2282 /*****************************************************************************/
2285 * Resolve the referenced port number into a port struct pointer.
2288 static struct stlport
*stl_getport(int brdnr
, int panelnr
, int portnr
)
2290 struct stlbrd
*brdp
;
2291 struct stlpanel
*panelp
;
2293 if (brdnr
< 0 || brdnr
>= STL_MAXBRDS
)
2295 brdp
= stl_brds
[brdnr
];
2298 if (panelnr
< 0 || (unsigned int)panelnr
>= brdp
->nrpanels
)
2300 panelp
= brdp
->panels
[panelnr
];
2303 if (portnr
< 0 || (unsigned int)portnr
>= panelp
->nrports
)
2305 return panelp
->ports
[portnr
];
2308 /*****************************************************************************/
2311 * Return the port stats structure to user app. A NULL port struct
2312 * pointer passed in means that we need to find out from the app
2313 * what port to get stats for (used through board control device).
2316 static int stl_getportstats(struct tty_struct
*tty
, struct stlport
*portp
, comstats_t __user
*cp
)
2318 comstats_t stl_comstats
;
2319 unsigned char *head
, *tail
;
2320 unsigned long flags
;
2323 if (copy_from_user(&stl_comstats
, cp
, sizeof(comstats_t
)))
2325 portp
= stl_getport(stl_comstats
.brd
, stl_comstats
.panel
,
2331 mutex_lock(&portp
->port
.mutex
);
2332 portp
->stats
.state
= portp
->istate
;
2333 portp
->stats
.flags
= portp
->port
.flags
;
2334 portp
->stats
.hwid
= portp
->hwid
;
2336 portp
->stats
.ttystate
= 0;
2337 portp
->stats
.cflags
= 0;
2338 portp
->stats
.iflags
= 0;
2339 portp
->stats
.oflags
= 0;
2340 portp
->stats
.lflags
= 0;
2341 portp
->stats
.rxbuffered
= 0;
2343 spin_lock_irqsave(&stallion_lock
, flags
);
2344 if (tty
!= NULL
&& portp
->port
.tty
== tty
) {
2345 portp
->stats
.ttystate
= tty
->flags
;
2346 /* No longer available as a statistic */
2347 portp
->stats
.rxbuffered
= 1; /*tty->flip.count; */
2348 if (tty
->termios
!= NULL
) {
2349 portp
->stats
.cflags
= tty
->termios
->c_cflag
;
2350 portp
->stats
.iflags
= tty
->termios
->c_iflag
;
2351 portp
->stats
.oflags
= tty
->termios
->c_oflag
;
2352 portp
->stats
.lflags
= tty
->termios
->c_lflag
;
2355 spin_unlock_irqrestore(&stallion_lock
, flags
);
2357 head
= portp
->tx
.head
;
2358 tail
= portp
->tx
.tail
;
2359 portp
->stats
.txbuffered
= (head
>= tail
) ? (head
- tail
) :
2360 (STL_TXBUFSIZE
- (tail
- head
));
2362 portp
->stats
.signals
= (unsigned long) stl_getsignals(portp
);
2363 mutex_unlock(&portp
->port
.mutex
);
2365 return copy_to_user(cp
, &portp
->stats
,
2366 sizeof(comstats_t
)) ? -EFAULT
: 0;
2369 /*****************************************************************************/
2372 * Clear the port stats structure. We also return it zeroed out...
2375 static int stl_clrportstats(struct stlport
*portp
, comstats_t __user
*cp
)
2377 comstats_t stl_comstats
;
2380 if (copy_from_user(&stl_comstats
, cp
, sizeof(comstats_t
)))
2382 portp
= stl_getport(stl_comstats
.brd
, stl_comstats
.panel
,
2388 mutex_lock(&portp
->port
.mutex
);
2389 memset(&portp
->stats
, 0, sizeof(comstats_t
));
2390 portp
->stats
.brd
= portp
->brdnr
;
2391 portp
->stats
.panel
= portp
->panelnr
;
2392 portp
->stats
.port
= portp
->portnr
;
2393 mutex_unlock(&portp
->port
.mutex
);
2394 return copy_to_user(cp
, &portp
->stats
,
2395 sizeof(comstats_t
)) ? -EFAULT
: 0;
2398 /*****************************************************************************/
2401 * Return the entire driver ports structure to a user app.
2404 static int stl_getportstruct(struct stlport __user
*arg
)
2406 struct stlport stl_dummyport
;
2407 struct stlport
*portp
;
2409 if (copy_from_user(&stl_dummyport
, arg
, sizeof(struct stlport
)))
2411 portp
= stl_getport(stl_dummyport
.brdnr
, stl_dummyport
.panelnr
,
2412 stl_dummyport
.portnr
);
2415 return copy_to_user(arg
, portp
, sizeof(struct stlport
)) ? -EFAULT
: 0;
2418 /*****************************************************************************/
2421 * Return the entire driver board structure to a user app.
2424 static int stl_getbrdstruct(struct stlbrd __user
*arg
)
2426 struct stlbrd stl_dummybrd
;
2427 struct stlbrd
*brdp
;
2429 if (copy_from_user(&stl_dummybrd
, arg
, sizeof(struct stlbrd
)))
2431 if (stl_dummybrd
.brdnr
>= STL_MAXBRDS
)
2433 brdp
= stl_brds
[stl_dummybrd
.brdnr
];
2436 return copy_to_user(arg
, brdp
, sizeof(struct stlbrd
)) ? -EFAULT
: 0;
2439 /*****************************************************************************/
2442 * The "staliomem" device is also required to do some special operations
2443 * on the board and/or ports. In this driver it is mostly used for stats
2447 static long stl_memioctl(struct file
*fp
, unsigned int cmd
, unsigned long arg
)
2450 void __user
*argp
= (void __user
*)arg
;
2452 pr_debug("stl_memioctl(fp=%p,cmd=%x,arg=%lx)\n", fp
, cmd
,arg
);
2454 brdnr
= iminor(fp
->f_dentry
->d_inode
);
2455 if (brdnr
>= STL_MAXBRDS
)
2460 case COM_GETPORTSTATS
:
2461 rc
= stl_getportstats(NULL
, NULL
, argp
);
2463 case COM_CLRPORTSTATS
:
2464 rc
= stl_clrportstats(NULL
, argp
);
2466 case COM_GETBRDSTATS
:
2467 rc
= stl_getbrdstats(argp
);
2470 rc
= stl_getportstruct(argp
);
2473 rc
= stl_getbrdstruct(argp
);
2482 static const struct tty_operations stl_ops
= {
2486 .put_char
= stl_putchar
,
2487 .flush_chars
= stl_flushchars
,
2488 .write_room
= stl_writeroom
,
2489 .chars_in_buffer
= stl_charsinbuffer
,
2491 .set_termios
= stl_settermios
,
2492 .throttle
= stl_throttle
,
2493 .unthrottle
= stl_unthrottle
,
2496 .hangup
= stl_hangup
,
2497 .flush_buffer
= stl_flushbuffer
,
2498 .break_ctl
= stl_breakctl
,
2499 .wait_until_sent
= stl_waituntilsent
,
2500 .send_xchar
= stl_sendxchar
,
2501 .tiocmget
= stl_tiocmget
,
2502 .tiocmset
= stl_tiocmset
,
2503 .proc_fops
= &stl_proc_fops
,
2506 static const struct tty_port_operations stl_port_ops
= {
2507 .carrier_raised
= stl_carrier_raised
,
2508 .dtr_rts
= stl_dtr_rts
,
2509 .activate
= stl_activate
,
2510 .shutdown
= stl_shutdown
,
2513 /*****************************************************************************/
2514 /* CD1400 HARDWARE FUNCTIONS */
2515 /*****************************************************************************/
2518 * These functions get/set/update the registers of the cd1400 UARTs.
2519 * Access to the cd1400 registers is via an address/data io port pair.
2520 * (Maybe should make this inline...)
2523 static int stl_cd1400getreg(struct stlport
*portp
, int regnr
)
2525 outb((regnr
+ portp
->uartaddr
), portp
->ioaddr
);
2526 return inb(portp
->ioaddr
+ EREG_DATA
);
2529 static void stl_cd1400setreg(struct stlport
*portp
, int regnr
, int value
)
2531 outb(regnr
+ portp
->uartaddr
, portp
->ioaddr
);
2532 outb(value
, portp
->ioaddr
+ EREG_DATA
);
2535 static int stl_cd1400updatereg(struct stlport
*portp
, int regnr
, int value
)
2537 outb(regnr
+ portp
->uartaddr
, portp
->ioaddr
);
2538 if (inb(portp
->ioaddr
+ EREG_DATA
) != value
) {
2539 outb(value
, portp
->ioaddr
+ EREG_DATA
);
2545 /*****************************************************************************/
2548 * Inbitialize the UARTs in a panel. We don't care what sort of board
2549 * these ports are on - since the port io registers are almost
2550 * identical when dealing with ports.
2553 static int stl_cd1400panelinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
)
2557 int nrchips
, uartaddr
, ioaddr
;
2558 unsigned long flags
;
2560 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp
, panelp
);
2562 spin_lock_irqsave(&brd_lock
, flags
);
2563 BRDENABLE(panelp
->brdnr
, panelp
->pagenr
);
2566 * Check that each chip is present and started up OK.
2569 nrchips
= panelp
->nrports
/ CD1400_PORTS
;
2570 for (i
= 0; i
< nrchips
; i
++) {
2571 if (brdp
->brdtype
== BRD_ECHPCI
) {
2572 outb((panelp
->pagenr
+ (i
>> 1)), brdp
->ioctrl
);
2573 ioaddr
= panelp
->iobase
;
2575 ioaddr
= panelp
->iobase
+ (EREG_BANKSIZE
* (i
>> 1));
2576 uartaddr
= (i
& 0x01) ? 0x080 : 0;
2577 outb((GFRCR
+ uartaddr
), ioaddr
);
2578 outb(0, (ioaddr
+ EREG_DATA
));
2579 outb((CCR
+ uartaddr
), ioaddr
);
2580 outb(CCR_RESETFULL
, (ioaddr
+ EREG_DATA
));
2581 outb(CCR_RESETFULL
, (ioaddr
+ EREG_DATA
));
2582 outb((GFRCR
+ uartaddr
), ioaddr
);
2583 for (j
= 0; j
< CCR_MAXWAIT
; j
++)
2584 if ((gfrcr
= inb(ioaddr
+ EREG_DATA
)) != 0)
2587 if ((j
>= CCR_MAXWAIT
) || (gfrcr
< 0x40) || (gfrcr
> 0x60)) {
2588 printk("STALLION: cd1400 not responding, "
2589 "brd=%d panel=%d chip=%d\n",
2590 panelp
->brdnr
, panelp
->panelnr
, i
);
2593 chipmask
|= (0x1 << i
);
2594 outb((PPR
+ uartaddr
), ioaddr
);
2595 outb(PPR_SCALAR
, (ioaddr
+ EREG_DATA
));
2598 BRDDISABLE(panelp
->brdnr
);
2599 spin_unlock_irqrestore(&brd_lock
, flags
);
2603 /*****************************************************************************/
2606 * Initialize hardware specific port registers.
2609 static void stl_cd1400portinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
)
2611 unsigned long flags
;
2612 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp
,
2615 if ((brdp
== NULL
) || (panelp
== NULL
) ||
2619 spin_lock_irqsave(&brd_lock
, flags
);
2620 portp
->ioaddr
= panelp
->iobase
+ (((brdp
->brdtype
== BRD_ECHPCI
) ||
2621 (portp
->portnr
< 8)) ? 0 : EREG_BANKSIZE
);
2622 portp
->uartaddr
= (portp
->portnr
& 0x04) << 5;
2623 portp
->pagenr
= panelp
->pagenr
+ (portp
->portnr
>> 3);
2625 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
2626 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
2627 stl_cd1400setreg(portp
, LIVR
, (portp
->portnr
<< 3));
2628 portp
->hwid
= stl_cd1400getreg(portp
, GFRCR
);
2629 BRDDISABLE(portp
->brdnr
);
2630 spin_unlock_irqrestore(&brd_lock
, flags
);
2633 /*****************************************************************************/
2636 * Wait for the command register to be ready. We will poll this,
2637 * since it won't usually take too long to be ready.
2640 static void stl_cd1400ccrwait(struct stlport
*portp
)
2644 for (i
= 0; i
< CCR_MAXWAIT
; i
++)
2645 if (stl_cd1400getreg(portp
, CCR
) == 0)
2648 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2649 portp
->portnr
, portp
->panelnr
, portp
->brdnr
);
2652 /*****************************************************************************/
2655 * Set up the cd1400 registers for a port based on the termios port
2659 static void stl_cd1400setport(struct stlport
*portp
, struct ktermios
*tiosp
)
2661 struct stlbrd
*brdp
;
2662 unsigned long flags
;
2663 unsigned int clkdiv
, baudrate
;
2664 unsigned char cor1
, cor2
, cor3
;
2665 unsigned char cor4
, cor5
, ccr
;
2666 unsigned char srer
, sreron
, sreroff
;
2667 unsigned char mcor1
, mcor2
, rtpr
;
2668 unsigned char clk
, div
;
2684 brdp
= stl_brds
[portp
->brdnr
];
2689 * Set up the RX char ignore mask with those RX error types we
2690 * can ignore. We can get the cd1400 to help us out a little here,
2691 * it will ignore parity errors and breaks for us.
2693 portp
->rxignoremsk
= 0;
2694 if (tiosp
->c_iflag
& IGNPAR
) {
2695 portp
->rxignoremsk
|= (ST_PARITY
| ST_FRAMING
| ST_OVERRUN
);
2696 cor1
|= COR1_PARIGNORE
;
2698 if (tiosp
->c_iflag
& IGNBRK
) {
2699 portp
->rxignoremsk
|= ST_BREAK
;
2700 cor4
|= COR4_IGNBRK
;
2703 portp
->rxmarkmsk
= ST_OVERRUN
;
2704 if (tiosp
->c_iflag
& (INPCK
| PARMRK
))
2705 portp
->rxmarkmsk
|= (ST_PARITY
| ST_FRAMING
);
2706 if (tiosp
->c_iflag
& BRKINT
)
2707 portp
->rxmarkmsk
|= ST_BREAK
;
2710 * Go through the char size, parity and stop bits and set all the
2711 * option register appropriately.
2713 switch (tiosp
->c_cflag
& CSIZE
) {
2728 if (tiosp
->c_cflag
& CSTOPB
)
2733 if (tiosp
->c_cflag
& PARENB
) {
2734 if (tiosp
->c_cflag
& PARODD
)
2735 cor1
|= (COR1_PARENB
| COR1_PARODD
);
2737 cor1
|= (COR1_PARENB
| COR1_PAREVEN
);
2739 cor1
|= COR1_PARNONE
;
2743 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
2744 * space for hardware flow control and the like. This should be set to
2745 * VMIN. Also here we will set the RX data timeout to 10ms - this should
2746 * really be based on VTIME.
2748 cor3
|= FIFO_RXTHRESHOLD
;
2752 * Calculate the baud rate timers. For now we will just assume that
2753 * the input and output baud are the same. Could have used a baud
2754 * table here, but this way we can generate virtually any baud rate
2757 baudrate
= tiosp
->c_cflag
& CBAUD
;
2758 if (baudrate
& CBAUDEX
) {
2759 baudrate
&= ~CBAUDEX
;
2760 if ((baudrate
< 1) || (baudrate
> 4))
2761 tiosp
->c_cflag
&= ~CBAUDEX
;
2765 baudrate
= stl_baudrates
[baudrate
];
2766 if ((tiosp
->c_cflag
& CBAUD
) == B38400
) {
2767 if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_HI
)
2769 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_VHI
)
2771 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_SHI
)
2773 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_WARP
)
2775 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_CUST
)
2776 baudrate
= (portp
->baud_base
/ portp
->custom_divisor
);
2778 if (baudrate
> STL_CD1400MAXBAUD
)
2779 baudrate
= STL_CD1400MAXBAUD
;
2782 for (clk
= 0; clk
< CD1400_NUMCLKS
; clk
++) {
2783 clkdiv
= (portp
->clk
/ stl_cd1400clkdivs
[clk
]) / baudrate
;
2787 div
= (unsigned char) clkdiv
;
2791 * Check what form of modem signaling is required and set it up.
2793 if ((tiosp
->c_cflag
& CLOCAL
) == 0) {
2796 sreron
|= SRER_MODEM
;
2797 portp
->port
.flags
|= ASYNC_CHECK_CD
;
2799 portp
->port
.flags
&= ~ASYNC_CHECK_CD
;
2802 * Setup cd1400 enhanced modes if we can. In particular we want to
2803 * handle as much of the flow control as possible automatically. As
2804 * well as saving a few CPU cycles it will also greatly improve flow
2805 * control reliability.
2807 if (tiosp
->c_iflag
& IXON
) {
2810 if (tiosp
->c_iflag
& IXANY
)
2814 if (tiosp
->c_cflag
& CRTSCTS
) {
2816 mcor1
|= FIFO_RTSTHRESHOLD
;
2820 * All cd1400 register values calculated so go through and set
2824 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
2825 portp
->portnr
, portp
->panelnr
, portp
->brdnr
);
2826 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
2827 cor1
, cor2
, cor3
, cor4
, cor5
);
2828 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
2829 mcor1
, mcor2
, rtpr
, sreron
, sreroff
);
2830 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk
, div
, clk
, div
);
2831 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
2832 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
],
2833 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
]);
2835 spin_lock_irqsave(&brd_lock
, flags
);
2836 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
2837 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x3));
2838 srer
= stl_cd1400getreg(portp
, SRER
);
2839 stl_cd1400setreg(portp
, SRER
, 0);
2840 if (stl_cd1400updatereg(portp
, COR1
, cor1
))
2842 if (stl_cd1400updatereg(portp
, COR2
, cor2
))
2844 if (stl_cd1400updatereg(portp
, COR3
, cor3
))
2847 stl_cd1400ccrwait(portp
);
2848 stl_cd1400setreg(portp
, CCR
, CCR_CORCHANGE
);
2850 stl_cd1400setreg(portp
, COR4
, cor4
);
2851 stl_cd1400setreg(portp
, COR5
, cor5
);
2852 stl_cd1400setreg(portp
, MCOR1
, mcor1
);
2853 stl_cd1400setreg(portp
, MCOR2
, mcor2
);
2855 stl_cd1400setreg(portp
, TCOR
, clk
);
2856 stl_cd1400setreg(portp
, TBPR
, div
);
2857 stl_cd1400setreg(portp
, RCOR
, clk
);
2858 stl_cd1400setreg(portp
, RBPR
, div
);
2860 stl_cd1400setreg(portp
, SCHR1
, tiosp
->c_cc
[VSTART
]);
2861 stl_cd1400setreg(portp
, SCHR2
, tiosp
->c_cc
[VSTOP
]);
2862 stl_cd1400setreg(portp
, SCHR3
, tiosp
->c_cc
[VSTART
]);
2863 stl_cd1400setreg(portp
, SCHR4
, tiosp
->c_cc
[VSTOP
]);
2864 stl_cd1400setreg(portp
, RTPR
, rtpr
);
2865 mcor1
= stl_cd1400getreg(portp
, MSVR1
);
2866 if (mcor1
& MSVR1_DCD
)
2867 portp
->sigs
|= TIOCM_CD
;
2869 portp
->sigs
&= ~TIOCM_CD
;
2870 stl_cd1400setreg(portp
, SRER
, ((srer
& ~sreroff
) | sreron
));
2871 BRDDISABLE(portp
->brdnr
);
2872 spin_unlock_irqrestore(&brd_lock
, flags
);
2875 /*****************************************************************************/
2878 * Set the state of the DTR and RTS signals.
2881 static void stl_cd1400setsignals(struct stlport
*portp
, int dtr
, int rts
)
2883 unsigned char msvr1
, msvr2
;
2884 unsigned long flags
;
2886 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
2896 spin_lock_irqsave(&brd_lock
, flags
);
2897 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
2898 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
2900 stl_cd1400setreg(portp
, MSVR2
, msvr2
);
2902 stl_cd1400setreg(portp
, MSVR1
, msvr1
);
2903 BRDDISABLE(portp
->brdnr
);
2904 spin_unlock_irqrestore(&brd_lock
, flags
);
2907 /*****************************************************************************/
2910 * Return the state of the signals.
2913 static int stl_cd1400getsignals(struct stlport
*portp
)
2915 unsigned char msvr1
, msvr2
;
2916 unsigned long flags
;
2919 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp
);
2921 spin_lock_irqsave(&brd_lock
, flags
);
2922 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
2923 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
2924 msvr1
= stl_cd1400getreg(portp
, MSVR1
);
2925 msvr2
= stl_cd1400getreg(portp
, MSVR2
);
2926 BRDDISABLE(portp
->brdnr
);
2927 spin_unlock_irqrestore(&brd_lock
, flags
);
2930 sigs
|= (msvr1
& MSVR1_DCD
) ? TIOCM_CD
: 0;
2931 sigs
|= (msvr1
& MSVR1_CTS
) ? TIOCM_CTS
: 0;
2932 sigs
|= (msvr1
& MSVR1_DTR
) ? TIOCM_DTR
: 0;
2933 sigs
|= (msvr2
& MSVR2_RTS
) ? TIOCM_RTS
: 0;
2935 sigs
|= (msvr1
& MSVR1_RI
) ? TIOCM_RI
: 0;
2936 sigs
|= (msvr1
& MSVR1_DSR
) ? TIOCM_DSR
: 0;
2943 /*****************************************************************************/
2946 * Enable/Disable the Transmitter and/or Receiver.
2949 static void stl_cd1400enablerxtx(struct stlport
*portp
, int rx
, int tx
)
2952 unsigned long flags
;
2954 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp
, rx
, tx
);
2959 ccr
|= CCR_TXDISABLE
;
2961 ccr
|= CCR_TXENABLE
;
2963 ccr
|= CCR_RXDISABLE
;
2965 ccr
|= CCR_RXENABLE
;
2967 spin_lock_irqsave(&brd_lock
, flags
);
2968 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
2969 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
2970 stl_cd1400ccrwait(portp
);
2971 stl_cd1400setreg(portp
, CCR
, ccr
);
2972 stl_cd1400ccrwait(portp
);
2973 BRDDISABLE(portp
->brdnr
);
2974 spin_unlock_irqrestore(&brd_lock
, flags
);
2977 /*****************************************************************************/
2980 * Start/stop the Transmitter and/or Receiver.
2983 static void stl_cd1400startrxtx(struct stlport
*portp
, int rx
, int tx
)
2985 unsigned char sreron
, sreroff
;
2986 unsigned long flags
;
2988 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp
, rx
, tx
);
2993 sreroff
|= (SRER_TXDATA
| SRER_TXEMPTY
);
2995 sreron
|= SRER_TXDATA
;
2997 sreron
|= SRER_TXEMPTY
;
2999 sreroff
|= SRER_RXDATA
;
3001 sreron
|= SRER_RXDATA
;
3003 spin_lock_irqsave(&brd_lock
, flags
);
3004 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3005 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3006 stl_cd1400setreg(portp
, SRER
,
3007 ((stl_cd1400getreg(portp
, SRER
) & ~sreroff
) | sreron
));
3008 BRDDISABLE(portp
->brdnr
);
3010 set_bit(ASYI_TXBUSY
, &portp
->istate
);
3011 spin_unlock_irqrestore(&brd_lock
, flags
);
3014 /*****************************************************************************/
3017 * Disable all interrupts from this port.
3020 static void stl_cd1400disableintrs(struct stlport
*portp
)
3022 unsigned long flags
;
3024 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp
);
3026 spin_lock_irqsave(&brd_lock
, flags
);
3027 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3028 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3029 stl_cd1400setreg(portp
, SRER
, 0);
3030 BRDDISABLE(portp
->brdnr
);
3031 spin_unlock_irqrestore(&brd_lock
, flags
);
3034 /*****************************************************************************/
3036 static void stl_cd1400sendbreak(struct stlport
*portp
, int len
)
3038 unsigned long flags
;
3040 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp
, len
);
3042 spin_lock_irqsave(&brd_lock
, flags
);
3043 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3044 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3045 stl_cd1400setreg(portp
, SRER
,
3046 ((stl_cd1400getreg(portp
, SRER
) & ~SRER_TXDATA
) |
3048 BRDDISABLE(portp
->brdnr
);
3049 portp
->brklen
= len
;
3051 portp
->stats
.txbreaks
++;
3052 spin_unlock_irqrestore(&brd_lock
, flags
);
3055 /*****************************************************************************/
3058 * Take flow control actions...
3061 static void stl_cd1400flowctrl(struct stlport
*portp
, int state
)
3063 struct tty_struct
*tty
;
3064 unsigned long flags
;
3066 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp
, state
);
3070 tty
= tty_port_tty_get(&portp
->port
);
3074 spin_lock_irqsave(&brd_lock
, flags
);
3075 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3076 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3079 if (tty
->termios
->c_iflag
& IXOFF
) {
3080 stl_cd1400ccrwait(portp
);
3081 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR1
);
3082 portp
->stats
.rxxon
++;
3083 stl_cd1400ccrwait(portp
);
3086 * Question: should we return RTS to what it was before? It may
3087 * have been set by an ioctl... Suppose not, since if you have
3088 * hardware flow control set then it is pretty silly to go and
3089 * set the RTS line by hand.
3091 if (tty
->termios
->c_cflag
& CRTSCTS
) {
3092 stl_cd1400setreg(portp
, MCOR1
,
3093 (stl_cd1400getreg(portp
, MCOR1
) |
3094 FIFO_RTSTHRESHOLD
));
3095 stl_cd1400setreg(portp
, MSVR2
, MSVR2_RTS
);
3096 portp
->stats
.rxrtson
++;
3099 if (tty
->termios
->c_iflag
& IXOFF
) {
3100 stl_cd1400ccrwait(portp
);
3101 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR2
);
3102 portp
->stats
.rxxoff
++;
3103 stl_cd1400ccrwait(portp
);
3105 if (tty
->termios
->c_cflag
& CRTSCTS
) {
3106 stl_cd1400setreg(portp
, MCOR1
,
3107 (stl_cd1400getreg(portp
, MCOR1
) & 0xf0));
3108 stl_cd1400setreg(portp
, MSVR2
, 0);
3109 portp
->stats
.rxrtsoff
++;
3113 BRDDISABLE(portp
->brdnr
);
3114 spin_unlock_irqrestore(&brd_lock
, flags
);
3118 /*****************************************************************************/
3121 * Send a flow control character...
3124 static void stl_cd1400sendflow(struct stlport
*portp
, int state
)
3126 struct tty_struct
*tty
;
3127 unsigned long flags
;
3129 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp
, state
);
3133 tty
= tty_port_tty_get(&portp
->port
);
3137 spin_lock_irqsave(&brd_lock
, flags
);
3138 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3139 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3141 stl_cd1400ccrwait(portp
);
3142 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR1
);
3143 portp
->stats
.rxxon
++;
3144 stl_cd1400ccrwait(portp
);
3146 stl_cd1400ccrwait(portp
);
3147 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR2
);
3148 portp
->stats
.rxxoff
++;
3149 stl_cd1400ccrwait(portp
);
3151 BRDDISABLE(portp
->brdnr
);
3152 spin_unlock_irqrestore(&brd_lock
, flags
);
3156 /*****************************************************************************/
3158 static void stl_cd1400flush(struct stlport
*portp
)
3160 unsigned long flags
;
3162 pr_debug("stl_cd1400flush(portp=%p)\n", portp
);
3167 spin_lock_irqsave(&brd_lock
, flags
);
3168 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3169 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3170 stl_cd1400ccrwait(portp
);
3171 stl_cd1400setreg(portp
, CCR
, CCR_TXFLUSHFIFO
);
3172 stl_cd1400ccrwait(portp
);
3173 portp
->tx
.tail
= portp
->tx
.head
;
3174 BRDDISABLE(portp
->brdnr
);
3175 spin_unlock_irqrestore(&brd_lock
, flags
);
3178 /*****************************************************************************/
3181 * Return the current state of data flow on this port. This is only
3182 * really interesting when determining if data has fully completed
3183 * transmission or not... This is easy for the cd1400, it accurately
3184 * maintains the busy port flag.
3187 static int stl_cd1400datastate(struct stlport
*portp
)
3189 pr_debug("stl_cd1400datastate(portp=%p)\n", portp
);
3194 return test_bit(ASYI_TXBUSY
, &portp
->istate
) ? 1 : 0;
3197 /*****************************************************************************/
3200 * Interrupt service routine for cd1400 EasyIO boards.
3203 static void stl_cd1400eiointr(struct stlpanel
*panelp
, unsigned int iobase
)
3205 unsigned char svrtype
;
3207 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp
, iobase
);
3209 spin_lock(&brd_lock
);
3211 svrtype
= inb(iobase
+ EREG_DATA
);
3212 if (panelp
->nrports
> 4) {
3213 outb((SVRR
+ 0x80), iobase
);
3214 svrtype
|= inb(iobase
+ EREG_DATA
);
3217 if (svrtype
& SVRR_RX
)
3218 stl_cd1400rxisr(panelp
, iobase
);
3219 else if (svrtype
& SVRR_TX
)
3220 stl_cd1400txisr(panelp
, iobase
);
3221 else if (svrtype
& SVRR_MDM
)
3222 stl_cd1400mdmisr(panelp
, iobase
);
3224 spin_unlock(&brd_lock
);
3227 /*****************************************************************************/
3230 * Interrupt service routine for cd1400 panels.
3233 static void stl_cd1400echintr(struct stlpanel
*panelp
, unsigned int iobase
)
3235 unsigned char svrtype
;
3237 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp
, iobase
);
3240 svrtype
= inb(iobase
+ EREG_DATA
);
3241 outb((SVRR
+ 0x80), iobase
);
3242 svrtype
|= inb(iobase
+ EREG_DATA
);
3243 if (svrtype
& SVRR_RX
)
3244 stl_cd1400rxisr(panelp
, iobase
);
3245 else if (svrtype
& SVRR_TX
)
3246 stl_cd1400txisr(panelp
, iobase
);
3247 else if (svrtype
& SVRR_MDM
)
3248 stl_cd1400mdmisr(panelp
, iobase
);
3252 /*****************************************************************************/
3255 * Unfortunately we need to handle breaks in the TX data stream, since
3256 * this is the only way to generate them on the cd1400.
3259 static int stl_cd1400breakisr(struct stlport
*portp
, int ioaddr
)
3261 if (portp
->brklen
== 1) {
3262 outb((COR2
+ portp
->uartaddr
), ioaddr
);
3263 outb((inb(ioaddr
+ EREG_DATA
) | COR2_ETC
),
3264 (ioaddr
+ EREG_DATA
));
3265 outb((TDR
+ portp
->uartaddr
), ioaddr
);
3266 outb(ETC_CMD
, (ioaddr
+ EREG_DATA
));
3267 outb(ETC_STARTBREAK
, (ioaddr
+ EREG_DATA
));
3268 outb((SRER
+ portp
->uartaddr
), ioaddr
);
3269 outb((inb(ioaddr
+ EREG_DATA
) & ~(SRER_TXDATA
| SRER_TXEMPTY
)),
3270 (ioaddr
+ EREG_DATA
));
3272 } else if (portp
->brklen
> 1) {
3273 outb((TDR
+ portp
->uartaddr
), ioaddr
);
3274 outb(ETC_CMD
, (ioaddr
+ EREG_DATA
));
3275 outb(ETC_STOPBREAK
, (ioaddr
+ EREG_DATA
));
3279 outb((COR2
+ portp
->uartaddr
), ioaddr
);
3280 outb((inb(ioaddr
+ EREG_DATA
) & ~COR2_ETC
),
3281 (ioaddr
+ EREG_DATA
));
3287 /*****************************************************************************/
3290 * Transmit interrupt handler. This has gotta be fast! Handling TX
3291 * chars is pretty simple, stuff as many as possible from the TX buffer
3292 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3293 * are embedded as commands in the data stream. Oh no, had to use a goto!
3294 * This could be optimized more, will do when I get time...
3295 * In practice it is possible that interrupts are enabled but that the
3296 * port has been hung up. Need to handle not having any TX buffer here,
3297 * this is done by using the side effect that head and tail will also
3298 * be NULL if the buffer has been freed.
3301 static void stl_cd1400txisr(struct stlpanel
*panelp
, int ioaddr
)
3303 struct stlport
*portp
;
3306 unsigned char ioack
, srer
;
3307 struct tty_struct
*tty
;
3309 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp
, ioaddr
);
3311 ioack
= inb(ioaddr
+ EREG_TXACK
);
3312 if (((ioack
& panelp
->ackmask
) != 0) ||
3313 ((ioack
& ACK_TYPMASK
) != ACK_TYPTX
)) {
3314 printk("STALLION: bad TX interrupt ack value=%x\n", ioack
);
3317 portp
= panelp
->ports
[(ioack
>> 3)];
3320 * Unfortunately we need to handle breaks in the data stream, since
3321 * this is the only way to generate them on the cd1400. Do it now if
3322 * a break is to be sent.
3324 if (portp
->brklen
!= 0)
3325 if (stl_cd1400breakisr(portp
, ioaddr
))
3328 head
= portp
->tx
.head
;
3329 tail
= portp
->tx
.tail
;
3330 len
= (head
>= tail
) ? (head
- tail
) : (STL_TXBUFSIZE
- (tail
- head
));
3331 if ((len
== 0) || ((len
< STL_TXBUFLOW
) &&
3332 (test_bit(ASYI_TXLOW
, &portp
->istate
) == 0))) {
3333 set_bit(ASYI_TXLOW
, &portp
->istate
);
3334 tty
= tty_port_tty_get(&portp
->port
);
3342 outb((SRER
+ portp
->uartaddr
), ioaddr
);
3343 srer
= inb(ioaddr
+ EREG_DATA
);
3344 if (srer
& SRER_TXDATA
) {
3345 srer
= (srer
& ~SRER_TXDATA
) | SRER_TXEMPTY
;
3347 srer
&= ~(SRER_TXDATA
| SRER_TXEMPTY
);
3348 clear_bit(ASYI_TXBUSY
, &portp
->istate
);
3350 outb(srer
, (ioaddr
+ EREG_DATA
));
3352 len
= min(len
, CD1400_TXFIFOSIZE
);
3353 portp
->stats
.txtotal
+= len
;
3354 stlen
= min_t(unsigned int, len
,
3355 (portp
->tx
.buf
+ STL_TXBUFSIZE
) - tail
);
3356 outb((TDR
+ portp
->uartaddr
), ioaddr
);
3357 outsb((ioaddr
+ EREG_DATA
), tail
, stlen
);
3360 if (tail
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
))
3361 tail
= portp
->tx
.buf
;
3363 outsb((ioaddr
+ EREG_DATA
), tail
, len
);
3366 portp
->tx
.tail
= tail
;
3370 outb((EOSRR
+ portp
->uartaddr
), ioaddr
);
3371 outb(0, (ioaddr
+ EREG_DATA
));
3374 /*****************************************************************************/
3377 * Receive character interrupt handler. Determine if we have good chars
3378 * or bad chars and then process appropriately. Good chars are easy
3379 * just shove the lot into the RX buffer and set all status byte to 0.
3380 * If a bad RX char then process as required. This routine needs to be
3381 * fast! In practice it is possible that we get an interrupt on a port
3382 * that is closed. This can happen on hangups - since they completely
3383 * shutdown a port not in user context. Need to handle this case.
3386 static void stl_cd1400rxisr(struct stlpanel
*panelp
, int ioaddr
)
3388 struct stlport
*portp
;
3389 struct tty_struct
*tty
;
3390 unsigned int ioack
, len
, buflen
;
3391 unsigned char status
;
3394 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp
, ioaddr
);
3396 ioack
= inb(ioaddr
+ EREG_RXACK
);
3397 if ((ioack
& panelp
->ackmask
) != 0) {
3398 printk("STALLION: bad RX interrupt ack value=%x\n", ioack
);
3401 portp
= panelp
->ports
[(ioack
>> 3)];
3402 tty
= tty_port_tty_get(&portp
->port
);
3404 if ((ioack
& ACK_TYPMASK
) == ACK_TYPRXGOOD
) {
3405 outb((RDCR
+ portp
->uartaddr
), ioaddr
);
3406 len
= inb(ioaddr
+ EREG_DATA
);
3407 if (tty
== NULL
|| (buflen
= tty_buffer_request_room(tty
, len
)) == 0) {
3408 len
= min_t(unsigned int, len
, sizeof(stl_unwanted
));
3409 outb((RDSR
+ portp
->uartaddr
), ioaddr
);
3410 insb((ioaddr
+ EREG_DATA
), &stl_unwanted
[0], len
);
3411 portp
->stats
.rxlost
+= len
;
3412 portp
->stats
.rxtotal
+= len
;
3414 len
= min(len
, buflen
);
3417 outb((RDSR
+ portp
->uartaddr
), ioaddr
);
3418 tty_prepare_flip_string(tty
, &ptr
, len
);
3419 insb((ioaddr
+ EREG_DATA
), ptr
, len
);
3420 tty_schedule_flip(tty
);
3421 portp
->stats
.rxtotal
+= len
;
3424 } else if ((ioack
& ACK_TYPMASK
) == ACK_TYPRXBAD
) {
3425 outb((RDSR
+ portp
->uartaddr
), ioaddr
);
3426 status
= inb(ioaddr
+ EREG_DATA
);
3427 ch
= inb(ioaddr
+ EREG_DATA
);
3428 if (status
& ST_PARITY
)
3429 portp
->stats
.rxparity
++;
3430 if (status
& ST_FRAMING
)
3431 portp
->stats
.rxframing
++;
3432 if (status
& ST_OVERRUN
)
3433 portp
->stats
.rxoverrun
++;
3434 if (status
& ST_BREAK
)
3435 portp
->stats
.rxbreaks
++;
3436 if (status
& ST_SCHARMASK
) {
3437 if ((status
& ST_SCHARMASK
) == ST_SCHAR1
)
3438 portp
->stats
.txxon
++;
3439 if ((status
& ST_SCHARMASK
) == ST_SCHAR2
)
3440 portp
->stats
.txxoff
++;
3443 if (tty
!= NULL
&& (portp
->rxignoremsk
& status
) == 0) {
3444 if (portp
->rxmarkmsk
& status
) {
3445 if (status
& ST_BREAK
) {
3447 if (portp
->port
.flags
& ASYNC_SAK
) {
3449 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3451 } else if (status
& ST_PARITY
)
3452 status
= TTY_PARITY
;
3453 else if (status
& ST_FRAMING
)
3455 else if(status
& ST_OVERRUN
)
3456 status
= TTY_OVERRUN
;
3461 tty_insert_flip_char(tty
, ch
, status
);
3462 tty_schedule_flip(tty
);
3465 printk("STALLION: bad RX interrupt ack value=%x\n", ioack
);
3472 outb((EOSRR
+ portp
->uartaddr
), ioaddr
);
3473 outb(0, (ioaddr
+ EREG_DATA
));
3476 /*****************************************************************************/
3479 * Modem interrupt handler. The is called when the modem signal line
3480 * (DCD) has changed state. Leave most of the work to the off-level
3481 * processing routine.
3484 static void stl_cd1400mdmisr(struct stlpanel
*panelp
, int ioaddr
)
3486 struct stlport
*portp
;
3490 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp
);
3492 ioack
= inb(ioaddr
+ EREG_MDACK
);
3493 if (((ioack
& panelp
->ackmask
) != 0) ||
3494 ((ioack
& ACK_TYPMASK
) != ACK_TYPMDM
)) {
3495 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack
);
3498 portp
= panelp
->ports
[(ioack
>> 3)];
3500 outb((MISR
+ portp
->uartaddr
), ioaddr
);
3501 misr
= inb(ioaddr
+ EREG_DATA
);
3502 if (misr
& MISR_DCD
) {
3503 stl_cd_change(portp
);
3504 portp
->stats
.modem
++;
3507 outb((EOSRR
+ portp
->uartaddr
), ioaddr
);
3508 outb(0, (ioaddr
+ EREG_DATA
));
3511 /*****************************************************************************/
3512 /* SC26198 HARDWARE FUNCTIONS */
3513 /*****************************************************************************/
3516 * These functions get/set/update the registers of the sc26198 UARTs.
3517 * Access to the sc26198 registers is via an address/data io port pair.
3518 * (Maybe should make this inline...)
3521 static int stl_sc26198getreg(struct stlport
*portp
, int regnr
)
3523 outb((regnr
| portp
->uartaddr
), (portp
->ioaddr
+ XP_ADDR
));
3524 return inb(portp
->ioaddr
+ XP_DATA
);
3527 static void stl_sc26198setreg(struct stlport
*portp
, int regnr
, int value
)
3529 outb((regnr
| portp
->uartaddr
), (portp
->ioaddr
+ XP_ADDR
));
3530 outb(value
, (portp
->ioaddr
+ XP_DATA
));
3533 static int stl_sc26198updatereg(struct stlport
*portp
, int regnr
, int value
)
3535 outb((regnr
| portp
->uartaddr
), (portp
->ioaddr
+ XP_ADDR
));
3536 if (inb(portp
->ioaddr
+ XP_DATA
) != value
) {
3537 outb(value
, (portp
->ioaddr
+ XP_DATA
));
3543 /*****************************************************************************/
3546 * Functions to get and set the sc26198 global registers.
3549 static int stl_sc26198getglobreg(struct stlport
*portp
, int regnr
)
3551 outb(regnr
, (portp
->ioaddr
+ XP_ADDR
));
3552 return inb(portp
->ioaddr
+ XP_DATA
);
3556 static void stl_sc26198setglobreg(struct stlport
*portp
, int regnr
, int value
)
3558 outb(regnr
, (portp
->ioaddr
+ XP_ADDR
));
3559 outb(value
, (portp
->ioaddr
+ XP_DATA
));
3563 /*****************************************************************************/
3566 * Inbitialize the UARTs in a panel. We don't care what sort of board
3567 * these ports are on - since the port io registers are almost
3568 * identical when dealing with ports.
3571 static int stl_sc26198panelinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
)
3574 int nrchips
, ioaddr
;
3576 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp
, panelp
);
3578 BRDENABLE(panelp
->brdnr
, panelp
->pagenr
);
3581 * Check that each chip is present and started up OK.
3584 nrchips
= (panelp
->nrports
+ 4) / SC26198_PORTS
;
3585 if (brdp
->brdtype
== BRD_ECHPCI
)
3586 outb(panelp
->pagenr
, brdp
->ioctrl
);
3588 for (i
= 0; i
< nrchips
; i
++) {
3589 ioaddr
= panelp
->iobase
+ (i
* 4);
3590 outb(SCCR
, (ioaddr
+ XP_ADDR
));
3591 outb(CR_RESETALL
, (ioaddr
+ XP_DATA
));
3592 outb(TSTR
, (ioaddr
+ XP_ADDR
));
3593 if (inb(ioaddr
+ XP_DATA
) != 0) {
3594 printk("STALLION: sc26198 not responding, "
3595 "brd=%d panel=%d chip=%d\n",
3596 panelp
->brdnr
, panelp
->panelnr
, i
);
3599 chipmask
|= (0x1 << i
);
3600 outb(GCCR
, (ioaddr
+ XP_ADDR
));
3601 outb(GCCR_IVRTYPCHANACK
, (ioaddr
+ XP_DATA
));
3602 outb(WDTRCR
, (ioaddr
+ XP_ADDR
));
3603 outb(0xff, (ioaddr
+ XP_DATA
));
3606 BRDDISABLE(panelp
->brdnr
);
3610 /*****************************************************************************/
3613 * Initialize hardware specific port registers.
3616 static void stl_sc26198portinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
)
3618 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp
,
3621 if ((brdp
== NULL
) || (panelp
== NULL
) ||
3625 portp
->ioaddr
= panelp
->iobase
+ ((portp
->portnr
< 8) ? 0 : 4);
3626 portp
->uartaddr
= (portp
->portnr
& 0x07) << 4;
3627 portp
->pagenr
= panelp
->pagenr
;
3630 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3631 stl_sc26198setreg(portp
, IOPCR
, IOPCR_SETSIGS
);
3632 BRDDISABLE(portp
->brdnr
);
3635 /*****************************************************************************/
3638 * Set up the sc26198 registers for a port based on the termios port
3642 static void stl_sc26198setport(struct stlport
*portp
, struct ktermios
*tiosp
)
3644 struct stlbrd
*brdp
;
3645 unsigned long flags
;
3646 unsigned int baudrate
;
3647 unsigned char mr0
, mr1
, mr2
, clk
;
3648 unsigned char imron
, imroff
, iopr
, ipr
;
3658 brdp
= stl_brds
[portp
->brdnr
];
3663 * Set up the RX char ignore mask with those RX error types we
3666 portp
->rxignoremsk
= 0;
3667 if (tiosp
->c_iflag
& IGNPAR
)
3668 portp
->rxignoremsk
|= (SR_RXPARITY
| SR_RXFRAMING
|
3670 if (tiosp
->c_iflag
& IGNBRK
)
3671 portp
->rxignoremsk
|= SR_RXBREAK
;
3673 portp
->rxmarkmsk
= SR_RXOVERRUN
;
3674 if (tiosp
->c_iflag
& (INPCK
| PARMRK
))
3675 portp
->rxmarkmsk
|= (SR_RXPARITY
| SR_RXFRAMING
);
3676 if (tiosp
->c_iflag
& BRKINT
)
3677 portp
->rxmarkmsk
|= SR_RXBREAK
;
3680 * Go through the char size, parity and stop bits and set all the
3681 * option register appropriately.
3683 switch (tiosp
->c_cflag
& CSIZE
) {
3698 if (tiosp
->c_cflag
& CSTOPB
)
3703 if (tiosp
->c_cflag
& PARENB
) {
3704 if (tiosp
->c_cflag
& PARODD
)
3705 mr1
|= (MR1_PARENB
| MR1_PARODD
);
3707 mr1
|= (MR1_PARENB
| MR1_PAREVEN
);
3711 mr1
|= MR1_ERRBLOCK
;
3714 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
3715 * space for hardware flow control and the like. This should be set to
3718 mr2
|= MR2_RXFIFOHALF
;
3721 * Calculate the baud rate timers. For now we will just assume that
3722 * the input and output baud are the same. The sc26198 has a fixed
3723 * baud rate table, so only discrete baud rates possible.
3725 baudrate
= tiosp
->c_cflag
& CBAUD
;
3726 if (baudrate
& CBAUDEX
) {
3727 baudrate
&= ~CBAUDEX
;
3728 if ((baudrate
< 1) || (baudrate
> 4))
3729 tiosp
->c_cflag
&= ~CBAUDEX
;
3733 baudrate
= stl_baudrates
[baudrate
];
3734 if ((tiosp
->c_cflag
& CBAUD
) == B38400
) {
3735 if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_HI
)
3737 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_VHI
)
3739 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_SHI
)
3741 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_WARP
)
3743 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_CUST
)
3744 baudrate
= (portp
->baud_base
/ portp
->custom_divisor
);
3746 if (baudrate
> STL_SC26198MAXBAUD
)
3747 baudrate
= STL_SC26198MAXBAUD
;
3750 for (clk
= 0; clk
< SC26198_NRBAUDS
; clk
++)
3751 if (baudrate
<= sc26198_baudtable
[clk
])
3755 * Check what form of modem signaling is required and set it up.
3757 if (tiosp
->c_cflag
& CLOCAL
) {
3758 portp
->port
.flags
&= ~ASYNC_CHECK_CD
;
3760 iopr
|= IOPR_DCDCOS
;
3762 portp
->port
.flags
|= ASYNC_CHECK_CD
;
3766 * Setup sc26198 enhanced modes if we can. In particular we want to
3767 * handle as much of the flow control as possible automatically. As
3768 * well as saving a few CPU cycles it will also greatly improve flow
3769 * control reliability.
3771 if (tiosp
->c_iflag
& IXON
) {
3772 mr0
|= MR0_SWFTX
| MR0_SWFT
;
3773 imron
|= IR_XONXOFF
;
3775 imroff
|= IR_XONXOFF
;
3777 if (tiosp
->c_iflag
& IXOFF
)
3780 if (tiosp
->c_cflag
& CRTSCTS
) {
3786 * All sc26198 register values calculated so go through and set
3790 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3791 portp
->portnr
, portp
->panelnr
, portp
->brdnr
);
3792 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0
, mr1
, mr2
, clk
);
3793 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr
, imron
, imroff
);
3794 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3795 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
],
3796 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
]);
3798 spin_lock_irqsave(&brd_lock
, flags
);
3799 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3800 stl_sc26198setreg(portp
, IMR
, 0);
3801 stl_sc26198updatereg(portp
, MR0
, mr0
);
3802 stl_sc26198updatereg(portp
, MR1
, mr1
);
3803 stl_sc26198setreg(portp
, SCCR
, CR_RXERRBLOCK
);
3804 stl_sc26198updatereg(portp
, MR2
, mr2
);
3805 stl_sc26198updatereg(portp
, IOPIOR
,
3806 ((stl_sc26198getreg(portp
, IOPIOR
) & ~IPR_CHANGEMASK
) | iopr
));
3809 stl_sc26198setreg(portp
, TXCSR
, clk
);
3810 stl_sc26198setreg(portp
, RXCSR
, clk
);
3813 stl_sc26198setreg(portp
, XONCR
, tiosp
->c_cc
[VSTART
]);
3814 stl_sc26198setreg(portp
, XOFFCR
, tiosp
->c_cc
[VSTOP
]);
3816 ipr
= stl_sc26198getreg(portp
, IPR
);
3818 portp
->sigs
&= ~TIOCM_CD
;
3820 portp
->sigs
|= TIOCM_CD
;
3822 portp
->imr
= (portp
->imr
& ~imroff
) | imron
;
3823 stl_sc26198setreg(portp
, IMR
, portp
->imr
);
3824 BRDDISABLE(portp
->brdnr
);
3825 spin_unlock_irqrestore(&brd_lock
, flags
);
3828 /*****************************************************************************/
3831 * Set the state of the DTR and RTS signals.
3834 static void stl_sc26198setsignals(struct stlport
*portp
, int dtr
, int rts
)
3836 unsigned char iopioron
, iopioroff
;
3837 unsigned long flags
;
3839 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp
,
3845 iopioroff
|= IPR_DTR
;
3847 iopioron
|= IPR_DTR
;
3849 iopioroff
|= IPR_RTS
;
3851 iopioron
|= IPR_RTS
;
3853 spin_lock_irqsave(&brd_lock
, flags
);
3854 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3855 stl_sc26198setreg(portp
, IOPIOR
,
3856 ((stl_sc26198getreg(portp
, IOPIOR
) & ~iopioroff
) | iopioron
));
3857 BRDDISABLE(portp
->brdnr
);
3858 spin_unlock_irqrestore(&brd_lock
, flags
);
3861 /*****************************************************************************/
3864 * Return the state of the signals.
3867 static int stl_sc26198getsignals(struct stlport
*portp
)
3870 unsigned long flags
;
3873 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp
);
3875 spin_lock_irqsave(&brd_lock
, flags
);
3876 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3877 ipr
= stl_sc26198getreg(portp
, IPR
);
3878 BRDDISABLE(portp
->brdnr
);
3879 spin_unlock_irqrestore(&brd_lock
, flags
);
3882 sigs
|= (ipr
& IPR_DCD
) ? 0 : TIOCM_CD
;
3883 sigs
|= (ipr
& IPR_CTS
) ? 0 : TIOCM_CTS
;
3884 sigs
|= (ipr
& IPR_DTR
) ? 0: TIOCM_DTR
;
3885 sigs
|= (ipr
& IPR_RTS
) ? 0: TIOCM_RTS
;
3890 /*****************************************************************************/
3893 * Enable/Disable the Transmitter and/or Receiver.
3896 static void stl_sc26198enablerxtx(struct stlport
*portp
, int rx
, int tx
)
3899 unsigned long flags
;
3901 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp
, rx
,tx
);
3903 ccr
= portp
->crenable
;
3905 ccr
&= ~CR_TXENABLE
;
3909 ccr
&= ~CR_RXENABLE
;
3913 spin_lock_irqsave(&brd_lock
, flags
);
3914 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3915 stl_sc26198setreg(portp
, SCCR
, ccr
);
3916 BRDDISABLE(portp
->brdnr
);
3917 portp
->crenable
= ccr
;
3918 spin_unlock_irqrestore(&brd_lock
, flags
);
3921 /*****************************************************************************/
3924 * Start/stop the Transmitter and/or Receiver.
3927 static void stl_sc26198startrxtx(struct stlport
*portp
, int rx
, int tx
)
3930 unsigned long flags
;
3932 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp
, rx
, tx
);
3940 imr
&= ~(IR_RXRDY
| IR_RXBREAK
| IR_RXWATCHDOG
);
3942 imr
|= IR_RXRDY
| IR_RXBREAK
| IR_RXWATCHDOG
;
3944 spin_lock_irqsave(&brd_lock
, flags
);
3945 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3946 stl_sc26198setreg(portp
, IMR
, imr
);
3947 BRDDISABLE(portp
->brdnr
);
3950 set_bit(ASYI_TXBUSY
, &portp
->istate
);
3951 spin_unlock_irqrestore(&brd_lock
, flags
);
3954 /*****************************************************************************/
3957 * Disable all interrupts from this port.
3960 static void stl_sc26198disableintrs(struct stlport
*portp
)
3962 unsigned long flags
;
3964 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp
);
3966 spin_lock_irqsave(&brd_lock
, flags
);
3967 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3969 stl_sc26198setreg(portp
, IMR
, 0);
3970 BRDDISABLE(portp
->brdnr
);
3971 spin_unlock_irqrestore(&brd_lock
, flags
);
3974 /*****************************************************************************/
3976 static void stl_sc26198sendbreak(struct stlport
*portp
, int len
)
3978 unsigned long flags
;
3980 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp
, len
);
3982 spin_lock_irqsave(&brd_lock
, flags
);
3983 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3985 stl_sc26198setreg(portp
, SCCR
, CR_TXSTARTBREAK
);
3986 portp
->stats
.txbreaks
++;
3988 stl_sc26198setreg(portp
, SCCR
, CR_TXSTOPBREAK
);
3990 BRDDISABLE(portp
->brdnr
);
3991 spin_unlock_irqrestore(&brd_lock
, flags
);
3994 /*****************************************************************************/
3997 * Take flow control actions...
4000 static void stl_sc26198flowctrl(struct stlport
*portp
, int state
)
4002 struct tty_struct
*tty
;
4003 unsigned long flags
;
4006 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp
, state
);
4010 tty
= tty_port_tty_get(&portp
->port
);
4014 spin_lock_irqsave(&brd_lock
, flags
);
4015 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4018 if (tty
->termios
->c_iflag
& IXOFF
) {
4019 mr0
= stl_sc26198getreg(portp
, MR0
);
4020 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4021 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXON
);
4023 portp
->stats
.rxxon
++;
4024 stl_sc26198wait(portp
);
4025 stl_sc26198setreg(portp
, MR0
, mr0
);
4028 * Question: should we return RTS to what it was before? It may
4029 * have been set by an ioctl... Suppose not, since if you have
4030 * hardware flow control set then it is pretty silly to go and
4031 * set the RTS line by hand.
4033 if (tty
->termios
->c_cflag
& CRTSCTS
) {
4034 stl_sc26198setreg(portp
, MR1
,
4035 (stl_sc26198getreg(portp
, MR1
) | MR1_AUTORTS
));
4036 stl_sc26198setreg(portp
, IOPIOR
,
4037 (stl_sc26198getreg(portp
, IOPIOR
) | IOPR_RTS
));
4038 portp
->stats
.rxrtson
++;
4041 if (tty
->termios
->c_iflag
& IXOFF
) {
4042 mr0
= stl_sc26198getreg(portp
, MR0
);
4043 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4044 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXOFF
);
4046 portp
->stats
.rxxoff
++;
4047 stl_sc26198wait(portp
);
4048 stl_sc26198setreg(portp
, MR0
, mr0
);
4050 if (tty
->termios
->c_cflag
& CRTSCTS
) {
4051 stl_sc26198setreg(portp
, MR1
,
4052 (stl_sc26198getreg(portp
, MR1
) & ~MR1_AUTORTS
));
4053 stl_sc26198setreg(portp
, IOPIOR
,
4054 (stl_sc26198getreg(portp
, IOPIOR
) & ~IOPR_RTS
));
4055 portp
->stats
.rxrtsoff
++;
4059 BRDDISABLE(portp
->brdnr
);
4060 spin_unlock_irqrestore(&brd_lock
, flags
);
4064 /*****************************************************************************/
4067 * Send a flow control character.
4070 static void stl_sc26198sendflow(struct stlport
*portp
, int state
)
4072 struct tty_struct
*tty
;
4073 unsigned long flags
;
4076 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp
, state
);
4080 tty
= tty_port_tty_get(&portp
->port
);
4084 spin_lock_irqsave(&brd_lock
, flags
);
4085 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4087 mr0
= stl_sc26198getreg(portp
, MR0
);
4088 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4089 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXON
);
4091 portp
->stats
.rxxon
++;
4092 stl_sc26198wait(portp
);
4093 stl_sc26198setreg(portp
, MR0
, mr0
);
4095 mr0
= stl_sc26198getreg(portp
, MR0
);
4096 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4097 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXOFF
);
4099 portp
->stats
.rxxoff
++;
4100 stl_sc26198wait(portp
);
4101 stl_sc26198setreg(portp
, MR0
, mr0
);
4103 BRDDISABLE(portp
->brdnr
);
4104 spin_unlock_irqrestore(&brd_lock
, flags
);
4108 /*****************************************************************************/
4110 static void stl_sc26198flush(struct stlport
*portp
)
4112 unsigned long flags
;
4114 pr_debug("stl_sc26198flush(portp=%p)\n", portp
);
4119 spin_lock_irqsave(&brd_lock
, flags
);
4120 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4121 stl_sc26198setreg(portp
, SCCR
, CR_TXRESET
);
4122 stl_sc26198setreg(portp
, SCCR
, portp
->crenable
);
4123 BRDDISABLE(portp
->brdnr
);
4124 portp
->tx
.tail
= portp
->tx
.head
;
4125 spin_unlock_irqrestore(&brd_lock
, flags
);
4128 /*****************************************************************************/
4131 * Return the current state of data flow on this port. This is only
4132 * really interesting when determining if data has fully completed
4133 * transmission or not... The sc26198 interrupt scheme cannot
4134 * determine when all data has actually drained, so we need to
4135 * check the port statusy register to be sure.
4138 static int stl_sc26198datastate(struct stlport
*portp
)
4140 unsigned long flags
;
4143 pr_debug("stl_sc26198datastate(portp=%p)\n", portp
);
4147 if (test_bit(ASYI_TXBUSY
, &portp
->istate
))
4150 spin_lock_irqsave(&brd_lock
, flags
);
4151 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4152 sr
= stl_sc26198getreg(portp
, SR
);
4153 BRDDISABLE(portp
->brdnr
);
4154 spin_unlock_irqrestore(&brd_lock
, flags
);
4156 return (sr
& SR_TXEMPTY
) ? 0 : 1;
4159 /*****************************************************************************/
4162 * Delay for a small amount of time, to give the sc26198 a chance
4163 * to process a command...
4166 static void stl_sc26198wait(struct stlport
*portp
)
4170 pr_debug("stl_sc26198wait(portp=%p)\n", portp
);
4175 for (i
= 0; i
< 20; i
++)
4176 stl_sc26198getglobreg(portp
, TSTR
);
4179 /*****************************************************************************/
4182 * If we are TX flow controlled and in IXANY mode then we may
4183 * need to unflow control here. We gotta do this because of the
4184 * automatic flow control modes of the sc26198.
4187 static void stl_sc26198txunflow(struct stlport
*portp
, struct tty_struct
*tty
)
4191 mr0
= stl_sc26198getreg(portp
, MR0
);
4192 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4193 stl_sc26198setreg(portp
, SCCR
, CR_HOSTXON
);
4194 stl_sc26198wait(portp
);
4195 stl_sc26198setreg(portp
, MR0
, mr0
);
4196 clear_bit(ASYI_TXFLOWED
, &portp
->istate
);
4199 /*****************************************************************************/
4202 * Interrupt service routine for sc26198 panels.
4205 static void stl_sc26198intr(struct stlpanel
*panelp
, unsigned int iobase
)
4207 struct stlport
*portp
;
4210 spin_lock(&brd_lock
);
4213 * Work around bug in sc26198 chip... Cannot have A6 address
4214 * line of UART high, else iack will be returned as 0.
4216 outb(0, (iobase
+ 1));
4218 iack
= inb(iobase
+ XP_IACK
);
4219 portp
= panelp
->ports
[(iack
& IVR_CHANMASK
) + ((iobase
& 0x4) << 1)];
4221 if (iack
& IVR_RXDATA
)
4222 stl_sc26198rxisr(portp
, iack
);
4223 else if (iack
& IVR_TXDATA
)
4224 stl_sc26198txisr(portp
);
4226 stl_sc26198otherisr(portp
, iack
);
4228 spin_unlock(&brd_lock
);
4231 /*****************************************************************************/
4234 * Transmit interrupt handler. This has gotta be fast! Handling TX
4235 * chars is pretty simple, stuff as many as possible from the TX buffer
4236 * into the sc26198 FIFO.
4237 * In practice it is possible that interrupts are enabled but that the
4238 * port has been hung up. Need to handle not having any TX buffer here,
4239 * this is done by using the side effect that head and tail will also
4240 * be NULL if the buffer has been freed.
4243 static void stl_sc26198txisr(struct stlport
*portp
)
4245 struct tty_struct
*tty
;
4246 unsigned int ioaddr
;
4251 pr_debug("stl_sc26198txisr(portp=%p)\n", portp
);
4253 ioaddr
= portp
->ioaddr
;
4254 head
= portp
->tx
.head
;
4255 tail
= portp
->tx
.tail
;
4256 len
= (head
>= tail
) ? (head
- tail
) : (STL_TXBUFSIZE
- (tail
- head
));
4257 if ((len
== 0) || ((len
< STL_TXBUFLOW
) &&
4258 (test_bit(ASYI_TXLOW
, &portp
->istate
) == 0))) {
4259 set_bit(ASYI_TXLOW
, &portp
->istate
);
4260 tty
= tty_port_tty_get(&portp
->port
);
4268 outb((MR0
| portp
->uartaddr
), (ioaddr
+ XP_ADDR
));
4269 mr0
= inb(ioaddr
+ XP_DATA
);
4270 if ((mr0
& MR0_TXMASK
) == MR0_TXEMPTY
) {
4271 portp
->imr
&= ~IR_TXRDY
;
4272 outb((IMR
| portp
->uartaddr
), (ioaddr
+ XP_ADDR
));
4273 outb(portp
->imr
, (ioaddr
+ XP_DATA
));
4274 clear_bit(ASYI_TXBUSY
, &portp
->istate
);
4276 mr0
|= ((mr0
& ~MR0_TXMASK
) | MR0_TXEMPTY
);
4277 outb(mr0
, (ioaddr
+ XP_DATA
));
4280 len
= min(len
, SC26198_TXFIFOSIZE
);
4281 portp
->stats
.txtotal
+= len
;
4282 stlen
= min_t(unsigned int, len
,
4283 (portp
->tx
.buf
+ STL_TXBUFSIZE
) - tail
);
4284 outb(GTXFIFO
, (ioaddr
+ XP_ADDR
));
4285 outsb((ioaddr
+ XP_DATA
), tail
, stlen
);
4288 if (tail
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
))
4289 tail
= portp
->tx
.buf
;
4291 outsb((ioaddr
+ XP_DATA
), tail
, len
);
4294 portp
->tx
.tail
= tail
;
4298 /*****************************************************************************/
4301 * Receive character interrupt handler. Determine if we have good chars
4302 * or bad chars and then process appropriately. Good chars are easy
4303 * just shove the lot into the RX buffer and set all status byte to 0.
4304 * If a bad RX char then process as required. This routine needs to be
4305 * fast! In practice it is possible that we get an interrupt on a port
4306 * that is closed. This can happen on hangups - since they completely
4307 * shutdown a port not in user context. Need to handle this case.
4310 static void stl_sc26198rxisr(struct stlport
*portp
, unsigned int iack
)
4312 struct tty_struct
*tty
;
4313 unsigned int len
, buflen
, ioaddr
;
4315 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp
, iack
);
4317 tty
= tty_port_tty_get(&portp
->port
);
4318 ioaddr
= portp
->ioaddr
;
4319 outb(GIBCR
, (ioaddr
+ XP_ADDR
));
4320 len
= inb(ioaddr
+ XP_DATA
) + 1;
4322 if ((iack
& IVR_TYPEMASK
) == IVR_RXDATA
) {
4323 if (tty
== NULL
|| (buflen
= tty_buffer_request_room(tty
, len
)) == 0) {
4324 len
= min_t(unsigned int, len
, sizeof(stl_unwanted
));
4325 outb(GRXFIFO
, (ioaddr
+ XP_ADDR
));
4326 insb((ioaddr
+ XP_DATA
), &stl_unwanted
[0], len
);
4327 portp
->stats
.rxlost
+= len
;
4328 portp
->stats
.rxtotal
+= len
;
4330 len
= min(len
, buflen
);
4333 outb(GRXFIFO
, (ioaddr
+ XP_ADDR
));
4334 tty_prepare_flip_string(tty
, &ptr
, len
);
4335 insb((ioaddr
+ XP_DATA
), ptr
, len
);
4336 tty_schedule_flip(tty
);
4337 portp
->stats
.rxtotal
+= len
;
4341 stl_sc26198rxbadchars(portp
);
4345 * If we are TX flow controlled and in IXANY mode then we may need
4346 * to unflow control here. We gotta do this because of the automatic
4347 * flow control modes of the sc26198.
4349 if (test_bit(ASYI_TXFLOWED
, &portp
->istate
)) {
4350 if ((tty
!= NULL
) &&
4351 (tty
->termios
!= NULL
) &&
4352 (tty
->termios
->c_iflag
& IXANY
)) {
4353 stl_sc26198txunflow(portp
, tty
);
4359 /*****************************************************************************/
4362 * Process an RX bad character.
4365 static void stl_sc26198rxbadch(struct stlport
*portp
, unsigned char status
, char ch
)
4367 struct tty_struct
*tty
;
4368 unsigned int ioaddr
;
4370 tty
= tty_port_tty_get(&portp
->port
);
4371 ioaddr
= portp
->ioaddr
;
4373 if (status
& SR_RXPARITY
)
4374 portp
->stats
.rxparity
++;
4375 if (status
& SR_RXFRAMING
)
4376 portp
->stats
.rxframing
++;
4377 if (status
& SR_RXOVERRUN
)
4378 portp
->stats
.rxoverrun
++;
4379 if (status
& SR_RXBREAK
)
4380 portp
->stats
.rxbreaks
++;
4382 if ((tty
!= NULL
) &&
4383 ((portp
->rxignoremsk
& status
) == 0)) {
4384 if (portp
->rxmarkmsk
& status
) {
4385 if (status
& SR_RXBREAK
) {
4387 if (portp
->port
.flags
& ASYNC_SAK
) {
4389 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4391 } else if (status
& SR_RXPARITY
)
4392 status
= TTY_PARITY
;
4393 else if (status
& SR_RXFRAMING
)
4395 else if(status
& SR_RXOVERRUN
)
4396 status
= TTY_OVERRUN
;
4402 tty_insert_flip_char(tty
, ch
, status
);
4403 tty_schedule_flip(tty
);
4406 portp
->stats
.rxtotal
++;
4411 /*****************************************************************************/
4414 * Process all characters in the RX FIFO of the UART. Check all char
4415 * status bytes as well, and process as required. We need to check
4416 * all bytes in the FIFO, in case some more enter the FIFO while we
4417 * are here. To get the exact character error type we need to switch
4418 * into CHAR error mode (that is why we need to make sure we empty
4422 static void stl_sc26198rxbadchars(struct stlport
*portp
)
4424 unsigned char status
, mr1
;
4428 * To get the precise error type for each character we must switch
4429 * back into CHAR error mode.
4431 mr1
= stl_sc26198getreg(portp
, MR1
);
4432 stl_sc26198setreg(portp
, MR1
, (mr1
& ~MR1_ERRBLOCK
));
4434 while ((status
= stl_sc26198getreg(portp
, SR
)) & SR_RXRDY
) {
4435 stl_sc26198setreg(portp
, SCCR
, CR_CLEARRXERR
);
4436 ch
= stl_sc26198getreg(portp
, RXFIFO
);
4437 stl_sc26198rxbadch(portp
, status
, ch
);
4441 * To get correct interrupt class we must switch back into BLOCK
4444 stl_sc26198setreg(portp
, MR1
, mr1
);
4447 /*****************************************************************************/
4450 * Other interrupt handler. This includes modem signals, flow
4451 * control actions, etc. Most stuff is left to off-level interrupt
4455 static void stl_sc26198otherisr(struct stlport
*portp
, unsigned int iack
)
4457 unsigned char cir
, ipr
, xisr
;
4459 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp
, iack
);
4461 cir
= stl_sc26198getglobreg(portp
, CIR
);
4463 switch (cir
& CIR_SUBTYPEMASK
) {
4465 ipr
= stl_sc26198getreg(portp
, IPR
);
4466 if (ipr
& IPR_DCDCHANGE
) {
4467 stl_cd_change(portp
);
4468 portp
->stats
.modem
++;
4471 case CIR_SUBXONXOFF
:
4472 xisr
= stl_sc26198getreg(portp
, XISR
);
4473 if (xisr
& XISR_RXXONGOT
) {
4474 set_bit(ASYI_TXFLOWED
, &portp
->istate
);
4475 portp
->stats
.txxoff
++;
4477 if (xisr
& XISR_RXXOFFGOT
) {
4478 clear_bit(ASYI_TXFLOWED
, &portp
->istate
);
4479 portp
->stats
.txxon
++;
4483 stl_sc26198setreg(portp
, SCCR
, CR_BREAKRESET
);
4484 stl_sc26198rxbadchars(portp
);
4491 static void stl_free_isabrds(void)
4493 struct stlbrd
*brdp
;
4496 for (i
= 0; i
< stl_nrbrds
; i
++) {
4497 if ((brdp
= stl_brds
[i
]) == NULL
|| (brdp
->state
& STL_PROBED
))
4500 free_irq(brdp
->irq
, brdp
);
4502 stl_cleanup_panels(brdp
);
4504 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
4505 if (brdp
->iosize2
> 0)
4506 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
4514 * Loadable module initialization stuff.
4516 static int __init
stallion_module_init(void)
4518 struct stlbrd
*brdp
;
4519 struct stlconf conf
;
4523 printk(KERN_INFO
"%s: version %s\n", stl_drvtitle
, stl_drvversion
);
4525 spin_lock_init(&stallion_lock
);
4526 spin_lock_init(&brd_lock
);
4528 stl_serial
= alloc_tty_driver(STL_MAXBRDS
* STL_MAXPORTS
);
4534 stl_serial
->owner
= THIS_MODULE
;
4535 stl_serial
->driver_name
= stl_drvname
;
4536 stl_serial
->name
= "ttyE";
4537 stl_serial
->major
= STL_SERIALMAJOR
;
4538 stl_serial
->minor_start
= 0;
4539 stl_serial
->type
= TTY_DRIVER_TYPE_SERIAL
;
4540 stl_serial
->subtype
= SERIAL_TYPE_NORMAL
;
4541 stl_serial
->init_termios
= stl_deftermios
;
4542 stl_serial
->flags
= TTY_DRIVER_REAL_RAW
| TTY_DRIVER_DYNAMIC_DEV
;
4543 tty_set_operations(stl_serial
, &stl_ops
);
4545 retval
= tty_register_driver(stl_serial
);
4547 printk("STALLION: failed to register serial driver\n");
4552 * Find any dynamically supported boards. That is via module load
4555 for (i
= stl_nrbrds
; i
< stl_nargs
; i
++) {
4556 memset(&conf
, 0, sizeof(conf
));
4557 if (stl_parsebrd(&conf
, stl_brdsp
[i
]) == 0)
4559 if ((brdp
= stl_allocbrd()) == NULL
)
4562 brdp
->brdtype
= conf
.brdtype
;
4563 brdp
->ioaddr1
= conf
.ioaddr1
;
4564 brdp
->ioaddr2
= conf
.ioaddr2
;
4565 brdp
->irq
= conf
.irq
;
4566 brdp
->irqtype
= conf
.irqtype
;
4567 stl_brds
[brdp
->brdnr
] = brdp
;
4568 if (stl_brdinit(brdp
)) {
4569 stl_brds
[brdp
->brdnr
] = NULL
;
4572 for (j
= 0; j
< brdp
->nrports
; j
++)
4573 tty_register_device(stl_serial
,
4574 brdp
->brdnr
* STL_MAXPORTS
+ j
, NULL
);
4579 /* this has to be _after_ isa finding because of locking */
4580 retval
= pci_register_driver(&stl_pcidriver
);
4581 if (retval
&& stl_nrbrds
== 0) {
4582 printk(KERN_ERR
"STALLION: can't register pci driver\n");
4587 * Set up a character driver for per board stuff. This is mainly used
4588 * to do stats ioctls on the ports.
4590 if (register_chrdev(STL_SIOMEMMAJOR
, "staliomem", &stl_fsiomem
))
4591 printk("STALLION: failed to register serial board device\n");
4593 stallion_class
= class_create(THIS_MODULE
, "staliomem");
4594 if (IS_ERR(stallion_class
))
4595 printk("STALLION: failed to create class\n");
4596 for (i
= 0; i
< 4; i
++)
4597 device_create(stallion_class
, NULL
, MKDEV(STL_SIOMEMMAJOR
, i
),
4598 NULL
, "staliomem%d", i
);
4602 tty_unregister_driver(stl_serial
);
4604 put_tty_driver(stl_serial
);
4609 static void __exit
stallion_module_exit(void)
4611 struct stlbrd
*brdp
;
4614 pr_debug("cleanup_module()\n");
4616 printk(KERN_INFO
"Unloading %s: version %s\n", stl_drvtitle
,
4620 * Free up all allocated resources used by the ports. This includes
4621 * memory and interrupts. As part of this process we will also do
4622 * a hangup on every open port - to try to flush out any processes
4623 * hanging onto ports.
4625 for (i
= 0; i
< stl_nrbrds
; i
++) {
4626 if ((brdp
= stl_brds
[i
]) == NULL
|| (brdp
->state
& STL_PROBED
))
4628 for (j
= 0; j
< brdp
->nrports
; j
++)
4629 tty_unregister_device(stl_serial
,
4630 brdp
->brdnr
* STL_MAXPORTS
+ j
);
4633 for (i
= 0; i
< 4; i
++)
4634 device_destroy(stallion_class
, MKDEV(STL_SIOMEMMAJOR
, i
));
4635 unregister_chrdev(STL_SIOMEMMAJOR
, "staliomem");
4636 class_destroy(stallion_class
);
4638 pci_unregister_driver(&stl_pcidriver
);
4642 tty_unregister_driver(stl_serial
);
4643 put_tty_driver(stl_serial
);
4646 module_init(stallion_module_init
);
4647 module_exit(stallion_module_exit
);
4649 MODULE_AUTHOR("Greg Ungerer");
4650 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4651 MODULE_LICENSE("GPL");