Input: wacom - fix touch parsing on newer Bamboos
[linux-btrfs-devel.git] / kernel / rcutree.c
blob7e59ffb3d0ba487c0474270a476b25cbc96d2ac1
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
54 #include "rcutree.h"
56 /* Data structures. */
58 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
60 #define RCU_STATE_INITIALIZER(structname) { \
61 .level = { &structname.node[0] }, \
62 .levelcnt = { \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_1, \
65 NUM_RCU_LVL_2, \
66 NUM_RCU_LVL_3, \
67 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
68 }, \
69 .signaled = RCU_GP_IDLE, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
79 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
80 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
83 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85 static struct rcu_state *rcu_state;
87 int rcu_scheduler_active __read_mostly;
88 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
90 #ifdef CONFIG_RCU_BOOST
93 * Control variables for per-CPU and per-rcu_node kthreads. These
94 * handle all flavors of RCU.
96 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
97 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
98 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
99 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
100 DEFINE_PER_CPU(char, rcu_cpu_has_work);
101 static char rcu_kthreads_spawnable;
103 #endif /* #ifdef CONFIG_RCU_BOOST */
105 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
106 static void invoke_rcu_core(void);
107 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
109 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
112 * Track the rcutorture test sequence number and the update version
113 * number within a given test. The rcutorture_testseq is incremented
114 * on every rcutorture module load and unload, so has an odd value
115 * when a test is running. The rcutorture_vernum is set to zero
116 * when rcutorture starts and is incremented on each rcutorture update.
117 * These variables enable correlating rcutorture output with the
118 * RCU tracing information.
120 unsigned long rcutorture_testseq;
121 unsigned long rcutorture_vernum;
124 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
125 * permit this function to be invoked without holding the root rcu_node
126 * structure's ->lock, but of course results can be subject to change.
128 static int rcu_gp_in_progress(struct rcu_state *rsp)
130 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
134 * Note a quiescent state. Because we do not need to know
135 * how many quiescent states passed, just if there was at least
136 * one since the start of the grace period, this just sets a flag.
138 void rcu_sched_qs(int cpu)
140 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
142 rdp->passed_quiesc_completed = rdp->gpnum - 1;
143 barrier();
144 rdp->passed_quiesc = 1;
147 void rcu_bh_qs(int cpu)
149 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
151 rdp->passed_quiesc_completed = rdp->gpnum - 1;
152 barrier();
153 rdp->passed_quiesc = 1;
157 * Note a context switch. This is a quiescent state for RCU-sched,
158 * and requires special handling for preemptible RCU.
160 void rcu_note_context_switch(int cpu)
162 rcu_sched_qs(cpu);
163 rcu_preempt_note_context_switch(cpu);
165 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
167 #ifdef CONFIG_NO_HZ
168 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
169 .dynticks_nesting = 1,
170 .dynticks = ATOMIC_INIT(1),
172 #endif /* #ifdef CONFIG_NO_HZ */
174 static int blimit = 10; /* Maximum callbacks per softirq. */
175 static int qhimark = 10000; /* If this many pending, ignore blimit. */
176 static int qlowmark = 100; /* Once only this many pending, use blimit. */
178 module_param(blimit, int, 0);
179 module_param(qhimark, int, 0);
180 module_param(qlowmark, int, 0);
182 int rcu_cpu_stall_suppress __read_mostly;
183 module_param(rcu_cpu_stall_suppress, int, 0644);
185 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
186 static int rcu_pending(int cpu);
189 * Return the number of RCU-sched batches processed thus far for debug & stats.
191 long rcu_batches_completed_sched(void)
193 return rcu_sched_state.completed;
195 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
198 * Return the number of RCU BH batches processed thus far for debug & stats.
200 long rcu_batches_completed_bh(void)
202 return rcu_bh_state.completed;
204 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
207 * Force a quiescent state for RCU BH.
209 void rcu_bh_force_quiescent_state(void)
211 force_quiescent_state(&rcu_bh_state, 0);
213 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
216 * Record the number of times rcutorture tests have been initiated and
217 * terminated. This information allows the debugfs tracing stats to be
218 * correlated to the rcutorture messages, even when the rcutorture module
219 * is being repeatedly loaded and unloaded. In other words, we cannot
220 * store this state in rcutorture itself.
222 void rcutorture_record_test_transition(void)
224 rcutorture_testseq++;
225 rcutorture_vernum = 0;
227 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
230 * Record the number of writer passes through the current rcutorture test.
231 * This is also used to correlate debugfs tracing stats with the rcutorture
232 * messages.
234 void rcutorture_record_progress(unsigned long vernum)
236 rcutorture_vernum++;
238 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
241 * Force a quiescent state for RCU-sched.
243 void rcu_sched_force_quiescent_state(void)
245 force_quiescent_state(&rcu_sched_state, 0);
247 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
250 * Does the CPU have callbacks ready to be invoked?
252 static int
253 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
255 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
259 * Does the current CPU require a yet-as-unscheduled grace period?
261 static int
262 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
264 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
268 * Return the root node of the specified rcu_state structure.
270 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
272 return &rsp->node[0];
275 #ifdef CONFIG_SMP
278 * If the specified CPU is offline, tell the caller that it is in
279 * a quiescent state. Otherwise, whack it with a reschedule IPI.
280 * Grace periods can end up waiting on an offline CPU when that
281 * CPU is in the process of coming online -- it will be added to the
282 * rcu_node bitmasks before it actually makes it online. The same thing
283 * can happen while a CPU is in the process of coming online. Because this
284 * race is quite rare, we check for it after detecting that the grace
285 * period has been delayed rather than checking each and every CPU
286 * each and every time we start a new grace period.
288 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
291 * If the CPU is offline, it is in a quiescent state. We can
292 * trust its state not to change because interrupts are disabled.
294 if (cpu_is_offline(rdp->cpu)) {
295 rdp->offline_fqs++;
296 return 1;
299 /* If preemptible RCU, no point in sending reschedule IPI. */
300 if (rdp->preemptible)
301 return 0;
303 /* The CPU is online, so send it a reschedule IPI. */
304 if (rdp->cpu != smp_processor_id())
305 smp_send_reschedule(rdp->cpu);
306 else
307 set_need_resched();
308 rdp->resched_ipi++;
309 return 0;
312 #endif /* #ifdef CONFIG_SMP */
314 #ifdef CONFIG_NO_HZ
317 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
319 * Enter nohz mode, in other words, -leave- the mode in which RCU
320 * read-side critical sections can occur. (Though RCU read-side
321 * critical sections can occur in irq handlers in nohz mode, a possibility
322 * handled by rcu_irq_enter() and rcu_irq_exit()).
324 void rcu_enter_nohz(void)
326 unsigned long flags;
327 struct rcu_dynticks *rdtp;
329 local_irq_save(flags);
330 rdtp = &__get_cpu_var(rcu_dynticks);
331 if (--rdtp->dynticks_nesting) {
332 local_irq_restore(flags);
333 return;
335 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
336 smp_mb__before_atomic_inc(); /* See above. */
337 atomic_inc(&rdtp->dynticks);
338 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
339 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
340 local_irq_restore(flags);
342 /* If the interrupt queued a callback, get out of dyntick mode. */
343 if (in_irq() &&
344 (__get_cpu_var(rcu_sched_data).nxtlist ||
345 __get_cpu_var(rcu_bh_data).nxtlist ||
346 rcu_preempt_needs_cpu(smp_processor_id())))
347 set_need_resched();
351 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
353 * Exit nohz mode, in other words, -enter- the mode in which RCU
354 * read-side critical sections normally occur.
356 void rcu_exit_nohz(void)
358 unsigned long flags;
359 struct rcu_dynticks *rdtp;
361 local_irq_save(flags);
362 rdtp = &__get_cpu_var(rcu_dynticks);
363 if (rdtp->dynticks_nesting++) {
364 local_irq_restore(flags);
365 return;
367 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
368 atomic_inc(&rdtp->dynticks);
369 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
370 smp_mb__after_atomic_inc(); /* See above. */
371 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
372 local_irq_restore(flags);
376 * rcu_nmi_enter - inform RCU of entry to NMI context
378 * If the CPU was idle with dynamic ticks active, and there is no
379 * irq handler running, this updates rdtp->dynticks_nmi to let the
380 * RCU grace-period handling know that the CPU is active.
382 void rcu_nmi_enter(void)
384 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
386 if (rdtp->dynticks_nmi_nesting == 0 &&
387 (atomic_read(&rdtp->dynticks) & 0x1))
388 return;
389 rdtp->dynticks_nmi_nesting++;
390 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
391 atomic_inc(&rdtp->dynticks);
392 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
393 smp_mb__after_atomic_inc(); /* See above. */
394 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
398 * rcu_nmi_exit - inform RCU of exit from NMI context
400 * If the CPU was idle with dynamic ticks active, and there is no
401 * irq handler running, this updates rdtp->dynticks_nmi to let the
402 * RCU grace-period handling know that the CPU is no longer active.
404 void rcu_nmi_exit(void)
406 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
408 if (rdtp->dynticks_nmi_nesting == 0 ||
409 --rdtp->dynticks_nmi_nesting != 0)
410 return;
411 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
412 smp_mb__before_atomic_inc(); /* See above. */
413 atomic_inc(&rdtp->dynticks);
414 smp_mb__after_atomic_inc(); /* Force delay to next write. */
415 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
419 * rcu_irq_enter - inform RCU of entry to hard irq context
421 * If the CPU was idle with dynamic ticks active, this updates the
422 * rdtp->dynticks to let the RCU handling know that the CPU is active.
424 void rcu_irq_enter(void)
426 rcu_exit_nohz();
430 * rcu_irq_exit - inform RCU of exit from hard irq context
432 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
433 * to put let the RCU handling be aware that the CPU is going back to idle
434 * with no ticks.
436 void rcu_irq_exit(void)
438 rcu_enter_nohz();
441 #ifdef CONFIG_SMP
444 * Snapshot the specified CPU's dynticks counter so that we can later
445 * credit them with an implicit quiescent state. Return 1 if this CPU
446 * is in dynticks idle mode, which is an extended quiescent state.
448 static int dyntick_save_progress_counter(struct rcu_data *rdp)
450 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
451 return 0;
455 * Return true if the specified CPU has passed through a quiescent
456 * state by virtue of being in or having passed through an dynticks
457 * idle state since the last call to dyntick_save_progress_counter()
458 * for this same CPU.
460 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
462 unsigned long curr;
463 unsigned long snap;
465 curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
466 snap = (unsigned long)rdp->dynticks_snap;
469 * If the CPU passed through or entered a dynticks idle phase with
470 * no active irq/NMI handlers, then we can safely pretend that the CPU
471 * already acknowledged the request to pass through a quiescent
472 * state. Either way, that CPU cannot possibly be in an RCU
473 * read-side critical section that started before the beginning
474 * of the current RCU grace period.
476 if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
477 rdp->dynticks_fqs++;
478 return 1;
481 /* Go check for the CPU being offline. */
482 return rcu_implicit_offline_qs(rdp);
485 #endif /* #ifdef CONFIG_SMP */
487 #else /* #ifdef CONFIG_NO_HZ */
489 #ifdef CONFIG_SMP
491 static int dyntick_save_progress_counter(struct rcu_data *rdp)
493 return 0;
496 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
498 return rcu_implicit_offline_qs(rdp);
501 #endif /* #ifdef CONFIG_SMP */
503 #endif /* #else #ifdef CONFIG_NO_HZ */
505 int rcu_cpu_stall_suppress __read_mostly;
507 static void record_gp_stall_check_time(struct rcu_state *rsp)
509 rsp->gp_start = jiffies;
510 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
513 static void print_other_cpu_stall(struct rcu_state *rsp)
515 int cpu;
516 long delta;
517 unsigned long flags;
518 struct rcu_node *rnp = rcu_get_root(rsp);
520 /* Only let one CPU complain about others per time interval. */
522 raw_spin_lock_irqsave(&rnp->lock, flags);
523 delta = jiffies - rsp->jiffies_stall;
524 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
525 raw_spin_unlock_irqrestore(&rnp->lock, flags);
526 return;
528 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
531 * Now rat on any tasks that got kicked up to the root rcu_node
532 * due to CPU offlining.
534 rcu_print_task_stall(rnp);
535 raw_spin_unlock_irqrestore(&rnp->lock, flags);
538 * OK, time to rat on our buddy...
539 * See Documentation/RCU/stallwarn.txt for info on how to debug
540 * RCU CPU stall warnings.
542 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
543 rsp->name);
544 rcu_for_each_leaf_node(rsp, rnp) {
545 raw_spin_lock_irqsave(&rnp->lock, flags);
546 rcu_print_task_stall(rnp);
547 raw_spin_unlock_irqrestore(&rnp->lock, flags);
548 if (rnp->qsmask == 0)
549 continue;
550 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
551 if (rnp->qsmask & (1UL << cpu))
552 printk(" %d", rnp->grplo + cpu);
554 printk("} (detected by %d, t=%ld jiffies)\n",
555 smp_processor_id(), (long)(jiffies - rsp->gp_start));
556 trigger_all_cpu_backtrace();
558 /* If so configured, complain about tasks blocking the grace period. */
560 rcu_print_detail_task_stall(rsp);
562 force_quiescent_state(rsp, 0); /* Kick them all. */
565 static void print_cpu_stall(struct rcu_state *rsp)
567 unsigned long flags;
568 struct rcu_node *rnp = rcu_get_root(rsp);
571 * OK, time to rat on ourselves...
572 * See Documentation/RCU/stallwarn.txt for info on how to debug
573 * RCU CPU stall warnings.
575 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
576 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
577 trigger_all_cpu_backtrace();
579 raw_spin_lock_irqsave(&rnp->lock, flags);
580 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
581 rsp->jiffies_stall =
582 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
583 raw_spin_unlock_irqrestore(&rnp->lock, flags);
585 set_need_resched(); /* kick ourselves to get things going. */
588 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
590 unsigned long j;
591 unsigned long js;
592 struct rcu_node *rnp;
594 if (rcu_cpu_stall_suppress)
595 return;
596 j = ACCESS_ONCE(jiffies);
597 js = ACCESS_ONCE(rsp->jiffies_stall);
598 rnp = rdp->mynode;
599 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
601 /* We haven't checked in, so go dump stack. */
602 print_cpu_stall(rsp);
604 } else if (rcu_gp_in_progress(rsp) &&
605 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
607 /* They had a few time units to dump stack, so complain. */
608 print_other_cpu_stall(rsp);
612 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
614 rcu_cpu_stall_suppress = 1;
615 return NOTIFY_DONE;
619 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
621 * Set the stall-warning timeout way off into the future, thus preventing
622 * any RCU CPU stall-warning messages from appearing in the current set of
623 * RCU grace periods.
625 * The caller must disable hard irqs.
627 void rcu_cpu_stall_reset(void)
629 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
630 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
631 rcu_preempt_stall_reset();
634 static struct notifier_block rcu_panic_block = {
635 .notifier_call = rcu_panic,
638 static void __init check_cpu_stall_init(void)
640 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
644 * Update CPU-local rcu_data state to record the newly noticed grace period.
645 * This is used both when we started the grace period and when we notice
646 * that someone else started the grace period. The caller must hold the
647 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
648 * and must have irqs disabled.
650 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
652 if (rdp->gpnum != rnp->gpnum) {
654 * If the current grace period is waiting for this CPU,
655 * set up to detect a quiescent state, otherwise don't
656 * go looking for one.
658 rdp->gpnum = rnp->gpnum;
659 if (rnp->qsmask & rdp->grpmask) {
660 rdp->qs_pending = 1;
661 rdp->passed_quiesc = 0;
662 } else
663 rdp->qs_pending = 0;
667 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
669 unsigned long flags;
670 struct rcu_node *rnp;
672 local_irq_save(flags);
673 rnp = rdp->mynode;
674 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
675 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
676 local_irq_restore(flags);
677 return;
679 __note_new_gpnum(rsp, rnp, rdp);
680 raw_spin_unlock_irqrestore(&rnp->lock, flags);
684 * Did someone else start a new RCU grace period start since we last
685 * checked? Update local state appropriately if so. Must be called
686 * on the CPU corresponding to rdp.
688 static int
689 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
691 unsigned long flags;
692 int ret = 0;
694 local_irq_save(flags);
695 if (rdp->gpnum != rsp->gpnum) {
696 note_new_gpnum(rsp, rdp);
697 ret = 1;
699 local_irq_restore(flags);
700 return ret;
704 * Advance this CPU's callbacks, but only if the current grace period
705 * has ended. This may be called only from the CPU to whom the rdp
706 * belongs. In addition, the corresponding leaf rcu_node structure's
707 * ->lock must be held by the caller, with irqs disabled.
709 static void
710 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
712 /* Did another grace period end? */
713 if (rdp->completed != rnp->completed) {
715 /* Advance callbacks. No harm if list empty. */
716 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
717 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
718 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
720 /* Remember that we saw this grace-period completion. */
721 rdp->completed = rnp->completed;
724 * If we were in an extended quiescent state, we may have
725 * missed some grace periods that others CPUs handled on
726 * our behalf. Catch up with this state to avoid noting
727 * spurious new grace periods. If another grace period
728 * has started, then rnp->gpnum will have advanced, so
729 * we will detect this later on.
731 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
732 rdp->gpnum = rdp->completed;
735 * If RCU does not need a quiescent state from this CPU,
736 * then make sure that this CPU doesn't go looking for one.
738 if ((rnp->qsmask & rdp->grpmask) == 0)
739 rdp->qs_pending = 0;
744 * Advance this CPU's callbacks, but only if the current grace period
745 * has ended. This may be called only from the CPU to whom the rdp
746 * belongs.
748 static void
749 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
751 unsigned long flags;
752 struct rcu_node *rnp;
754 local_irq_save(flags);
755 rnp = rdp->mynode;
756 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
757 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
758 local_irq_restore(flags);
759 return;
761 __rcu_process_gp_end(rsp, rnp, rdp);
762 raw_spin_unlock_irqrestore(&rnp->lock, flags);
766 * Do per-CPU grace-period initialization for running CPU. The caller
767 * must hold the lock of the leaf rcu_node structure corresponding to
768 * this CPU.
770 static void
771 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
773 /* Prior grace period ended, so advance callbacks for current CPU. */
774 __rcu_process_gp_end(rsp, rnp, rdp);
777 * Because this CPU just now started the new grace period, we know
778 * that all of its callbacks will be covered by this upcoming grace
779 * period, even the ones that were registered arbitrarily recently.
780 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
782 * Other CPUs cannot be sure exactly when the grace period started.
783 * Therefore, their recently registered callbacks must pass through
784 * an additional RCU_NEXT_READY stage, so that they will be handled
785 * by the next RCU grace period.
787 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
788 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
790 /* Set state so that this CPU will detect the next quiescent state. */
791 __note_new_gpnum(rsp, rnp, rdp);
795 * Start a new RCU grace period if warranted, re-initializing the hierarchy
796 * in preparation for detecting the next grace period. The caller must hold
797 * the root node's ->lock, which is released before return. Hard irqs must
798 * be disabled.
800 static void
801 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
802 __releases(rcu_get_root(rsp)->lock)
804 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
805 struct rcu_node *rnp = rcu_get_root(rsp);
807 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
808 if (cpu_needs_another_gp(rsp, rdp))
809 rsp->fqs_need_gp = 1;
810 if (rnp->completed == rsp->completed) {
811 raw_spin_unlock_irqrestore(&rnp->lock, flags);
812 return;
814 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
817 * Propagate new ->completed value to rcu_node structures
818 * so that other CPUs don't have to wait until the start
819 * of the next grace period to process their callbacks.
821 rcu_for_each_node_breadth_first(rsp, rnp) {
822 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
823 rnp->completed = rsp->completed;
824 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
826 local_irq_restore(flags);
827 return;
830 /* Advance to a new grace period and initialize state. */
831 rsp->gpnum++;
832 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
833 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
834 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
835 record_gp_stall_check_time(rsp);
837 /* Special-case the common single-level case. */
838 if (NUM_RCU_NODES == 1) {
839 rcu_preempt_check_blocked_tasks(rnp);
840 rnp->qsmask = rnp->qsmaskinit;
841 rnp->gpnum = rsp->gpnum;
842 rnp->completed = rsp->completed;
843 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
844 rcu_start_gp_per_cpu(rsp, rnp, rdp);
845 rcu_preempt_boost_start_gp(rnp);
846 raw_spin_unlock_irqrestore(&rnp->lock, flags);
847 return;
850 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
853 /* Exclude any concurrent CPU-hotplug operations. */
854 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
857 * Set the quiescent-state-needed bits in all the rcu_node
858 * structures for all currently online CPUs in breadth-first
859 * order, starting from the root rcu_node structure. This
860 * operation relies on the layout of the hierarchy within the
861 * rsp->node[] array. Note that other CPUs will access only
862 * the leaves of the hierarchy, which still indicate that no
863 * grace period is in progress, at least until the corresponding
864 * leaf node has been initialized. In addition, we have excluded
865 * CPU-hotplug operations.
867 * Note that the grace period cannot complete until we finish
868 * the initialization process, as there will be at least one
869 * qsmask bit set in the root node until that time, namely the
870 * one corresponding to this CPU, due to the fact that we have
871 * irqs disabled.
873 rcu_for_each_node_breadth_first(rsp, rnp) {
874 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
875 rcu_preempt_check_blocked_tasks(rnp);
876 rnp->qsmask = rnp->qsmaskinit;
877 rnp->gpnum = rsp->gpnum;
878 rnp->completed = rsp->completed;
879 if (rnp == rdp->mynode)
880 rcu_start_gp_per_cpu(rsp, rnp, rdp);
881 rcu_preempt_boost_start_gp(rnp);
882 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
885 rnp = rcu_get_root(rsp);
886 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
887 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
888 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
889 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
893 * Report a full set of quiescent states to the specified rcu_state
894 * data structure. This involves cleaning up after the prior grace
895 * period and letting rcu_start_gp() start up the next grace period
896 * if one is needed. Note that the caller must hold rnp->lock, as
897 * required by rcu_start_gp(), which will release it.
899 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
900 __releases(rcu_get_root(rsp)->lock)
902 unsigned long gp_duration;
904 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
907 * Ensure that all grace-period and pre-grace-period activity
908 * is seen before the assignment to rsp->completed.
910 smp_mb(); /* See above block comment. */
911 gp_duration = jiffies - rsp->gp_start;
912 if (gp_duration > rsp->gp_max)
913 rsp->gp_max = gp_duration;
914 rsp->completed = rsp->gpnum;
915 rsp->signaled = RCU_GP_IDLE;
916 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
920 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
921 * Allows quiescent states for a group of CPUs to be reported at one go
922 * to the specified rcu_node structure, though all the CPUs in the group
923 * must be represented by the same rcu_node structure (which need not be
924 * a leaf rcu_node structure, though it often will be). That structure's
925 * lock must be held upon entry, and it is released before return.
927 static void
928 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
929 struct rcu_node *rnp, unsigned long flags)
930 __releases(rnp->lock)
932 struct rcu_node *rnp_c;
934 /* Walk up the rcu_node hierarchy. */
935 for (;;) {
936 if (!(rnp->qsmask & mask)) {
938 /* Our bit has already been cleared, so done. */
939 raw_spin_unlock_irqrestore(&rnp->lock, flags);
940 return;
942 rnp->qsmask &= ~mask;
943 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
945 /* Other bits still set at this level, so done. */
946 raw_spin_unlock_irqrestore(&rnp->lock, flags);
947 return;
949 mask = rnp->grpmask;
950 if (rnp->parent == NULL) {
952 /* No more levels. Exit loop holding root lock. */
954 break;
956 raw_spin_unlock_irqrestore(&rnp->lock, flags);
957 rnp_c = rnp;
958 rnp = rnp->parent;
959 raw_spin_lock_irqsave(&rnp->lock, flags);
960 WARN_ON_ONCE(rnp_c->qsmask);
964 * Get here if we are the last CPU to pass through a quiescent
965 * state for this grace period. Invoke rcu_report_qs_rsp()
966 * to clean up and start the next grace period if one is needed.
968 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
972 * Record a quiescent state for the specified CPU to that CPU's rcu_data
973 * structure. This must be either called from the specified CPU, or
974 * called when the specified CPU is known to be offline (and when it is
975 * also known that no other CPU is concurrently trying to help the offline
976 * CPU). The lastcomp argument is used to make sure we are still in the
977 * grace period of interest. We don't want to end the current grace period
978 * based on quiescent states detected in an earlier grace period!
980 static void
981 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
983 unsigned long flags;
984 unsigned long mask;
985 struct rcu_node *rnp;
987 rnp = rdp->mynode;
988 raw_spin_lock_irqsave(&rnp->lock, flags);
989 if (lastcomp != rnp->completed) {
992 * Someone beat us to it for this grace period, so leave.
993 * The race with GP start is resolved by the fact that we
994 * hold the leaf rcu_node lock, so that the per-CPU bits
995 * cannot yet be initialized -- so we would simply find our
996 * CPU's bit already cleared in rcu_report_qs_rnp() if this
997 * race occurred.
999 rdp->passed_quiesc = 0; /* try again later! */
1000 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1001 return;
1003 mask = rdp->grpmask;
1004 if ((rnp->qsmask & mask) == 0) {
1005 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1006 } else {
1007 rdp->qs_pending = 0;
1010 * This GP can't end until cpu checks in, so all of our
1011 * callbacks can be processed during the next GP.
1013 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1015 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1020 * Check to see if there is a new grace period of which this CPU
1021 * is not yet aware, and if so, set up local rcu_data state for it.
1022 * Otherwise, see if this CPU has just passed through its first
1023 * quiescent state for this grace period, and record that fact if so.
1025 static void
1026 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1028 /* If there is now a new grace period, record and return. */
1029 if (check_for_new_grace_period(rsp, rdp))
1030 return;
1033 * Does this CPU still need to do its part for current grace period?
1034 * If no, return and let the other CPUs do their part as well.
1036 if (!rdp->qs_pending)
1037 return;
1040 * Was there a quiescent state since the beginning of the grace
1041 * period? If no, then exit and wait for the next call.
1043 if (!rdp->passed_quiesc)
1044 return;
1047 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1048 * judge of that).
1050 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1053 #ifdef CONFIG_HOTPLUG_CPU
1056 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1057 * Synchronization is not required because this function executes
1058 * in stop_machine() context.
1060 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1062 int i;
1063 /* current DYING CPU is cleared in the cpu_online_mask */
1064 int receive_cpu = cpumask_any(cpu_online_mask);
1065 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1066 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1068 if (rdp->nxtlist == NULL)
1069 return; /* irqs disabled, so comparison is stable. */
1071 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1072 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1073 receive_rdp->qlen += rdp->qlen;
1074 receive_rdp->n_cbs_adopted += rdp->qlen;
1075 rdp->n_cbs_orphaned += rdp->qlen;
1077 rdp->nxtlist = NULL;
1078 for (i = 0; i < RCU_NEXT_SIZE; i++)
1079 rdp->nxttail[i] = &rdp->nxtlist;
1080 rdp->qlen = 0;
1084 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1085 * and move all callbacks from the outgoing CPU to the current one.
1086 * There can only be one CPU hotplug operation at a time, so no other
1087 * CPU can be attempting to update rcu_cpu_kthread_task.
1089 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1091 unsigned long flags;
1092 unsigned long mask;
1093 int need_report = 0;
1094 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1095 struct rcu_node *rnp;
1097 rcu_stop_cpu_kthread(cpu);
1099 /* Exclude any attempts to start a new grace period. */
1100 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1102 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1103 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1104 mask = rdp->grpmask; /* rnp->grplo is constant. */
1105 do {
1106 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1107 rnp->qsmaskinit &= ~mask;
1108 if (rnp->qsmaskinit != 0) {
1109 if (rnp != rdp->mynode)
1110 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1111 break;
1113 if (rnp == rdp->mynode)
1114 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1115 else
1116 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1117 mask = rnp->grpmask;
1118 rnp = rnp->parent;
1119 } while (rnp != NULL);
1122 * We still hold the leaf rcu_node structure lock here, and
1123 * irqs are still disabled. The reason for this subterfuge is
1124 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1125 * held leads to deadlock.
1127 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1128 rnp = rdp->mynode;
1129 if (need_report & RCU_OFL_TASKS_NORM_GP)
1130 rcu_report_unblock_qs_rnp(rnp, flags);
1131 else
1132 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1133 if (need_report & RCU_OFL_TASKS_EXP_GP)
1134 rcu_report_exp_rnp(rsp, rnp);
1135 rcu_node_kthread_setaffinity(rnp, -1);
1139 * Remove the specified CPU from the RCU hierarchy and move any pending
1140 * callbacks that it might have to the current CPU. This code assumes
1141 * that at least one CPU in the system will remain running at all times.
1142 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1144 static void rcu_offline_cpu(int cpu)
1146 __rcu_offline_cpu(cpu, &rcu_sched_state);
1147 __rcu_offline_cpu(cpu, &rcu_bh_state);
1148 rcu_preempt_offline_cpu(cpu);
1151 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1153 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1157 static void rcu_offline_cpu(int cpu)
1161 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1164 * Invoke any RCU callbacks that have made it to the end of their grace
1165 * period. Thottle as specified by rdp->blimit.
1167 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1169 unsigned long flags;
1170 struct rcu_head *next, *list, **tail;
1171 int count;
1173 /* If no callbacks are ready, just return.*/
1174 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1175 return;
1178 * Extract the list of ready callbacks, disabling to prevent
1179 * races with call_rcu() from interrupt handlers.
1181 local_irq_save(flags);
1182 list = rdp->nxtlist;
1183 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1184 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1185 tail = rdp->nxttail[RCU_DONE_TAIL];
1186 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1187 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1188 rdp->nxttail[count] = &rdp->nxtlist;
1189 local_irq_restore(flags);
1191 /* Invoke callbacks. */
1192 count = 0;
1193 while (list) {
1194 next = list->next;
1195 prefetch(next);
1196 debug_rcu_head_unqueue(list);
1197 __rcu_reclaim(list);
1198 list = next;
1199 if (++count >= rdp->blimit)
1200 break;
1203 local_irq_save(flags);
1205 /* Update count, and requeue any remaining callbacks. */
1206 rdp->qlen -= count;
1207 rdp->n_cbs_invoked += count;
1208 if (list != NULL) {
1209 *tail = rdp->nxtlist;
1210 rdp->nxtlist = list;
1211 for (count = 0; count < RCU_NEXT_SIZE; count++)
1212 if (&rdp->nxtlist == rdp->nxttail[count])
1213 rdp->nxttail[count] = tail;
1214 else
1215 break;
1218 /* Reinstate batch limit if we have worked down the excess. */
1219 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1220 rdp->blimit = blimit;
1222 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1223 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1224 rdp->qlen_last_fqs_check = 0;
1225 rdp->n_force_qs_snap = rsp->n_force_qs;
1226 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1227 rdp->qlen_last_fqs_check = rdp->qlen;
1229 local_irq_restore(flags);
1231 /* Re-raise the RCU softirq if there are callbacks remaining. */
1232 if (cpu_has_callbacks_ready_to_invoke(rdp))
1233 invoke_rcu_core();
1237 * Check to see if this CPU is in a non-context-switch quiescent state
1238 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1239 * Also schedule the RCU softirq handler.
1241 * This function must be called with hardirqs disabled. It is normally
1242 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1243 * false, there is no point in invoking rcu_check_callbacks().
1245 void rcu_check_callbacks(int cpu, int user)
1247 if (user ||
1248 (idle_cpu(cpu) && rcu_scheduler_active &&
1249 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1252 * Get here if this CPU took its interrupt from user
1253 * mode or from the idle loop, and if this is not a
1254 * nested interrupt. In this case, the CPU is in
1255 * a quiescent state, so note it.
1257 * No memory barrier is required here because both
1258 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1259 * variables that other CPUs neither access nor modify,
1260 * at least not while the corresponding CPU is online.
1263 rcu_sched_qs(cpu);
1264 rcu_bh_qs(cpu);
1266 } else if (!in_softirq()) {
1269 * Get here if this CPU did not take its interrupt from
1270 * softirq, in other words, if it is not interrupting
1271 * a rcu_bh read-side critical section. This is an _bh
1272 * critical section, so note it.
1275 rcu_bh_qs(cpu);
1277 rcu_preempt_check_callbacks(cpu);
1278 if (rcu_pending(cpu))
1279 invoke_rcu_core();
1282 #ifdef CONFIG_SMP
1285 * Scan the leaf rcu_node structures, processing dyntick state for any that
1286 * have not yet encountered a quiescent state, using the function specified.
1287 * Also initiate boosting for any threads blocked on the root rcu_node.
1289 * The caller must have suppressed start of new grace periods.
1291 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1293 unsigned long bit;
1294 int cpu;
1295 unsigned long flags;
1296 unsigned long mask;
1297 struct rcu_node *rnp;
1299 rcu_for_each_leaf_node(rsp, rnp) {
1300 mask = 0;
1301 raw_spin_lock_irqsave(&rnp->lock, flags);
1302 if (!rcu_gp_in_progress(rsp)) {
1303 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1304 return;
1306 if (rnp->qsmask == 0) {
1307 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1308 continue;
1310 cpu = rnp->grplo;
1311 bit = 1;
1312 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1313 if ((rnp->qsmask & bit) != 0 &&
1314 f(per_cpu_ptr(rsp->rda, cpu)))
1315 mask |= bit;
1317 if (mask != 0) {
1319 /* rcu_report_qs_rnp() releases rnp->lock. */
1320 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1321 continue;
1323 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1325 rnp = rcu_get_root(rsp);
1326 if (rnp->qsmask == 0) {
1327 raw_spin_lock_irqsave(&rnp->lock, flags);
1328 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1333 * Force quiescent states on reluctant CPUs, and also detect which
1334 * CPUs are in dyntick-idle mode.
1336 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1338 unsigned long flags;
1339 struct rcu_node *rnp = rcu_get_root(rsp);
1341 if (!rcu_gp_in_progress(rsp))
1342 return; /* No grace period in progress, nothing to force. */
1343 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1344 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1345 return; /* Someone else is already on the job. */
1347 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1348 goto unlock_fqs_ret; /* no emergency and done recently. */
1349 rsp->n_force_qs++;
1350 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1351 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1352 if(!rcu_gp_in_progress(rsp)) {
1353 rsp->n_force_qs_ngp++;
1354 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1355 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1357 rsp->fqs_active = 1;
1358 switch (rsp->signaled) {
1359 case RCU_GP_IDLE:
1360 case RCU_GP_INIT:
1362 break; /* grace period idle or initializing, ignore. */
1364 case RCU_SAVE_DYNTICK:
1365 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1366 break; /* So gcc recognizes the dead code. */
1368 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1370 /* Record dyntick-idle state. */
1371 force_qs_rnp(rsp, dyntick_save_progress_counter);
1372 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1373 if (rcu_gp_in_progress(rsp))
1374 rsp->signaled = RCU_FORCE_QS;
1375 break;
1377 case RCU_FORCE_QS:
1379 /* Check dyntick-idle state, send IPI to laggarts. */
1380 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1381 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1383 /* Leave state in case more forcing is required. */
1385 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1386 break;
1388 rsp->fqs_active = 0;
1389 if (rsp->fqs_need_gp) {
1390 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1391 rsp->fqs_need_gp = 0;
1392 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1393 return;
1395 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1396 unlock_fqs_ret:
1397 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1400 #else /* #ifdef CONFIG_SMP */
1402 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1404 set_need_resched();
1407 #endif /* #else #ifdef CONFIG_SMP */
1410 * This does the RCU processing work from softirq context for the
1411 * specified rcu_state and rcu_data structures. This may be called
1412 * only from the CPU to whom the rdp belongs.
1414 static void
1415 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1417 unsigned long flags;
1419 WARN_ON_ONCE(rdp->beenonline == 0);
1422 * If an RCU GP has gone long enough, go check for dyntick
1423 * idle CPUs and, if needed, send resched IPIs.
1425 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1426 force_quiescent_state(rsp, 1);
1429 * Advance callbacks in response to end of earlier grace
1430 * period that some other CPU ended.
1432 rcu_process_gp_end(rsp, rdp);
1434 /* Update RCU state based on any recent quiescent states. */
1435 rcu_check_quiescent_state(rsp, rdp);
1437 /* Does this CPU require a not-yet-started grace period? */
1438 if (cpu_needs_another_gp(rsp, rdp)) {
1439 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1440 rcu_start_gp(rsp, flags); /* releases above lock */
1443 /* If there are callbacks ready, invoke them. */
1444 if (cpu_has_callbacks_ready_to_invoke(rdp))
1445 invoke_rcu_callbacks(rsp, rdp);
1449 * Do softirq processing for the current CPU.
1451 static void rcu_process_callbacks(struct softirq_action *unused)
1453 __rcu_process_callbacks(&rcu_sched_state,
1454 &__get_cpu_var(rcu_sched_data));
1455 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1456 rcu_preempt_process_callbacks();
1458 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1459 rcu_needs_cpu_flush();
1463 * Wake up the current CPU's kthread. This replaces raise_softirq()
1464 * in earlier versions of RCU. Note that because we are running on
1465 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1466 * cannot disappear out from under us.
1468 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1470 if (likely(!rsp->boost)) {
1471 rcu_do_batch(rsp, rdp);
1472 return;
1474 invoke_rcu_callbacks_kthread();
1477 static void invoke_rcu_core(void)
1479 raise_softirq(RCU_SOFTIRQ);
1482 static void
1483 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1484 struct rcu_state *rsp)
1486 unsigned long flags;
1487 struct rcu_data *rdp;
1489 debug_rcu_head_queue(head);
1490 head->func = func;
1491 head->next = NULL;
1493 smp_mb(); /* Ensure RCU update seen before callback registry. */
1496 * Opportunistically note grace-period endings and beginnings.
1497 * Note that we might see a beginning right after we see an
1498 * end, but never vice versa, since this CPU has to pass through
1499 * a quiescent state betweentimes.
1501 local_irq_save(flags);
1502 rdp = this_cpu_ptr(rsp->rda);
1504 /* Add the callback to our list. */
1505 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1506 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1507 rdp->qlen++;
1509 /* If interrupts were disabled, don't dive into RCU core. */
1510 if (irqs_disabled_flags(flags)) {
1511 local_irq_restore(flags);
1512 return;
1516 * Force the grace period if too many callbacks or too long waiting.
1517 * Enforce hysteresis, and don't invoke force_quiescent_state()
1518 * if some other CPU has recently done so. Also, don't bother
1519 * invoking force_quiescent_state() if the newly enqueued callback
1520 * is the only one waiting for a grace period to complete.
1522 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1524 /* Are we ignoring a completed grace period? */
1525 rcu_process_gp_end(rsp, rdp);
1526 check_for_new_grace_period(rsp, rdp);
1528 /* Start a new grace period if one not already started. */
1529 if (!rcu_gp_in_progress(rsp)) {
1530 unsigned long nestflag;
1531 struct rcu_node *rnp_root = rcu_get_root(rsp);
1533 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1534 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1535 } else {
1536 /* Give the grace period a kick. */
1537 rdp->blimit = LONG_MAX;
1538 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1539 *rdp->nxttail[RCU_DONE_TAIL] != head)
1540 force_quiescent_state(rsp, 0);
1541 rdp->n_force_qs_snap = rsp->n_force_qs;
1542 rdp->qlen_last_fqs_check = rdp->qlen;
1544 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1545 force_quiescent_state(rsp, 1);
1546 local_irq_restore(flags);
1550 * Queue an RCU-sched callback for invocation after a grace period.
1552 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1554 __call_rcu(head, func, &rcu_sched_state);
1556 EXPORT_SYMBOL_GPL(call_rcu_sched);
1559 * Queue an RCU for invocation after a quicker grace period.
1561 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1563 __call_rcu(head, func, &rcu_bh_state);
1565 EXPORT_SYMBOL_GPL(call_rcu_bh);
1568 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1570 * Control will return to the caller some time after a full rcu-sched
1571 * grace period has elapsed, in other words after all currently executing
1572 * rcu-sched read-side critical sections have completed. These read-side
1573 * critical sections are delimited by rcu_read_lock_sched() and
1574 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1575 * local_irq_disable(), and so on may be used in place of
1576 * rcu_read_lock_sched().
1578 * This means that all preempt_disable code sequences, including NMI and
1579 * hardware-interrupt handlers, in progress on entry will have completed
1580 * before this primitive returns. However, this does not guarantee that
1581 * softirq handlers will have completed, since in some kernels, these
1582 * handlers can run in process context, and can block.
1584 * This primitive provides the guarantees made by the (now removed)
1585 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1586 * guarantees that rcu_read_lock() sections will have completed.
1587 * In "classic RCU", these two guarantees happen to be one and
1588 * the same, but can differ in realtime RCU implementations.
1590 void synchronize_sched(void)
1592 struct rcu_synchronize rcu;
1594 if (rcu_blocking_is_gp())
1595 return;
1597 init_rcu_head_on_stack(&rcu.head);
1598 init_completion(&rcu.completion);
1599 /* Will wake me after RCU finished. */
1600 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1601 /* Wait for it. */
1602 wait_for_completion(&rcu.completion);
1603 destroy_rcu_head_on_stack(&rcu.head);
1605 EXPORT_SYMBOL_GPL(synchronize_sched);
1608 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1610 * Control will return to the caller some time after a full rcu_bh grace
1611 * period has elapsed, in other words after all currently executing rcu_bh
1612 * read-side critical sections have completed. RCU read-side critical
1613 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1614 * and may be nested.
1616 void synchronize_rcu_bh(void)
1618 struct rcu_synchronize rcu;
1620 if (rcu_blocking_is_gp())
1621 return;
1623 init_rcu_head_on_stack(&rcu.head);
1624 init_completion(&rcu.completion);
1625 /* Will wake me after RCU finished. */
1626 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1627 /* Wait for it. */
1628 wait_for_completion(&rcu.completion);
1629 destroy_rcu_head_on_stack(&rcu.head);
1631 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1634 * Check to see if there is any immediate RCU-related work to be done
1635 * by the current CPU, for the specified type of RCU, returning 1 if so.
1636 * The checks are in order of increasing expense: checks that can be
1637 * carried out against CPU-local state are performed first. However,
1638 * we must check for CPU stalls first, else we might not get a chance.
1640 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1642 struct rcu_node *rnp = rdp->mynode;
1644 rdp->n_rcu_pending++;
1646 /* Check for CPU stalls, if enabled. */
1647 check_cpu_stall(rsp, rdp);
1649 /* Is the RCU core waiting for a quiescent state from this CPU? */
1650 if (rdp->qs_pending && !rdp->passed_quiesc) {
1653 * If force_quiescent_state() coming soon and this CPU
1654 * needs a quiescent state, and this is either RCU-sched
1655 * or RCU-bh, force a local reschedule.
1657 rdp->n_rp_qs_pending++;
1658 if (!rdp->preemptible &&
1659 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1660 jiffies))
1661 set_need_resched();
1662 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1663 rdp->n_rp_report_qs++;
1664 return 1;
1667 /* Does this CPU have callbacks ready to invoke? */
1668 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1669 rdp->n_rp_cb_ready++;
1670 return 1;
1673 /* Has RCU gone idle with this CPU needing another grace period? */
1674 if (cpu_needs_another_gp(rsp, rdp)) {
1675 rdp->n_rp_cpu_needs_gp++;
1676 return 1;
1679 /* Has another RCU grace period completed? */
1680 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1681 rdp->n_rp_gp_completed++;
1682 return 1;
1685 /* Has a new RCU grace period started? */
1686 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1687 rdp->n_rp_gp_started++;
1688 return 1;
1691 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1692 if (rcu_gp_in_progress(rsp) &&
1693 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1694 rdp->n_rp_need_fqs++;
1695 return 1;
1698 /* nothing to do */
1699 rdp->n_rp_need_nothing++;
1700 return 0;
1704 * Check to see if there is any immediate RCU-related work to be done
1705 * by the current CPU, returning 1 if so. This function is part of the
1706 * RCU implementation; it is -not- an exported member of the RCU API.
1708 static int rcu_pending(int cpu)
1710 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1711 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1712 rcu_preempt_pending(cpu);
1716 * Check to see if any future RCU-related work will need to be done
1717 * by the current CPU, even if none need be done immediately, returning
1718 * 1 if so.
1720 static int rcu_needs_cpu_quick_check(int cpu)
1722 /* RCU callbacks either ready or pending? */
1723 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1724 per_cpu(rcu_bh_data, cpu).nxtlist ||
1725 rcu_preempt_needs_cpu(cpu);
1728 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1729 static atomic_t rcu_barrier_cpu_count;
1730 static DEFINE_MUTEX(rcu_barrier_mutex);
1731 static struct completion rcu_barrier_completion;
1733 static void rcu_barrier_callback(struct rcu_head *notused)
1735 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1736 complete(&rcu_barrier_completion);
1740 * Called with preemption disabled, and from cross-cpu IRQ context.
1742 static void rcu_barrier_func(void *type)
1744 int cpu = smp_processor_id();
1745 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1746 void (*call_rcu_func)(struct rcu_head *head,
1747 void (*func)(struct rcu_head *head));
1749 atomic_inc(&rcu_barrier_cpu_count);
1750 call_rcu_func = type;
1751 call_rcu_func(head, rcu_barrier_callback);
1755 * Orchestrate the specified type of RCU barrier, waiting for all
1756 * RCU callbacks of the specified type to complete.
1758 static void _rcu_barrier(struct rcu_state *rsp,
1759 void (*call_rcu_func)(struct rcu_head *head,
1760 void (*func)(struct rcu_head *head)))
1762 BUG_ON(in_interrupt());
1763 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1764 mutex_lock(&rcu_barrier_mutex);
1765 init_completion(&rcu_barrier_completion);
1767 * Initialize rcu_barrier_cpu_count to 1, then invoke
1768 * rcu_barrier_func() on each CPU, so that each CPU also has
1769 * incremented rcu_barrier_cpu_count. Only then is it safe to
1770 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1771 * might complete its grace period before all of the other CPUs
1772 * did their increment, causing this function to return too
1773 * early. Note that on_each_cpu() disables irqs, which prevents
1774 * any CPUs from coming online or going offline until each online
1775 * CPU has queued its RCU-barrier callback.
1777 atomic_set(&rcu_barrier_cpu_count, 1);
1778 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1779 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1780 complete(&rcu_barrier_completion);
1781 wait_for_completion(&rcu_barrier_completion);
1782 mutex_unlock(&rcu_barrier_mutex);
1786 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1788 void rcu_barrier_bh(void)
1790 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1792 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1795 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1797 void rcu_barrier_sched(void)
1799 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1801 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1804 * Do boot-time initialization of a CPU's per-CPU RCU data.
1806 static void __init
1807 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1809 unsigned long flags;
1810 int i;
1811 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1812 struct rcu_node *rnp = rcu_get_root(rsp);
1814 /* Set up local state, ensuring consistent view of global state. */
1815 raw_spin_lock_irqsave(&rnp->lock, flags);
1816 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1817 rdp->nxtlist = NULL;
1818 for (i = 0; i < RCU_NEXT_SIZE; i++)
1819 rdp->nxttail[i] = &rdp->nxtlist;
1820 rdp->qlen = 0;
1821 #ifdef CONFIG_NO_HZ
1822 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1823 #endif /* #ifdef CONFIG_NO_HZ */
1824 rdp->cpu = cpu;
1825 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1829 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1830 * offline event can be happening at a given time. Note also that we
1831 * can accept some slop in the rsp->completed access due to the fact
1832 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1834 static void __cpuinit
1835 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
1837 unsigned long flags;
1838 unsigned long mask;
1839 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1840 struct rcu_node *rnp = rcu_get_root(rsp);
1842 /* Set up local state, ensuring consistent view of global state. */
1843 raw_spin_lock_irqsave(&rnp->lock, flags);
1844 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1845 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1846 rdp->beenonline = 1; /* We have now been online. */
1847 rdp->preemptible = preemptible;
1848 rdp->qlen_last_fqs_check = 0;
1849 rdp->n_force_qs_snap = rsp->n_force_qs;
1850 rdp->blimit = blimit;
1851 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1854 * A new grace period might start here. If so, we won't be part
1855 * of it, but that is OK, as we are currently in a quiescent state.
1858 /* Exclude any attempts to start a new GP on large systems. */
1859 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1861 /* Add CPU to rcu_node bitmasks. */
1862 rnp = rdp->mynode;
1863 mask = rdp->grpmask;
1864 do {
1865 /* Exclude any attempts to start a new GP on small systems. */
1866 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1867 rnp->qsmaskinit |= mask;
1868 mask = rnp->grpmask;
1869 if (rnp == rdp->mynode) {
1870 rdp->gpnum = rnp->completed; /* if GP in progress... */
1871 rdp->completed = rnp->completed;
1872 rdp->passed_quiesc_completed = rnp->completed - 1;
1874 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1875 rnp = rnp->parent;
1876 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1878 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1881 static void __cpuinit rcu_prepare_cpu(int cpu)
1883 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1884 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1885 rcu_preempt_init_percpu_data(cpu);
1889 * Handle CPU online/offline notification events.
1891 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1892 unsigned long action, void *hcpu)
1894 long cpu = (long)hcpu;
1895 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1896 struct rcu_node *rnp = rdp->mynode;
1898 switch (action) {
1899 case CPU_UP_PREPARE:
1900 case CPU_UP_PREPARE_FROZEN:
1901 rcu_prepare_cpu(cpu);
1902 rcu_prepare_kthreads(cpu);
1903 break;
1904 case CPU_ONLINE:
1905 case CPU_DOWN_FAILED:
1906 rcu_node_kthread_setaffinity(rnp, -1);
1907 rcu_cpu_kthread_setrt(cpu, 1);
1908 break;
1909 case CPU_DOWN_PREPARE:
1910 rcu_node_kthread_setaffinity(rnp, cpu);
1911 rcu_cpu_kthread_setrt(cpu, 0);
1912 break;
1913 case CPU_DYING:
1914 case CPU_DYING_FROZEN:
1916 * The whole machine is "stopped" except this CPU, so we can
1917 * touch any data without introducing corruption. We send the
1918 * dying CPU's callbacks to an arbitrarily chosen online CPU.
1920 rcu_send_cbs_to_online(&rcu_bh_state);
1921 rcu_send_cbs_to_online(&rcu_sched_state);
1922 rcu_preempt_send_cbs_to_online();
1923 break;
1924 case CPU_DEAD:
1925 case CPU_DEAD_FROZEN:
1926 case CPU_UP_CANCELED:
1927 case CPU_UP_CANCELED_FROZEN:
1928 rcu_offline_cpu(cpu);
1929 break;
1930 default:
1931 break;
1933 return NOTIFY_OK;
1937 * This function is invoked towards the end of the scheduler's initialization
1938 * process. Before this is called, the idle task might contain
1939 * RCU read-side critical sections (during which time, this idle
1940 * task is booting the system). After this function is called, the
1941 * idle tasks are prohibited from containing RCU read-side critical
1942 * sections. This function also enables RCU lockdep checking.
1944 void rcu_scheduler_starting(void)
1946 WARN_ON(num_online_cpus() != 1);
1947 WARN_ON(nr_context_switches() > 0);
1948 rcu_scheduler_active = 1;
1952 * Compute the per-level fanout, either using the exact fanout specified
1953 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1955 #ifdef CONFIG_RCU_FANOUT_EXACT
1956 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1958 int i;
1960 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
1961 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1962 rsp->levelspread[0] = RCU_FANOUT_LEAF;
1964 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1965 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1967 int ccur;
1968 int cprv;
1969 int i;
1971 cprv = NR_CPUS;
1972 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1973 ccur = rsp->levelcnt[i];
1974 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1975 cprv = ccur;
1978 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1981 * Helper function for rcu_init() that initializes one rcu_state structure.
1983 static void __init rcu_init_one(struct rcu_state *rsp,
1984 struct rcu_data __percpu *rda)
1986 static char *buf[] = { "rcu_node_level_0",
1987 "rcu_node_level_1",
1988 "rcu_node_level_2",
1989 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
1990 int cpustride = 1;
1991 int i;
1992 int j;
1993 struct rcu_node *rnp;
1995 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
1997 /* Initialize the level-tracking arrays. */
1999 for (i = 1; i < NUM_RCU_LVLS; i++)
2000 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2001 rcu_init_levelspread(rsp);
2003 /* Initialize the elements themselves, starting from the leaves. */
2005 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2006 cpustride *= rsp->levelspread[i];
2007 rnp = rsp->level[i];
2008 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2009 raw_spin_lock_init(&rnp->lock);
2010 lockdep_set_class_and_name(&rnp->lock,
2011 &rcu_node_class[i], buf[i]);
2012 rnp->gpnum = 0;
2013 rnp->qsmask = 0;
2014 rnp->qsmaskinit = 0;
2015 rnp->grplo = j * cpustride;
2016 rnp->grphi = (j + 1) * cpustride - 1;
2017 if (rnp->grphi >= NR_CPUS)
2018 rnp->grphi = NR_CPUS - 1;
2019 if (i == 0) {
2020 rnp->grpnum = 0;
2021 rnp->grpmask = 0;
2022 rnp->parent = NULL;
2023 } else {
2024 rnp->grpnum = j % rsp->levelspread[i - 1];
2025 rnp->grpmask = 1UL << rnp->grpnum;
2026 rnp->parent = rsp->level[i - 1] +
2027 j / rsp->levelspread[i - 1];
2029 rnp->level = i;
2030 INIT_LIST_HEAD(&rnp->blkd_tasks);
2034 rsp->rda = rda;
2035 rnp = rsp->level[NUM_RCU_LVLS - 1];
2036 for_each_possible_cpu(i) {
2037 while (i > rnp->grphi)
2038 rnp++;
2039 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2040 rcu_boot_init_percpu_data(i, rsp);
2044 void __init rcu_init(void)
2046 int cpu;
2048 rcu_bootup_announce();
2049 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2050 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2051 __rcu_init_preempt();
2052 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2055 * We don't need protection against CPU-hotplug here because
2056 * this is called early in boot, before either interrupts
2057 * or the scheduler are operational.
2059 cpu_notifier(rcu_cpu_notify, 0);
2060 for_each_online_cpu(cpu)
2061 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2062 check_cpu_stall_init();
2065 #include "rcutree_plugin.h"